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Abstract

A theoretical study of the force field and the vibrational modes of o and 8 quartz between
room temperature and 600°C has been carried out at various temperatures, using some recent
experimental results, It is shown that a modified Urey-Bradley force field can account for the
optical frequencies of a and 8 quartz. The value of the internal rotation force constant is
negative during the a-f phase transition, and zero in the case of 8 quartz. The vibrational
mode of the 207 cm~! 4, mode, known to be a soft mode, becomes more in agreement with
displacements involved in the a8 phase transition as the transition temperature T is ap-

proached from below.

The infrared intensities were also calculated from atomic displacements, using the two-
charge model of Kleinman and Spitzer. The results confirm the calculated normal modes.

Introduction

The number of available infrared and Raman
spectra connected with the vibrational modes of the
two crystallographic polymorphs of quartz is very
large. A review of optical lattice vibrations in quartz
was published by Scott and Porto (1967). Several as-
signments of the E; and E, modes in § quartz by
them, however, differed from the assignments
proposed earlier by Saksena and Narain (1949).
Reliable assignments for these modes were proposed
by Yamaguchi, lishi, and Umegaki (1971) on the
basis of theoretical calculations of frequencies of «
and (8 quartz. Their assignments have been proved
correct by Bates and Quist (1972) using polarized
Raman spectra of 8 quartz. Yamaguchi et al’s assign-
ments will thus be accepted in the present work.

Quartz undergoes a transition at 573°C from the
low-temperature a phase with symmetry D, to the
high-temperature § phase with symmetry D,. This
transition has been studied by several investigators in
terms of lattice dynamics. The analysis of Kleinman
and Spitzer (1962) and of Elcombe (1967) are similar,
and cach elaborates on the basic conclusion of
Saksena’s (1940 and 1949) early force constant
calculation: that the frequency of the 207 cm~! mode
should approach zero as the transition temperature T

is approached from below. Kleinman and Spitzer
(1962) found that the atomic displacements at the
transition correspond closely to the 207 cm™! mode.

Narayanaswamy (1948) observed the temperature-
dependent Raman spectrum of quartz and found that
the 207 cm ™! line does indeed show strong variation
with temperature, moving toward the Rayleigh line
as the transition temperature is approached, and dis-
appearing completely in the 8 phase. From a study of
the Raman spectra of quartz at temperatures between
—196 and 615°C, however, Shapiro, O’Shea, and
Cummins (1967) proposed that the 147 cm~' mode,
rather than the 207 cm™! mode, appeared to play a
fundamental role in the phase transition. From work
on the Raman spectrum of quartz at 6°K to 900°K,
Scott (1968) and Hochli and Scott (1971) presented
evidence that the frequency of the 207 cm~' mode ap-
proaches zero as the transition temperature is ap-
proached from below. On the basis of the relative
atomic displacements of the 207 cm™' mode as-
sociated with critical neutron scattering, Axe and
Shirane (1970) obtained a remarkable similarity
between this mode and the displacements involved in
the a—3 phase transition. Thus they have concluded
that the room temperature renormalized soft mode is
not at 147 cm™! as proposed by Shapiro et al (1967)
but is rather at 207 cm™!. It has, therefore, been
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TasLE 1. Decomposition of the Normal Mode of Quartz into
Symmetry Species

Spatial
Crystal symmetry Optic vibration
a quartz D} 42,+42A,+8E
B quartz Dg A1+331+2A2+232+4E1+4E2

generally accepted that the 207 cm™! mode is in fact
the lattice vibration fundamentally associated with
the a—8 phase transition, ie., 207 ¢cm™' mode in
quartz is a soft mode.

This paper examines the effects of force constants
and change of vibrational mode and frequencies of
the soft 4, 207 cm~* mode during the a8 phase tran-
sition through a theoretical calculation of the lattice
dynamics of quartz. To check the correctness of the
determined normal modes, the infrared intensities
were also calculated.

Selection Rules and Coordinates

The primitive cells of the & and 8 polymorphs of
SiO, contain three silicon atoms and six oxygen
atoms. The symmetry species of the D, factor group

TaBLE 2. Experimental Frequencies Used for the Calculation of
the Urey-Bradley Force Field

(Frequencies in cm™)

o quartz B quartz
Symmetry  25°C* 532°C*%  552°C*** Symmetry __700°C**

A1 1085 (1072)+ B, inactive
464 460 a) 464
356 (350)+ By inactive
207 80 & 70++ B1 inactive

Az 1080 1064 Az 1061 ***
778 777 By inactive
495 457 Az 435%%x
364 358 385 By inactive

E 1162 1167 1155 E3 1173
1072 1066 1060 E) 1065
795 798 782 E) 786
697 690 680 E» 686
450 440 430 E 427
394 397 400 Ep 407
265 256 E2 243
128 110 Ep 98

k4 Scott and Porto(1967)

% Bates and Quist(1972)

;** Gervais(1974)

+ Narayanaswamy, measured at 550°C

These values were estimated from Fig. 1. of
Hochli and Scott(1971).

The value of soft mode A; was estimated about
50 em™! at 570°C.

K. IISHI AND H. YAMAGUCHI

TaBLE 3. Force Constants* of Quartz at Various Temperatures

o quartz 8 quartz

25°C 520°C 570°C 600°C

K (S8i-0) 4,584 4.504 4.504 4.504

H1(0-8i-0) 0.154 0.154 0.154 0.154

F1{0**++0) 0.196 0.196 0.196 0.196

Hp(Si-0-81) 0.000 0.000 0.000 0.000

Fp(Sise*+51) 0.485 0.485 0.485 0.485

Y ~0.004 -0.004 -0.004 0.000

K 0.268 0.268 0.268 0.268

P 0.417 0.497 0.497 0.497
*Units: stretching K, bending H, repulsion F and

bond interaction p mdyne/&; intramolecular
tension K and internal rotation Y mdyne-4.

of a quartz and the symmetry species of the D factor
group of B quartz are given in Table 1.

The 48 internal coordinates used in this work in-
clude 12 Si-O stretching coordinates (AR), 18
0-Si-O bending coordinates (Aa), 6 Si-O-Si
bending coordinates (AB), and 12 Si-O internal rota-
tion coordinates (AY). The number of coordinates in
each set was constrained by symmetry considera-
tions. As shown by Shiro (1968), Yamaguchi et al
(1971), and Etchepare, Merian, and Smetankine
(1974), one must consider internal rotation coor-
dinates in order to obtain an agreement with the
vibrational spectra of & and @ quartz.

The coordinate parameters of o quartz at room
temperature have been accurately determined by
Smith and Alexander (1963). The coordinate
parameters of a and 8 quartz have been accurately
determined as a function of temperature at
temperature from 450°C to 650°C by Young (1962).
These data have been used in the potential energy and
the kinetic energy matrices.

Force Field and Vibrational Frequencies

The temperature dependences of the 4, and E
vibration modes in quartz were measured over the
temperature range from room temperature to a few
degrees above the a8 phase transition temperature
by Gervais (to be published). The Raman spectrum
of a single crystal of quartz was measured over the
temperature range from a few degrees below the a8
phase transition temperature to 700°C by Bates and
Quist (1972). The experimental frequencies on which
our calculations are based are listed in Table 2.

In order to determine a suitable force field for a
and @8 quartz, the normal frequencies were calculated
by use of a modified Urey-Bradley force field. The
general method for the treatment of the normal
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TaBLE 4. Observed and Calculated Frequencies of Quartz at Various Temperatures
{Frequencies in cm™')
o quartz B quartz
25°C 520°C 570°C 600°C
Symmetry Exptl. Calc. Calc. Calc. Symmetry Exptl. Calc.

A 1085 1092 1083 (1104) 1088 (1109) By inactive 1096 (1116)
464 482 465 (463) 465 (463) Ay 461 468 (466)

356 355 348 (355) 348 (356) B1 inactive 352 (356)

207 208 130 (154) 87 (126) B inactive 12 (73)

Az 1080 1100 1087 (1108) 1088 (1109) Az 1061 1088 (1109)
778 760 737 (748) 731 (741) Bz inactive 724 (733)

495 505 493 (496) 484 (490) Az 435 465 (474)

364 353 361 (373) 374 (384) By inactive 407 (408)

B 1162 1122 1141 (1137) 1143 (1139) E> 1173 1145 (1173)
1072 1098 1089 (1110) 1091 (1111) E1 1065 1092 (1113}

795 775 754 (764) 756 (767) E) 786 760 (770)

697 695 669 (674) 665 (671) Ez 686 656 (661)

450 464 449 (457) 444 (451) E1 427 443 (446)

394 362 361 (367) 361 (370) Ea 407 369 (376)

265 247 246 (251) 251 (255) E> 243 260 (261)

128 136 103 (128) 95 (123) E1 98 103 (118)

The values in parenthesis are obtained by presuming th

e same force constant values with those of O quartz.

vibrations of crystals was reported by Shimanouchi,
Tsuboi, and Miyazawa (1961). The supplementary
terms of the force field are the internal rotation
potential Y and the bond interaction potential for the
pairs of the adjacent Si—O bonds p. We assume in the
potential energy matrix that (1) the same stretching
force constants and interactions pertain for the
various Si-O lengths, and that (2) the same bending
force constants pertain for all the O-Si-O and
Si-O-Si angles.

Table 3 gives the values of force constants deter-
mined by the least squares method; it appears that 7
parameters are enough to fit the 24 experimental fre-
quencies. Table 4 gives the calculated frequencies for
a quartz at 25, 520, and 570°C and 8 quartz at
600°C. The fit between experimental frequencies and
calculated values is satisfactory. Etchepare et al
(1974) obtained similar results for « and 8 quartz on
the basis of the general valence force field. But the
physical meaning of their negative values of force
constants and interaction terms is unclear. The
repulsive force constants resulting from ionic
bonding character in crystals seem to be necessary for
crystals such as quartz in which the bonds have some
ionic character. A simple valence force field which
contains no terms responsible for ionic character
seems to be unsuitable as a force field for quartz.

To examine the influence of potential energy as-
sociated with softness of the soft mode, the frequen-
cies calculated under the assumption of the same
force field for @ and B quartz are also listed in Table
4. Jacobian values of the 207 cm™! soft mode ob-
tained for a quartz at 25, 520, and 570°C and 8
quartz at 600°C are listed in Table 5. It is noteworthy
that the Jacobian values of the 207 cm~* mode related
to the internal rotation potential increase with in-
creasing temperature, in contrast to the decreasing of
those frequencies related to the bending potential and
repulsion potential.

As reported by Scott (1968), Hochli and Scott
(1971), and Bates and Quist (1972), the frequency of

TABLE 5. Jacobian Matrix of Soft Mode 207 cm™! in Quartz
at Various Temperatures

a quartz B quartz

25138 520°C 570°C 600°C

K 0.001393 0.000768 0.000450 0.000011
Hi 0.065377 0.031270 0.017909 0.000017
Fy 0.031738 0.015617 0.009024 0.000028
Ho 0.010547 0.012354 0.008603 0.000372
Fa 0.001610 0.001447 0.000977 0.000039
Y 0.292448 0.549317 0.658748 0.782839
K -0.002972 -0.003879 -0.002455 0.000020
P 0.004177 0.002292 0.001349 0.000000
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Fic. 1. Cartesian displacements for the soft mode A, 207 cm™~* modes of quartz at 25, 520, 570, and 600°C. Small black circles and large
open circles indicate silicon atoms and oxygen atoms, respectively.

the 207 ¢cm~! soft mode approaches zero as the transi-
tion temperature is approached from below. The
observed values of this mode listed in Table 2 were es-
timated from Figure 1 of Hochli and Scott’s paper.
To confirm the gradual shift of this mode to lower
frequencies with increasing temperature (up to the
transition temperature), the internal rotation poten-
tial ¥ should be negative, as shown in Table 3. The
internal rotation potential should be zero in 8 quartz,
otherwise the soft mode 207 cm~* does not approach
zero at transition point. If the same force field is as-
sumed for o and 8 quartz, the calculated frequencies
for the soft mode with increasing temperature are
larger than the observed frequencies, particularly in 8
quartz.

Vibrational Modes and Intensities

The normal modes have been represented by the
Cartesian displacements #% of the atoms « for each
vibrational frequency k. They were normalized in
order to satisfy the condition

Z mnyn] =
[+3

where m* is the mass of an « atom and m; is an ar-
bitrary positive constant, considered as the mass of

My, 015 ¢))

the mode k. Most of the modes, except the 207 cm™!
mode, are little modified by the -8 structural change
as reported by Etchepare et al (1974). Figure 1 shows
the 207 cm~! vibrational mode at various
temperatures. The atomic displacement of this mode
at 25°C is in agreement with that of Etchepare et al’s
Figure 2 (1974). As is clear from Figure 1, the vibra-
tions of the 207 cm~! mode which rotate around the
screw C; become more in agreement with displace-
ments involved in the a-8 phase transitions, as the
transition temperature T is approached from below.
To make clearer the temperature-dependence of the
soft 207 cm~! mode, the eigenvectors for this mode
obtained from a lattice dynamical calculation at
various temperatures were compared with spon-
taneous displacements associated with «-3 phase
transition. Table 6 shows the normal modes of soft
207 cm~! mode in Cartesian form. From these nor-
mal modes, the symmetry mode vectors were
calculated with reference to Axe and Shirane’s Figure
6 and Table 1 (1970). The results are listed in Table 7
together with the displacements in the a-8 phase
transition. This result demonstrates a remarkable
temperature dependence of this soft mode and a
remarkable similarity between this soft mode and the
displacements involved in the «-@ phase transition.



TABLE 6. Normali

Mode of 207 cm™' Soft Mode in Cartesian
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Form*
o quartz B quartz
Atom 25°C 520°C 570°C 600°C
Si(1) x -0.263 .203 .187 .184
Y 0.456 35 . 325 .319
3 0.
$i(2) & 0.527 0.406 0.375 0.368
y 0. 0. 0. 0.
2 0. 0. 0. 0.
Si(3) x -0.263 -0.203 -0.187 -0.184
y -0.456 -0.351 -0.325 -0.319
z 0. 0. 0. 0.
0(1) o 0.603 0.541 0.500 0.366
Y 0.467 0.513 0.543 0.634
2 0.465 0.584 0.611 0.622
0(2) x 0.603 0.541 0.500 0.366
y -0.467 -0.513 -0.543 -0.634
3 -0.465 -0.584 -0.611 -0.622
0(3) x -0.706 -0.715 -0.720 By 4
Y 0.289 0.212 0.162 :
2 0.465 0.584 0.611 .622
0(4) x 0.103 .174 0.220 . 366
y 0.756 .725 0.704 634
3 -0.465 .584 .611 .622
0(5) x 0.103 .174 .220 .366
y -0.756 SRS .704 .634
3 0.465 .584 .611 622
0(6) x -0.706 .715 .720 32
y -0.289 .212 . 162 3
2 -0.465 .584 .611 .622

* The normalization was chosen to make the mass of Equation (1}
equal to 100 atomic weight units,

As mentioned by Etchepare et al (1974) and
Mirgorodskii and Lazarev (1973), a calculation of the
intensities in the infrared spectrum of a crystal, using
the two-charge model of Kleinman and Spitzer
(1962), is useful as a means of checking the cor-
rectness of the results of the calculated normal
modes. When the normal modes #¢ are known, the
intensities are given by

St = (D Bni)( 2 B*nY), 2

where the tensor B%, the effective charge for atom a, is
determined using the scheme of Kleinman and
Spitzer (1962). The covalent and ionic properties of
quartz may be expected to give rise to two distinct
kinds of effective charges, which are conveniently
designated ionic and valent charges. According to
Kleinman and Spitzer, the tensor for the ionic
charges is

Bé‘l’"“’ — eql and Bgmic = —%e q 1, (3)

where e is the electronic charge and I an unit matrix;
and that for the valent charge is

(a)

Bvsailent — —EQ Z pp
and @

(a)

valen
B3 = eQ 2 pp,

TaBLE 7. Symmetry Mode Vectors and Displacements in the a—3 Phase Transition*

S51/8,
S3/8,
S4/S2

25°C
0.75
-0.66
0.24

Position in General
Atom B phase displacement
Si(1) 0) (0, 81, 0)
$i(2) 3 51, 0, 0)
5i(3) &+ 1 b (=51, =81, 0)
0(1) (-, 2, ) (52+Sy, S2-84, -S3)
0(2) (-2¢, -x, B (284, -S2+Sy, 53)
0(3) (-, -2z, -3 (-S2+S4, 28y, -S3)
0(4) (x, -z, 3) (S2-S4, S2+Sy, S3)
0(5) (2%, =, -3) (-254, -82-84, -53)
0(6) (x, 2z, -3) (-52-5y, -25., S3)

Symmetry coordinates of 207 cm”

mode

Model calculation deduced from
a lattice dynamical calculation
(present work)
520°C 570°C
0.53
-0.87

0.13

600°C

0.50
-0.85

0.00

Inelastic neutron Spontaneous
scattering displacements
(Axe and Shirane) associated with B=u

0.54(x0.17) 0.490(+0.019)
-0.80(£0.05) -0.802(+0.037)
0.28(%0.06) 0.013(+0.052)

* Expressed in hexagonal coordinates with x =
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TaBLE 8. Comparison of Observed and Calculated Infrared Inten-
sities for the 4, and E Frequencies

calc
%

Etchepare et al.
results

Present work

Symmetry  Frequency Sithl q=2.70, @=2.88 q=2.5, @=2.75

Az 1080 180 178 178
778 14 0.6 0.1
495 37 38 29
364 21 25 17

E 1162 1 0.7 3
1072 167 165 178
795 16 1.2 0.2
697 2 1.1 0.1
450 38 47 36
395 12 6 S
265 3 3 1
128 0.2 0.1 0.2

where the sum has to be made over all the unit
neighbor vectors of atoms.

The experimental values Sg*® of Spitzer and
Kleinman (1961) and the calculated values Sg*'¢ of
ours and of Etchepare et al (1974) are listed in Table
8. Both calculated results account for the intensities
of infrared absorption, as well for the E-type modes
as for the A,-modes. This result shows that the nor-
mal modes calculated on the basis of modified Urey-
Bradley force field are correct as well as those modes
calculated on the basis of the valence force field.

Conclusions

The Urey-Bradley force field modified by the terms
of the bond interaction potential p and the internal
rotation potential Y accounts for the observed in-
frared and Raman active frequencies of « and 8
quartz to a good approximation. The internal rota-
tion potential Y is the most important force constant
for the 207 cm™! soft mode. The value of this force
constant is negative during the a-3 phase transition,
suggesting that the displacement parameter in quartz
consists of the internal rotation and that this dis-
placement occurs easily during the a-8 phase transi-
tion, and never occurs in the case of 8 quartz.

The vibrational mode at 207 cm~* rotates around
the screw C,. This vibrational mode becomes more in
agreement with displacements during the a-@ transi-
tion when the transition temperature T is approached
from below.

The two-charge model of Kleinman and Spitzer
was used to derive the infrared intensities for the A,-

K. [ISHI AND H. YAMAGUCHI

and E-type modes. The agreement between the
calculated and observed intensities shows the cor-
rectness of the normal modes determined in this
work.
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