The Crystal Structure of Krupkaite, CuPbBi₃S₆, from the Juno Mine at Tennant Creek, Northern Territory, Australia

W. G. MUMME

Commonwealth Scientific and Industrial Research Organization, Division of Mineral Chemistry, P.O. Box 124, Port Melbourne, Victoria 3207, Australia

Abstract

Krupkaite, CuPbBi_aS₆, from the Juno Mine at Tennant Creek, Northern Territory, Australia, is orthorhombic, space group $Pmc2_1$ with a = 4.003(3), b = 11.200(9), c = 11.560(9) Å. Diffraction data were recorded with an equi-inclination diffractometer equipped with a proportional counter as detector. A least squares structural refinement, to an R value of 9.7 percent, permitted distinction between lead and bismuth on the basis of bond distances. The lead atom is coordinated to five sulfur atoms at distances from 2.89 to 3.02 Å; two additional sulfur neighbors are located at 3.27 Å. The Bi(1) atom has three sulfur neighbors at 2.65 Å and 2.79 Å and four more distant sulfur neighbors at 2.98 Å to 3.11 Å. The Bi(2) atom has three close sulfur neighbors at 2.54 Å and 2.79 Å and four more distant sulfur atoms at 2.99 Å to 3.38 Å. The Bi(3) atom has three neighbors at 2.64 Å and 2.63 Å, three more distant sulfur atoms at 3.00 Å to 3.10 Å and a seventh sulfur neighbor at 3.57 Å. The copper in the structure is mostly ordered (up to 80 percent) into one of the two sites available, to give the copper atoms a distorted tetrahedral coordination. In addition there is also an overall ordering of lead and bismuth atoms which is determined by the semi-exclusion of copper from one of its sites in order to avoid a close interaction between copper and bismuth atoms. The major distortions in the structure away from the bismuthinite and aikinite arrangements are the result of this effect. The structure of krupkaite is based on the c ribbon, a structural element of bismuthinite derivatives previously suggested by Ohmasa and Nowacki (1970) and which has recently been found in the structure of gladite, PbCuBi₅S₉, by Kohatsu and Wuensch (1973). Its structure as such is in disagreement with the extensive series of super-structures based on aikinite that have been proposed to occur in the Bi2S3-CuPbBiS3 system by Welin (1966) and Moore (1967).

Introduction

Large and Mumme (1974) and Mumme (in preparation) have described five distinct species of sulfosalts in the Juno Mine at Tennant Creek, Northern Territory, Australia. These included members of the bismuthinite-aikinite series Bi_2S_3 -CuPbBiS₃, one of which (R27792) gave analyses corresponding to CuPbBi₃S₆. Other members of this mineral series have been reported to occur at Gladhammer, Sweden, by Lindstrom (1887, 1889), Flink (1910), and Johansson (1924). These members, which were also associated with aikinite, were named rezbanyite, hammarite, lindstromite, and gladite.

Rezbanyite, originally described as $Cu_2Pb_3Bi_{10}S_{19}$ (in *Dana's System of Mineralogy*, 7th ed., Vol. 1, 1944, p. 471), was later suggested by Padera, Bouska, and Pelikan (1955) to be $Cu_3Pb_3Bi_{10}S_{19.5}$ a member of the bismuthinite-aikinite series. Gladite was determined by Johansson (1924) to have the composition $CuPbBi_5S_9$. The composition of hammarite, $Cu_2Pb_2Bi_4S_9$, was originally erroneously determined to be Pb₅Bi₆S₁₄ by Johansson (1924). For lindstromite from Gladhammer, Johansson derived a composition CuPbBi₃S₆. Padera (1956) later studied rezbanyite, hammarite, lindstromite, and gladite and considered them to be isomorphic mixtures of bismuthinite and aikinite. He proposed that the name rezbanyite had priority and that it should be used in place of hammarite, lindstromite, and gladite. Welin (1966) made further studies on some of these minerals in the collections of the Swedish Museum of Natural History, including those labelled rezbanyite, gladite, hammarite and, in particular, lindstromite (RM24100). He found from electron probe and single crystal studies that three complex minerals from Gladhammer-gladite, CuPbBi₅S₉; hammarite, Cu₂-Pb2Bi4S9; and Cu3Pb3Bi7S15-appeared to have superstructures based on aikinite. He concluded that continuous solid solution did not exist between bismuthinite and aikinite. Instead, he proposed a series of minerals with common substructures but with each possessing a different size unit cell and a particular composition. On the basis of this apparent

TABLE 1. Johansson's (1924) Analysis of Lindstromite Compared with Those of Ideal Krupkaite (CuPbBi₃S₆) and Ideal Cu₂Pb₂Bi₂S₁₅

called	ammer Material Lindstromite Insson, 1924)	Krupkaite, CuPbBi ₃ S ₆	Cu3Pb3Bi7S15		
РЪ	18.95	19.01	22.57		
Cu	5.84	5.83	6.92		
Bi	57.13	57.51	53.04		
S	[17.88]	17.65	17.47		
İnsol.	0.02				

relationship, an extensive series of hypothetical aikinite derivatives was proposed by Moore (1967). Moore suggested a nomenclature in which each member of the series is given the prefix Z^n , where Z is the integral multiple of the *a* translation and *n* is the number of lead (= copper) atoms in the asymmetric unit (which equals ¼ of the lead [= copper] atoms of the structural cell). It was also suggested that the specific names rezbanyite, hammarite, lindstromite, and gladite should be dropped in favor of this new nomenclature.

Welin (1966, Table 4) later determined this same specimen to be Cu_{2.24}Pb_{2.42}Bi_{5.72}S_{12.27} so that lindstromite would now be ideally defined as Cu₃Pb₃Bi₇S₁₅, being thus an intermediate member of the bismuthinite-aikinite series. A crystal fragment of this specimen was found by Welin to have a superlattice based on a five-fold multiple of the a axis of bismuthinite and hence became known as "53aikinite". Consequently, the specimen with formula CuPbBi₃S₆ from the Juno mine must be considered to represent a new mineral. Concurrent with our studies, Zak, Synecek, and Hybler (1974) described a mineral of composition CuPbBi₃S₆ from Krupka, Czechoslovakia, this new mineral and name having been approved on June 22, 1974, by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. Comparison of their data for krupkaite with the data for the CuPbBi₃S₆ specimen from Tennant Creek indicates the two specimens to be the same mineral. Henceforward, therefore, we shall refer to our specimen as krupkaite, rather than "21-aikinite" (the name that applies in Moore's nomenclature).

Other occurrences of bismuthinite-aikinite members have been described by Karup-Møller (1972) in specimens from the Bolivar Mine, Cerro Bonete, Lipez Province, Bolivar (specimen ROM M21003) and from Manhattan, Nevada, USA (specimen ROM M13805). Microprobe analyses of ROM M13805 gave an approximate formula $Cu_2Pb_2Bi_5S_{10.5}$, a composition close to that of krupkaite which is CuPbBi₃S₆. A similar phase was found in ROM M21003. While no composition was obtained for this latter sample, its unit cell parameters based on Guinier films were a = 11.200Å, b = 11.569 Å, c = 4.016 Å, which corresponded with a lead content of 14-19 percent, using Welin's correlation of c axis dimensions with composition for members of the bismuthinite-aikinite join.

A full description of the structure of bismuthinite has appeared (Kupčík and Vesela-Novakova, 1970) and the crystal structure of aikinite has been determined, in part by Wickman (1953) who did not accurately find the sulfur atom positions, and in detail by Kohatsu and Wuensch (1971). An ideal structure for $Cu_{2.66}Pb_{2.66}Bi_{5.34}S_{12}$ (hammarite or "3²-aikinite") has been proposed by Welin (1966). Most recently the structure of the mineral gladite (or "3¹-aikinite") has been reported by Kohatsu and Wuensch (1973).

Electron probe analyses of the members of the bismuthinite-aikinite series found at Juno showed that one had a maximum lead content of 19.3 percent and a formula very close to the ideal composition of krupkaite (Table 2) (Large and Mumme, 1974).

A detailed X-ray study of this phase, krupkaite, was undertaken to provide further information about this complex mineral series, and to permit its comparison with related members.

Experimental

Several small crystals of krupkaite were obtained from a polished specimen R27792 (Large and Mumme, 1974) and Weissenberg X-ray films were taken of them. Most gave sharp X-ray spots and the smallest and most equidimensional was chosen for data collection. Precise lattice parameters (Table 3) were derived from X-ray powder data (Table 4) collected with a Guinier focusing camera using CuK α radiation and KC1 ($a_o = 6.2929$ Å) as an internal standard. Integrated intensities for 336 independent

 TABLE 2.
 Electron Probe Analysis

 of Krupkaite in Specimen R27792
 from the Juno Mine

R	27792	Krupkaite, CuPbBi ₃ S ₆
Bi	59.8	57.7
РЬ	19.3	19.0
Cu	5,95	5.8
Ag	Nd	
Гe	Nd	
S	17.25	17.7
Se	.95	

B	lismuthinite,	Krupkaite,	and	Aikinite

Mineral	bismuthinite,	Krupkaite,	aikinite,				
	Bi2S3	CuPbBi3S6	CuPbBiS ₃				
Lattice	a = 11.28 Å	c = 11.56 Å	a = 11.6083 Å				
parameters	b = 3.97	a = 4.00	b = 4.0279				
F	c = 11.11	b = 11.20	c = 11.2784				
		Systematically absent reflections					
		hol (l≠2n)					
Space group		(Alternatives)					
	Pnma	Pmcm,	Pnma				
		P2cm,					
		Pmc2 ₁ ,					
Z	14	2	4				

reflections from the single crystal were collected with CuK α using an ω -scan performed with a Stoe equiinclination diffractometer equipped with a proportional counter. Background intensity was recorded for 100 sec at $\pm 2^{\circ}$ from the diffractometer maximum, and the total counts were accumulated as the crystal was rotated through 4° in ϕ at a scanning rate of 4°/200 sec. Subsequent data handling has been described by Mumme (1974).

Krupkaite has a high linear absorption coefficient for Cu $K\alpha$ (1404 cm⁻¹); thus, the crystal's irregular shape made the calculation of absorption corrections difficult. The correction finally used was obtained by the empirical method attributed to North, Phillips, and Mathews by Arndt and Willis (1966) in which the variation of intensity with azimuth is observed for a low angle reflection whose scattering vector is parallel to the ϕ axis.

The Weissenberg films indicated orthorhombic symmetry for krupkaite and systematic absences for *h0l* reflections with 1 = 2n, which permits *Pmcm* (D_{2h}^{5}) , $P2cm (C_{2v}^{4})$ and $Pmc2_1 (C_{2v}^{2})$.

Structure Determination and Refinement

The absence of any super-lattice reflections, such as would be required by the doubling of the b axis predicted at this composition by Moore (1967), and the strong odd-order reflections along the 0k0 axial row on the Weissenberg films, showed that while krupkaite had a unit cell of similar size to those of bismuthinite and aikinite, its space group was different (Table 1).

The intensity distribution of reflections on the 0kl, 1kl and 2kl Weissenberg films indicated that the atomic distribution in krupkaite was close to that in bismuthinite and aikinite, thus eliminating two of the space group alternatives, *Pmcm* and *P2cm*. Both of these would require mirror planes parallel to *a*, which is incompatible with the aikinite structure. In the set-

ting of axes used in Table 3, the mirror planes in aikinite and bismuthinite are perpendicular to the *b* axis in these structures. A similar conclusion was reached by Ohmasa and Nowacki (1970) when Welin (1966) attributed the space group *Pbmm* to the aikinite derivative "5³-aikinite". They pointed out that of the alternatives available, the only possible space group compatible with the aikinite structure (in Welin's setting) was again $Pb2_1m (C_{2\nu}^2)$.

TABLE 4. Guinier Powder Data for Krupkaite

I	d(meas)	d(calc)	hkl
6	5.793	5.780	002
6	5.597	5.600	020012
6	5.146	5.136 4.022	012
12 10	4.026 3.781	3.783	030
		3.772	110
30	3.645	3.644	013 111
20 24	3.594 3.552	3.586	031
7	3.294	3.293	102
5	3.180	3.174	023
27	3.160 3.137	3.159 3.136	112 032
.00	5.157	3.136	121
37	2.841	2.884	004
		2.838	122 040
13	2.732	2.798 2.721	040
13	2.152	2.731	130
26	2.660	2.658	131
		2.681	033
21	2.567	2.568	024 042
20 7	2.526	2.488	123
<u>.</u>	2.400	2.469	132
19	2.343	2.344	104
12	2.294	2.285	034 114
		2.294 2.295	140
6	2.250	2.251	141
10	2.229	2.228	133
16	2.133	2.137	025
3	2.097	2.133 2.089	052
12	2.005	2.011	041
		2.003	200
26	1.970	1.966 1.971	035
		1.971	143
		1.972	210
5	1.954	1.955	150 053
12	1.934 1.926	1.937 1.927	000
12	1.970	1.928	15:
5	1.864	1.867	060
	× .	1.866	21:
	4 014	1.861	22:06:
2	1.841	1.843	00.

Model for copper ordering, Site 1 : Site 2	1 : 0	1/2 : 1/2	1/3 : 2/3	1/5 : 4/5	0:1
R value	11.60	9.83	9,76	9+70	9.78
Temperature Factor	s, U.				
Cu(1)	0+1116	0.095	0.083	0=060	1.0
Cu(2)	-	0+011	0.020	0.042	0.043

TABLE 5. R Values and Temperature Factors for the

Various Copper Occupancies of the Cu(1) and Cu(2) Sites

The data refinement used the least squares refinement program of Daly, Stephens, and Wheatley (1963) and the weighting scheme of Cruickshank et al (1961). All atoms were placed in the special positions 2(a) or 2(b) and the one copper atom was distributed equally between the two sites available to it. The original atomic positions used were those determined for aikinite by Kohatsu and Wuensch (1971), but transposed by $\frac{1}{4}$ b. The refinement yielded a final R value of 9.83 percent when the shifts of all parameters except the isotropic temperature factor of Cu(1) were less than ¼ of their e.s.d.'s. The temperature factor of Cu(1) increased to the high value of U = 0.0957, while that of Cu(2) was much smaller at 0.0115. This behavior of the temperature factors suggested that the Cu(1) site contained much less copper than the Cu(2) site. Thus rather than the initial 1 : 1 distribution of copper which was, of course, only a computational device used in solving the structure, the refinement seemed to indicate that copper had a preference for site Cu(2). In fact, the lowest R value of 9.70 percent was obtained when Cu(1) contained 20 percent copper and Cu(2) contained 80 percent copper. Furthermore, the temperature factors of the copper atom sites behaved normally during this refinement (see Table 5).

Hamilton (1965) compiled tables in which the variance ratios $F_{b,n-m}$ (Hamilton, 1964) are converted to critical R factor ratios \mathfrak{R} for comparing alternate hypotheses at a given significance level. In the present case we find that when 33 coordinates for the ordered copper model are replaced by 36 coordinates for the 20 percent disordered model:

 $\Re_{36-33, 336-36, 0.10} = 1.0104,$ $\Re_{36-33, 336-36, 0.25} = 1.0068.$

The observed R factor ratio is $\Re = 9.78/9.70 = 1.0082$, so that the probability of error if the hypothesis of 20 percent disordering is rejected lies between 10 percent and 25 percent. Usual practice would not demand the rejection of the hypothesis at this level. Therefore the results of the refinement do

not preclude the 20 percent disordered model. Also a three-dimensional Fourier synthesis calculated just before the final refinement cycle showed a residual peak associated with the Cu(1) site. Thus, even though R differs by only 0.08 percent for full occupancy of site Cu(2) as compared to 80 percent occupancy, a small amount of disorder in the copper must be considered a possibility.

The structure would certainly be a more pleasing one if it were comprised completely of ordered [CuPbBi₃S₆] units and for this reason krupkaite is shown in Figure 1 as a completely ordered structure. The scaled observed data and the structure amplitudes calculated from the final model are listed in Table 6.

Results of Refinement

The asymmetric unit contains one lead, three bismuth, and one copper atom plus six sulfur atoms, all at special positions 2(a) and 2(b). The atomic coordinates (Table 7) permit distinction between the lead and bismuth positions on the basis of bond lengths. The copper atom in the structure is mostly ordered into one of the two sites available to it.

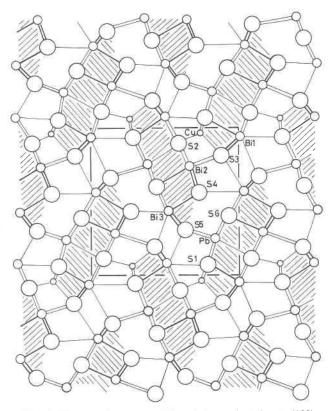


FIG. 1. The crystal structure of krupkaite projected onto (100). The shaded regions correspond to the stibnite quadruple chain.

W. G. MUMME

 TABLE 6. Observed and Calculated Structure

 Factors for Krupkaite

k	z	$ F_0 $	F	k	Z	F ₀	[F _C]	k	Z	$ F_{o} $	$ F_{c} $	k	Z		$ F_{c} $	k	Z	$ F_{o} $	$ F_{c} $
-				11	5	2275	2053	11	0	817	668	8	7	1959	2000	8	3	2327	2061
	h	= 0		0	6	7007	6818	12	0	2657	2398	9	7	1505	1298	9	3	974	832
2	0	1030	808	1	6	2107	1877	1	1	3451	3643	10	7	889	725	10	3	1071	959
3	0	3221	2794	2	6	2062	2546	2	1	5262	5466	0	8	1697	1658	11 0	3	1352 2057	1838 1933
4	0	3287	3126	3	6	2195	2525	3	1	4495	4449	1	8	1797	1593	0	4		
5 6	0 0	1034 6005	1135 6124	4	6	1917	2475	4	1	4379	4321	2	8	3515	3637	1	4	1083	1091
				5	6	2078	2595	5	1	2562	2204	3	8	966	940 3268	23	4	5523 1285	5525 1465
7	0	2603	2136	6	6	3459	3961 1703	6 7	1	2850 3073	2687 2480	4 5	8	3257 2427	2290	4	4	1847	2015
8 9	0	2477 2415	2685 2318	7 9	6 6	1579 2328	2469	8	1	2463	2387	6	8	1335	1136	5	4	1986	2344
10	0	1270	1057															2425	2414
11	0	1333	962	11	6 7	403	253	9 10	1	2681 1797	2084 1479	7 8	8 8	1028 1405	1305 1414	6 7	4	1241	1116
3	1	6559	6575	1 2	7	957 2023	943 2071	11	1	1730	1315	9	8	915	680	8	4	2595	2522
4	1	1930	1957	3	7	4513	5151	12	1	1797	1651	1	9	1416	1428	9	4	1673	1341
5	1	2469	2394	4	7	3330	3658	0	2	3156	3531	3	9	2574	2202	10	4	1475	1596
6	1	2906	2760	5	7	1866	1904	1	2	4218	4554	4	9	2659	2601	2	5	2136	2768
7	1	2950	2853	6	7	2233	2347	2	2	6371	6411	5	9	1979	1947	1	5	615	902
0		1406	1252	7	7	2136	2203	3	2	1558	1747	6	9	590	666	3	5	3566	3680
8 9	1	1496 3480	1252 3272	8	7	974	417	4	2	4457	4254	7	9	1973	1947	4	5	995	782
10	1	1393	1059	9	7	1077	1091	5	2	2361	2430	8	9	1505	1370	5	5	1166	996
11	1	3039	2967	10	7	1680	1675	6	2	666	746	0	10	4571	4528	6	5	1734	1906
12	1	1313	1015	0	8	1453	1431	7	2	4428	4268	1	10	1893	1881	7	5	798	612
0	2	2062	2146	1	8	2906	2691	8	2	785	917	2	10	1335	1217	8 9	5 5	$1796 \\ 2883$	1681 2774
1	2	1744	2057	2	8	2189	2176	9 10	2 2	1953 2429	1617 2353	3 4	10 10	839 1028	855 1045	0	6	6154	5348
2	2	4461	4475	4	8	1333	1346												
3	2	2149	1910	6	8	301	385	11	2	1271	840	6	10	3501	2903	1 2	6 6	1847 2012	1530 1949
4	2	4219	4286	7	8	3197	3180	2	3 3	3499 2015	3522 2242	7 1	10 11	1959 1552	1727 1786	3	6	1756	2017
5	2	2828	2824	8	8 8	2789 782	2599 822	3 4	3	5836	5885	2	11	577	539	4	6	1820	1964
6	2	2760	2667	1	9	4081	4038	5	3	2915	2628	3	11	3815	3731	5	6	1820	2100
7	2	3579	3403					7	3	2900	2991	4	11	792	1137	6	6	2983	3179
8 9	2 2	3400 600	3234 719	23	9 9	2531 1833	2237 1854	9	3	1674	1553	5	11	929	1032	7	6	1500	1391
				4	9	3406	3516	10	3	3351	2864	6	11	1666	1650	9	6	1957	2076
10	2	2446	2228	5	9	1917	1995	11	3	2441	1832	0	12	1730	2075	1	7	519	678
11 12	2 2	1791 2446	1404 2043	6	9	1017	1025	0	4	6387	5840	2	12	929	819	2	7	1669	1662
12	3	6814	7040	7	9	1511	1465	1	4	3474	4328	3	12	517	553	3	7	4073	4098
2	3	2571	2831	8	9	974	1022	2	4	2097	3047	4	12	495	610	4	7	2877	2972
3	3	1205	1241	9	9	1219	713	3	4	961	1180					5	7	1391	1535
4	3	2815	2890	0	10	1511	1362	4	4	1211	1485			h = 2		6 7	7	1796 1767	1896 1771
5	3	7173	7234	1	10	2641	2359	5	4	811	741	2	0	615	670				
6	3	453	769	2	10	2646	2426	6	4	2927	3204	3	0	2697	2110	8	7	761	360
7	3	1061	913	3	10	586	711	7	4	4422	4812	4 5	0	2697 865	2363 966	0	8 8	1451 2339	1168 2130
8	3	2615	2551	4 5	10 10	1143 1944	972 1730	9 10	4 4	839 2033	1260 1977	6	0	4838	4733	2	8	2008	1726
9	3	706	981	6	10	1833	1301	10	5	2941	3278					3	8	791	607
10	3	1100	1146									7 7	0	1863 3117	1707 2249	4	8	1265	1086
11	3	2507	2231	7 8	10 10	2254 1983	2206 1571	23	5 5	3211 3853	3310 4291	8	$\frac{1}{1}$	1249	981	6	8	784	321
0	4	3131	2677	0	11	951	661	4	5	2130	2983	9	î	2945	2651	7	8	2339	2625
1	4	1143	1286	2	11	2531	2358	5	5	1807	2029	10	ĩ	1106	864	8	8	1575	2137
2	4	5985	7426 1942	3	11	2000	1894	6	5	2147	2742	11	1	2303	2455	1	9	3551	3279
3	4	1841 2328	2621	4	11	1047	1114	7	5	1395	1070	0	2	1649	1726	2	9	1969	1812
5	4	2457	2963	5	11	706	716	8	5	1455	1576	1	2	1223	1515	3	9	1500	1478
				6	11	2107	1863	9	5	2595	2421	2	2	3267	3472	4	9	2983	2901
6 7	4	2919 1425	3049 1349	0	12	1833	1728	10	5	1719	1534	3	2	1339	1406	5	9 9	1909	1616 865
8	4	3137	3107	1	12	2163	1953	11	5	1879	1581	4	2	3365	3131	6		915	
9	4	1877	1654	2	12	1686	1455	0	6	6241	5519	5	2	2511	2137	7	9	851	1182
10	4	2233	1925	3	12	1307	1233	1	6	2989	2821	6	2	2624	2090	0	10	968 2012	1090 1969
11	4	2037	1754	4	12	1783	1728	2	6	1785	1904	7	2 2	2808	2741 2593	1 2	10 10	1756	1969
1	5	1482	1264		1	2 = 1		3 5	6	1655 2562	2229 2960	8		3129		3	10	542	591
2	5	3485	3652									9	2	565	580	4	10	921	778
3	5	4592	4706	1	0	3475	3396	6	6	2107	2153	10	223	1897 1304	1821 1184	4	10	1019	1433
4	5	491	1073	2	0	792	390	7	6	1019 2989	1218 3041	11 1	4	4709	5323	6	10	825	1057
5	5	1061	1240	3	0	4296 347	4229 260	8 9	6	2989	2263	2	3	1742	2022	ĩ	11	519	572
6	5	2103	2397	5	0	5575	5245	10	6	953	695			959	962	2	11	1854	1962
7	5	957	775				1998		7	4257	4222	3 4	3	2192	2260	3	11	1465	1558
8 9	5 5	$1983 \\ 3115$	2043 3397	6 7	0	2113 2246	1695	1 2	7	2671	2581	5	3	5462	5586	~			
0	5	0110	5551	8	0	3039	2841	4	7	1539	1727	6	3	1019	594				
				9	0	4738	3724	5	7	3389	3859	7	3	542	711				
					0	1479	1335	6	7	1758	2410								

			x	У		z		B (A	²)
Bi	1	(2a)	0	0.0629	(6)	0.9851	(7)	1,74	(14)
	2	(2a)	0	.2882	(6)	.6563	(7)	1.78	(14)
Bi	3	(2b)	32	.5777	(6)	5217	(7)		(16)
РЪ	1	(2b)	1/2	.7503	(7)	.8305	(8)	2.33	(16)
	1(.2)		0	.5465	(180)	.7652	(191)	4.73	(307
Cu	2(.8)	(2b)	12	.0373	(33)	.7297		3.31	
S	1	(2a)	0	.9463	(51)	.7853	(50)	2.54	(115
S	2	(2b)	15	.1231	(35)	.5491		1.60	(91)
S	3	(2b)	35	.1919	(44)	.8725		1.85	
0 0 0 0 0 0	1 2 3 4 5	(2b)	0 0 % % % 0	.4513	(39)	,7142		1.57	
S	5	(2a)	0	.6972	(38)	.6131		1.08	
S	6	(2a)	0	.6100	(78)	.9594		3.87	

TABLE 7. Atomic Coordinates in Krupkaite*

* esd's in parentheses.

Discussion of the Structure

The seven lead-sulfur distances, ranging from 2.95 to 3.27 Å (Table 8), agree with those found in other lead sulfosalts (Nowacki, 1969; Mumme, 1974). The five closest sulfurs form a square pyramid about lead, with the lead atom displaced from the base of the pyramid so that all S-Pb-S angles are much less than 90°. The two more-distant sulfurs (at 3.27 Å) constitute a "split vortex" for octahedral coordination, as is found in aikinite (Kohatsu and Wuensch, 1971),

in *B*-type rare earth oxides (Cromer, 1957), and some zirconium oxy-salts (Bear and Mumme, 1971).

The bismuth atoms also have seven sulfur neighbors. Bond lengths range from 2.54 to 3.57 Å. In Bi(3) the seventh sulfur is nearly 0.5 Å further away than the other six and is not considered to be part of the nearest neighbor configuration. The coordination scheme differs from that for lead, with three sulfur atoms being close to bismuth and the other four at greater distances. The three closest constitute a BiS₃ trigonal pyramid which is characteristic of group V metals with p^3 electron configuration. The sulfur atoms, when those at intermediate distances are included, become in the case of Bi(3) a distorted octahedron, and in the case of Bi(1) and Bi(2) constitute a split vortex octahedron. In each case the bismuth atom is distorted away from the plane of the square formed by the close and intermediate sulfur atoms.

Copper, in site Cu(2), has tetrahedral coordination, with Cu-S distances of 2.29 to 2.39 Å, which are normal for copper containing sulfosalts. The distortion of the tetrahedra is evidenced by the bond angles, which range from 97.1 to 118.2° .

TABLE 8. Interatomic Distances and Bond Angles in Krupkaite*

Interat	omic Distanc	ces				H	Bond Angles		
**Cu1-S4	2.34(18)	x 2	T	Copper			Bis	muth	
S 5	2.44(18)			S4-Cu1-S4	117.3(7)		S1'-Bi1-S3	81.2(1)	x2
S 6	2.36(19)		1	S4-Cu1-S5	97.7(6)	x2	S1'-Bi1-S2	82.8(1)	x2
			Ē.	S5-Cu1-S6	118.6(7)		S3 -Bi1-S3	91.6(1)	
Cu2-S1'	2.33(6)	x2	÷.	S4-Cu1-S6	111.2(7)	x2	S3-Bi1-S2'	90.0(1)	x2
S 2	2.30(4)		1				S2'-Bi1-S2'	89.2(1)	
S 3	2.39(5)		1	S1'-Cu2-S1'	118.2(2)		S5'-Bi1-S3	76.8(1)	x 2
				S1'-Cu2-S2	115.6(2)	x2	S1"-Bi1-S2'	74.1(1)	x 2
Bi1-S1'	2.65(5)		L	S1'-Cu2-S3	97.1(2)	x2	S5'-Bi1-S1"	63.2(1)	
S1"	3.11(5)		1	S2-Cu2-S3	108.9(2)				
S 2 '	2.98(3)	x2	- E -				S6'-Bi2-S4	85.6(1)	×2
S 3	2.79(4)	x2		Lead			S6'-Bi2-S2	84.5(1)	x2
S 5 '	3.06(4)		1	S2-Pb1-S1'"	78.3(1)	x2	S2 -Bi2-S2	83.9(1)	
				S2-Pb1-S6'	79.5(1)	x2	S4-Bi2-S4	91,5(1)	
Bi2-S6'	2.54(5)			S1'"-Pb1-S1"'	83.1(1)		S2-B12-S4	91.5(1)	x2
S 2	2.99(4)	x2	10	S6'-Pb1-S6'	85.4(1)		S3-B12-S2	73.3(1)	x2
S 4	2.79(4)	x2		S6'-Pb1-5"'	91.5(1)	x 2	S3-Bi2-S4	66.9(1)	x2
			1		0100(1)		S3-B12-S3	72.6(1)	
S 3	3.38(5)	x2	10	S5'-Pb1-S1"	113.9(1)	x2	S3-Bi2-S2	120.3(1)	x 2
Bi3-S4	2.64(4)			S5'-Pb1-S6'	134.9(1)	x2	S3-B12-S4	117.1(1)	x2
S6 '	3.00(5)	x2	1	S5'-Pb1-S1"	66.0(1)	x2	00 012 01		212
S 5	2.63(5)	x2	10	S5'-Pb1-S6'	82.9(1)	x2	S4-Bi3-S6'	79.8(1)	x 2
S4 '	3.57(4)		1941	S5'-Pb1-S5'	75.5(1)	N 6	S4-Bi3-S5	89.3(1)	x2
S 3 1	3.10(4)		1	00 101 00	10+0(1)		S6'-Bi3-S6'	83.6(1)	A 2
Pb1~S2	2.89(5)		1				S5-Bi3-S5	99.1(1)	
S 1 11	3.02(4)	x2	8				S5-Bi3-S6'	87.1(1)	x2
S 5 1	3.27(5)	x2					S4'-Bi3-S3'	61.6(1)	~ ~ ~
S6'	2.95(5)	x2	÷.				S3'-Bi3-S5	78.5(1)	x2
	100000		1				S4'-Bi3-S6'	72.7(1)	x2
			1				04 -DT0-20	12.1(1)	A 2

	Bismuthinite		smuthinite CuPbBi ₃ S ₆ % Expansion relative Bi ₂ S ₃					% Expansion relative Bi ₂ S ₃		
	a = 11	.28	c = 1	1.56	2.5		a = 11.61	2.		
	b = 3	.97	a =	4.00	. 8		Ь = 4.03	1.		
	c = 11	.10	b = 1	1.20	. 9		c = 11.28	1.	5	
Atom site	Туре	z/Param	Туре	y/Param*	∆Bi ₂ S ₃	Type	z/Param	∆Bi ₂ S ₃	∆CuPbBi3S ₆	
M1	Bi(1)	.1741	Bi(1)	.1871	+.0130	Bi	.1812	+.0071	0059	
M 2	Bi(2)	.4660	Pb(1)	.4997	+.0337	Pb	.4880	+.0220	0107	
4 3	Bi(1)	.6741	Bi(3)	.6723	0018	Bi	.6812	+.0071	+.0089	
M 4	Bi(2)	.9660	Bi(2)	.9618	0042	РЪ	.9880	+.0220	+.0262	
*	y tran	slation o	f Ł b.	v(krupka	ite) = z (bismut	hinite, a	ikinite).		

TABLE 9. Relative Metal Displacements in Bismuthinite, Krupkaite, and Aikinite

Interstitial Copper

In comparing the addition of the interstitial copper and the substitution of lead for bismuth on the related arrangements in aikinite and bismuthinite, Kohatsu and Wuensch (1971) showed that the atomic positions of the two structures are nearly identical in spite of the addition of the copper atom. Aikinite is basically an expanded version of bismuthinite, with the significant exception of an alteration in the z coordinates of the lead atom. This suggested an overall repulsive interaction of lead with copper in aikinite, where the z parameter determines the leadcopper separation, which is mainly directed along [001].

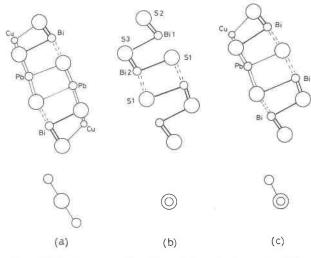


FIG. 2. The three possible ribbons in the structures of aikinite derivatives and their schematic representation as presented by Ohmasa and Nowacki (1970): (a) the *a* ribbon, (b) the *b* ribbon, (c) the *c* ribbon.

The foregoing effect is also evident in krupkaite (Table 9); the largest distortion from the bismuthinite structure once again is the $y (\equiv z, bismuthinite)$ coordinate of the one lead atom in the M(2) site in the structure. The Bi (2)-Cu(1) separation in krupkaite is 3.16 Å while the Pb(1)-Cu(2) separation is 3.41 Å. In aikinite the lead-copper separation is 3.37 Å. The effect then is not so much a repulsive interaction between lead and copper as the fact that the short Bi (2)-S(4) bonds impose a short separation between Bi (2) and Cu(1) of 3.16 Å, which is only about 0.3 Å greater than the sum of their elemental radii. The copper is concentrated into the Cu(2) site in krupkaite because in this position there is not so close an interaction between Pb(1) and Cu(2) as there is between Bi(2) and Cu(1).

The c Ribbon

Ohmasa and Nowacki (1970) described the structures of bismuthinite, aikinite, and the aikinite derivatives in terms of three kinds of structural ribbons. In Figure 2 all three ribbons are projected normal to their elongated direction, that is the b axis of aikinite and bismuthinite, and the a axis of krupkaite. Two copper atoms, two lead atoms, and two bismuth atoms belong to an a ribbon, four bismuth atoms to a b ribbon, and one copper, one lead, and three bismuth atoms to a c ribbon. They assumed that copper cannot be coupled with the Bi₂S₃ ribbon of bismuthinite, presumably because this would have caused a lengthening of the Bi(2)-S(3) bonds. They argued that the Bi(2) atom in such a ribbon would have to form a trigonal pyramid with one S(1) and two S(1)' atoms in the bismuthinite structure (see Fig. 2 b). This would lead to a Bi₂S₃ ribbon with a con-

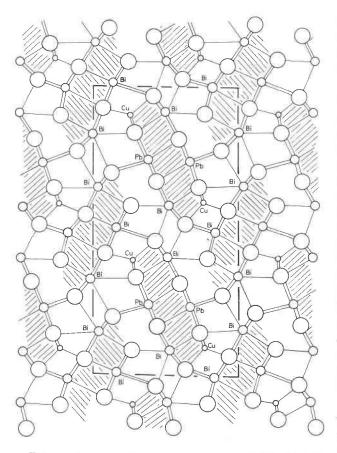


FIG. 3. A hypothetical crystal structure of "2¹-aikinite", $2(Cu_2Pb_2Bi_6S_{12})$, as a super-structure of aikinite. This structure exemplifies one particular distribution of lead, bismuth, and copper in the four-fold positions. The dashed line surrounds the *a* and *b* ribbons.

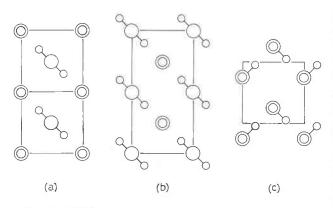


FIG. 4. Ribbon models for krupkaite. (a) and (b) are the hypothetical super structure models based on the aikinite structure as predicted by Welin (1966) and Moore (1967). (c) The structure of krupkaite determined in this present investigation with the c ribbon as its basis.

figuration different from that of the Sb_2S_3 ribbon in stibuite (which has the same structure as bismuthinite) and from the similar ribbon found in aikinite.

Kohatsu and Wuensch (1973) have reported that the structure of gladite, CuPbBi₅S₉, is a superstructure based on Bi₂S₃ in which 1/6 of the Bi are replaced by Pb, and only 1/3 of a set of available tetrahedral interstices are occupied by copper. In spite of the close similarity between the stibnite-type ribbons in bismuthinite and in aikinite (Kohatsu and Wuensch, 1971), gladite contains one [Bi₄S₆] and two [CuPbBi₃S₆] slabs alternating along [100] rather than a combination of aikinite and bismuthinite units. That is, gladite is found to consist of a mixture of "b-ribbons" and "c-ribbons", and not the mixture of "a-" and "b-ribbons" preferred by Ohmasa and Nowacki (1970). Also, Kohatsu and Wuensch (1973) found that the heavy metal positions in bismuthinite, aikinite, and gladite are similar when the site is occupied by the same species, but there are significant displacements of the locations of a Pb (or Bi) atom in gladite relative to a Bi (or Pb) atom in aikinite or bismuthinite.

The structure of krupkaite also shows that whereas there may be a limited association of copper atoms with bismuth atoms, the *c* ribbon does actually exist and is in fact the basis of the krupkaite structure. It is predicted that it also plays an important part in the formation of other structures in the Bi_2S_3 -CuPbBiS₃ series.

Existence of Bismuthinite Derivatives

One of the possible structures for "21-aikinite", based on the super-structure arrangements of bismuthinite derivatives proposed by Welin (1966) and Moore (1967), is shown in Figure 3. This and a closely related structure are depicted using the ribbon notation of Ohmasa and Nowacki (1970) in Figure 4 a and b. Neither of these two structures brings copper into close association with bismuth-they are both made up of a and b ribbons alone—and for this reason their existence is a possibility. The metal ordering required in these two hypothetical structures and in the structure of krupkaite, determined here, is in contrast with the results of the experiments carried out by Springer (1971), which indicated that there is complete solid solution between bismuthinite and aikinite above 300°C. In further experimental runs of up to three months duration he found that complete equilibriation between reactants and products was not achieved at temperatures below 300°C. Because the unit cell

of krupkaite resembles those of bismuthinite and aikinite, Springer may have overlooked it in his work, although a more recent study of this same system by Mumme and Watts (in preparation) has, also, not disclosed formation of krupkaite under laboratory conditions. Alternatively, and more likely, the conditions of relatively slow cooling which existed in the natural sulfide deposits as compared with laboratory experiments would favor an approach to equilibrium conditions in which the ordering of metals to form the c ribbon found in krupkaite has resulted (Fig. 4 c), perhaps at temperatures below 300°C. While it is possible that the hypothetical super-structures of Welin (1966) and Moore (1967) may represent an intermediate stage of crystallization, there must be some doubt now as to whether the extensive series that they propose does exist, in which case it may not be reasonable to use the Z^n type nomenclature to designate any member found in the series. In particular it does not apply to the structure of krupkaite determined here.

References

- ARNDT, U. W., AND B. T. M. WILLIS (1966) Single Crystal Diffractometry. Cambridge University Press.
- BEAR, I. J., AND W. G. MUMME (1971) Normal sulphates of zirconium and hafnium. *Rev. Pure Appl. Chem.* 21, 189-211.
- CROMER, D. T. (1957) The crystal structure of monoclinic Sm_2O_3 . J. Phys. Chem. 61, 753-755.
- CRUICKSHANK, D. W. J., D. E. PILLING, A. BUJOSA, F. M. LOVELL, AND M. R. TRUTER (1961) In, Computing Methods and the Phase Problem in X-Ray Crystal Analysis. Oxford, Pergamon Press.
- DALY, J. J., F. S. STEPHENS, AND P. J. WHEATLEY (1963) Crystallographic calculations on the Elliott 803B computer. Monsanto Res. S. A., Final Rep. 52.
- FLINK, G. (1910) Bidrag till sveriges mineralogi. Ark. Kemi, Mineral. Geol. 3, 4.
- HAMILTON, W. C. (1964) Statistics in Physical Science. New York, The Ronald Press.
- (1965) Significance tests in the crystallographic R factor. Acta Crystallogr. 18, 502-510.

- JOHANSSON, W. K. (1924) Bidrag till Gladhammer-Gruvornas mineralogi. Ark. Kemi, Mineral. Geol. 9, 1-22.
- KARUP-MØLLER, S. (1972) New data on pavonite, gustavite, and some related sulphosalt minerals. *Neues Jahrb. Mineral. Abh.* 117, 19-38.
- KOHATSU, I., AND B. J. WUENSCH (1971) The crystal structure of aikinite, PbCuBiS₃, Acta Crystallogr. **B27**, 1245-1252.
- , AND (1973) The crystal structure of gladite, PbCuBi₅S₉. Am. Mineral, **58**, 1098.
- KUPČÍK, V., AND L. VESELA-NOVAKOVA (1970) The crystal structure of bismuthinite redetermined. *Tschermaks Mineral Petrogr. Mitt.* 14, 55-58.
- LARGE, R. R., AND W. G. MUMME (1974) Junoite, "wittite" and related seleniferous bismuth sulphosalts from Juno mine, Northern Territory, Australia. *Econ. Geol.* in press.
- LINDSTROM, G. (1887) Om Före komsten au wismutmineral uld Gladhammer. Geol. Foeren. Stockholm Foerh. 9, 523.
- (1889) Ytterligare om wismutmineral från Gladhammer. Geol. Foeren. Stockholm Foerh. 11, 171.
- MOORE, P. B. (1967) A classification of sulphosalt structures derived from the structure of aikinite. Am. Mineral. 52, 1874–1876.
- NOWACKI, W. (1969) Zur Klassifikation und Kristallchemie der Sulfosalze. Schweis. Mineral. Petrogr. Mitt. 49, 109-156.
- OHMASA, M., AND W. NOWACKI (1970) Note on the space group and on the structure of aikinite derivatives. *Neues Jahrb. Mineral. Monatsh.* **1970**, 158–162.
- PADERA, K. (1956) Beitrag zur Revision der Mineralien aus der Gruppe con Wismutglanz und Aikinit. Chem. Erde, 18, 14-18.
 V. BOUSKA, AND J. PELIKÁN (1955) Resbanyit von Dobsina in der Ostslowakei. Chem. Erde, 17, 329-332.
- SPRINGER, G. (1971) The synthetic solid-solution series Bi₂S₃-BiCuPbS₃ (bismuthinite-aikinite). Neues Jahrb. Mineral. Monatsh. 1971, 19-24.
- WELIN, E. (1966) Notes on the mineralogy of Sweden. 5. Bismuthbearing sulphosalts from Gladhammer, a revision. Ark. Mineral. Geol. 4, 377-386.
- WICKMAN, F. E. (1953) The crystal structure of aikinite, CuPbBiS₃. *Ark. Mineral. Geol.* 1, 501-507.
- ŽAK, L., V. SYNEČEK, AND J. HYBLER (1974) Krupkaite, CuPbBi₃S₆, a new mineral of the bismuthinite-aikinite group. *Neues Jahrb. Mineral. Monatsh.* (in press).

Manuscript received, May 21, 1974; accepted for publication, November 27, 1974.