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Abstract

An alkali ion-exchange equilibrium curve between molten Na-K bromide and highly-
ordered alkali feldspar was determined at 800'C and I bar. The miscibility gap in the feldspar
crystalline solution occurs between Ne. = 0.105 and Ne" : 0.50 at a salt composition
M*", = 0.32 (mole fractions). A thermodynamic analysis of combined ion-exchange and
two-feldspar data yields the excess Gibbs energy of mixing of the solution with a maximum
value of 900 cal mol-'. This is not very different from that for high albite-sanidine feldspars,
but is more accentuated in asymmetry towards NaAlSirOr. Such asymmetry of Gi* is most
likely related to the excess entropy of mixing.

Introduction

Values of molar excess Gibbs energy, G"', of
mineral crystalline solutions are very much needed by
petrologists, especially when dealing with phase
equilibria. Such values for the mixing properties of
alkali feldspars are of particular interest because
these minerals frequently occur in many common ter-
restrial rocks.

In a previous paper (Delbove, 197 l), the excess
Gibbs energy of disordered synthetic alkali feldspars
(high albite-sanidine) at 800oC and I bar was derived
using the fused salt alkali-ion exchange technique of
preparing feldspars of intermediate compositions
and a graphical thermodynamic treatment of the ion-
exchange data.

Derivation of such a quantity for highly-ordered
feldgrars is also of interest. Although the differences
in 6p* for both structural types of feldspars are
relatively small as compared with the ideal mixing
Gibbs energy, the differences have a substantial effect
on the feldspar phase relations.

Bachinski and Mliller (1971) provide a good review
of previous work on this subject. The current status
of the alkali fleldspars is as follows: at one atmosphere
and at a high enough temperature, the subsolidus
region ofthis binary system is characterized by a con-
tinuous crystalline solution series. With decreasing
temperature, the greater influence of a positive excess
Gibbs energy results in unmixing with separation of
Ab-rich and Or-rich phases. Recent studies have

shown the influence ofstructural order on the solvus,
the most recent indication being that the solvus for
the ordered series is outside that for the disordered
one. For example, at 800'C and I bar, complete solid
solution exists between sanidine and high albite (Or-
ville, 1963; Thompson and Waldbaum, 1969b;
Delbove, l97l), whereas a miscibility gap exists
between microcline and low albite (Bachinski and
Mii l ler,  l97l) .

The fused salt techoique is the only one that per-
mits work at one atmosphere, and it is the only one
which provides exchanged products structurally un-
modified as to the Al-Si occupancy of the (O) and
Z(z) sites. However, the occurrence of a miscibility
gap requires a modification of the previous ther-
modynamic treatment (Delbove, 1971).

Experimental Details

Starting Materials

The natural microcline used as a starting material
was a portion of a decimeter-sized perthite crystal
from an intrusive pegmatite in Precambrian gneiss of
southern Norway (exact location of this feldspar is
not known) and was supplied to us by Pr. Dr. G.
Sabatier. The microcline has well developed grid-
twinning. Albite included within the microcline oc-
curs in small optically continuous patches and in ap-
parent crystallographic continuity with the
microcl ine host.  The albi te inclusions show
polysynthetic albite-twinning. The bulk composition



Trus l .  Composit ion of Natural Start ing
Alkali Feldsoar

973

I on-Ex change Procedures
The natural microcline starting material was finely

crushed and sieved, with subsequent procedures be-
ing carried out on the 100-200 mesh fraction. The ex-
periments were performed using the latter material
(about 100 mg for each run) and thoroughly dried
alkali bromide of various Na,K ratios. For all runs
the relative alkali molar proportions of the system:
feldspar + salt were set to be roughly similar, i.e.
[(Na + K)felds/(Na + K)salt] - l:3, in order to en-
sure good contact between the exchanging phases.
The exact proportions are given in Table 3 for each
run. These materials were sealed together in platinum
capsules and placed at one atmosphere pressure in a
vertical-bore quenching furnace regulated at 800 +
5oC with a Ni-Cr/Ni-Al thermocouple. After a
variable period, ranging from 6 to 3 I days, the cap-
sules were quenched to room temperature by allow-
ing them to fall into a container of water under the
furnace.

After opening of the capsules, the salt was
separated from feldspar by dissolution in distilled
water, followed by determination of the Na and K
constituents by flame-photometric analysis. The feld-
spar, after drying, was examined by X-ray diffraction
in order to detect any possible new phases or change
of structural state, and its Or-content determined us-
ing the 201 method of Orville (1967). A question
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of the microcline starting material, as determined by
chemical analysis (see Table l), is Orrr.uoAbl6.sAnl.sRb-
feldsparo.n (mole percent). The influence of the An-
content and that of Rb-feldspar will be neglected
and the feldspar treated as a simple binary Na-K
solution.

From X-ray examination (see Tables 2 and 3) the
compositions of the two perthitic phases are es-
timated to be Or, and Or* mole percent, which, ac-
cording to the middle solvus reported in Figure 9
of Bachinski and Miiller (1971), indicates a tem-
perature of formation of about 380'C.

Tnsl-r 2. Cell Parameters and Related Structural Data for Alkali Exchanged Feldspars of This Study
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Run
N o . .lt*. i3i! 2e(201) *0, ,:;ll. No" MKB. 2(No,)

toaysj  Frac Loeg, (nolg) (At)  (noI%) (mol?) (cal lnot)

TAsr-e 3. Alkali Feldspar Molten Alkali Bromide
Ion-Exchanee Data

alkali feldspar (in mole percent Or-) was deduced
from the difference in 2d between the 201 reflection of
the feldspar and the 101 reflection of KBrOs, using
the determinative A (2d) curve of Orville (1967' Fig.
8) for the microcline-low albite series. Results of
these determinations are given in Table 3, with cor-
responding values of A (2d) being converted to 20

701 , using20 t0l equal to 20.212" , as given by Orville
(p. 7s).

However, these determinations are somewhat un-
cartain, due to some possible anomalies of the cell
dimensions of our feldspars, and these are, perhaps,
not as highly ordered as were the feldspars Orville
used to plot his A (U) curve' So, a determination of
cell-parameters seemed highly desirable.

This was performed on some of the samples, using
semi-conductor grade silicon (99.999 from Koch-
Light, England) as an internal standard. The value of

a : 5.43093 + 0.00008 A was taken for this Si. Two
forward and reverse scans were made in the range 20
to 60 degrees 2d. Only the lines that could be indexed
unambiguously were taken into account and their
positions measured using the absolute 2d values,
28.442", 47.302", and 56.122" for the three standard
Si peaks covering the20 range. It was confirmed, on
such an occasion, that 20 (201) values measured in
this way agreed within less than 0.020' 2d with those
previously measured using KBrO3'

Unit-cell parameters were then determined by
least-squares refinement using the digital computer
program Lct-sQ of Burnham (1962), slightly modified
and kindly provided to us by D. R. Waldbaum.
Results of these refinements are given in Table 2; the
uncertainties reported in the cell parameters are least-
squares standard errors as defined by Burnham.

To obtain an evaluation of the degree of order, we
shall first consider the variations of the b' c and a*,

T* cell parameters. These values are plotted in

Figures I and 2 together with the b - c and a* - ^l*

quadrilaterals obtained by connecting the preferred

end-member values of Stewart and Wright (1974)by

straight lines. Individual data points of this study
may be seen to be near the microcline-low albite
sides. The values of A (bc) and A (a*7*), as defined
by Stewart and Ribbe (1969), are also reported in
Table 2: they are very near the limiting theoretical
value of I for highly-ordered alkali feldspars, except
in the 60-90 mole percent Or composition range,
where the value of A(o* Z*) exceeds I by more than
0.05. These values indicate, according to Stewart and
Ribbe, an Al-occupancy of 7rO sites, l1s, nearly equal
to 1, whereas Trm,IzO, and Trm would be nearly Al-

s t  .  F e l  2 2 . 0 4 0
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arose as to the validity of the latter method for deter-
mining the composition of alkali feldspars. As shown
by Wright and Stewart (1968), this method is prac-
tical only in the case of feldspars for which the struc-
tural state is well-defined and not "anomalous." Con-
sideration of the X-ray diffraction data in more detail
is therefore necessary.

X-ray Diffraction Data

The X-ray data of this study were obtained with a
C. G. R. diffractometer with Ni-filtered copper radia-
tion. Scans were made at l/5"20 per minute, and a
time constant of l0 seconds. The diffractometer was
operated with a Geiger sensing element, 1.15o scatter
and divergence sl i ts,  0.01 inch receiving sl i t
(0.065'2d). The X-ray wavelength used for CuKa',
1.540562 + 0.000007 A, is from Bearden (1967).

Each sample was mixed with reagent-grade KBrOs
(from Prolabo, France) used as an internal standard.
Two forward and reverse scans were made in the
range 19 to 23 degrees 2d. The composition of the



EXCESS GIBBS ENERGY OF ALKALI FELDSPARS AT SOOOC AND I BAR 975

222

220

7.tE

c
7.t6
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free (tr* = tzo = tz^ = 0). Contours plotted for the a
axis in Figure 2 are also from Stewart and Wright
097a); refined values of a do not differ from the ex-
pected ones by more than 0.05 A.

Another method for estimating the Al,Si distribu-
tion in alkali feldspars is the one described by Kroll
(1973) who considers the translational distances in
the [10] and [10] direct ions, namely Tr I l l0]
and Tr [ 10]. These distances, which can be cal-
culated from the a, b, and 7 refined unit-cell pa-
rameters, are also reported in Table 2 and plotted
in Figure 3 against compositions (these being deter-
mined from cell-volumes, as will be indicated later).
The smooth curves represented in the figure connect
the values calculated by Kroll (1973, Fig. 5) for the
low albite-microcline series (with the hypothesis:
tro = 0.87, tt- : tzo : tz^ : 0.04) and for the high
albite-sanidine series (with the hypothesis: l,e :
tt^ = tzo : tzm : 0.25). The slight departure of Tr
[10] and fr [tTO] point data from the smooth
curves relative to the low albite-microcline series
may be an indication of /re being greater than 0.87
and of tt^, tzo, and t2n being less than 0.04 in our
feldspars.

In order to test the compositions previously deter-
mined using the positions of 20(r0D X-ray peaks, we
have redetermined them using refined unit-cell
volumes. An available equation relating molar
volumes to compositions is that of Waldbaum and
Robie (1971, p.394):  V :  2.38497 + 0.21962 No, f
0. 1096 No, ' Nou cal bar-r mol- r. Converting cal bar- 1

Hcxinan It2.st
| 7.222l'licroclioc

'nigh lo.olg
Smidiac l7.l 71

;  I  I  8bS A I  I  I  s  E
NNNNNNNNSCC

Ftc. l. b plotted against c for alkali exchanged feldspars; data from Table 2, this paper. Cell data points
are drawn to * I standard deviation ofthe cell parameters. Solid lines connect preferred limiting reference
values of Stewart and Wright (1974). Dashed lines are contours for the a axis, and dot-dashed lines equal
A(bc) lines from the same authors.

R8S
NNN

mol--' to At, with a value of Nru = 6,0247.|CIt and a
unit-cell containing 4 "molecules" of feldspar, gives:
u (in A3) : 662.520 + 61.002 No, + 30.448 ffo,/V^o.
Ne, values so determined (Table 3) may be seen to
differ by less than 2 percent from those previously
determined using 201 . So, we may conclude that the

Frc. 2. a* plotted against 7* for alkali exchanged feldspars; data
from Table 2, this paper. Cell data points are drawn to * I stan-
dard deviation of the cell parameters. Solid lines conn€ct prcfcrred
limiting reference values of Stewart and Wright (19?4), Dot-
dashed lines are equal A(o* T*) lines from the same authors.
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,.1 A.5 0.6 0.7 0.4

Frc.  3.  Tr  [10]  and Tr [110]  p lot ted against . l {e,  for  a lkal i  ex-

changed feldspars; data from Table 2, this paper. The solid Tr

1tTOl anO dashed Tr I l0] curves are drawn using values for both

extreme feldspar series as plotted in Figure 5 of Kroll (1973),

with site occupancies as indicated by Kroll in abscissa.

201 method is reliable when applied to feldspars of
this study.

Experimental Results

The ion-exchange equilibrium data are sum-
marized in Table 3, where feldspar and salt composi-
tions are expressed as mole percent orthoclase [No' :

100 KAISiaO./(NaAlSisOs + KAlsisor)l and as mole
percent KBr [MKs, : 100 KBr/(NaBr + KBr)].
These compositions, expressed as mole fractions, are
also plotted as ordinate and abscissa in Figure 4.

Almost all the run products consist of single-phase
feldspar, as evidenced by a single sharp 201 X-tay
diffraction peak, although the starting feldspar was a
two-phase mixture. Measured N61 compositions give
a distribution of data which extend from 0 to 10, and
50 to 100 mole percent Or. Some runs (4-4, 3-5,4-5,
and 3-7), however, give an evidence of a two-phase
feldspar. The X-ray data for these latter runs indicate
feldspar compositions to be l0 + I and 50 * 2 mole
percent Or. The corresponding composition of the
salt phase is 32 i 0.5 mole percent KBr.

The curve of Figure 4 may be considered as a
graphical description of equilibrium exchange rela-
tions between ordered alkali feldspar and fused
(Na,K)Br at 800'C and I bar, with the dotted vertical
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line denoting the solvus compositions No",r : 0.10,

ly'o,,rr : 0.50 to be in invariant isothermal isobaric

equil ibrium with molten salt composition Mrg,,r-rr
:  0.32.

On considering these results, it is essential to
wonder first whether exchange equilibrium has ac-
tually been attained, a condition which is essential for
the validity of the next treatment. As in our previous
work (Delbove, l97 l), assurance of the reversibility
of data (and, hence, a check on equilibrium) was
achieved through runs yielding the same feldspar
compositions from opposite directions, that is, in-
volving previously Na-exchanged as well as natural
perthitic feldspar as starting feldspar materials, both
giving final results on the same exchange curve' Runs
starting with Na-feldspar are denoted by an asterisk
in Tables 2 and 3, and by a square in Figure 4.

Second, it is essential to ensure that the composi-
tions of the phases produced in the above-cited runs
are true binodal ones, that is, that complete ther-
modynamic equilibrium was attained between the
two feldspar phases (the reason for this requirement
will be shown later in the thermodynamic treatment
of the data). Such complete equilibrium is verified by
the intensity of the two 201 X-ray peaks being
variable in relative magnitude with respect to each

l l l l l l l

No" -Y

, ' r t l
o 

- 
o.2 o.1 0.6 o.a t'o

Frc. 4. Alkali distribution curve at 800oC and 1 bar between

fused alkali bromide and highly-ordered alkali feldspar; data from

Table 3, this paper. Open circles represent runs starting with

natural original perthitic feldspar, open squares runs with the same

but previously Na-exchanged feldspar. The vertical dotted line

represents the miscibility gap in the feldspar crystalline solution at

this temperature and this pressure.

t . 0
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other. This results from the variable relative ratios of
each perthitic feldspar in the exchange products, one
feldspar phase being able to develop at the expense of
the other. Had each phase of the original perthite
participated only in exchange equilibrium, the
proportions of each perthitic feldspar phase would
remain constant and, therefore, the two 201 X-ray
peaks would have constant magnitudes relative to
each other.

Thermodynamic Analysis

Thermodynamic Definitions and Relations

The chemical potential, po, of a component a, in a
binary phase, 0, may be expressed as follows:

p":  p)"u I  pZ":  G: + RT ln N" * pi*  ( l )

where G? is standard molar Gibbs energy of pure
a, N, is mole fraction of a, and pE* is excess chemical
potential of a. The second component of @, b, mole
fraction Na : I - No, is expressed similarly:

trt : rtid * rr3* : ct + Rf h(1 - N") + pi* (t')

The total molar Gibbs energy of the whole phase is
then given by:

Gr: G'r^ + Gf : N.[G"o + RZ ln N" * pT*J

+ (l - N.)[G,o * nr h (1 - N") * pi"] Q)

_ By definition, the molar excess Gibbs energy,
Gfi*, is zero at both limiting compositions No = 0
and No :  1.

A useful classical relation for such a binary phase
IS :

t -  - - l

(! ' t" - t ' tu)^: lgqt l  <: l'e 
LdN.Jr. .

Substituting Equation (2) into Equation (3) gives:

0," - p)o: tgl + [Sl G)LaN" l  LaN" l

pressed as mole fractions N6y or M6sp, r€spectively.
The two- feldspar assemblage will be characterized by
the mole fractions 1f61,1 and ifo.,rr, the corresponding
invariant composition of fused salt being denoted
M*"r,r-rr,

Basic Equilibrium Equation

Writing the alkali ion exchange reaction between
feldspar and fused salt as follows:

Microcline * NaBr = Low-Albite * KBr (7)

the condition for equilibrium is given by

0,o, 
- 

lrno)t : (&x"" - PN"a")" (8)

in terms of chemical potentials, or, according to
Equation (3), by

L  d N o "  J p , r  L  6 M x a ,  J r . ,

in terms of total Gibbs energy.
The latter expression means that, at equilibrium

compositions, slopes of tangents to both d curves, G-1
and d", are equal (see Fig. la of Thompson and
Waldbaum, 1968).

Taking into account the relations of Equations (l)
and ( l ' ) ,  we obtain for Equat ion (8)

(rrii - pii)' : -KC3. - Giu) - (Giu" - GR.u")l

- Rrh Es, +-l * [pF"" - /.,iius.]" (10)' t '  " '  LNoo M*" ,  )

in terms of excess chemical potentials, the cor-
responding equation in terms of excess Gibbs
energies being

aA:*/ A/^ \=1** : -[(G3. - Gio) - (G*"" - GR""")]

- Rr t, f{* #:-l + dci:(l'l"".) (r)- - -  -^-  
LNoo M*""  J  6M*",

The first bracketed quantity on the right-hand side
of Fquation (ll) at a given temperature and pressure
is a sum of constant terms; it may be expressed as a
constant C:

C = [(GS" - Gio) - (GRo. - G$."")] (12)

For the equilibrium attained, the mole fractions in
the logarithm are related to one another through the
exchange curve of Figure 4. Hence, this expression
may be identified as the quantity Z, which is a func-
tion of any one of the mole fractions, say .1y'6":

Z(No): -RT' l- lro"(t - t"") l't' 
L: N"iffi"J (r3)

where:

l-earl
LdN" I

and:

: (G; - c?) + Rr t.r, --4- * 
(5)

tffi] : e,z'- pi\o (6)
In this study, the phases will be denoted by the sub-

scripts f for feldspar and s for fused alkali salt, and
the components by the subscripts Or, Ab, KBr, and
NaBr. Compositions of each binary phase will be ex-



978

o 0.t a2 0.3 0,1 0.5 0.6 0,7 0.8 0.9 t.0

Frc. 5. Plots of

l - "  "  -M*" ) f  ,  aG: " (MKB, )
Z: _Rr rn ljld1=++Ell I and e: 

,"j
t-t, - rn*)Mrr".J 

anq g : -ar^u,

versus Ne., where N6" is related to Mss, through the alkali dis-

tribution curve in Figure 4. Open circles and open squares have the

same signification as in Figure 4. The dotted central portions

of both curves are drawn with /fo. assumed to vary continuously

from N6"-1 to Ne,-11 in the two-feldspar region, and Mxe. to

be constant and equal to Mas,,1-11.

Figure 5 shows the plot of Z against Ne", where both
extreme portions of the solid curve correspond to the
two branches of the ion-exchange curve of Figure 4
and where the intermediate dotted portion corre-
sponds to the vertical dotted branch. This dotted por-
tion of Z has been calculated by setting Myy cort-
stant with the value M*"r.r-r, : 0.32 and by varying
Ne, continuously from No.,r : 0.105 to ifer,11 : 0.50;
the slope of this dotted portion shows a discontinuity
at both junctions with the solid portion. The reason
for this discontinuity is explained in Appendix B.

As for the last term in Equation (l l), which refers
to the molten salt, it may be expressed as a function
of Ns. or MKs, for the same reasons as above for Z,
and we shall write for convenience:
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for molten salts of Reiss, Katz, and Kleppa (1962),
only two parameters are needed to describe IP"* to ac-
count for random mixing of Na-K cations in the
molten cationic sublattice when the configurational
excess entropy is assumed to be zero. Recent studies
of Guion et al (1968) on ternary molten salt system
NaCl-KCl-AgCl reveal G"* of the binary system
NaCl-KCl to be - 90 cal mol-1 at 50 - 50 composition,
compared with a value of - 130 cal mol-1, as given
for.F* by Hersh and Kleppa (1965). Thus, the excess
entropy, S-"', of this binary system is less than - 0.04
cal deg-' (see Waldbaum, 1969, for a more complete
discussion). Due to lack of supplementary data, we
have supposed S"' of the liquids in the system NaBr-
KBr to be equal to zero. Thus, values of F1"'
calculated at 770"C for this system from Equation
(15) are assumed to be relevant at 800'C. The
differentiation of Equation (15) gives then:

dG:'(MKr")- j - _ - - :  - j 7 U + I 2 6 0 M R B ,
0 M*s,

- lSoMkB, cal mol-' (16)

A tentative plot ofg according to Equations (14) and
(16) and the exchange curve of Figure 4 is given

together with Z in Figure 5, in which the central
horizontal dotted portion of the curve corresponds to

the particular value MrwJ-il: 0.32 which is a con-

stant lrom Ns.,1 to No,,tt.

Subst i tu t ing Equat ions (12) ,  (13) ,  and (14)  in
Equat ion (  I  1) ,  the condi t ion for  exchange
equil ibrium results in the following condensed rela-
t ion:

dG!:(+') : -c + z(No,) * g(No") ,7)
dNo'

Integration of Basic Eqhation

The problem of integrating the fundamental rela-

tion Equation (17) is more complex than in our
previous work (Delbove,l97l), due to the miscibil i ty
gap occurring between Ney,1 ond No,,tt.

Gi' (No,) is known already to equal zero at
both extremities (0,1) of the composition range,

so we can write for the interval 0 S No' ( No".rl

Gi-(No.) - -CNo"

7 . A r o r  f N o "

+ I  Z(No) dNo,  *  /  s(No.)  dNo" (18)
t o  u o

and for the inverval No.,rr S Not ( l:

6 i ' ( N o " ) : + C ( 1  - N o " )

p l  p l

-  I  Z(NhJ dNo,  -  /  g(Ne")  dNs,  (19)
J . v o .  J t t o "

FRANQOIS

+ l

- l

t l t l

_ Z,g( No" \*car notl

lVr,I,

( l  4)

The only available information concerning G3' is
from the work of Hersh and Kleppa (1965) who give
for the excess enthalpy of mixing of molten Na-K
bromide at 770"C:

E!*  :  M*^ ' ,M*" , f ( -510)  -  50MN,r i " l  (15)

According to the modified conformal solution theory

g(No')
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with Z and g being perfectly well-defined and single-
valued functions of feldspar composition. The
problem of calculating G?.(No,) reduces, thereiore, to
determine the constant C.

Deriuation of the Constant C: Utilization of
Combined Exchange and Two-Feldspar Data

Thompson and Waldbaum (1968) g ive a good ac-
count of the problem of equil ibrium in two-feldspar
assemblages, distinguishing the case with only partial
ion-exchange equil ibrium, for which

l p o "  -  F . , r r , ] r . r ' r o . . r :  [ p o "  -  p r u ] t , u o , , r ,

:  [ p r< r r "  -  
&u^n " ] , , r u rB r . r ,  r r  ,  ( 20 )

from that with complete equilibrium, that is, that for
which the supplementary relations

po, (No, . r )  :  l . l o , (No. . r r )  Q l )

pen (No , . r )  :  peu (No , . r r )

are to be added. In the latter case, as illustrated by
Thompson and Waldbaum (their Fig. lb), tangents
to the G1 curve, at points corresponding to abscissa
Ns,,1 and N6,,11 (their points a and b), are on the same
straight l ine. The slope of this l ine, besides, is the
same as that of the tangent to G" curve at the point
corresponding to the abscissa of M6s,,1-11 (their
pointfl. The validity of the following treatment rests
essentially on such a complete equil ibrium having
been attained, that is, Ne.,1 and N6,,tt being true
binodal compositions.

The relation between the G1 values at the two
binodal compositionS, No.,r and Ne,,11, may then be
expressed as:
Gr (No" , r r )  -  G r (No" , r )

: (No",rr _ ,.",,[q1ffJ] e2)
which, due to the ion exchange equil ibrium with
fused salt, can be converted into:

G,(No", , , )  -  G,(No, . , )

:  (No , , r r  -  N^ -  , . , [ aG" (u * " . . r - , , ) - l'o,,')l-1ffi=_l (23)
The latter equation may be modified as follows.

The lefrhand side can be shown to be (see Appendix
r )
G , ( N " . . , , )  -  G , ( N o . , , )

:  (No" , r r  -  No, , t ) (G3.  -  G io)

+ Rr  r 'o ' ' I '  tn ; r ;a l r
J r l / O , . r  r  -  l Y

* Gi.(No",, , )  -  Gi.(No",,) l  (24)

Substitution of Equations (4) and (5) on the right-

hand side gives

(No,,,,- No", r["+ffi-]
:  (No,, ,r  -  lv"" , , l [ tcR". -  G$.",)

+ Rr n3w+ dG!.!Yr*"''"')l lrrlMr ,g " , r - , ,  0M* " "  I

Combining Equations (24) and (25), and putting the
G?* terms on the left, we obtain

Gi"(No". r , )  -  Gi- (No. , , )  :  - (N", , , ,  -  No, , , )

.[(c3" - cio) - (G?o, - GR."")]

- RrI.":,"'"fi9ffija"
(21,) * (No.,rr - 

"..,r[g9+ffit't]
(26)

Equation (26) can be simplified by observing that the
bracketed quantity in the first term on the right-hand
side equals the constant C, as defined by Equation
(12), and that the logarithmic expression under the
integral is Z (Ns,) as defined by Equation (13), if No,
is assumed to vary continuously from N6r,1 to N6-,11
whereas M*" ,  remains at  the constant  va lue
M*",., rr. The dotted central portion of curve Z in
Figure 5 denotes these special values of Z (Ns,). The
derivative of G* for the special value MKs.l-11 is a
constant. So, from Equation (14), it may be replaced
by the function g(No,), which is constant in the inter-
val Ne1,1-/y'ey-11, ?s represented by the dotted
horizontal l ine in Figure 5.

These observations lead to the followinq con-
densed expression for Equation (26):

Gi*(No, , ' r )  -  Gi ' (No. , ' )  :  -c(N"" , , ,  -  No, , r )

/ .Mo " ,  
r r

I  z(No.) dNo"
J N o . . r

* f 'o" ' "  g(No.) dNo" e7)
r ' M o  t ,  r

Turning to the values of G?*(No",,) and Gg*iNo.,rr;
which, according to Equations (18) and (19), are

g(No.) dNo" (28)

given by

Gi"(No, , , )  :  -CNo", '

r N o ' . r  f M o ' ,  r

+ J" Z(No) 6ryo" + J,
-Gi*(No",,r)  :  -c( l  -  No", , , )

r r  - '  f '+ I  Z(No) dNo. ,  tr ' r V o r . t t  r ' l Y o ' , I I
g(No") dNo, (29)



FRANQOIS DELBOVE

0 0.t a2 0.3 a1 a5 0.6 0.7 0.A O.9 t.0

FIc. 6. Excess Gibbs energy, G?* (lfo"), ofhighly-ordered alkali
feldspars at 800"C and I bar (solid curve), calculated from integra-
tion of Z and g as plotted in Figure 5. The dotted central portion

corresponds to integration being pursued along the dotted paths in
Figure 5. The dashed curve is for synthetic disordered alkali feld-
spars (Delbove,  l97l) .

we obtain, f inally, after combining Equations (27),
(28), and (29)

n M o . . I  a l V o " . I r

c :  I  G+ddNo" *  I  <z *g )dNo ,t ^  '
r u  J . v o , . r

+ [' (Z * d dNo" (30)
r ' r v o r , t t

Equation (30) shows that C is to be calculated in
the same way as would be the case with but one feld-
spar occurring in the whole range of concentration,
C being then given by:

4 1

c : I <, + s) dNo" (31)
J o

In terms of graphical treatment based upon an ex-
change curve like that of Figure 4, it means that the
dotted vertical line, which accounts for the miscibility
gap between N61-1 ilnd No,-rr, may be treated as
though it were a continuous vertical exchange path.

Results and Discussion

Integration of Z and g, as plotted in Figure 5,
gives, according to Equation (30),

C : - 965 cal mol-r.

The Janaf Thermochemical Tables (1965, 1967) give

-5970 cal mol-1 for the difference (Go*r" - Gon,r.)
at 800'C. From Equation (12) we then calculate the
difference (Goo, - Gooo) to be -6935 cal mol-'
compared to -7560 cal mol-r as given by Robie and
Waldbaum (1968).

A plot of calculated G?. according to Equa-
tions (18) and (19) is given in Figure 6 against Ns".
G?' is, in fact, undetermined in the two-feldspar
region; the dotted portion of the curve corresponding
to this region has no actual significance as to Gt* of
hypothetical feldspars of these intermediate composi-
tions. Simply, it is the result of integrating onZ andg
beyond No.,r : 0. 105, taking into account the dotted
portions of the Z and g curves in Figure 5, this
procedure being merely a mathematical means of
connecting G?*(No",rr) to d?*(No,,,). Those values
of G?* are in fact the minimum possible and, if
added to Giu, give Gf values that vary along
a straight line in the two-feldspar region (see Appendix
B for a more complete discussion).

The plot of G?* for sanidine-high albite feldspars as
obtained in our previous study (Delbove, l97l) is
also represented in Figure 6 as a dashed curve, the
maximum of which is nearly equal to that for ordered
feldspars (about 900 cal mol-r). However, GF of
ordered feldspar is characterized by a greater asym-
metry towards NaAlSLOr.

The ion-exchange data of Orville (1963) led
Thompson and Waldbaum (1968) to a polythermal
Margules-type formula (Eq. 39) for Gt* of sanidine-
high albite feldspars (see also Thompson and Wald-
baum, 1969b). In another way, their two-phase data
led Bachinski and Miiller (1971 p.347) to a similar
formula for G?* of microcline-low albite feldspars.
Using these formulae, it is possible to obtain an alter-
native evaluation of G?* of both feldspar series at
800'c.

With the purpose of comparing all these data with
ours, we can use the Gi*/(No,Neu) function as the
best means of representing the characteristic features
of each of them. This has been plotted in Figure 7.

I f  we approximate G?* by an asymmetr ic
Margules-type equation with only two parameters,
W6.s, zr'd V[/o,or, then the above-mentioned function
is depicted by a straight line, the equation of which is
GF"/(No.NAb) : l/o,o,Nob + Wc,^bNo,. The greater
the difference of the W6's,the greater the slope of this
line and the greater the asymmetry of the G?* curve.
From Figure 7 it appears that lhe W6,s,'s would be
about the same for both feldspar series (about 4500 -

5000 cal mol-r), while W646 would be less in the case
of ordered feldspars (about 1000 - 2000 cal mol-')

Glx *"at ,ot -l

.-''.'-):::+'

0 0.1
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Frc. 7. Plots of (d?-/No.Nob) versus N6. at 800oC and I bar for
Al-Si ordered and disordered alkali feldspars and from different
sources of data (see also results of Thompson and Waldbaum,
r969b).

than for disordered feldspars (about 2500 cal mol-l).
Now, the significant point to be noted is that unmix-
ing occurs when G?* is more asymmetric and not
necessarily when Gt* is greater in magnitude. This ex-
ample for feldspars illustrates that mixing properties
of solutions are to be accounted for not only in terms
of the average magnitude of the excess Gibbs energy
(as in the simplest case of regular symmetric solu-
tions), but also by the degree of asymmetry of this
function.

_ Nevertheless, it appears from our curves that
G?*/(No.NAb) cannot be rigorously approximated by
a straight line, for either the ordered or the dis-
ordered feldspar. So, it seems necessary to call upon a
Margules series development for Gt' with higher
power terms, that is, with supplementary excess
parameters.  In  that  s i tuat ion,  Wi l l iams (1969)
showed that analytical representation of excess mix-
ing properties is possible by means of a more suitable

series such as the Fourier Series. G?' will be expressed
as a Fourier Series in the mole fraction N6r:

Gtr* : a, sin r N6, * a, sin 2 r N6,

+ ... + a1 sin i zr Ne1 Q2)

in which only sine terms appear, because Gf* equals
zero for both 1y'6, : 0 and ly'o" : l. The principal ad-
vantage of such a series is its orthogonality which
results in the dr d2, . . . d.1 parameters being not
correlated, as is the case in a Margules-type or
equivalent expression. The excess parameters db a2,
. . ' ot1 ate given by the formula

pl

a; : 2 / G-tar..l sin tzrNe" dN6" (33)

The above ,n,"rru,,on, are possible only if G?* has
definite values in the whole range of concentrations.
This means that in the present case of ordered feld-
spars, because Gr?* is in fact undetermined in the two-
phase region (the minimum possible values only be-
ing known), proper values must be assigned to G?* in
that intermediate range of compositions. Any given
assignment will result in a given set of dr, dz, . . . et
parameters. A particular assignment may be to take
as values of Gt' those minimum values as represented
by the dotted portion of the curve in Figure 6. The a',
d2, - . . ai parameters calculated with this assignment
are given in Table 4 together with the same
parameters for disordered feldspars from our
previous study (Delbove, l97l). The greater asym-
metry of excess Gibbs energy of ordered feldspars iq
well marked by the greater relative importance of the
ot2, ot4'  . . '  parameters.

One may now ask what type of influence is exerted
orr dy d2, . . . a1 Fourier parameters of ordered feld-
spars by those minimum dotted values assigned
above to G?. in the two-feldspar region. This can be
best answered by considering in Figure 8 plots of lro",
pa6 and For - Fro which can be readily derived using
the above set of dr parameters. It may be seen that
horizontal straight lines represent these functions
within the two-feldspar region, simply as a conse-
quence of GF having been assumed to vary according
to a straight line. In fact, the later hypothesis is inex-

Tesrr 4. Fourier Series Coefficients for Gt' of
Al-Si Ordered and Disordered Alkali Feldspar

at 800'C, I  Bar (cal mol- ')

Feldspar -1 o^  0^  o ,  c t -  9 . .
2 3 4 ) O "7

-€X
\J I kcel nol-l

No" N,ra

Al-Si ordcrcd f. ldsp.rs

Eechi'Aki .nd lliiilt 197,
fhit ,rorh

At Si diso{crcd fcldtp.rt 
I

Dclbote l97l I
-.-.'-fho,rrpsq, tn Vtldhdrn 196{,

0rdered

Disordered

894 L43 36 13 6

920 83 55 5 13

4

4

n e g l .  n e g l ,

L2  neg l
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FIc. 8. Plots of &o,, &ar and por - trAb versus lf6, using Fourier
series excess parameters as given in Table 4, this paper, for highly-
ordered alkali feldspars (Goe. and Goa6 ?r€ omitted in the expres-
s ion of  these quant i t ies as given by Equat ions I  and l ' ) .

act and the horizontal straight l ines must be sinuous
curves with a maximum and a minimum (for the
"spinodal" compositions); for instance, considering
Itor - ltro, the "equal areas" condition specifies that
our horizontal straight line divides the undetermined
corresponding sinuous curve into two portions of
equal  and opposi te areas (Waldbaum and
Thompson,  1969,  F igure 4) .  Nevertheless,  as
evidenced by Equations (18), (19), and (30), in spite
of this inexact hypothesis as for the two-phase region,
the correctness of the calculation of G?* (and of the
derivative functions) in the one-phase region is
perfectly well established. Then, a plot of (po, - tr oo)
obeying the "equal areas" condition within the two-
phase region, while remaining identical to that of
Figure 8 in the one-phase region, is to be obtained by
adding extra parameters ar ' ,  orz ' ,  . . .  d t ' ,  . . .  to  the
primitive set of ar, orz, . . . a, parameters. These a1'
must satisfy the obvious conditions:

E i"i cos (izrN6") :

( izrNe") :

( irNo") )

FRANQOIS DELBOVE

and

n i l o r . I t

I i" i cos (izrNe.) dNo" : 0 (34)
J i r 'o .  ,  r

It may be shown that many sets of ar' parameters will
satisfy the relations Equations (32) to (3a).

Thus, we are in the peculiar situation of having a
Fourier Series based on a particular set of ory a2, . . .
oti parameters and providing a perfectly good
representation of excess Gibbs energy everywhere ex-
cept inside the miscibility gap, due to those a,
parameters not being single-valued and being in fact
erroneous by an undertermined amount.

Considering now the asymmetric Gt* curve as a
whole, it is interesting to have an estimate of what
part is due to excess enthalpy and what part to excess
entropy. The enthalpy H?*, may be estimated from
calorimetric data at 50'C of Waldbaum and Robie
(1971), or from the two-phase data ofBachinski and

Yiiller (1971). Whatever set of these data is chosen,
H?* obviously appears to be much greater than G?*
(the maximum value of Hl' is about 2 times as great
as that of Gi'), but less asymmetric. So, it is necessary
to assume relatively larqe and very asymmetric excess
positive entropy, with S?* being much larger on the
Or side than on the Ab side. This assumption agrees
well with the values of 2.17 cal K-r mol-r for l/s,6"
and 6.48 cal K-t mol-' for Ws,o6that were calculated
by Bachinski and Miiller from their polythermal two-
phase study. The origin of such an excess positive
asymmetric entropy may be attributed to multiple
causes. Following Thompson and Waldbaum (1969a)
and Waldbaum and Robie (1971), excess vibrational
entropy may be put forward, but according to Green
(1970) that is not sufficient, and configurational ex-
cgss entropy must be the principal cause, which re-
quires the incorporation of vacancies and other
defects in the crystal. With Green's hypothesis and
Sl* being greater at the Or-side, it would mean that
more vacancies are to be created in a K-rich feldspar
than in an Na-rich one, which would be somewhat
surprising, the opposite situation being more likely.

Conclusions

The main result of this studv is that the excess
Gibbs energy d?' of any binary solution, even with a
miscibility gap, can be derived from appropriate ion-
exchange experiments. In the present case ofhighly-
ordered feldspars, the use of fused salts instead of
hydrothermal salt solutions is the only method possi-
ble. The lack of data concerning the excess mixing
properties of fused salt systems is not a major in-
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0  
J  

a n d  N o " . r r  (  N o .  < 1 ( 3 2 )

0
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convenience, since these quantit ies are relatively low-
valued with respect to those of minerals of interest.
Nevertheless, more data in a greater range of
temperature and pressure would be very valuable and
would permit further extension of this work.

The excess Gibbs energy of low albite-microcline
feldspars is positive and not very different from that
for high albite-sanidine feldspars, but more asym-
metric. The major contribution to the positive value
is enthalpic, whereas entropy appears to be responsi-
ble for the asymmetry. Crystallographic investigation
of Na-K mixing seems necessary to fully understand
these results.

Finally, studies on glasses of feldspar composition
seem most desirable. From results of Chenebaux
(1960) on natural mineral glasses and Garfinkel
(1968) on sil icate industrial glasses (see Waldbaum
and Thompson, 1969, for results on feldspar glasses),
a negative excess Gibbs energy is to be expected.

Appendix

A. Calculation of GlNs,,,,) - Gr(No,.,)

Using the expanded formulation for G1(N6") as
given by Equation 2, we obtain for the above
difference:

Gr (No , , r r )  -  G r (No . , r )

(No. , r ,  -  No. , rXG3. -  Gio)

+  R f [No" , r r  l n  No" , r r  +  (1  -  No . , r r )

. l n  ( l  -  No " , t t )  -  No , , ,  l n  Ne" ,1

-  (1  -  No" ,1 )  l n  ( l  -  No . , r ) l

f  Gi - (No, , r r )  -  Gi- (No, , , )  (A- t )

The bracketed quanti ty may be made simpler by
considering the relat ion J ln N d N : Nln N-l/ ;  we
have

[ N o , , r r  l n  N 6 " , 1 q  -  N o , , ,  l n  N 6 " , 1  +  ( 1  -  N o " , r r )

. ln  (1  -  No. , t t )  -  ( l  -  N6. ,1 )  ln  ( l  -  No._r ) l

:  [ N o , , r r  l n  N o " , r r  -  N o " . r ,  -  N o " , ,

' l n  N 6 " , 1  *  N o . , t ]  +  ( l  -  N o " . , r )

. l n  ( 1  -  N o " , t r )  -  ( 1  -  N o " , r r )  -  ( 1  -  N o . . r )

. ln  ( l  -  No" , ' )  *  (1  -  No" . r ) l

:  f "o" ' "r ' lVo  . .  r

B. Why is the slope of the Z curue in Figure 5 discon-
tinuous at the binodal compositions?

To consider why the slope of the Z curve in Figure
5 is discontinuous at the binodal compositions, we
differentiate Equation (17) to obtain

As a particular case and in order to simplify things,
we can assume the molten binary salt to be ideal that
is: g = 0 and dgldNor : 0 in the whole range of com-
positions. Then Eq. B-l reduces to:

d'Gi* dz
dN3. 

-  
dNo"

So, a discontinuity of the first derivative of Z is to be
related to a discontinuity of the second derivative of
G?*.

Let us consider now Gl, the total Gibbs energy as
plotted in Figure lb of Thompson and Waldbaum
(1968). Occurrence of unmixing is normally ex-
pressed by the undetermined sinuous central portion
of the curve between a and b.In our treatment, as ex-
pressed by Equation (23), where Ns1,1 and Ns,,1y
stand for the abscissa of a and b and Mxs,.t-11 for the
abscissa of f, we replace this undetermined sinuous
portion by the linear segment ab, which leads us to
assume

d'G;- dz , ds:
d N i l : d N * * d N ;

ffii : ",", and so:

* * : ,

(B- l )

(B-2)

(B-3)

(B-4)

ln N dN * 
1_;",. ," 

ln (t - N)

In fact, (d'GI/dM,) is positive in the one-phase
region and is normally so in the two-phase region
except at the spinodal points, where it cancels out,
and between them, where it is negative. So, our treat-
ment makes the value of (d2GI/dM.) vanish
suddenly when passing through the binodal points.

Now. the relation

a'Gi _.  nr  ,  d 'Gi"
dNl;: ll*N*- + d1,,i ' 

(B-5)

in which RT/(No,N^b) is a continuous function of
No", shows that a discontinuity of the second
derivative of Gl should result from a discontinuity of
the second derivative of d?..

If so, according to Equation (B-2), the slope of Z
must be discontinuous at the binodal points.
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