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The use of mineral solid solutions to measure chemical potential gradients in rocks
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Abstract

An algebraic method of paragenetic analysis is presented that may be applied to mineral
assemblages containing any number of mineral solid-solutions and components. The method
may be used to deduce the qualitative properties of chemical potential gradients in rocks and
to obtain numerical estimates of the magnitude of the gradients. The method consists of
solving a system of simultaneous equations that express analytically the relations between P,
T, u, and X, 4 for a given mineral assemblage. The system of equations includes (1) a Gibbs-
Duhem equation for each mineral, (2) mass action equations between the chemical potentials
of the components of the minerals, and (3) equations of the form (du;—du;)= —(Sia —

ST + (Vs —

Via)dP + GyadX,a + -

+ Gyy_1yadX,-1a. Examples are given of

applications of the method to igneous and metamorphic rocks.

Introduction

The direction and magnitude of chemical potential
gradients of chemical components in rocks are of
fundamental importance to petrogenetic studies be-
cause such gradients may exert as strong a control on
mineral parageneses as pressure or temperature.
Chemical potential gradients are especially important
in metasomatic rocks for they are the driving force
behind the diffusive movement of chemical com-
ponents through rocks. Mineral solid solutions are
useful in measuring chemical potential gradients be-
cause they change composition in response to chang-
ing environmental conditions and provide a continu-
ously variable monitor of the magnitude of the
gradients. Basic knowledge of metasomatic processes
can be obtained even when thermodynamic data are
not adequate for numerical calculation of the magni-
tude of the gradients. For example, it may be possible
by mapping the direction of the gradients to distin-
guish regional processes from local effects.

The study of chemical potential gradients also pro-
vides the clues necessary to solve the classic petrolog-
ical mystery of the nature of the magmatic or fluid
phase that may have once been present in rocks but
has been expelled. Verification of the presence or
absence of gradients distinguishes between com-
ponents whose chemical potentials were buffered lo-
cally during petrogenesis and those controlled by the
magma or fluid. The magnitude of the gradients and

their areal distribution measure the degree and scale
of magma or fluid inhomogeneity.

The purpose of this paper is to present an algebraic
method for studying chemical potential gradients in
rocks. The method is applicable to assemblages of
coeval minerals that attained local chemical equilib-
rium during petrogenesis. The method facilitates de-
ducing the qualitative nature of the gradients and can
also be used to obtain quantitative estimates of their
magnitude. Because of its algebraic nature, the
method may be applied to complex natural mineral
assemblages containing any number of components
and phases. The plan of the paper is to begin with
simple examples that can be analyzed both graph-
ically and algebraically and then to proceed to exam-
ples that can be analyzed only algebraically. The
examples discussed all pertain to the petrological
problem described in the second paragraph of the
introduction; however, the method is, in principle,
equally applicable to metasomatic rocks.

Examples

Consider a hypothetical cumulate igneous rock,
consisting of orthopyroxene and olivine, found in a
stratiform ultramafic-gabbroic intrusion. The rock
consists of layers that are defined by different propor-
tions of olivine and orthopyroxene. The Fe/(Fe+Mg)
ratio of the minerals is constant in each layer but
differs from layer to layer. The olivine consistently
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Mg, SiO, Fe,Sio,

FiG. 1. Compositions of coexisting orthopyroxene and olivine
from a hypothetical stratiform ultramafic intrusion. Letters a, b,
and ¢ denote assemblages found in separate cumulate layers (after

Smith, 1971).

has a higher Fe/(Fe+Mg) ratio than coexisting
orthopyroxene as required by equilibrium (Fig. 1).
For the purposes of this discussion it will be assnmed
that all the crystals in the layers crystallized from
magma at the same P and 7. In such a case, Figure |
may be regarded as an isothermal, isobaric ternary
phase diagram depicting phase relations under the
P and T conditions of crystallization.

What may be deduced from these relations con-
cerning the nature of the magma from which the
minerals precipitated? Using graphical analysis, such
as the method of rocking tangent planes or the
“method of equipotential lines” (Korzhinskii, 1959,
p. 80-88), it may be inferred from Figure 1 that
assemblage ¢ crystallized at a higher value of ug;o,
than assemblage a and that assemblage b was inter-
mediate between the two (Fig. 2). The magma from
which ¢ crystallized had a higher value of ksio, than
the magma from which a crystallized. Thus, the
magma must have been more silica-rich during equi-
librium crystallization of ¢ and less so during crystal-
lization of a. It is worth emphasizing that this con-
clusion was reached without recourse to any data
other than the measured mineral compositions and
the intrinsic properties of ternary phase diagrams.

The graphical methods of K orzhinskii (1959) and
others for analyzing binary, ternary, and quaternary
mineral systems afford a powerful basis for drawing
general conclusions about petrogenetic processes.
Graphical methods, however, cannot treat systems
requiring more than four components for representa-

DOUGLAS RUMBLE 111

tion. The aim of the algebraic analysis that follows is
to free the petrologist from a dependence on graph-
ical methods so that more complex mineral systems
can be understood.

Consider again the example of an orthopyrox-
ene-olivine cumulate rock in a stratiform intrusion
(Fig. 1). This example is useful, for the results of the
algebraic analysis can be confirmed graphicaily. A
mathematical expression relating the variation of
ksio, to mineral composition in the two-phase assem-
blage orthopyroxene-olivine is required. Such an ex-
pression is obtained by compiling a list of thermody-
namic relations that together constitute a linear
system of simultaneous equations. The system of
equations may be solved by the methods of matrix
algebra. The list begi.ns with two Gibbs-Duhem equa-
tions (Prigogine and Defay, 1954, p. 71, eq. 6.38), one
for each mineral. (Symbols are defined in Table 1.)

SopxdT = VopxdP + X, opa(dity — dus) + dug = 0 (1)

SoldT - I-/oldP + X4,ol(dﬂ4 — dus) + dus =0 (2)
In these equations the substitutions Xsepx = 1 —
Xoopx and X501 = | —X, ) have been made and terms
rearranged. The components of olivine and or-

thopyroxene are not independent and are related by
the equation

2(du, — dus) — (duy — dps) = 0 (3)

which must be added to the list. The variable du, is
included in the list by adding the equation

d#l - 2d#3 + d,us =0 (4)

Finally, in order to add the variables of mineral com-
position, dX;.px and dX,, the following equations

T LI T T

Quartz

Orthopyroxene
HSio,

Olivine

L 1 ] 1
o] 02 04 06 08 1.0
Fe/(Fe +Mg) atomic proportions

F1G. 2. Variation of Hsio, With orthopyroxene and olivine com-
position in the two-phase assemblage olivine + orthopyroxene.
Letters a, b, and ¢ denote assemblages found in separate cumulate

layers.
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TaABLE 1. Explanation of symbols

P: Pressure (bars).

T: Temperature (°K).

Chemical potential of component % (kcal/mole).

Chemical potential of pure component % (kcal/mole).

EiA: Partial molar entropy of component %7 in phase A (kcal/°K mole).

Partial molar volume of component 7 in phase A (kcal/bar mole).

SA: Molar entropy of phase A (kcal/°K mole).

Vp: Molar volume of phase A (kcal/bar mole).

ps 2
(3G, /3. :
A/ XA p 7 a11 Xip # Xp

Principal curvature of molar Gibbs

free energy of phase A with respect to component % (kcal/mole).

(]
8.
=

11

(kcal/mole).

= [3(3GA/3X40)P, T, all X # X2/ 3% alp, 7, a1 X(j-1)A* Xja

EA: Molar Gibbs free energy of phase A (kcal/mole).

X

Vil Stoichiometric coefficient.

Phase subscripts:

ZA* Mole fraction of component Z in phase A.

opx, orthopyroxene; ol, olivine; Q, quartz; Mt, mag-

netite; Wm, white mica; Ch, chlorite; Ct, chloritoid; St, staurolite;

I, ilmenite.

Component subscripts: 1, Si0

25

2, FeSi03; 3), MgSi03; 4, FeZSioé;

5, Mg,810,; 6, KA1381430,(0H)5; 7, Fe30,; 8, FegAlgSig0yq(0H) g3

9, MggAlgSisOyq(OH) 163 10,
12, FepAl,Sin019(0H),; 13,

16, H,0; 17, Op; 18, Hj.

Fe,AlqgSigQy,gHy; 11, Mg,Al1gSig04gHas

MgoAl,S8is070(OH),; 14, FeTiOg; 15, Fep03;
28445120910 4 3 3

are necessary (J. B. Thompson, Jr., class lectures,
Harvard University, 1965):

~(Sz0px = S5,000)dT + (Va,0px = Vaopx)dP
—(dus — dtg) + (8*Gopx/ @ Xaopx®)p.rdXz0px = 0 (5)
and
=801 — Ss.0)dT + (Vi1 — Vi )dP —

(dis — dus) + (82Gor/ 0 Xe®)prdX i1 = 0 (6)
Equations (5) and (6) are obtained by writing the

formal relation
d(uy — pa) = [0(uz — s)/8T]e,x2,00xdT
+ [0(ns — #s)/ 8 Plr.xa,00xdP + [8(1a — 1s)/
9 X3,0px]p,7dX2,0px @)

and substituting (cf. Rumble, 1974a, p. 202-203)

_(Sz,opx - S's,opx) = [0(u, — #3)/ 8 Tlp x2,0px
(I-/.z.opx - I-/.\l,opx) = [a(ﬂz - Ms)/aP]T.xz,opx
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5 -7 D:( +1 0 0
OpX opx 2,0px
Sol _Vol o 0 X4 ,ol 0
0 0 +2 0 -1 0
0 0 0 -2 0 +1
» v, -1 0 0 0
7,0PX 7 ,0pPX
k_ASi,ol +AV7,',ol 0 0 -1 0
and
267 _
(3 Gopx/a XZ,Opx)P.T = [3 (I-lz - Iia)/a Xz,opx]P.T

(Haase, 1948)

The structure of the system of equations is most
easily seen in matrix notation (equation 8) where

ASi,opx - (Sz,opx - S3,0px)a AI-/i,opx = (I_/z,opx - I-/3,opx)
and

Gzz.opx = (3ZGopx/3X2,opx2)P,T-

The system of equations contains nine unknowns and
six equations giving three degrees of freedom, a value
that is in agreement with the variance computed from
Gibbs phase rule for an assemblage of two phases in a
ternary chemical system. Solutions to the system of
equations are obtained by first setting P and T to
fixed values (dT" = dP = 0) in accord with the condi-
tions of Figures 1 and 2. The resulting system con-
tains seven unknowns and six equations. Then, solu-
tions such as (6u,/8 Xy,0px)p,r are found by dividing
both sides of the matrix equation by one of the un-
knowns (dX,.px) and solving the resulting set of in-
homogeneous equations by Cramer’s rule (Aitken,
1956, p. 55-56).

The inhomogeneous system of equations is given in
equation (9). Thus the relation

(8u1/aX2,opx)P,T = 2G‘M,opx(AXLol - Xz,opx) (10)

describes the variation in ugo, as a function of or-
thopyroxene composition in an orthopyrox-
ene-olivine assemblage at constant P and T. The sign

5

.
X +1 0 0 0 0
2,0px
0 0 X4,01 +1 0 0
+2 0 = 0 0 0
0 ~2 0 +1 +1 0
-1 0 0 0 0 0
L 0 0 ~1 0 0 44,01}

DOUGLAS RUMBLE I11

5\ Fa "
0 0 0 a7
0 0 0 4P (o\
0 [¢] 0 (duz—du3) 0
+1 0 0 du3 0
= (8)
7 E 0
0 22 ,0px (du‘l duS)
0 o Che,01) dug 0
d“1 \0)
dXZ ,OPX
4, o1

of the right-hand side of equation (10) may be de-
duced because the quantity Gy 0px is necessarily posi-
tive for binary solutions stable with respect to diffu-
sion (Prigogine and Defay, 1954, p. 242, eq. 16.20).
Furthermore, measured chemical compositions of the
minerals show that X,, > X,opx; therefore, an in-
crease in the Fe/(Fe + Mg) ratio of an orthopyro-
xene in equilibrium with olivine at constant P and T
measures an increase in the equilibrium value of us;o,
for that assemblage. The result of the algebraic analy-
sis is in complete agreement with that of the graphical
analysis (cf. Fig. 2).

Algebraic analysis also affords the opportunity to
estimate the magnitude of the chemical potential
gradient in ug;o,. If it is assumed that the orthopyrox-
ene is a disordered ideal solid solution at the Pand T
of magmatic crystallization, then

Gopx = Xz.opxﬂoz,opx + Xs,opxﬂoa,opx
+ RT(X2,0pxlnX2,opx + Xa,opxlnXa,opx) (1)

and
(62Gopx/aX2,opx2)P,T = RT/Xz,opst.opx (12)

Equation (10) may then be evaluated by substituting
(12) and either by integrating the resulting expression

5

(duz—duB) /dXZ,opx 0

du3/dX2 ,0pPX 9
(du,-dug)/axy - 0 9
dus/dXZ’opx 0
dul/dXZ,opx --22,opx

4%, 5179%5 opx P,T 0
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as a function of X,y Or by calculating a number of
values of (10) directly and using them to estimate the
average value of (10) over the composition range of
interest. It is to be emphasized that the only addi-
tional value needed to estimate the magnitude of the
gradient is the temperature of magmatic crystalliza-
tion. No thermodynamic data on the solid solutions
are required.

Consider a different example in which the objective
is to deduce the properties of the fluid phase of meta-
morphism from the chemical compositions of miner-
als in metamorphic rocks. The sedimentary beds of a
regionally metamorphosed, hypothetical quartzite
contain differing proportions of the minerals quartz,
muscovite, staurolite, chloritoid, chlorite, ilmenite,
and magnetite. The sedimentary beds are 6 cm thick
and are interlayered with each other in a single out-
crop 10 m across. Over such a small outcrop area
there is not likely to have been any difference in P or
T at a given time during metamorphism. Assume
further that the chemical composition of each min-
eral solid-solution is constant throughout a single bed
but differs from bed to bed (Table 2). Quartz, mus-
covite, and magnetite have the variable composi-
tions SiO,, KAL;Si;0,:(OH), and Fe,0,, respectively.
Staurolite, chloritoid, and chlorite are binary Fe-Mg
solid solutions; ilmenite is a binary Fe-Ti solid solu-
tion. The chemical system requires eight components,
Si0,-Al;04-Fe,05-FeO-MgO-K,0-TiO,~-H,0, for
its complete description; thus, the assemblages of
seven phases are trivariant. Graphical analysis of the
assemblages cannot be carried out rigorously because

#1 0 0 0o o 0 0 0 0 o o o
0+l 0 [ 0 0 0 0 o o0 o
0 0 +1 o 0 0 0 0 0 o 0 0
0 0 0 Xgop 4l 0 0 0 0 o 0o o
0 0 o 0 0 X5 +l 0 0 o o0 o
0 0o o 0o o 0 0 Xy e o 0 o
0o 0 o 0 0 0 0 0 0 g+l 0O
0o 0 o 0 0o 4l 0 -2 0 o o o
00 0 +2 0 0 0 -9 0 0 o0 o
-8 0 0 0 +10 0 +12 0 -69 0 0 +46
-7 0«23 43 43 -1 -1 0 0 0 +23 -23
0 0 + 0o 0 0 0 0 0 0 -6 0
0o 0 o 0o 0 0 0 0 0 0o 0 -1
0 0 o0 1o 0 0 0 0 o o0 o
0 0 0 o o 0 0 0 0 -1 0 o
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there are only three minerals of invariable composi-
tion. Graphically representing the mineral assem-
blages would require projection not only through
quartz, muscovite, and magnetite, but also through
one of the minerals of variable composition (cf.
Greenwood, 1975, p. 1; Rumble, 1974b, p. 375, Fig.
104).

Algebraic analysis of the mineral assemblages can
accomplish analytically what graphical analysis could
achieve only approximately. In order to interpret the
properties of a fluid phase in metamorphism, mathe-
matical relations giving the isothermal, isobaric vari-
ation of pm,, Mo, and uy, as a function of mineral
composition are required. These components are
probable constituents of the fluid phase, and their
chemical potentials are defined by the mineral equi-
libria. The list of simultaneous equations has been
compiled as in the previous example and is given in
equation 13 in matrix notation for the conditions dT
=dP =0.

The first seven equations in the list are Gibbs-
Duhem equations for quartz, muscovite, magnetite,
chlorite, staurolite, chloritoid, and ilmenite (with dT
= dP = 0). The eighth and ninth equations are two
independent conditions of Fe-Mg exchange equilib-
rium between chlorite, staurolite, and chloritoid. The
tenth and eleventh equations introduce duy g, the
twelfth introduces duo., and the thirteenth introduces
duy, into the system of equations. The last two equa-
tions are analogous to equation (5) and introduce the
variables of mineral composition, dX,cn and dX ;.
The choice of the variable dX; ¢y, is arbitrary; dX o

3
0 0 0 0 duy 0 ]
0o o 0 0 dig o |
0 0 0 0 dey 0
0o 0 0 0 (dug-drg) 0
0 o 0 0 dig 0
0 o 0 0 (diyg-dip) 0
0o o 0 o | degy 0
0o o 0 0 (drp2-du13) 0
6 o o 0 diqg - o (13
0o 0 0 ) (diyg-diiys) 0
o o 0 0 duys 0
+1 0 0 0 dv16 0
+1/2 +1 0 0 duyy 0
0 0 Tgg,cn o drig 0
o g ElAlA,IJ d¥g ch 0
J
14,1 7
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TaBLE 2. Composition of minerals in hypothetical assemblages A,

B,C
Mineral Fe/ (FasMe) xE‘e:TLOq. 1
A B C A il c
Staurolite 0.92 0.89 0.88
Chloritoid 0.90 0.88 0.86
Chlorite 0.69 0.59 0.55
Ilmenite 0.98 0.92 0.90

or dX ;¢ could have been chosen equally well. With
dT = dP = 0, there are 16 unknowns and 15 equa-
tions. Solutions can be obtained as in the previous
example by dividing through by one of the un-
knowns, such as dX;cn, and applying Cramer’s rule
to the resulting inhomogeneous system of equations.
The following solutions are pertinent to inter-
pretation of fluid phase properties:

(3#16/3Xa,c1~.)p,T Ges,ch(24X10,st + 45Xs,cn

— 69X 15,0 )/207 (14)

(5#17/3Xs,0h)P,T = 2Gss.Ch(72Xs,Ch + 20X10,sc
— 69X 15ce — 23)/69 (15)
(Opis/ @ Xscner = Gas,cn(46X12,ct 57Xscn —
12X 1060 + 23)/69 (16)

(‘9#17/3X14,1)P,T = _6(-;1414,1Xu.1 (17)

Equation (14) gives the variation of uy,o with chlorite
composition in the assemblages of seven minerals.
The term Gascn is necessarily positive for stable
binary solutions (Prigogine and Defay, 1954, p. 242,
Eq. 16.20), and the coefficient of Ggcn is negative
according to chemical analyses of the minerals (Table
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3). Therefore, algebraic analysis together with chem-
ical analyses shows that an increase in Fe/(Fe + Mg)
ratio of chlorite in the mineral assemblage records a
decrease in pu,0. By similar reasoning it may be seen
that an increase in Fe/(Fe + Mg) ratio of chlorite
measures a decrease in uo, (Eq. 15), a result in agree-
ment with the work of Chinner (1960) and Mueller
(1960). Equation (16) demonstrates that uy, increases
with increasing Fe/(Fe + Mg) ratio of chlorite.
Equation (17) shows that an increase in FeTiO; con-
tent in ferrian ilmenite with magnetite present meas-
ures a decrease in ug, (¢f. Buddington and Lindsley,
1964, p. 316, Fig. 5). The reader may verify for him-
self that addition to the system of equations of a
Gibbs-Duhem equation for a fluid consisting of the
species H,O, H,, O,, CO,, CO, and CH,, together
with appropriate equations of homogeneous equilib-
rium does not change the variance of the system and
leaves equations (14)-(17) unchanged.

Algebraic analysis has succeeded, where graphical
analysis could not, in supplying vital evidence on how
the fluid phase constituents H,0, O,, and H, behaved
during metamorphism of the hypothetical quartzite.
The algebraic method verifies the presence of
gradients in the chemical potentials of the fluid con-
stituents between adjacent sedimentary beds and
gives the gradient direction. These important results
are obtained without recourse to data other than the
measured mineral compositions and the inherent
properties of a stable binary solution. The numerical
magnitude of the gradients may be estimated by
guessing the T of metamorphism, assuming the chlo-
rite minerals are an ideal Fe-Mg binary solution, and
substituting in equations (14)-(16) (Rumble, 1974b,
p. 379, Table 36)

Gss,cn = 9R T/Xa,ChXB,Ch

TaBLE 3. Coefficients of Gy cn in equations (14)-(16)

. L. Average
Equation Coefficient of CSB,Ch Uncertainty*
A B C
@u16/3%g, cn)p, 1 -0.04 -0.06 -0.07 0.008
@417/3%g gu)p 1 -0.49 -0.68 -0.73 0.06
+0.20 +0.28 +0.30 0.02

(BH18/3%g cp)p

*Average uncertainty

and Xrerio,, 1.

based on assigned uncertainty of 0.02 in Fe/(FetMg)
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Summary
A given equilibrium assemblage of minerals can be
described analytically in terms of the intensive pa-
rameters P, T, u;, and X, » by compiling a list of
simultaneous equations that include the following
three types:
l. A Gibbs-Duhem equation for each mineral

SAdT i I-/AdP + X[,A(dﬂ,' - dﬂj) S
+ Xj-ialduyy — duy) +de;, =0

Chemical components of the minerals are most ap-
propriately chosen as the end-member compositions
of the solid solution series. This practice is in accord
with Gibbs’ original definition of ‘‘actual” com-
ponents (Gibbs, reprinted 1961, p. 63-64; ¢f. Thomp-
son, 1959; and Brady, 1975).

2. Equations of mass action expressing the condi-
tions of equilibrium among the chemical potentials of
the components of the minerals

E%V[dﬂi =0

The choice of specific equations is arbitrary as long as
they are all linearly independent and of sufficient
number to eliminate the dependent u;.

3. Equations expressing the relation between the
exchange potentials (u; — u,) of a mineral solid solu-
tion and P, T, and mineral composition.

— (du — duy) = (Sia = SpaXT + (Vs — V,4)dP
+ th,A dXi,A Tt Gt(j—l).AdX(j—l),A =0

One of these equations is required for each independ-
ent exchange potential of a given mineral solid solu-
tion. A binary solution requires one such equation, a
ternary requires two, and so on. Examples of the
application of this method to ternary solutions are
given in Rumble (1973) and Rumble (1974b). The
choice of which variables dX, , to add to the system
of equations is arbitrary, and should be determined
by convenience.

The method of algebraic analysis described in this
paper may be applied to mineral assemblages with
any number of degrees of freedom (Rumble, 1974a).
However, assemblages with variance greater than one
require the imposition of additional constraints, as
dictated by the requirements of the petrologic process
under study, in order to obtain solutions to the sys-
tem of equations. In the examples presented above
trivariant assemblages were investigated under iso-
thermal, isobaric conditions; therefore the con-
straints d7" = dP = 0 were imposed. Assemblages of
still higher variance may be analyzed by imposing
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additional constraints of the type dX;,» = 0. For
example, a quadrivariant assemblage in which a mi-
nor component such as MnO occurs in small but
constant amount in a mineral 4, may be investigated
by adding the constraint dXypo 4 = 0.

The qualitative nature of chemical potential
gradients can be deduced from the results of the
algebraic analysis by considering measured mineral
composition and the intrinsic properties of stable
solid-solutions. At the qualitative level the algebraic
method represents an extension of graphical analysis
to systems requiring more than four components for
representation. Quantitative estimates of the magni-
tudes of the gradients can be obtained simply by
guessing the temperature of equilibration during pet-
rogenesis and assuming that the components of one
of the mineral solid-solutions mix ideally. Still more
accurate measurements of the gradients may be ob-
tained upon acquisition of complete thermodynamic
data on the minerals and verification of the P and T
of petrogenesis.
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