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Abstract

A rigorous derivation of the 32 crystallographic point groups is presented. The derivation is
designed for scientists who wish to gain an appreciation of the group theoretical derivation
but who do not wish to master the large number of specialized topics used in other rigorous
group theoretical derivations.

Introduction

This paper has two objectives. The first is the very
specific goal of giving a complete and rigorous deri-
vation of the 32 crystallographic point groups with
emphasis placed on making this paper as self-con-
tained as possible. The second is the more general
objective of presenting several concepts of modern
mathematics and their applicabil ity to the study of
crystallography. Throughout the paper we have at-
tempted to present as much of the mathematical the-
ory as possible, without resorting to long digressions,
so that the reader with only a modest amount of
mathematical knowledge wil l be able to appreciate
the derivation. Those facts that are used but not
proven in this paper will be clearly identified and
references will be given to sources where the appro-
priate discussions can be found.

Crystal symmetry was studied during the nine-
teenth century largely from a geometrical viewpoint.
A comprehensive outl ine of the more important con-
tributions to this subject by such men as Hessel,
Bravais, Miibius, Gadolin, Curie, Federov, Min-
nigerode, Schoenflies, and Miers is presented by
Swartz (1909). It appears that Minnigerode (1884),
Schoenflies (1891), and Weber (1896) were the first to
recast the problem of classifying crystal symmetry in
terms of group theory. Recent treatments make ex-
tensive use of specialized topics in group theory in the
derivation of the crystallographic point groups (see
for example Seitz, 1934; Zachariasen, 1945; Burck-
hardt, 1947; Zassenhaus, 1949; Lomont, 1959; Weyl,
1952;  McWeeny,  1963;  Al tmann,  1963;  Yale,  1968;
Benson and Grove, l97l; Janssen, 1973; Coxeter,
1973;and Senechal, 1976). In addition, severalwork-
ers (for example, Donnay, 1942, 1967; Buerger, 1963)

have appealed to a number of interesting algorithms

based on various geometric and heuristic arguments

to obtain the 32 crystallographic point groups. In this
paper we present a rigorous derivation of the 32

crystallographic point groups that uses only the most

elementary notions of group theory while sti l l  taking

advantage of the power of the theory of groups.

The derivation given here was inspired by the dis-

cussions g iven in Kle in (1884),  Weber (1896),  Zas-

senhaus (1949), and Weyl (1952). The mathematical
approach used in their discussions is a blend of group

theory and the theory of the equivalence relation'
Each of these mathematical concepts is described
herein and is used in the ways suggested by these

authors. However we depart from their approach in

the determination of the interaxial angles. While they

appeal to a study of Platonic solids, we continue with

the theory of groups and equivalence relations in our

determination of these angles.
In the first part of the paper we discuss the defini-

t ion and properties of point isometries and show that
every point isometry is either a proper or an improper

rotation. If a rotation leaves a lattice invariant, then

it is shown that its turn angle must be one of the eight
fo l lowing possib i l i t ies:0o,  +60o,  +90o,  +120o,  180o.
The method for composing two point isometries is

discussed. The properties discovered about this conr-
position motivate the definit ion of an abstract group,

which is then stated. We then show that the set of all
point isometries that leaves a given lattice invariant
forms a finite group. These are the crystallographic
point groups. In the second part, the proper crystal-
lographic groups are discussed. The cyclic monaxial

crystallographic groups are treated first. Then the

notion of an equivalence relation and equivalence
classes are presented in conjunction with a group
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Ftc l. Right-handed cartesian coordinate system with unit
vectors ryr{ directed along the coordinate axes X, Y, and Z, respec-
tively, with the vector r expressed as a linear combination of i, j
and k

theoretical development of the basic ideas leading
to the der ivat ion of  a l l  the proper polyaxia l
crystallographic groups together with their interaxial
angles. In the final part of the paper, the improper
crystallographic groups are constructed from the
proper crysta l lographic groups.

Discussion of basic concepts

Three dimensional space

Our discussion of the 32 crystallographic point
groups wil l be conducted within the framework of
real three-dimensional space, R3, where R designates
the set of all real numbers. The elements of RB can be
described geometrically by placing three unit vectors,
i,1 and k along three mutually perpendicular axes X,
Y, and Z which form a right-handed cartesian coordi-
nate system as in Figure 1. Accordingly, the vectors
i j,k form a basis for R' such that Rs may be viewed as
ii in-pty the collection of all l inear combinations of the
form r : Jri + yj + zk where x, y, z are elements ol
the sef R lsfrrbolized i,y,, e R). Note that x, y. and z
are the X,Y and Z components of r. Stated more
concisely, n' = {4t yj.+ t&lx,y,z e R} which is read
"R3 is the set of all vect6rs x1+ yj f zk such that x,y,z
are elements of the set n." ti is-impoiiunt to observe
that each vector in R3 may be expressed in one and
only one way as a l inear combination of {i,7',&}. We
call the vector O : 0i + 0i + 0k the orisin"df'R'and
also use o to dJnotittre p'oint?t the oJgin. In gen-
eral, unless otherwise stated, we wil l not distinguish
between a vector and its end-point. lf r: xi -l yj.-f
z_( is some element of R3, then its magnitude or leng-th,
l lf l l  , i t defined to be
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Point isomefiies
ln our study of point groups we are interested in a

special kind of transformation known as a point
isometry. The mapping O from R3 onto RB is a point
isometry if and only if it satisfies the following four
properties:

(l) Given any element4e R3, its image O($ is a
uniquely determined element of R3. (This
means that O is a mapping from Ra to R3.)*

(2) Given any element4€ R3, there exists an ele-
ment ,r E R3 such that O(q) : r,. (This means
that O is a mapping from R3 onto R3.)

(3) The magnitude of r is equal to the magni-
tude of the image of r under O for all4€ R3,
i.r., l lt l l : l lotdll. (This means that o pre-
serves magnitudes and hence angles, sizes, and
shapes. )

(4) Given any two elements4 s g R3, O(r *-r) :
O(9,) + O(s) and given any real number x,
o(x4) : xO(4). In particular,if4= x!.+ yi-+
z\,then o(d : x<D(i) +.yo(4) + zo(k). (This
means that O is a linear tranformation and that
O(4) is completely determined by O(r), O(7')
and o(&).)

A consequence of these properties is that ib is a one-
to-one mapping. That is, if r andj are in Rs such that

414, then a(L) f o(s). Equivalently, if o(4) : o({)
for somer,se R3, then4 must equal s. A consequence of
property (4) is that o(q,) : o(04 + E' + 04) : 0og)
+ 0O ("1) + 0O (Q : 

9.. Hence the origin O of R3 is
f ixed under Q, i .e. ,  O(g) :  9.( fne word "point" in
point isometry and point group alludes to the prop-
erty that some point, in this case the origin, is left
fixed-that is, unchanged in position-by o.)

If €D and O are two point isometries, then we say
that they are equal-that is O : O-if O(r) : O(r)
for all4 € R'. Hence in view of (4), tio poin't
isometries €) and O are equal if and only if O(r) :
o( i ) ,  o0r) :  o(/)  and o(f t)  :  o(&).A tr iv ialaut
imp'ortan? exampG of a poinl isometiy is the identity
mapping 1 on R3 defined bV I(D: r for all r 6 Rs. In
the case of the identity mapping, magnitudes are
preserved since under / each vector in Rs is mapped
onto itself. Another example of a point isometry is a
rotation. For our purposes a rotation will mean a
turning ofspace about a line, called the rotation axis,
that goes through Q and has a positive direction

z

*  fn general ,  amapping a of  a setA into a set  B is  arulewhich
assigns to each element in A a unique element in B. In this paper, R3
plays the role of both A and B, that is, the mapping we will be using
wi l l  map R3 into R3.
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defined on it. Let P denote such a rotation and let I
denote its rotation axis. Then a turn angle p of P is
an angle measuring the action of P on a plane
perpendicular to /. The turn angle is considered to be
positive if the action of the rotation is measured in a
counterclockwise direction on the plane when viewed
from the positive direction defined on / (see Fig.2a).
It may be noted that the turn angle of P is not
uniquely determined. In fact if p is a turn angle for P,
then so is p + k(360o) where k is any integer. Hence,
any specific value for p is merely a representative
of the turn angle of P. For example, the rotations
about the l ine I with turn angles 240o and -120o,

respectively, are really the same rotation P with two
different turn-angle representations. The identity can
be viewed as a rotation whose turn angle is zero (or a
multiple of 360') and whose rotation axis may be
considered non-existent or chosen arbitrari ly, which-
ever is more convenient to the situation at hand. It
should be stressed again that all of the rotations
considered in this paper have axes that pass through
o.- 

If *. are given any two point isometries O and O,
we may define a new mapping called the composition
(or product) of @ and O denoted by @tD and defined
by OoQ :  O(O({) )  for  a l l4e R3.  I t  can be shown
that @O is a poirit isometry. Likewise, it can be
shown that the composition of point isometries is
associatiue, i.e., O(IDV) : (OO)V for all point
isometries O. @ and rlr. It can also be showR that
corresponding to each poini isometry O there exists a

OF THE 32 POINT GROUPS

unique point isometry O such that OO : O€D : /.
In this case O is called the inuerse o/O and is denoted
by O :  @- ' .  By unique we mean that  i f  @O :  O€D
: 1 and ov = vo : /, then o : rlr. The existence
of inverses implies the cancellation law which states
that if A, B and Q are any three point isometries such
that AB : Afl, then B : Q. If P' and P, are rotations
about the same rotation axis I with turn angles p' and
pr, respectively, then the composition PzP' is simply
the rotation about I with a turn angle of p1 * p2. ln
particular, if pr: -pr, Ihen PrPr has a turn angle of
zero and so PzPr :  I  ( i .e . ,  Pr :  Pr- t ) .Hence,  by the
uniqueness of an inverse, the inverse of a rotation is a
rotation. It can be shown that the composition of any
two rotations (possibly with distinct rotation axes) is
again a rotation (see Seitz, 1935). Since this last result
is intuit ively obvious and because the proof does not
contribute to an understanding of the subject under
consideration, it wil l not be given here.

Proper and improper rotations.

In this section we wil l show that every point isome-
try is either a rotation or a rotoinuersion, this latter
being the composition of a rotation with a special
isometry called the inversion, as defined below. Let O
denote a point isometry. We recall from property (4)
of a point isometry that the image of every vector
under O is completely determined by tD(i), O(7-) and
o(k), the images of the basis vectors u-irder 6. In
Figire 3(a) we have depicted the images of i, j-and k
under O. Since O is a point isometry and so

147

g=  P (d=  ( cosp ,s inp ,O)

'-=,,,o,o 
i b.
X

Ftc. 2. (a) Diagram showing how the turn angle p of the rotation isometry P is measured with
respect to the rotation axis{; (b) a drawing of the bases vectors {/J} of f' viewed down the rotation axis
of P where f is the set of all vectors in I perpendicular to the aiii df P. It is assumed without loss ofgen-
eral i ty  that  the uni t  length along the X axis is  l l r l l .  The vectorr  is  the imageofr  under P.  Accord-
ingly, s lies in the XY plane, making an angle of p with respect to X. Because PG) = P(P(r)) : P'(1) and

because P' defines a rotation of 2p about Z, P(s) must lie in the XY plane, maling an aigle of 2i with
r e s p e c t t o t h e p o s i t i v e X a x i s . s i n c e P l e a v e s f - i n v a r i a n t , P ( 0 € f a n d s o P ( s ) f f ' . S i n c e r a n d s a r e
bases vectors for I' and since P(s) 6 f ', Pf-d : u1 + us. for some integers u and u.

o.

s in2p  P (g )= (cos2p ,s in2p ,O)__/.,,1"""",
,/>" i I .,
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z z axis is the X axis, leaves VtO(g), which is equal to i
| | unmoved. Hence V,Vt(O(r)) :-i andVzV,(O(i )) :7

j'l:, i:fnri:":l,x ;:ufi dinx*i fF]ril;
convenience we wil l label V. From above, it there-
fore follows that uroQ) : i and vo(4) : j. Two
cases are possible for the image of tD(ft) under V,
namely Vo(4) : 4 o. wo(q) : -4 (re" Fig. 3c).

z z We first consider the case where VO(ft) : k. Because
;  . roq) :  l :  / (Q, vo(4 : i :  I (D'^naVo(t) :

.r.9,f (!) i,,-.,:,,,*rzt$(l] 4: il4l. ie s..ihut i.J:'u"d(havithe same images
i' 

- 
'.':-..ffi.i. * 

inO.rVo as they Oi ilnOeill Hence we conchide
: J  - Y that  VO :  1.  Accordingly ,  O is  the inverse of  a

rotation; this, as previously noted, implies that O is a

Space lattices

A crystallographic point group consists of a set of
point isometries that leave a given space lattice invari-
ant. A subset I of R3 is a space lattice if and only if
there exist three non-coplanar vectors 1r, 1, and t,
such that

f = {a]:r + u!: + wt,"l u, u, w e 7l

where Z denotes the in tegers ( i .e . ,  Z:  t "  '  ,  -2 ,  -1,

0 ,1 ,2 ,  " . ) ) .  No t i ce  t ha t  i n  t he  de f i n i t i on  o f  I  on l y
integers are allowed as coefficients of /r, t2, zr:,d l.s,
whereas in the definit ion of Ra anv realnrimber cdn

f=V,6flf 
'  '  

?,StI f V,-f t1 " ""\ 'V F(k) rolallon' rnls, as prevlously noleo' lmplles tnat q' ls a
. i  ' t ' '+  ' r -  'L  

^ . -  
' '  *  rotat ion.  Next  we consider  the case whereVO(k)  :

(3b) 
-L UV periormrng a hall-turn 2 (a rotatron wrth a
turn angle of 180' ) about the Z axis, we have 2VA(i )

z  z  :  - i , 2vo (  i l :  - i  and2va (k ) :  - k -  Hence ,  t he
| | isomltry 2v-E map11. to -r for-all r in' R'. we call

k  
t D v r r r v L r J  . r  Y  r r r q l J r  t  r v  

3 t " .  
- t t 3 r , .

vzvrE(I)=! I
+ + this mapping the inuersior denoted 6y i (i.e., i(l :

[,,,*,,,=, 1,,,,.r,ir_i 1;r::t"iif:''o):"fr:"J ffiil':"i i,.,[';;'6l:
,pzY+*t!=t y JEW{(l)=t y (2q/) 'i is ile composition of the rotation (2v)-'

{ , , - ,  . , . " . r , { .  |  -  and the invers ion,  l ' .  A point  isometry formed by theI  a l r u  f r l v  r r r v v r J r v l l r  r .  ^  P v l r r !  l J v l l r w r r J  u J  r l l w

...,.Y2Yt9\))=I YzYr9tJJ=t t%V,f t9= -g composition of a rotation and the inversion is called a
X -  X t  - ^ 1 ^ : , - . . ^ - ^ ; ^ . -  u / ^  L ^ . , ^ : , , ^ +  ^ L ^ , , , -  + L ^ +  ^ . , ^ - . ,  . . ^ : - lrotoinuersion We have just shown that every point

( 3c ) isometry is either a rotation or a rotoinversion. Since

RTGHT-HANDED LEFT-HANDED a roto invers ion maps a r ight-handed coordinate sys-

{ f (!, f (!, f (1t } { f (.1_), f (!, d( p I tem into a left-handed one (and vice versa), it is often
- 

referred to as an improper rotation. On the other
FIc 3'Grvenapointisometryo,either!o,Q'o,Q'.o.(4))rorms hand, because rotations do not change the hand of

a r ighrhanded coordinate system (depicteO in tht j  left  column) .;  .  
- '

or a left-handed one (depicted in the right column). t"l ,rr"-.',nJ the system_._they are sometimes referred to as proper

original posrt ions of oO, o(t),  and o6l.tUl shows the result rotat ions. We have also shown that, i f  O is an im-
of applying V", to o(; ioQ, ana 6g,j  fne rotat ion r lr ,  was proper rotat ion, then there exists a proper rotat ion

1 . : ' . " 1 . , " , i i p 3 ( 4 t o i , w h e r e u p o n o Q . a n d o ( k ) m a p i n t o r h e  P s u c h t h a t O : P i . S i n c e P ( t ) : P (  . { ) : P ( ( - l E ) :z l l ( s t i p p l e d ) p l a n e ; s u c h a r o t a r i o n c a n b e c o n s t i u " " l g r , , l l ' , 1 !  - p ( r ) f o r a l l 4 e  R 3 a n d s i n c i i p l 4 ) j j ( p g ) ) : - l t r las the rotat ion axis the l ine through the origin perpendicular 
" 

- ' - ; ,  -  
_

to  a  p lane de termined by  i  andor4 .  rn "  r " i .  
" "g ,JJq" , ' l ,  

fo r .a l l l . . :  R3,  we see tha t  Pd:  tP  and so  i  com-

simply the angle between r ' i ioo14. @; rho,ror the resulr of apply- mutes with every proper rotat ion.
rng q/, to rf,Of4,U.,O(i), and Ur,<D(k). The rotation Vr, was
chosen to mapUnr<DQ toi. Note thatqr, is constructed in the same
way as wasUr,  in (3b).  Sincei ' is  perpendicular  to a p lane con-
tainingllf,rD[) andi the rotation axis of Vz can always be chosen
to be the X axis. Htince Vr%<D(i) : ,.

preserves magnitudes and angles, {O(i),O(7'),rD(k)}
also forms a set of three vectors of unit-lengih wtrGtr
are mutually perpendicular. We wil l analyze O (Fig.
3a) by considering two consecutive rotations V, fol-
lowed by \r, such that V, maps @(i) to i-
whereupon qr,(O(/)) and V,(rD(k)j must-l ie in ihe
YZ plane (Fig. 3b)l-and W, is thelotation about the
X axis that maps rlrl(O(/_)) to jr. and, since its rotation
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points) in space consisting of the end-points of vec-
tors in I radiating from the origin, O. As stated
before, we wil l not distinguish between a vector and
i ts  corresponding la t t ice point .

Lattice inuariant isometries

lf tD is a point isometry, then we say that I is
invariant under rD in case f : O(I) where we define
O(I)  :  {o( t )  |  {  e  I } ;  that  is ,  o( l )  is  the set  of  a l l
rD(l) such that r is an element of f . This is not to say
thaTt : @(l) for all r e I but merely that I and rD(l)
are eQual sets ofveclors. In other words thevectors in

conclusion is true for any l inear transformation).
We will now show that there is only a finite number

of distinct point isometries that leave a given lattice I
invariant. Consider a sphere S centered at O with a
large enough radius so that S contains all three of the
basis vectors tl, *, and tt of I and let tD be an element
of the set K of all point isometries that leave the lattice
I invariant. Sinci O does not stretch vectors (magni-
tudes are preserved), O(tl), O(tr) and O(tr) must be
vectors in I that are cdntaineb within ihe sphere.
Moreover, since the radius of the sphere is f inite, we
may assume that there is only a finite number of
lattice points of I in the sphere (a rigorous proof of
this intuit ively obvious fact is given in a paper on the
derivation of the 14 Bravais lattices being prepared
by Boisen and Gibbs). Consequently, there are only a
finite number of choices for O(tr), O(tr), and O(t3),
i.e., there are only a finite numb-er of pissibil i t iesTor
the images of the vectors t1, t2, and t, under @. Since,
as previously observed, 6 is comp-letely determined
by {tD(1,), O(tr), O(ts)}, we conclude that there is
only a frnite ndmber df distinct point isometries in K
(i.e., thal leave I invariant).

Now we consider the algebraic properties of the set
of all point isometries K that leave a lattice I
invariant. The followins facts are observed about K:

( l )  Closure: I f  O,O 6 K, then OO e K. (This can
be seen by observing that o@(I) :  O(O(I))
:  o( r )  :  I . )

(2) Associatiue law: If O,O,V 6 K, then O(OV)
: (OO)V. (This was observed earlier.)

(3) Existence of an identity element: There exists'an
element l  €  K such that l€)  :  €D1 :  O fora l l

O € K. (The identity mapping discussed earlier
has this property and is in K because /(I) : I
( in fact, I(t) : I for all t € I) ) I

(4) Existence iJ anlnuerse fdr each element' Given
an element @ g K, there exists an element O-'

€ K such that  <DO t  :  O 10 :  1 .  (We have

observed earlier that the point isometry @-1
exists .  Fur thermore,  O- '  €  K s ince @- ' ( f  )  :

o-1(o( r ) )  =  o - 'o ( r ) :  1 ( r )  :  f . )

Any set of elements together with a composition
obeying the four axioms listed above is an algebraic
system called a group. Hence K is a group, and since it
has only a finite number of elements, it is said to be a

finite group. The number of elements N in K is called
the order of K and is designated by N : l(K). The
observation that K is a finite group is important be-

cause in general if H is a finite non-empty subset of a
group G, then H is itself a group (under the
composition of G) if and only if i t satisfies the closure
axiom (Herstein, 1964). When a subset H of G is a
group under the operation of G , we call H a subgroup
of G. Hence, a nonempty subset H of the finite group

G is a subgroup of G if and only if h'h, e H for all
hr,h, € H. Consequently, if T is any nonempty set of
point isometries that leave the lattice I invariant,
then, since T is a subset of the finite group K, we need
only show closure to demonstrate that T is a group.
To distinguish these groups from groups of point

i s o m e t r i e s  i n  g e n e r a l ,  w e  c a l l  s u c h  g r o u p s

crystallographic point groups if a space lattice is left
invariant under every element of the group. (Note

that the crystallographic point groups are special
because, in general, given a point group G there may
not exist such a lattice). Moreover, if all of the ele-
ments of the group are proper rotations we call i t a
proper crystallographic point group. An improper
crystallographic point group is one that contains at
least  one improper rotat ion.

Possible turn angles for lattice
inuariant isometries

Let P denote a rotation that leaves a lattice I
invariant. For convenience, we wil l choose as its turn
angle representative an angle p such that - 180' ( p
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< 180o.  I t  is  proven in a number of  p laces that  s ince P
leaves I invariant, the only possible turn angle repre-
sentat ives of  p must  be one of  the angles 0o,  +60o,
+ 90o, + I 20o, I 80o (see for a matrix argument, Seitz,
1935;  Burckhardt ,  1947; '  Lomont ,  1959;  and Janssen,
1913; and see, for a geometric argument, Hilton,
1903;  Robertson,  1953;  Buerger ,  1963;  and Bloss,
l97l). We wil l present a nbw and different proof o[
this fundamental property of a rotation that leaves a
lattice invariant. First we observe that in the case of
any such non-identity rotation, P, there must exist a
two-dimensional sublattice I ' of I in the plane per-
pendicular to the rotation axis of P (cf Seitz, 1935;
Zachariasen, 1945; and Boisen and Gibbs, in prepa-
rat ion) .  Boisen and Gibbs show that  i f  r  is  a shor test
nonzero vector in I '  and if .s. is a shoitest nonzero
vector  in  I '  noncol l inear  wi th r .  then the set  { / ,J}
serves as basis generating f ' , that is 7' : Ptr -l us I
u,n € Zl (the fact that such vectors r and s exiit is also
shown by Boisen and Gibbs). Let ibe a Jhortest non-
zero vector in l ' . Without loss of generality, we may
place the X axis of our cartesian coordinate system
along r and the Z axis along the rotation axis of P
since it is perpendicular to f ' . This situation is shown
in Figure 2b. If we define the unit length along the X
ax i s  t o  be  l l r l l ,  t hen4 :  (1 ,0 ,0 ) .  Le t  s  be  the  image
of  { ,  under P] that  is  P(r )  :  s .  Hence,  Fe I ' ,  and l l r l l
:  l l r l l  I f  the turn-angl i  o f  F i r  0 '  o . l80o,  then p- is
one-of the possible turn angle representatives enu-
merated above and we would be done. On the other
hand,  i f  p  is  not  equal  to  0o or  180o,  thenrand-s are
not coll inear and s, being the same length as r. is
clearly a shortest nin-rero vector in f '  non-coll i iear
with r. Hence, r and s constitute a basis for I '  and
each v'ector / 6 l '  must be an integral combination of

4and s,  t . " .11:  u1+ u4where r . r1nd u are in tegers.

Taslr 1. Symbols and Names for Rotations
Associated with the Eight Possible Turn Angles

Symbol for rotation
associated with

Turn angle p turn angle Name of rotation

AND G. V. GIBBS

Then, as demonstrated in Figure 2b,{: (cosp,sinp,0)

and P(s) : (cos2p,sin2p,0). Since P(s)6 I ', i t must be

an intelral combination of l{,E|, i.ei, P1s; : u7+ ug
where u and u are integers. Therefore. '-

( c o s 2 p ,  s i n  2 p , 0 )  :  u ( 1 , 0 , 0 )  +  u ( c o s  p ,  s i n  p , 0 )

: ( u * u c o s p , u s i n p , 0 )

from which it follows that sin2p : usinp. Replacing
sin2p by 2sinpcosp, we see that 2sinpcosp : usinp.
Sincep I 0 and p + l80,sirip I 0and so cosp : u/2.
Because cosp is a function bounded by t I and D is an
integer, the only possible solutions are cosp : 0,
+ l /2,  +1.  Hence p is  one of  the fo l lowing e ight
possib le turn angles:  0,  +60o,  +90o,  +120o,  180".
Recall that a positive p angle is measured in a
counterclockwise direction. The symbol and name
corresponding to the rotations associated with each
of  the e ight  turn angles are g iven in Table l .

The symbols l isted in the table describe only the
turn angles of  corresponding rotat ions but  lack
information about the orientation of the rotation
axis. Hence, when specifying a non-identity rotation
using this symbolism, a description of the orientation
of the rotation axis is required. When discussing a
point group that leaves a particular lattice I in-
variant, it is customary to choose a conventional unit
cef l (Table 2.2.2, International Tables, vol. I) outl ined
by the cell edge vectors {a,b,cl (note that {a,b,c.} is not
always chosen to be a primitiue triplet: tha*tlsla, !, 91
is sometimes not a basis for f ). The conveniional
choice of q, b, and c (Table 2.3.1, International Ta-
bles, vol. t l  t i .nr ouito be such that if / is the axis of
a rotation that leaves I invariant, then there exists a
vector r = ua * ub * wc along I such thatu, u, andw
are inGgers'1 see2acholriasen, 1945; Buerger, 1963).
Since the components u,u,w, of r completely define
the orientation of the rotation axis with respect to

la,b,cl, luuwl wil l be used as a left superscript on the
rdiit ion symbolto specify the orientation of the rota-
tion axis. Hence, [u"] n where n : 2, 3, 4, or 6
symbofizes a l/n turn about the line ua + u! + wg.
Thus. t /m1 2 symbol izes a hal f - turn para l ie l  to  a, l0 t0 l4
s;nibolizes a quarter-turn parallel to b whereas
lltt l j-t symbolizes a negative third-turn farallel to
-a-b*c.  The one exceot ion to our  ru le is  when

tn i  i t i i ion ax is  para l le ls  -c  in  that  case no or i -
entation symbol is attached to the rotation sym-
bol, hence 4-t denotes a negative quarter-turn about
c. We wil l always place the Z axis of our cartesian
Zoordinate system along c. For groups requiring ori-
entation svmbols. a and b wil l be chosen so that they
ur" p"rp"ndiculaiio c,ind X wil l be chosen to l i!

180 '
1200
90"
600

0
-60"
- 900

-120"

2
3
4
6

I
6-r
4-r
3-r

half-turn
third-turn
quarter-turn
sixth-turn

identity
negative sixth-turn
negative quarter-turn
negative third-turn
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along c. (The fact that a. and b can be placed
perpend-icular to c is not ob-vious /nO ir explored by
Seitz, 1935, and B'oisen and Gibbs, in preparation.)

As observed earlier, if O denotes a rotoinversion,
then @ : Pd flor some proper rotation P. We will
assign as the turn angle of O the turn angle of P and
as the rotation axis of O the rotation axis of P. Hence
the orientation symbol for O is the orientation sym-
bo l  f o r  P .  The  names  and  symbo ls  f o r  t he
rotoinversions corresponding to the eight possible
turn angles are given in Table 2. Note that 2i : 2 can
also be visualized as a reflection denoted by rn, where
m refers to the mirror plane about which the reflec-
tion occurs. The orientation symbol given to rz is
inherited from the half-turn perpendicular to the mir-
ror plane. For example,U0ol^ denotes a reflection
whose mirror plane is perpendicular to q while ra
de notes a ref lect ion whose mir ror  p lane is
perpendicular to c.

Proper crystallographic point groups

Ifl G is a finite group consisting of rotations of the
type listed in Table 1, then G may be shown to leave
some lattice I invariant (Boisen and Gibbs, in prepa-
ration). Consequently, the search for proper crystal-
lographic point groups is equivalent to the search for
those finite groups consisting of rotations of the type
listed in Table l. When all of the rotations of G have
the same rotation axis, we call G a proper monaxial
group. When G has two or more rotations with dis-
tinct axes, then we call G a proper polyaxial group.

Proper monaxial groups

It is evident that each of the following collections of
crysta l lographic rotat ions l l l ,  12, I l ,  13,3- '  JL 14,2,4- ' ,
1) ,  and { i6 ,3,2,3- ' ,6- ' ,1)  forms a proper monaxia l
group where all of the rotations in each collection
take place about the same axis. (Recall we need only
demonstrate closure to conclude that each is a group.
For example, for {3,3-',1} we observe that each of
c o m p o s i t i o n s S S :  3 - 1 , 3 3 - t :  l , 3 I  =  3 , 3 - ' 3 :  I ,
3 - ' 3 - '  :  3 , 3 - ' I  :  3 - "  l j :  3 , / , 3 , '  : 3 - ' a n d  I I  :

1 is in {3, 3-', l} and so we have demonstrated closure
for {3, 3-', II.) The list of monaxial groups given
above exhausts those that can be made from the ro-
tations presented in Table 1. This can be quickly
checked by considering each of the remaining col-
lections and showing that no other such group is
possible (e.g., \1,2,31 is not closed because 23 : 6-'
e U,2,31). Since 16,3,2,3 

-',6 - ', I | : l$,62,63,6u,6u,6"1,
we call |16,3,2,3-t,6-r,1) a cyclic group generated by
6. In group theoretic notation we write (6t : 16,6',

Tnsr,n 2. Names and Symbols for the Rotoinversions
Associated with the Eight Turn Angles

Symbol for roto-
lnverslon assocl Name of

rotoinversionTurn angle p with turn angle

180"
120"
900
600
0

- 600

- 900

reflection
third-turn inversion
quarter-turn inversion
sixth-turn inversion
inversion
negative sixth-turn
inversion

negative quarter-
turn inversion

negative third-turn
inversion

63,6n,6u,6"1 : 16,3,2,3-r,6-',I l  and denote the group
by 6. Note that (f-1) : 16-',6-",6-t,6-4,6-5,6-6l.
: l6-t,3-t,2,3,6,11. Since the order of l isting the
elements is immaterial, we see that (6) : (6-r) and
hence 6-1 is another generator of the group 6. A
similar situation exists for the other monaxial groups
as evinced by Table 3. In summary, we have shown
that all of the proper monaxial crystallographic point
groups are cyclic. Because of theoretical considera-
tions used later in this paper, we require a more
formal definit ion of a cyclic group. A group G is a
cyclic group if and only if there exists an element g e
G such that G : (g) : lg"ln e Z). Hereg is referred to
as the generator of the group. In the case where G is a
finite group it is sufficient to consider only the posi-
tive powers of the generator as borne out by our ex-
amples above. In fact, if (g) is finite and t : #((g)),
then I is the smallest positive integer such that gr
: 1. For example, in the case of (4-1), the smallest
positive integer I such that (4-L)t : / is t = 4, hence

#((4- ' ) ) :  4  as ev inced by Table 3.  As seen in Table 3,
there is only one distinct monaxial group of each
order about a single axis. If G is a proper monaxial
group of order n, then we wil l use the symbol n to

Tanr,r 3. The Proper Monaxial Groups,
Their Generators and Elements

Group symbol Group generators and elements

(r) : {r}
<2> : u,2l
(3) : (3-') : {r, J, J-1}

<4>: (4- '> :  U,4 ,2 ,4- ' l
<6) : <6-') :  lr ,6, J, z, J-L

I
2
3
4
6

m :  i 2  :  2 i : 2
T :  B :  3 i
4 :  i 4 : 4 i
6 : i 6 : 6 i
i :  i t : I i : 1
6 - t : i 6 - ' : 6 - ' i

4 - t :  i 4 - ' : 4 - ' i

] - ' : r 3 - ' : J - ' i
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designate the point group. The axis common to all of
the rotations of a given monaxial group n (where n :

2, 3, 4, or 6) wil l be called an n-fold axrs. (When n is
different from l, 2,3,4, and 6, a perfectly good point
group results in the manner described above. How-
ever, for such a point group no space lattice is left in-
variant and hence it is not a crystallographic point
group. )

Proper polyaxial groups

In our investigation of the polyaxial groups, we
will be examining combinations of monaxial groups.
The task of f inding the possible proper polyaxial
point groups wil l be considerably more diff icult than
that of f inding the monaxial point groups. It wil l
require some fairly sophisticated arguments and a
considerable amount of notation which wil l be ex-
plained as we go along. The main aim of this section
is to establish the inequality which in loose terms wil l
state that three monaxial groups with orders zr, zr,
and zr, respectively, may be used to form a proper
polyaxial point group only if

l / v , 1 -  l / v "  - l  l / y " )  l .

To facil i tate our proof that wil l establish this in-
equality we wil l consider the surface E of a unit sphere
centered aL O. Any point isometry O acting on E
maps E onto i tse l f .  In  fact ,  tD is  complete ly
determined by its action on 3 because the effect of O
on E determines the end-points of tD(i), O(7) and
O@) and therefore the components of dQ, o() and
O(4). A non-identity proper rotation ft about the
rotation axis I leaves exactly two antipodal points on
E unmoved. These points are precisely the points at
which I and E intersect and are called the pole points
belonging to ft. If these two points are labelledp and
q, then they are the only points'x on E that satisfy the
equality h(x) : x. Let G be a proper polyaxial group.
The trivial group t has already been treated as a
monaxial group and since it has no pole points we
deliberately exclude it from consideration in the
remainder of this discussion. Hence we wil l assume
that l(G) > 2. To help i l lustrate a number of the
concepts given below, we wil l on occasion use the
proper polyaxial group 322 as an example. However,
none of the theoretical concepts that follow depend
on the assumption lhat 322 exists. The rotations of
322 are l l,3i- '!nl2lttol2lorol27. Since 322 con-
sists of 6 distinct rotations, by definit ion #(322) : 6.
The orientation of each of these rotations is shown
in Figure 4a (recall that the left superscript is only

Tasr.s 4. Group Multiplication Table for Group 322

3-L 
l rool2 toLot 

2

I
3
3 - r

tlool 
2

tr lo l  2
loLol 

2

I
3
, - r

Irool 2
Ilrol 

2
lorot 

2

3
J - r
I

Iorot 2
Iroot 2
trrol 2

3-r trool2

7 rrrot 2
3 torol 2

tlrot 
2 

torot 
2

Iorol 
2 

trool 
2

lrool 
2 

lrrol 
2

J - l  J

I  3- l

3 1

I
3

assigned to a rotation symbol when the rotation oc-
curs about an axis other than Z), and the pole
points belonging to the rotations of 322 are de-
picted in Figure 4b. The multiplication table for 322
given in Table 4 serves to define the structure of the
group by enumerating the compositions of all
possible pairs of group rotations. Since the only
rotations that appear in- the table are the six rota-
tions already l isted for 322, we may conclude that
322 is closed under composition and hence is a
group.

Letp denote a pole point of G. Then the collection
of all rotations of G that have p as a pole point is
designated by Go,  i .e . ,  Go:  {ge Olg(p)  :  p l . *  l f
gy gz e Gp, then g,gr(p) = g,@,(p)) : S,(p) : p.
Since g, and gz were arbitrarily chosen rotations
of Go and since grgz € Gp, we conclude that Go is
closed under the composition and hence a sub-
group of G. Since the rotations of G, leave p fixed,
they all have the line Qp containing Q and p as their
rotation axis. Consequently, G, is a proper monaxial
group and therefore one of the cyclic groups l isted in
Table 3.

In the case of 322, (322)p^ : (322)p"z : { 'oo12,ll,
(322)es, : (322)e"s: {"ol2,l l, (322)e22: (322)ou, =

\t0t0l2,11 and (322)o,, : (322)or" : lJ,3-',/,}. We ob-
serve in this example that two pole points are associ-
ated with each monaxial group (Fig. a). lt is also evi-
dent that the pole points pzr, pzz, pza, pn, prr, and pn
are each associated with the group 2 where the rota-
tion axis of each has a different orientation. The re-
maining pole points p ' and pr" are similarly associated
with group 3 (see Table 3). (The significance of the
double subscripts attached to each pole point belong-
ing to 322 wil l be discussed later. For the time being,
the subscripts may serve to distinguish distinct pole
points. )

* The subset Go of G, consisting of all g E G for which g(p) =

p, is a subgroup of G sometimes called the stabilizer of p.
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,(3221p"= { t,troola,

,322)p22= 
lt'totolzl

(322)p33 = lt,[oro]il

(322)psr = l t , [ r ro]21

(322\
P̂ 2 l

L{szz) ' , .=  1 r ,3 ,3 - r l

FIc. 4. The orientations of the rotation axes and the associated pole points for point group 322 are
shown in (a) and (b), respectively. The bases vectorsa,b,c lie along X, Y, and Z, respectively, and so
are not  shown. Note that  in th is f igure X,  Y,  and Z are not  mutual ly  perpendicular ,  s ince the angle
between X and Y is 120" (the ansles between X and Z and )/ and Z are both 90').

1 5 3

I
z

\  l /  . /
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e same

Proof. From the discussion above we know that Go
and Gn are monaxial and hence cyclic groups. Let i
be a generator of Go and let n : #(c) and,m : #(G).
We want to show that m : r. As observed in the
section on proper monaxial groups, n is the smallest
positive integer such that h" : 1. Consider the rota-
tion ghg-t where g(p) : q (such a g exists by the
hypothesis of the theorem). Srnce g-'(q): p andh(p)
: p, we observe Ihat ghg-t(q) : S(h(g-'(q))) :

dh(p)) : g(p): 4. Hence ghg-' @): q demonstrat-
ing that ghg-' e Go. We next show that gftg-r is a
generator of Go.Letf be an arbitrary rotation of Go.
Then g- ' /ge Go becauseg- ' fg(p):  g- 'W@))):
S-'(^q)) : S-'@) : p. Therefore, since Go : (h),
g-'fg : it for some integer I < t < n. Hence gh'g-'
: S@-yg)S-t : .f. Therefore

f: sh's-'
: Shh ... hg-, (where l occurs t t imes)
= Sh(S- 'S)h(S- 'g)h . - .  @- 'g lhg- ' (s ince g- f  :  1 ;
: @hg-')@hy-r) .. '  (ghg-') (by associative law)
: (ghg-')'

Consequently f is a power of ghg-'. Since / was an
arbitrarily chosen rotation of Go, we have shown that
Go : @hg-t). Since m : #(Go), as observed earlier
z is the smallest positive integer such that (ghg-'1^ -

1. However, since n : #(G), (ghg-') : gl2ng-r -

glg-' : 1, but m is the smallest such integer hence
m 1 n. But (ghg-r)- : gh*g-' : 1 and accordingly
h-  :  g- 'g :  .1 .  However n:  l (Go) is  the smal lest
positive integer such that h" : I. Hence n 1m.

Therefore, since n < m and m 1 n, we conclude that
m : n and so #(Gr) : #(G").

In our example 322, if we consider the cyclic
group (322)^t : ll,II101,2) we see Ihat ttt0lz(p2r) : pr".
Hence, according to Theorem I we can conclude that

#((322)e) : f;\(322)o"). We observe that this is in-
deed true because (322) ez2: glotol2T and hence both
sets contain two rotations. Similarl, Vml21prr7 :
pr2 and therefore we can conclude that (322)o' and
(322)pn have the same order. Again an examination
of Figure 4 shows this to be the case since (322)prr :

l l  ,3 ,3-' l  and (322)rr" : 1l ,3,3-' l . It may also be pre-

i* Those familiar with group theory will recognize that this

theorem shows that Go is isomorphic to Go since they are both

cychc.

dicted from Theorem I that there will be no group
element in 322 that maps pzt to pr because their cor-
responding groups (322)e.,and (322)o' are of differ-
ent orders. This is easily verified by considering the
rotations in 322 one at a time and observing that in-
deed none of them map pzr to ptr.

We will now investigate an important relationship
that exists between the pole points of any given rota-
tion group G. We define 0(G) to be the set of all pole
points belonging to the rotations of G, i.e.,0(G) --

{p e Sl there exists at least one g€ G such that g * I
and g(p): p|. For example, in the case of 322,0(322)

lPrrrPrrrPrr,Pr2,p2s,psbps2rprrl. We now define a
relation on 0(G) by defining for each p"p" € 0(G)
that h is equivalent to p, (symbolized h - pr) if and
only if there exists a rotation I € G such that g(p') =
pr. Hence, if p' - pr, then from Theorem I we know.
that Go, and Go, are cyclic groups of identical
orders, i.e., #(Gpr) : #(Go).

We observe the following important properties of
0(G) with respect to the relation defined in the last
paragraph:

(l) Reflexiue.' For all p e 0(G), p - p. (This is
because G has an identity element I and 1(p) = p.
Hence p - p.)

(2) Symmetric: For all pr, pr€9(G), if p, - p2, then
pz - pr.(This is because if ge G such that g(p r) : p",
then g has an inverse g-'€ G so that g-'(p") : pr.
Hence pz - pr.)

(3) Transitiue.' For all pr, pr, Ps e 0(G), if p, - p,
and p2 - p", then p, - p3. (This is because if g(pt) : p,
and h@r) : p, where g, h e G, then hg e G and
hg(p') = h(g(p,)) : h(p") : p'. Hence h - pg.)
Any relation defined on a set satisfying these three
properties is called an equiualence relation. Let p E
G(G), then we define the equiualence class determined
by p to be [p] : {qe O(G)lp - qI.* That is, [p] is the
set of all pole points of G equivalent to p. Sincep - p,
we have p e lpl and so every element of 0(G) appears
in some equivalence class; hence 0(G) is the union**
of all of its equivalence classes. Furthermore, if [p]
and [4] have one or more elements in common (sym-
bolized bV [p]O lql t g),*** then [p] tql.

* The subset of S consisting of all g(p) as I'ranges over all G is
sometimes called the orbit of p.

** The union of a collection of given sets is the set consisting
of all those elements that appear in at least one of the given sets.
The union of two sets A and B is symbolized A l-l B and the
symbolism 1) A, -"un, Ar U A, U Ar.

i - l

*** The expression "A O B" denotes the intersection of sets
A and B, i.e., the set of all elements that are in both A and B.

The symbol 0 denotes the empty set; i.e., the set containing no
elements.
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Accordingly, distinct classes are disjoint, i.e., they
have no elements in common. A thorough discussion
of equivalence classes including proofs of our obser-
vations above can be found in most modern abstract
alegbra texts (e.g., Larsen, 1969; Shapiro, 1975).

In our example of 322, the elements of the equiva-
lence class of p2, in 0(322) are lprrf : llapg(322)lp^
- P t l :

|n e 0(322)l there exists an elementge 322 such that
g(pz,) :  Pul

:  l g (o , ) lSe  3zz l
: (I(p"r), 3(pr,), ,rr]-,,rour,

to'2(prr), 
"'ot 2(p"r), totot 2(prr)l

:  l4" t ,  Pzz,  Pza,  Pzr ,  Pzz,  Pzsl

:  l \ r r ,  Pzz,  Pzal '

Following the same procedure one may calculate
each of the equivalence classes of 0(322). The results
are: lp"rl : IP"rl: [prr] : lPzbPzz,Pzs], [pr'] : lP'") =

[prr] : lprr,prr,p"rl and [p1l : lpr"] : lprr,prrl.We
notice that it is indeed true that these equivalence
classes are disjoint and that 0(322) is their union.
The pole point notation for 322 was deliberately
chosen at the outset so that points with the same
first subscript would be in the same equivalence class.

Let t denote the number of distinct equivalence
classes of 0(G)where C'(G), Cr(G),"',C'(G) denotes
the equivalence classes of 0(G), i.e., C{G) : [p] for
somep€G(G) ,hence

t

-U c,(G) : @(c) and c,(G) a cr(G): g if i  + j.

It should be observed that 0(G) is a finite set because
G is a finite set and each non-identity element of G
has only two pole points. Hence, each C1(G.) is a finite
set and we let nl denote the number of points in C1(G);
that is, n1 : fr(C{G)). Therefore, we may list the
elements of C,(G) as p1, ptz,. . . ,ptn.l n the case of our
example, C{322) : {pr,ppl, C"(322) : \pzr,pzz,pzel
and Cr(322) : lpu,psz,par| and as observed above,

eQ22) : E c{322) : c1322) U c,(322) U
cs(322).In addition, notice that n, : #(CLQ22)) : 2,
nz: #(Cz(322)) : 3 and n" : #(cs(322)) : 3.

Let Hiy denote G' the group of all rotations in G
that leave pu fixed. Sincep;y and p1p are both in Cr(G),

#(H,t) : f(H1e) because pu - p,n (see Theorem l).
Hence Hrr ,Hrr ,  . . .  ,  Hrnt  a l l  have the same order
which we signify as 2,. It follows that H1, is a cyclic
group of order v1 and if we let hqbe the generator for

H;y,  then H11 :  lh i1,h1t , " ' ,h ' i l  .Moreover the ax is

common to the rotations of Hly is a vrfold axis (this

axis of course passes through pit and the origin,

Q). In the context of our example 322, we see
that  Hr ,  :  l l  ,3 ,3- ' l ,Hr ,  :  U,3,3- t ) ,  Hr ,  :  l l  ,Uoo)21.
Hr"  $, lo to\ ) | ,  an u,u lo l2L H' ' - :  l [ ,u to l2\
H", : l l ,U00l2l, and Haa : 11 

pt0l2\. In addition
we observed that #(H'') : #(Hr) : t,r : 3, #(Hrr) :

#(H",) : #(Hr') : vz: 2, and l(H") : #(H'r) : #(H")
: v s : 2 ,

We are about to present a lengthy derivation of
some important relationships between many of the
concepts discussed above. These relationships wil l be
used to develop facts about G which wil l ult imately
e n a b l e  u s  t o  d e t e r m i n e  a l l  o f  t h e  p r o p e r

crystallographic point groups which we then list in
Table 6. In an attempt to present this discussion in a
more understandable fashion, each of the more im-
portant relationships wil l be set off in a box at the
beginning of each argument where the relationship is
established.

t

2 ( N - l ) : E n ; Q t - r )
d - l

Recall that N : #(G), vi : #(Hit), nt : #(C{G)),
and t is the number of equivalence classes of pole

points. The basic strategy for establishing Equation

(l) wil l be to find two distinct ways of counting the

nonidentity rotations of G. The result wil l be two

expressions each equaling twice the number of non-

identity rotations of G. This wil l establish Equation

( I ) since these two equal expressions wil l be precisely

those appearing in the equation. We begin by taking

each pole pointpi.r in 0(G) one at a time and counting

the number of non-identity rotations of G leaving piy

fixed. The sum of these numbers taken over all the

pole points in 0(G) wil l equal twice the number of

nonidentity rotations in G because each ofthese rota-

tions leaves exactly two pole points fixed and hence is

counted twice. The number of non-identity rotations

leaving piif ixed is f(H,7) 
- | : vt - 1. Thus, for the

pole points in C'(G) we have

fi(non-identity rotations leaving
p1 fixed) : vr - |

f(non-identity rotations leaving
p' ,  f ixed)  = 'vr  -  |

l(non-identity rotations leaving
pt", fixed) : vr - |

( l )

nr equatlons
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Tasls 5. Display of the Derivation of Equation (1) for Group 322

Notation for
group G

e(G)

Notation for group 322

0(322) : l\rr, Pn' Pzt, Pzz, Pzz, Psr, Pzz, P,nl

,(G) c{322) c2Q22) caQ22)

P t i Pn Pzt Pzz I'23 Pt t Pzz Pzs

G p i i

: {c € Gls@')
:  P t i l

(322),,, :

{ r ,  J ,  J - ' }

(322)p,, :
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Summing up these numbers we flnd that the contribu-
t ion f rom C,(G) is  nr(u,  -  l ) .  Fol lowing the same
argument, we see that the contribution from C;(G) is
n i (v i  -  1)  for  each I  < i  < t .  Adding the contr ibut ion
from each of the I equivalence classes, we find that

the sum is  I  n1@1- I  ) .  S ince N- I  is  the number of
t = 1

non-identity rotations in G, it follows that twice the
number of  non- ident i ty  rotat ions in  G is  2(N- l )  and
so we have establ ished Equat ion ( l ) ,  namely

2 ( N -  1 ) :  t  n i l i - r ) .  ( 1 )

Returning to our example 322, we observed earlier
that N : 6, h : 2, n, : 3, fra : 3, u, : 3, uz : 2, and
vt  :  2 .  The notat ion used in the der ivat ion of  Equa-
t ion ( l  )  is  d isp layed for  322 in Table 5.  I t  is  c lear  f rom
the table that ,  as predicted by Equat ion ( l ) ,2(#(322)
-  l ) :  l 0 : n l v r  -  l ) +  n r ( v z -  l ) t n e ( u s -  l ) '

N : nivi  for I  < i  < t

Since the followrng argument is quite tedious, the
reader may choose to sk ip to Equat ion (3)  on f i rs t
reading.  This can be done wi thout  sacr i f ic ing a basic
understanding of the development. An argument es-
tabl is .h ing Equat ion (2)  us ing the fo l lowing para-
graph and the footnote is presented for those who are
al ready fami l iar  wi th group theory.  The ro le of  Equa-
t ion (2)  is  to  fac i l i ta te the analys is  of  the impl icat ions
of  Equat ion ( l  ) .

Let i be any positive integer such that | < i < t.

Then for this particular i we want to show that N :

n;21. Consider the pole points belonging to C;(G). For

each ptj, there exists at least one rotation Xf€ G such

thatS(pi r )  :  P i i .We s ingle out  one such rotat ion for

eachT and label it g;. Then for each | < i < nt, g/Pir)
: pii. By the way the gr's were chosen, the col-
lection of pole points lg'(p,'), gr(Pi'), , gn i
(p^) l  :  lP i ' ,  Pn, '  ' ' ,Pt , , l  :  c , (G) '  we now form

the following l ist where as before, hiris agenerator of
H i ,  Q . e . ,  H i ,  :  l h i r , h i 1 , ' ' ' ,  h k \ ) :

g r h i r , g r h i J , ' ' ' ,  g r h ' , 1

grt"'g'hi" ' " 
" 

g"h'r\

: : :

g ^ h , , , g - h , " ' ' ' ' '  g n ' h ' i ! *

We now wish to show that  every rotat ion in  G
appears in this l isting exactly once so that the number

of  entr ies in  the l is t  equals #(G) :  N.  Let  g€ G,  then,
s inceg mapspi l  to  an equivalent  pole point ,g(p;1)€

C;(G) and henceg(p1') : pii : g/p,,,) for some | < i <

n;. Therefore, g1'g(pn) : pit. Accordingly, gi- 'g e
H i ,  :  { h i uh ,? , " ' , hh l  and  so  g r ' g  :  f t f  f o r  some

*  Those fami l iar  wi th group theory wi l l  recognize that  each row

in our l is t  is  actual ly  an enumerat ion of  a coset  of  Hi t  Further-

more,  the rotat ions in G that  roLale pi t  lo  p ih are al l  l is ted in the

k'b row. Hence each row corresponds to a pole point  in C,(G)

and conversely Consequent ly there is  a one-to-one corre-

spondence between the number of  pole points in C1(G) and cosets

of  H, , .  Hence there are ni  cosets of  Hi t  and s ince l (H,r)  = v1 wa

have, by Lagrange's theorem, N :  np1.

(2 )
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I < k < /,. Hence, g : gth,l which appears in our
list. Since g is an arbitrari ly chosen rotation of G, we
may conclude that every rotation in G appears in the
list at least once. Our next task is to show that no
rotation of G appears more than once in the l ist. Sup-
pose that g € G appears in the list as g = g,hfi and as
g :  g r h n  w i t h  I  1 k , m  l  v t a n d  I  (  r , s  3  n i .  W e
wish to show under these circumstances that r : s
and k = n. Since p1 is a pole point associated with
hn, wa have g,hfrQtir) : g"(p,r) : pi, and g"hTr@,r) :
g"(pt') : pi,. Since g,hfr, : g"hTr, by the definition of
equal mappitrss, pir: pis and so r = s. With this re-
sult we can now write g,hft : g,hfi which implies by
the cancellation law that hrt : hts and so k : m since
| < k, m 1 vi. Therefore, r : s and k : m as re-
quired. Thus, we have shown that every rotation in G
appears exactly once in the l ist. Since the l ist consists
of r; rows and v1 columns, there are n1u; symbols
listed, and since each rotation in G is l isted exactly
once, we conclude that l(G) : N : np1.

Returning to our example group 322, we construct
the same list as in the general case using per ?S our
pole point, as6 lttql2 as th.e. generator' of the group
Hr r .  S ince  l ( p i  :  p r r :  t t t u t2 lqa r ) . 3 (p r r ;  :  psz :
Iqtql2(prr), and 3-'(p3.) : pss : unl2(p"r), we must
select 91 to be either I orLtt0l2, g to be either J
or [0t012, and 93 to be either J-' or t100]2. we wil l
choose 1 as gr, 3 as g", un6lt00\2 as gr. Hence, our
l is t  for  322 using par  oS our  pole point  andut1 l2 as
our generator of H., is as follows:

rtlrot 2 Lt1rot 22

Strto\ 2, 311r0t 22

trool  
2Ir tot  2,  

t rool  
2t t  

tot  
22

After forming these compositions (see Table 4), the
list becomes

'"ot 

"ott"'l 

t'

J - t ,  
I t oo l  

2 .

It is apparent that each rotation of 322 is l isted
exactly once and that v".ns : 2.3 : 6 : #(322).

,
2 -2 /N :  l 1 r  - r / , 0 )

i - 1

Since N : ftrur, it follows thatn,: N/u,. Replacing
n; in Equat ion ( l )  by N/vL we obtain

2(N -  l ) :  I  (N /v ) (v ,  -  t )

2(N -  1) :  E NQ -  r /v)

2  -  2 /N :  |  1 r  -  r / r ) .

Because H;7 is a ,uUgrolp of G, we can conclude
that l(H;;) : vi ! #G) : N. Also, since Hs7 is the set
of all rotations in G that leave the pole pointply fixed,
it must, by the definit ion of a pole point, contain at
least one rotation in addition to the identity. Hence
2 1 vi 1N. Using the fact that zi must be greater than
or equal to 2, the right member of Equation (3)
satisfies the inequaltiy

I t t

I r r  -  r /v) t  I r r  -  U2) :  E<r /z t :  t /2 .

Rt-,]o. ,1n"" r/ = 2. ;" can write 

i=l

t

2> 2  -  2 /N  :  I  t t  -  r / , )>  t /2 .

Therefore, 2 > t/2and hence 4 ) L Thus / can only
be equal to 1,2, or 3. We can thus conclude that there
are no rotat ion groups having more than 3
equivalence classes of pole points. We now examine
each of these three cases for the value of r.

Case where t :  1 .  In  th is  case,  Equat ion (3)  be-
comes 

I
2  -  2 / N :  

|  < t  -  7 / , ) :  ( r  -  t / v )

o r  L - 2 / N :  - l / v ' .

The lef t  member of  th is  equat ion is  a lways
nonnegative because N > 2, but the right member is
a lways negat ive because z.
contradiction. Therefore, t cannot equal I, from
which we conclude that 0(G) must contain more than
one equivalence class of pole points; t must equal 2 or

6ase where I : 2. In this case Equation (3) becomes

2

2 -2 /N :  I t t  - r / , n )
i  - l

: (1 - l/r,) * (l - r/vz)

By a l itt le algebraic manipulation we find that

2 :  N /u ' l  N /vz .

From Equation (2) we have that N/vi = n1, and so the
above expression simplif ies to

2 : n r l n " '

Because n, and r, are positive integers, we conclude

(3)
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Tasrp 6. Possible Proper Crystallographic Point Groups

S y m b o l f o r G : v p 2 v 3 # ( G ) :  N #(C'(G): N/v' #(c,(G) -- N/r, #(c,(G)): N/vz

222
322
^,,'
622

A

6
8

l 2

2
2
2
2

2
J

A

6

2
J

A

6
Dihedral groups

? 1t+
432

72
24

4
6

4
8

6
L2

Tetrahedral group
Octahedral group

t The group 332 is usually designated by 23.

that n, : f lz: I is the only possible solution. Hence,
for a rotation group with t : 2, we have two
equivalence classes consisting of one pole point each.
Altogether G has a total of two pole points, which
accordingly define one and only one rotation axis.
Therefore, those groups with two equivalence classes
of pole points must be the monaxial groups given in
Table 3. The number of elements in each of these
possible monaxial groups is equal to the order of the
rotation axis, l(G) : ut : ttz.

Case where t : 3. In this case Equation (3) expands
to

2 -  2/N = ( l  -  l /vr )  + ( l  -  l /vz)  + ( l  -  l /us) '

Rewriting this result we see that

|  + 2/N :  l /vr  I  l /vz l  l /us '  (4)

Since N > 2, it follows that I * 2/N > I and so

l / v , * l / y " t l / u r ) l '  ( 5 )

For convenience, we can assume that v, ) vz ) vs.
In constructing Table 6 we have considered all

possible combinations of 21, az, and zr; selected from
the permissible values 2, 3, 4, and 6; and recorded
those that satisfy Inequality (5). Note that the other
possibil i t ies for urvrv, are 632, 442, 642, 662, 333, 433,
633,  443,  643,663,  444,644,664,  and 666.  A quick
check shows that none of these sets satisfy Inequality
(5) .  (Note that  the der ivat ion of  Inequal i ty  (5)  d id
not require uy u2, a(rd z, to be 2, 3, 4, or 6. Hence a
large number non-crystallographic point groups may
be formed that satisfy Inequality (5). For example,
r22 satisfie s (5) for all n ) l.) * The orders of each of
the potential polyaxial crystallographic point groups
in Table 6 are found by substitutingtte u2, and z, into
Equation (4) and solving to obtain N : #(G) :

2vrv2vs/(vrv, I v2vs t vsv, - vp2vs). The order of
C,(G) : n; is found by appealing to Equation (2),

*  See Klein,  Weyl ,  or  Zassenhaus for  a der ivat ion of  the non-

crystallographic rotation groups based on these ideas.

which yields ni : N/vi. These ate also recorded in
Table 6.

Determination of the interaxial angles

We have shown above that there are only I I pos-
sible proper crystallographic point groups, namely l,
2, 3, 4, 6, 222, 322, 422, 622, 332, and 432. The
monaxial groups I, 2, 3, 4, and 6 were established
earlier. However, we have not yet established the fact
that each of the polyaxial combinations actually
yields a group. Also, the possibil i ty renlains that
some of these combinations may lead to two or more
groups which may arise by assuming different inter-
section angles between the rotation axes (these angles
are called interaxial angles.). We wil l see later in this
section, however, that each of the possibil i t ies leads
to precisely one point group. In the process we wil l
actually determine the interaxial angles used in the
formation of these point groups. Inherent in the
strategy we wil l follow in determining these inter-
axial angles is the observation that before a poly-
axial combination qualif ies as a group it must
satisfy the requirement that each of its rotations
permutes the pole points within each of the three
equivalence classes. Hence a rotation must map a
given pole point to another pole point in the same
equivalence class. We recall that because equiva-
lence classes are disjoint no two distinct equivalence
classes share a common pole point. This observa-
tion wil l also be of considerable use in the determina-
tion of the interaxial angles. In addition it wil l be
helpful to observe that if a half-turn maps the point
p € S to 4 then its axis must bisect both of the arcs
determined by p and q. Hence, if r is a pole point
of such a half-turn, then fr : Q.

Interaxial angles for the dihedral groups ur22

We begin by considering the interaxial angles that
must exist for a polyaxial combination of the form
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vr22 (when ur : 2, 3, 4, 6) to be a group. Table 6
shows that there are exactly two pole points which we
denote prt and p* in the equivalence class Cr(r'22).
Let lr be a non-identity rotation in G such thath@r)
: pr, i.e., ftC Hrr. Then hftrz) must equal pn ot pn

since every rotation in vQ2 must permute the equiva-
lence class C1(vr22): lpnepl. Because it was assumed
above that h(prr) : p' and because l cannot map
two distinct pole points to the same pole point, we
conclude that h(prz) must not equal pll and hence
h(p'r) : p'r. Therefore pll and Pu both l ie on the axis
of the rotation ft. Consequently, p, and p* are antip-
odal points and so there is exactly one z,-fold axis
associated with Cr(vr22). Also each of the equivalence
classes associated with the cyclic groups of order 2
contain z, pole points. Accordingly, we write Cr(vr22)
: lpa.ezz, ... euI and C"(vr22) -- lp$esr, . ' . Aul .
Moreover, since there is a total of ff(CdvQ2)) +

fi(Cs(vr22)) : 2v, pole points associated with the
2-fold axes, there must be exactly v12-fold axes assoc-
iated with Cz@r22) and C"(u'22). Now that we know
the number of each kind of rotation axis present in
vr22, the task is to discover the appropriate inter-
axial angles between these axes so as to form a group.
If we place the Z axis along the v'-fold axis, then
p' and ptz ?te the points where the Z axis intersects
with the surface E of the unit sphere. The question
now is "Where can a 2-fold axis associated with say
pz, be placed so that the associated half-turn g wil l
permute lprr,prrl?" If g(ptt) : /rr, then g(prr) : pr".
Since g has only two pole points, p21 must be either
pt ot prr, which is a contradiction because the
equivalence classes of pole points are disjoint. Hence
g(pi : prr, andp' bisects the arc ft,r. Therefore,
;;;fid;": f,i,,' andsince ft,, +"'fr," : l8oo, it
follows that ftrr: 90o. Accordingly, it follows that
the  2 - fo ld  ax i s  assoc ia ted  w i th  p '  mus t  be
perpendicular to the z,-fold axis. A similar argument
shows that the 2-fold axes associated with the remain-
ing pole points in Cr(vr22) and Cs(vr22) are also per-
pendicular to the z'-fold axis. Thus, the z' 2-fold axes
in u'22 are all perpendicular to the v'-fold axis.

The remaining question is "What must the inter-
axial angles be between these 2-fold axes?" Without
loss of generality, because p' is on the equator (the
great circle perpendicular to Z), we can place the X
axis of our coordinate system so that it passes
through pu. We know that the images ofp, under the
rotations along the zt-fold axis are all in C2(ur22).
Moreoyer, because of the nature of the rotations
about the zr-fold axis, we obtain z, poirtts (hence all
of the points in C2@r22)) spaced equally on the equa-

tor so that the arc length between any two adjacent
points is 360" /vt.

We now observe that there is only one rotation lt

associated with the pole points in C'(vr22) such that

h(p) : p* where p1 and p,2 are adjacent pole points

in C"(ur22). If we let trool2 denote the half-turn
about the X axis then uNl2(prr) pzt, and
the rotation ltltoo)2 has the property thathltnl2(prr)
: pzz. However, lr ltu)2 I fr becaus" i1 lruoa)2 :

ft, then \runl2 : 11 / which according to the
cancellation law would yield the contradiction that
It00l 2 : 1. But h was the only rotation associated
with Cr(vr22) which maps p2r to prr. Hence htt0012
must be a rotation associated with a pole point in

either C2@r22) or Cs@'22). Therefore iltml2 must be
a half-turn which maps pz, to pz" and whose rotation
axis is perpendicular to the Z axis. Thus the axis of

i ltm\2 must bisect the arcs along the equator deter-
mined by p^ and pzz. Let q denote the pole point
belonging to il|ul2 which bisects the shorter arc be-
tween p21 and pr". Sincepzr and p2 are adjacent pole
points in C2@r22), q cannot be in Cr(v'22) and hence
must be in Cs(vQ2). The images of 4 under the rota-
tions about the z,-fold axis are the remaining pole
points in Ct(vr22).In summary, we have shown that,
if v22 (where ut : 2, 3, 4, 6) is to be a group, there is
only one possible arrangement of rotation axes. The

interaxial angles for this arrangement are such that
the angle between the z,-fold rotation axis and each
of the 2-fold rotation axes associated with the pole
points in Cz(v22) and Cs(u,22) is 90o and the angle
between any two adjacent 2-fold axes is 180'/z'. Re-
fgrring to Figure 4, we see that our example group
322 does indeed satisfly this interaxial criteria. The
fact that vr22 actually forms a group when its inter-
axial angles are as described above can be shown by
preparing a multiplication table (note that this can
now be easily done by those familiar with matrix
theory since the matrix representation for the rota-
tions in vr22 is completely determined by the inter-
axial angles).

Interaxial angles for the tetrahedral group 332 ( i.e. , 23 )

Our next task is to determine the interaxial angles
for 332. It is clear from Table 6 that there are two
equivalence classes associated with the 3-fold axes
containing 4 points each, and one equivalence class of
pole points associated with the 2-fold axes containing
6 pole points. Accordingly, there are four 3-fold axes
and three 2-fold axes in 332.

We begin by considering the placement of the three
2-fold axes. Let ps, denote a point in Cs(332). Since
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CaQ32) contains all of the pole points associated with
the half-turns in G and since the antipodal point of
prt is associated with the same half-turn associated
with pr,, it follows that the antipodal point of pr,,
which we denote 6y prr, is in Cr(332). Without loss of
generality, we place Ihe Z axis along the l ine segment
pt'1ttr. Let prr be any one of the remaining pole points
in Cr(332). We wil l show that f lp"" :90' by assum-
ing that frp* + 90o and arriving at a contradiction.
tf"frp""?-90;,then eitherfr,, i 90" orfr,n < 90'
where p3n is antipodal to pga. Without loss of
generality, we may assume that f , j"" < 90'. If we let
2 denote the half-turn along the Z axis (with pole
points p31,p32), then 2(ps) : pq for somepsj € Cs(332).
Hence ffpr1 : frp*
observation on the effect of a half-turn, p' bisects

fi)rr, hence i|,pr" 190' + 90' : 180'. Therefore pr;

I pgr since Gpr, = ' 180o. Moreover, it is clear that py

€ \p"r,p"",p""| . Hence the rotation axis associated with
pr; is different from those associated with lltrr,prrl and
Lptt,ptnl . Therefore, psj must be one of the remaining
pole points in Cr(332), say pat : ps,. We also observe,
since p' bisects 6prr, that Tpru Qp* and @"u
are coplanar where O is the origin of R3. Hence
the three axes associated with half-turns are all
coplanar. We now make an obvious but important
observat ion about  th i rd- turns.  l fg  is  a th i rd- turn and

4 is a point not bn its rotation axis, then the points

lqS@),g'(q)l determine a plane perpendicular to the
axis of g. Hence given any point q in Cr(332) and any
3-fold axis belonging to 332, there exist two other
pole points in Cr(332) such that the plane determined
by q and these other two points is perpendicular to
the 3-fold axis. But, under the hypothesis that 6br"
* 9O', we have shown that all the pole points of
Ca(332) are coplanar and hence all of the 3-fold axes
must be perpendicular to the plane determined by
these pole points. This means that 332 can have only
one 3-fold axis, which is a contradiction because we
know that there are four such axes. Therefore, the
angle fi jr": 90o. Sincep' was an arbitrari ly chosen
point in Ca(332) and since pse was selected to be any
pole point exceptp3l and pr", we see by similar reason-
ing that  6b""  :90o and 6] i "u :90o.  Consequent ly ,
the three 2-fold axes are mutually perpendicular.
Note that this says that 222 is contained in 332.

Now we wil l turn to the placement of the four 3-
fold axes. Let pt be a pole point in C1(332). Then p,,
appears on E in one of the octants delineated by the
three 2-fold axes. Without loss of generality, we can
assume that p' is located somewhere in the first oc-
tant (denoted by the shaded region in Fig. 5). If we let

p"rplay the role of q in our observation in the previous
paragraph, then we know that the 3-fold axis through
p' is perpendicular to some plane containing p.' and
two other pole points in C'(332). By inspecting all
such planes containing p' and remembering that the
3-fold axis cannot be coincident with any of the 2-
fold axes, it is clear that the plane determined bypr',
pss, ?ndpru (see Fig. 5) is the only possibil i ty. There-
fore the third-turn associated with p'r maps p31 to pas,
p$ to p"u, and pss to p' requiring that Pr be
equidistant from the points pu, pss, and pss (see Fig.
6a). Therefo re 6i,., = Gp,, : 6h". Solving in the
standard way the spherical triangles that arise from
these ref ationships, we conclude that f i jr, : 54.74".
The images of p,i under the half-turns in 332 yield the
four pole points belonging to C'(332) : lpt, pn, pn,
prnl as pictured in Figure 6a. The antipodal points to
those appear ing in  C1(332) are not  in  C' (332) ,  but
they are the pole points that form Cr(332). The result-
ing set of all pole points belonging to 332 are shown
in Figure 6b. We have therefore shown that this
arrangement yields the only possibil i ty for 332 to be a
group. If a multiplication table is prepared, it can be
shown that this arrangement does indeed yield a
group. A l ist of selected interaxial angles between the
rotation axes in 332 is given in Figure 6c, from which
the remaining angles may be deduced.

I
Frc 5. The orientations of the 2-fold rotation axes for the

tetrahedral  group 332 = 23 wi th their  associated pole points

shown as solid circles The surface area on the unit sphere where

pole point  prr  must  l ie  is  shaded
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Ftc. 6. (a.) Stereographic projection of the 2-fold rotation axes of the tetrahedral group and the pole
points belonging to C'(332) where the solid circles denote points on the upper hemisphere and the
open circles denote points on the lower hemisphere. (b.) Stereographic projection of all the pole points
for the tetrahedral group. (c.) Stereographic projection ofthe rotation axes ofthe tetrahedral group and
pole points appearing in the upper hemisphere. Selected interaxial angles are given by the following
arc lengths: pT,p,, : frh"" = fipru : flp,, -- fipr" = f?rp"o = 54.74"; f1fo,, = 6A": fip,.: flp,, =
70.32'; f i i t,,: 6fu"0 : 109.47"; i?,p"" -- 90";6i",: 125.26'.

Interaxial angles for the octahedral group 432

The final case in our consideration of proper rota-
tion groups is 432, which has three 4-fold axes, four
3-fold axes, and six 2-fold axes (see Table 6). Implicit
in the three 4-fold axes are three 2-fold axes. Since
there are more than one 3-fold axes present, the argu-
ment given in our discussion of 332 allows us to
conclude that the three 4-fold axes are mutually per-
pendicular. We use the same orientation for these 4-
fold axes as for the 2-fold axes in 332 (see Fig. 5).
Since the 6 pole points belonging to the 4-fold axes in
432 are arranged in exactly the same way as the 6 pole
points belonging to the 2-fold axes in 332, the 3-fold

axes in 432 must also be arranged in the same man-
ner. That is to say that332 is contained in432. Hence
we have placed all of the 4-fold and 3-fold axes pres-

ent in 432 (see Fig. 7a). Since there are half-turns
implicit in the horizontally placed 4-folds and since
these axes are perpendicular to the vertically placed
four-fold axis, we can conclude that 422 is contained
in 432. Hence by our discussion of 422 we know that
there are 2-fold axes bisecting the horizontal 4-fold
axes. Hence the point ps1 placed as shown in Figure
'7a 

is a pole point belonging to Csg32). The
remaining eleven pole points in C"(432) can be found
by locating the images of p., under the rotations of
432 which have already been placed. The placement

til'. t3,'.'

o!31Pse :Pa.

'B'; 'fi,
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FIc. 7. (a.) Stereographic projection of the 3-fold and 4-fold rotation axes and pole point pr for the
octahedral group 432. (b.) Stereographic projection of the rotation axes for the octahedral group.

of alf the rotations of group 432 are shown in Figure
7b. The interaxial angles can be deduced from those
given for 332. Also we note that by forming a multi-
plication table, one can verify that this arrangement
ofthe axes involved in 432 does in fact yield a group.

In summary we have found interaxial angles for the
eleven proper crysta l lographic point  groups 1,2,3,4,
6 ,222 ,322 ,422 ,622 ,332 ,  and  432 .  I t  can  be  shown
that for each ofthese groups there exists a lattice that
is left invariant under each of the rotations of the
group and so they are all bonafide crystallographic
point groups (Boisen and Gibbs, in preparation).
Furthermore, we have shown that there.are no other
proper crystallographic point groups.

Improper crystallographic point groups

In the previous section we showed that there are
only I I proper rotation groups, and we derived each
of them. In this section we wil l show how each of the
improper crystallographic point groups can be con-
structed from these proper crystallographic point
groups. This wil l be easily accomplished once we
have established the following important theorem.

Theorem 2. lf I is an improper crystallographic
po
graphic point group G such that either

( l )  |  :  G U 9 i  where f  is  the invers ion.(Here
G t = { g t l g e G } )

or

Furthermore, all of the sets constructed from a
proper crystallographic group G as in (l) or (2) are
groups and hence improper crystallographic point
groups.

Before presenting the proof of Theorem 2 we wil l
use the theorem to derive the collection of all im-
proper crystallographic point groups, give some ex-
amples, and record in Table 7 all of the crystallo-
graphic point  groups.

If H is a subgroup of G such that #(G)/#(H) : 2,
then we say that H is a haluing group. This theorem
shows that if we take each proper crystallographic
point group G one at a time and first form G U Gi

and then H U (G\H)t for each of its halving groups

H (note that in certain cases G does not have any
halving groups), then the resulting collection of
groups is precisely the collection of all improper crys-
tallographic point groups.

Note that the improper crystallographic point
groups of the form G U Gi have order 2f(G) and
are those that contain the inversion (since I € G).
Hence we have a total of eleven improper rotation
groups that contain the inversion. When a group G
has a halving group H, then we can form the im-
proper crystallographic group H U (G\H)i which
has order #(G) and has the property that it does
not contain the inversion (since / € (G\H)). Table 7
shows that there are ten such groups, bringing the
total number of crystallographic point groups to 32.

If A is a rotoinversion such that O g G U Gi or
O e H U (G\H)i, then there exists an element
g e G such that O : gi By the definit ion of the
rotation axis of an improper rotation given earlier,

( 2 ) t : H U (G\H)t where H is a su o f G
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Taslr 7. The 32 Crystallographic Point Groups and Their Orders as Derived From the Proper
Crystallographic Point Groups

The 11 Proper Crystallographic
Point Groups

Halving
Groups*

The 2l Improper Crystallographic Point Groups

Containing i (centrosymmetrical) Not containing r'

G # (G) H G U G ' #(c u Gr) H \J (G\H)t #(H U (G\

1
2
3
4
6

222
322
4))

622

332:  23
432

I
2
J

4
6

6
8

t 2

t2
a i

none
I

none
2
3
2
J

A

222
6

322
none
23

I
2/m

J

4/m
6/m

mmm
5z1m

4f mmm

6f mmm

2imT
4/m32/m

2
4
6
8

12
8

12
16

. A
L+

24
48

none
m

none

6
mm2
3mm
4mk
42m
6mm
62m
none
4zm

2

4
6
4
6
8
8

l2
l2

24

* The halving groups H of a given proper crystallographic point group G can be easily found by examining those
groupsincolumnl thathaveonehal f  thenumberofe lementsasG. I f  L is incolumnl  suchthat  # (L) :  #  (G)/2,
then L is a halving group ofG if (l) all of the rotations of L also appear in G and (2) the corresponding interaxial angles
between these rotations are the same in L as in G. In certain cases like 422 where 222 occvs in more than one orientation,
there is technically more than one group of the form H U (G\H)t for a given H. However, the construction of these
groups results in the same point group but in different orientations, and consequently we do not make a distinction
between them.

H)r)

the rotation axis of @ is the same as that of g. Hence,
the rotation axes appearing in G U Gt and H U
(G\H)i are the same as those in G Therefore it
follows that the interaxial angles obtained for G ap-
ply to both G U Gt and H l-J (G\H), as well. By the
way Table 7 is constructed and because of the rela-
tionship between the proper and improper groups, all
the crystallographic point groups with the same inter-
axial angles appear in the same row. We note again
that in this paper we have not demonstrated for each
of these crystallographic groups the existence of a
lattice I which is left invariant. However, this fact
can be shown and wil l be explored in a future paper.

We  w i l l  now  do  seve ra l  examp les  o f  t he
construction described in Theorem 2 followed by
Table 7 showing the results we obtain by applying
this construction to all eleven proper crystallographic
point groups. We recall that the orientation symbo
attached to a given rotation or rotoinversion is
dependent on the choice of the basis. In each of
our examples the basis wil l be chosen to be con-
sistent with the International Tables for X-ray
Crystallography (see Table 2.3.1 , Henry and Lons-
dale, 1952). We then conclude the paper with the
proof of Theorem 2.

To illustrate the use of Theorem 2 in the construc-
tion of the improper crystallographic groups, we will
first consider the constructions G U Gi and H U (G\Hy
where G is the proper monaxial group 6. For this case
G  U  G t  b e c o m e s  6  U  6 ,  :  U , 6 , 3 , 2 , 3 ' ' , 6 - ' )  U
u, 6, 3,  2,  3- ' , ,  6- ' l i  :  l l ,  6,  3,  2,  3-" 6- ' l  U
lti, 6i, 3i, 2i, 3-'.i, 6-'i l U, 6, 3 3-" 6-"
i ,  6,3, m, i - ' ,6-- ' l  *hich is denoted by 6/m. To
construct the group H U (G\H)i, G must contain
a subgroup H such that l(H) : #(G)/2. As noted in
Table 7, if such an H exists, it must appear in col-
umn 1 of the table. In the case under consideration

#(6) = 6, hence #(H) : 3. The only group in column
I with order 3 that qualifies as a possible halving
group in 6 is the proper monaxial group 3. Since all
the rotations in 3 are contained in 6, we conclude
that 3 is the only halving group in 6. Accordingly, it
is clear that H U (G\H), becomes 3 U (6\3), :

t 1 , 3 , 3 - 1  U  1 6 , 2 , 6 - L l i  :  \ 1 , 3 , 3 - "  6 i , 2 i ,
6 ' i1 :  11, 3,  3- ' ,6,  m,d- ' l  denoted by 6-.

In our next il lustration, we will construct G U Gd
and H U (G\H)t where G is the proper polyaxial
group 322. In this case G U Gi becomes (322) U
(322)i : ll, 3, 3 -', U 001 2, 11 lol 2, l0 t|l ), i, 3, 1-', l1 ffil m,
Ittllm,l0tllml denoted Uy 32/m. The monaxial group
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3 qualifies as the only halving group in 322 because
#(3) : 3 and because all the rotations in 3 are con-
tained in 322. Thus, H U (G\H), becomes 3 U
(322)\3)t = Il, 3, J-1, U00lp, tttl]m, t010lml de-
noted by 3mm.

Finally we consider the improper crystallographic
point groups that are constructed from G = 422.The
G U Gi is constructed as before and results in the
group 4/ryrmm. Two proper groups 4 and 222 in
Table 7 qualify as halving groups in 422. Letting tt :
4 ,  w e  c o n s t r u c t  4  U  ( 4 2 2 ) \ 4 ) i :  U , 4 , 2 , 4 - ' ,
l100lm, U t}lm, l|t|lm, lf t|lml denoted by 4mm. Letting
H : 222, we construct (222) U ((422)\(222))i :

II , 2, lt00l2, l0t0l2, f,7-r, li lol., ttl lml denoted
by 42rn.

Note that group 332 lacks halving groups despite
the fact that groups 322 and 6 both have orders one-
half that of 332. This is becauie a six-fold axis is not
contained in 332 and the interaxial angles between
the 2-fold and the 3-fold rotation axes in 322 and 332
are different.

Proof of Theorem 2

Let I denote an improper crystallographic point
group and let kr, kr, . ' . , k, be the proper rotations in
l. We know. that I does have somc proper rotations
since 1 E l, which is a proper rotation. We now
consider two cases; (1 )  ,  e I  and (2) d6 l .

Case where i € l. In this case, each of isometries /r,,
kr , ' ' ' ,  kn,  kr i ,  kr i ,  .  .  . ,  kn i  are in l .  We wi l l  show that
this is a complete l isting of the elements of t. Let t 6
l, then we want to show that I appears in the l ist. lf t
is a proper rotation, then t already appears in the l ist
kr, kr, '  . . , k,. If t is not a proper rotation, then it
must be an improper rotation and hence can be writ-
ten t = l i where/is a proper rotation. Since l '  E I we
know that (fr)i =fe t. Hence "f- kforsome | < j <
r and consequently l i  : k,i is in the l ist. Therefore I

\ k r ,  k " ,  . . . ,  kn ,  kL i ,  k2 i ,  . . . ,  k " i l  .  S ince  the
composition of two proper rotations is again a proper
rotation, we see that lky k2, . . . , knl forms a
subgroup of l. Let G denote the group consisting of
lkr, . . . , /c,). Then | : G U Gi and so l is of the form
described in statement (l) of the theorem.

Case where i €! l: Again let kr, . . . , rt, denote the
proper rotations in l. The set of all improper rota-
tions in I can be written in the form {Jri, Jrd, .. . J-i}
where .r; is a proper rotation for all | < j < ru. Since
i€ l, st is not the identity for all I <i < z. First we
want to show that m = n. That is, the number of
proper rotations in I equals the number of improper
rotations in L We begin by considering the set of

rotations lk$i,kzsJ,"',kosJl. By the cancellation
law we know that these are distinct rotations. Hence
we have found a l ist of n improper rotations in l.
Therefore n < m. Now consider the set of rotations

{(s'd)(s' i),(s' i)(srd), '  " , (sriXs-i)}. Since the inversion
commutes with any proper rotation we have
(s'd)(s;d) : (r"Xls7) : s1fs1 : srsr which is a proper
rotation. Hence we have that {s?, Jrf,z, . . . , Jp.} is
a set of z distinct (by the cancellation law) proper
rotations in I and so m 1 r. Hence m : n. Next we
consider the set of proper rotations G : {ftr, ... ,
ko, sr, . '  . , J,l (remember that the q's are not
in l). We wil l show that G is a group by showing
elosure. Let a, b e G. Then we have four cases
to consider. First, if a and 6 are both /r 's then
since they are proper rotations belonging to l, the
composition ab is also a proper rotation in I and so
aD is one of the /r 's l isted in G. Second, if a : kt for
some  1  < j  <  n  andb  =  s ,  f o r some  I  I  r  1  n ,
then ab : kis,. But since (kf,)i : kls,i) e l, ab =

k;s, is, by the cancellation law, some s; l isted in G.
Th i rd ,  i f  a :  s ;  f o r some  I  < j  <  nandb :  / r " f o r some
| < r < n, then ab : s1k,. Since (sri)ft, = s1k,i El,
ab : sft, is somesl l isted in G. Fourth, if a : sy for
s o m e l  < j < n a n d b  :  s , f o r s o m e  l 1 r < n , t h e n
ab : sis, : sis7i2 : (s;d)(s"t') E l. Hence ab is a proper
rotation in I and so appears as one of the ft 's. There-
fore it has been shown that G is closed under com-
position and hence a group. Note that if we set H :

\kr, '  . . , knl, then H, being the set of all proper rota-
tions in l, is a group and so H is a subgroup of G.
\ lso f i (G)/ f t (H)  :  2n/n :  2 .  Since |  :  lk , ,  - . .  ,  kn,
r , i ,  " '  ,  rn i ) ,  |  =  H U(G\H),  as requi red.

Now to establish the final remark of the theorem
suppose that G is a proper rotation group. Then,
using the techniques employed in the above proof, it
is easy to show that G (_J Gi is closed and hence a
group. Next we suppose that G has a subgroup H
such that #(G)/#(H) : 2. We wish to show that the
set H U (G\H)t is closed and hence a group.* Leta,b
e H U (G\H)t. lf a,b e H then clearly ab eH and so ab
€ H U (G\H) i  as requi red.  I fa  e H andb e (G\H) i ,
then D = gi for some g € G\H. Now ag € H for if ag e
H, then g:  a- ' (ag)  E H which is  not  the case.  Hence
49€G\Handso ab:(ag) i  e  (G\H)tandso againabE
H U (G\H)t. Similarly, if a e (G\H)i and b e H,then ab
€ H U (G\H)t. Now suppose that a,b E(G\H)i.Then a
: gri and b: grifor somegl,g2€ G\H andaD: (Sri)(S"i)
: ggz. Hence we want to show that gB2 g H.We have

+ The reader who is familiar with factor groups may recognize
immediately that  H U (G\H) i  is  c losed.
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proved above that the product of a rotation in (G\H)

with a rotation in H is in G\H. Henceg,H : lg,hlft e Hl
q G\H. By the cancellation law, rt G'H) : # (H)

and so # G'H) :  #  (G\H).  Thereforeg 'H :  G\H.  Con-

sequently, if gB, e G\H, then gg" : g1ft for some

h e H.But  then,  by the cancel la t ion law,  g,  =

h e H,  which is  a contradic t ion.  Thereforc,94,  e H

and so ab : (S'i)(gri) : 9.8, € H. Hence H U
(G\H)t  is  c losed and so is  a grouP.
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