American Mineralogist, Volume 61, pages 145-165, 1976

A derivation of the 32 crystallographic point groups using elementary group theory

MoNTE B. BoIsSEN, JRr., AND G. V. GiBBS

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

A rigorous derivation of the 32 crystallographic point groups is presented. The derivation is
designed for scientists who wish to gain an appreciation of the group theoretical derivation
but who do not wish to master the large number of specialized topics used in other rigorous

group theoretical derivations.

Introduction

This paper has two objectives. The first is the very
specific goal of giving a complete and rigorous deri-
vation of the 32 crystallographic point groups with
emphasis placed on making this paper as self-con-
tained as possible. The second is the more general
objective of presenting several concepts of modern
mathematics and their applicability to the study of
crystallography. Throughout the paper we have at-
tempted to present as much of the mathematical the-
ory as possible, without resorting to long digressions,
so that the reader with only a modest amount of
mathematical knowledge will be able to appreciate
the derivation. Those facts that are used but not
proven in this paper will be clearly identified and
references will be given to sources where the appro-
priate discussions can be found.

Crystal symmetry was studied during the nine-
teenth century largely from a geometrical viewpoint.
A comprehensive outline of the more important con-
tributions to this subject by such men as Hessel,
Bravais, Md&bius, Gadolin, Curie, Federov, Min-
nigerode, Schoenflies, and Miers is presented by
Swartz (1909). It appears that Minnigerode (1884),
Schoenflies (1891), and Weber (1896) were the first to
recast the problem of classifying crystal symmetry in
terms of group theory. Recent treatments make ex-
tensive use of specialized topics in group theory in the
derivation of the crystallographic point groups (see
for example Seitz, 1934; Zachariasen, 1945; Burck-
hardt, 1947; Zassenhaus, 1949; Lomont, 1959; Weyl,
1952; McWeeny, 1963; Altmann, 1963; Yale, 1968;
Benson and Grove, 1971; Janssen, 1973; Coxeter,
1973; and Senechal, 1976). In addition, several work-
ers (for example, Donnay, 1942, 1967; Buerger, 1963)

have appealed to a number of interesting algorithms
based on various geometric and heuristic arguments
to obtain the 32 crystallographic point groups. In this
paper we present a rigorous derivation of the 32
crystallographic point groups that uses only the most
elementary notions of group theory while still taking
advantage of the power of the theory of groups.

The derivation given here was inspired by the dis-
cussions given in Klein (1884), Weber (1896), Zas-
senhaus (1949), and Weyl (1952). The mathematical
approach used in their discussions is a blend of group
theory and the theory of the equivalence relation.
Each of these mathematical concepts is described
herein and is used in the ways suggested by these
authors. However we depart from their approach in
the determination of the interaxial angles. While they
appeal to a study of Platonic solids, we continue with
the theory of groups and equivalence relations in our
determination of these angles.

In the first part of the paper we discuss the defini-
tion and properties of point isometries and show that
every point isometry is either a proper or an improper
rotation. If a rotation leaves a lattice invariant, then
it is shown that its turn angle must be one of the eight
following possibilities: 0°, £60°, £90°, £120°, 180°.
The method for composing two point isometries is
discussed. The properties discovered about this con-
position motivate the definition of an abstract group,
which is then stated. We then show that the set of all
point isometries that leaves a given lattice invariant
forms a finite group. These are the crystallographic
point groups. In the second part, the proper crystal-
lographic groups are discussed. The cyclic monaxial
crystallographic groups are treated first. Then the
notion of an equivalence relation and equivalence
classes are presented in conjunction with a group
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Fig 1. Right-handed cartesian coordinate system with unit
vectors ,j.k directed along the coordinate axes X, ¥, and Z, respec-
tively, w1th the vector r expressed as a linear combination of i, j
and k, =

theoretical development of the basic ideas leading
to the derivation of all the proper polyaxial
crystallographic groups together with their interaxial
angles. In the final part of the paper, the improper
crystallographic groups are constructed from the
proper crystallographic groups.

Discussion of basic concepts

Three dimensional space

Our discussion of the 32 crystallographic point
groups will be conducted within the framework of
real three-dimensional space, R?, where R designates
the set of all real numbers. The elements of R® can be
described geometrically by placing three unit vectors,
ij and k along three mutually perpendicular axes X,
Y, and Z which form a right-handed cartesian coordi-
nate system as in Figure 1. Accordingly, the vectors
iy,k form a basis for R® such that R® may be viewed as
slmply the collection of all linear combinations of the
form r=xi+ yj + zk where x, y, z are elements of
the set R (symbolized x.p,z & R). Note that x, y, and z
are the X,Y and Z components of r, Stated more
concisely, R® = {xi + y] + zkl XY,z € } R} which is read
“R% is the set of all vectors xi i + v+ zk such that x,y,z
are elements of the set R.” It is 1mp0rtant to observe
that each vector in R® may be expressed in one and
only one way as a linear combination of {1,] k} We
call the vector O = 0 + 0] + Ok the origin 'of R?* and
also use O to denote the pomt at the origin, In gen-
eral, unless otherwise stated, we will not distinguish
between a vector and its end-point. Ifl; xi + yj +
zk is some element of R®, then its magnitude or length
||_rJ| is defined to be

IIrl] = vV + y° + 22
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Point isometries

In our study of point groups we are interested in a
special kind of transformation known as a point
isometry. The mapping ® from R® onto R® is a point
isometry if and only if it satisfies the following four
properties:

(1) Given any element r € R®, its image ®(x) is a
uniquely determined element of R®. (This
means that @ is a mapping from R® to R3.)*
Given any element r & R®, there exists an ele-
ment s € R? such that ®(s) = r, (This means
that @ is a mapping from R® onto R®.)
The magnitude of r is equal to the magni-
tude of the image of r.under @ for allr € R%,
e, Izl = @@l (ThIS means that ® pre-
serves magnitudes and hence angles, sizes, and
shapes.)
Given any two elements*r;,_s’e R3, <l>(£+_s,) =
®(r) + @(s) and given any real number x,
®(xr) = xfI)(r) In particular, if r = xi + Y+
zk then D(r) = x®(i) + y<I>(j) ¥ sz(k) (Thls
means that ® is a linear tranformatzon and that
@(r) is completely determined by dJ(z) <I>(J)
and D(k).)

A consequence of these properties is that @ is a one-
to-one mapping. That is, if r and s are in R® such that
r#.s, then ®(r) # ®(s). Equlvalently, if ®(r) = ®(s)
for some rse R then_r, must equal 5. A consequence of
property (4) is that <l>(0) = ®(0i, T 0j + 0k) = 0 (i)
+ 0 (]) + 0 (k) = 0 Hence the origin O of R® is
fixed under @, i.e., d)(O) = 0. (The word “pomt” in
point isometry and pomt group alludes to the prop-
erty that some point, in this case the origin, is left
fixed—that is, unchanged in position—by ®.)

If ® and & are two point isometries, then we say
that they are equal—that is @ = ®—if G)(r) (D(r)
for all r € R®. Hence in view of (4), two pomt
isometries ® and ® are equal if and only if @(1) =
(I)(l) @(1) ®(j) and G)(k) @ (k). A trivial “but
important example of a pomt 1sometry is the identity
mapping I on R® defined by I(r) = r for all 7€ R®. In
the case of the identity mapping, magnitudes are
preserved since under I each vector in R® is mapped
onto itself. Another example of a point isometry is a
rotation. For our purposes a rotation will mean a
turning of space about a line, called the rotation axis,
that goes through Q and has a positive direction

@)

(€))

“4)

* In general, a mapping o of a set A into a set B is a rule which
assigns to each element in A a unique element in B, In this paper, R?
plays the role of both A and B, that is, the mapping we will be using
will map R® into R%.
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defined on it. Let P denote such a rotation and let £
denote its rotation axis. Then a turn angle p of P is
an angle measuring the action of P on a plane
perpendicular to £. The turn angle is considered to be
positive if the action of the rotation is measured in a
counterclockwise direction on the plane when viewed
from the positive direction defined on { (see Fig. 2a).
It may be noted that the turn angle of P is not
uniquely determined. In fact if p is a turn angle for P,
then so is p + k(360°) where k is any integer. Hence,
any specific value for p is merely a representative
of the turn angle of P. For example, the rotations
about the line { with turn angles 240° and —120°,
respectively, are really the same rotation P with two
different turn-angle representations. The identity can
be viewed as a rotation whose turn angle is zero (or a
multiple of 360°) and whose rotation axis may be
considered non-existent or chosen arbitrarily, which-
ever is more convenient to the situation at hand. It
should be stressed again that all of the rotations
considered in this paper have axes that pass through
0.

" If we are given any two point isometries @ and ®,
we may define a new mapping called the composition
{or product) of ® and ® denoted by @ ® and defined
by (E)d)(r) = G)((b(r)) for all r & R®. It can be shown
that ®® is a point 1sometry Likewise, it can be
shown that the composition of point isometries is
associative, i.e., (®Y') = (@)W for all point
isometries @, @ and W¥'. It can also be shown that
corresponding to each point isometry @ there exists a
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unique point isometry ® such that @d®» = &0 = ].
In this case @ is called the inverse of ©® and is denoted
by @ = @~'. By unique we mean that if @® = &0
= ] and OW = WO = ], then ® = W', The existence
of inverses implies the cancellation law which states
that if A, B and Q are any three point isometries such
that AB = AQ, then B = Q. If P, and P, are rotations
about the same rotation axis £ with turn angles p, and
ps, Tespectively, then the composition P,P, is simply
the rotation about £ with a turn angle of p;, + p,. In
particular, if p, = —p,, then P,P; has a turn angle of
zero and so P,P, = I (i.e., P, = P,7'). Hence, by the
uniqueness of an inverse, the inverse of a rotation is a
rotation. It can be shown that the composition of any
two rotations (possibly with distinct rotation axes) is
again a rotation (see Seitz, 1935). Since this last result
is intuitively obvious and because the proof does not
contribute to an understanding of the subject under
consideration, it will not be given here.

Proper and improper rotations.

In this section we will show that every point isome-
try is either a rotation or a rotoinversion, this latter
being the composition of a rotation with a special
isometry called the inversion, as defined below. Let @&
denote a point isometry. We recall from property (4)
of a point isometry that the image of every vector
under @ is completely determined by ®(i), ®(j) and
<D(k) the images of the basis vectors under ®. In
anure 3(a) we have depicted the images of i, ] and k
under ®. Since ® is a point 1sometry and so

[ sin2p__ P(s)=(cos2p, sin2p,0)
i cos2p
0|3, ! »
-~ T —— Y
| p :ﬂcos_u
= =y |
s~ s=P(r)=(cosp,sinp,0)
L=(|,o,0)r
‘ b
X

FiG. 2. (a) Diagram showing how the turn angle p of the rotation isometry P is measured with
respect to the rotation axis f; (b) a drawing of the bases vectors {r,s} of I'" viewed down the rotation axis
of P where I'" is the set of all vectors in I' perpendicular to the axis of P. It is assumed without loss of gen-
erality that the unit length along the X axis is |[#]. The vector s is the image of r under P. Accord-
ingly, § lies in the XY plane, making an angle of p with respect to X, Because P(s) = P(P(r)) = Pz(r) and
because P? defines a rotation of 2p about Z, P(s) must lie in the XY plane, makmg an anglc of 2p with
respect to the positive X axis. Since P leaves I' invariant, P(s) € T and so P(s) € I'". Since 7 and § are
bases vectors for I' and since P(A_-)) eI, Pl = ur +us for some integers u and v.
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Fi1G. 3. Given a point isometry @, either { dJ(:),(I)(j) Cb(k)} forms
a right-handed coordinate system (deplcted in the left ¢ column)
or a left-handed one (depicted in the right column). (a) shows the
original positions of ‘I’(L) ®(j), and ®(k). (b) shows the result
of applying W', to fb(z), (IJ(J) and d)(k) The rotation ¥*, was
chosen to map dﬂ(,) to i whereupon <IJ(J) and tI)(k) map into the
ZY (stippled) plane such a rotation can be constructed by using
as the rotation axis the line through the origin perpendicular
to a plane determined by i and tb(z) The turn ange of W, is
simply the angle between "y ‘and D). (c) shows the result of apply-
ing ¥, tow '~I>(z) v tI)(]), and ¥ (IJ(k) The rotation ¥*, was
chosen to map\lf'ltb(]) toj. Note thatllf'2 is constructed in the same
way as was W, in (3b) Since 1 is perpendicular to a plane con-
tainingW, @(j) and j, the rotation axis of W, can always be chosen
to be the X axis. Hencc L} A ‘I)(L) = e

LEFT -HANDED

{PU), S, i

preserves magnitudes and angles, { <I>(1) d(j), d)(k)
also forms a set of three vectors of unit lengm which
are mutually perpendicular. We will analyze & (Fig.
3a) by considering two consecutive rotations ¥, fol-
lowed by W', such that W, maps (l)(l) to i—
whereupon ‘IPI((I)(])) and \If'l(dl(k)) must lie in the
YZ plane (Fig. 3b)—-and v, is the rotation about the
X axis that maps \If'l(tb(L)) toi and, since its rotation
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axis is the X axis, leaves W' @ (i), which is equal to 1
unmoved. Hence‘lf‘z\lf‘l(CD(z)) = zand‘lf'z\lf'l((b(j)) =
(Fig. 3c). It was pointed out above that the
composition of two consecutive rotations is again a
rotation. Accordingly, W,W'; is a rotation which for
convenience we will label W'. From above, it there-
fore follows that W'(i) = i and Wa(j) = j, Two
cases are possible for the 1mage of dJ(k) under ¥
namely W®(k) = k or \If‘d)(k) —k (see Fig. 3c)
We first consider the case where \If‘fb(k) = k Because
\If‘d)(t) = L= 1(1) \If‘(b(]) ] = 1(1) and \If‘tb(k)
k= I(k) we seé that i J, and k have the same images
under \F® as they do under /. Hence we conclude
that W® = [. Accordingly, ® is the inverse of a
rotation; this, as previously noted, implies that & is a
rotation. Next we consider the case where W® (k) =
—k; By performing a half-turn 2 (a rotation with a
turn angle of 180°) about the Z axis, we have 29 ® (i)
==, 2‘1"<I>(]) = —_] and2ll/‘fIJ(k) = —k. Hence, the
1sometry wd maps rto —r for all r in R3. We call
this mapping the inversion denoted by i(e., t(_) =
—r, for all r € R?). Now 2W'® = j and so ® =
(2lIf‘) s the composition of the rotation (29")~!
and the inversion, i. A point isometry formed by the
composition of a rotation and the inversion is called a
rotoinversion. We have just shown that every point
isometry is either a rotation or a rotoinversion. Since
a rotoinversion maps a right-handed coordinate sys-
tem into a left-handed one (and vice versa), it is often
referred to as an improper rotation. On the other
hand, because rotations do not change the hand of
the system, they are sometimes referred to as proper
rotations. We have also shown that, if @ is an im-
proper rotation, then there exists a proper rotation
P such that & = Pi. Since Pi(r) = P(— r)=P({(~1)r) =
—P(r) for all r& R®and since iP(r) = I(P(_))) = —i’(g)
for all_r) € R? we see that Pi = {P and so i com-
mutes with every proper rotation.

Space lattices

A crystallographic point group consists of a set of
point isometries that leave a given space lattice invari-
ant. A subset I' of R® is a space lattice if and only if
there exist three non-coplanar vectors b and L
such that

T = {ut, + vty + wts| u, v, w € Z}
- - Y

where Z denotes the integers (i.e., Z= {---, =2, —1,
0, 1, 2, ---}). Notice that in the definition of I" only
integers are allowed as coefficients of Ly 1 and s,
whereas in the definition of R* any real number can
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serve as a coefficient of i, J» or k. The set {ta, 12 s} is @
basis for T because each vector tinl may be written
as an integral combination of b I,. and ta, i€, L = ut,
-+ vty + Wiy such that u, v, and w are mtegen We
visualize T as the collection of points (called lattice
points) in space consisting of the end-points of vec-
tors in I' radiating from the origin, 0. As stated
before, we will not distinguish between a vector and
its corresponding lattice point.

Lattice invariant isometries

If @ is a point isometry, then we say that T is
invariant under ® in case I' = @®(I') where we define
&) = (@) | teT}; that is, ®(T') is the set of all
d)(t) such that 4 is an element of T'. This is not to say
that t = ®(r) for all te T but merely that I and ®(I")
are equal sets of vectors. In other words the vectors in
I" are permuted by @, Since {1y, L 15} are non- copla-
nar, every vector r in R? is a linear combination of {rl,
fa, la}, i.e., there exist real numbers p, g, and s such
that I=pti + gy + sty Therefore, ®(r) = D(p1, +gt,
+ vla) = ptb(r )+ q(b(!z} + \tb[rs} and so0, as in the
case of it ,-' k} noted earlier, we see that ® is
complelely “determined by the images {®(1,), ®(L,),
@®(1,)} (Note that the property ®@(I') = I’ was not
rcqﬁircd to make this last conclusion. In fact, the
conclusion is true for any linear transformation).

We will now show that there is only a finite number
of distinct point isometries that leave a given lattice I’
invariant. Consider a sphere S centered at Y with a
large enough radius so that S contains all three of the
basis vectors 1, 0, andqt3 of T and let ® be an element
of the set K of all point isometries that leave the lattice
I invariant. Since @ does not stretch vectors (magni-
tudes are preserved), CIJ(tl) (b(tz) and d)(t3) must be
vectors in T' that are contained within the sphere.
Moreover, since the radius of the sphere is finite, we
may assume that there is only a finite number of
lattice points of T' in the sphere (a rigorous proof of
this intuitively obvious fact is given in a paper on the
derivation of the 14 Bravais lattices being prepared
by Boisen and Gibbs). Consequently, there are only a
finite number of choices for tI)(t1) CI)(t2) and tb(ta)
i.e., there are only a finite number of possibilities for
the images of the vectors #,, t,, and £, under @. Since,
as previously observed, & s comﬁletely determined
by {®(1,), (I)(t2) <I>(t3) we conclude that there is
only a finite number of distinct point isometries in K
(i.e., that leave T' invariant).

Now we consider the algebraic properties of the set
of all point isometries K that leave a lattice T'
invariant. The following facts are observed about K:
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(1) Closure: If ®,0 < K, then @0 K. (This can
be seen by observing that ®@(I') = ®(O(1'))
=M =T)

(2) Associative law: If ® 0¥ c K, then &(OW)
= (PO, (This was observed earlier.)

(3) Existence of an identity element: There existsan
element I € K such that /® = @1 = @ for all
© < K. (The identity mapping discussed earlier
has this property and is in K because I(I') = T
(in fact, 1(t) =1 for all e ).

(4) Existence of an inverse for each element: Given
an element ® < K, there exists an element & !
€ K such that ®®d ! = @ 'd = [. (We have
observed earlier that the point isometry &~}
exists. Furthermore, ® ! € K since ® (') =
oY oI = '®I)=IT)=T)

Any set of elements together with a composition
obeying the four axioms listed above is an algebraic
system called a group. Hence K is a group, and since it
has only a finite number of elements, it is said to be a
finite group. The number of elements N in K is called
the order of K and is designated by N = #(K). The
observation that K is a finite group is important be-
cause in general if H is a finite non-empty subset of a
group G, then H is itself a group (under the
composition of G) if and only if it satisfies the closure
axiom (Herstein, 1964). When a subset H of G is a
group under the operation of G, we call H a subgroup
of G. Hence, a nonempty subset H of the finite group
G is a subgroup of G if and only if hh, € H for all
hi,hy € H. Consequently, if T is any nonempty set of
point isometries that leave the lattice I' invariant,
then, since T is a subset of the finite group K, we need
only show closure to demonstrate that T is a group.
To distinguish these groups from groups of point
isometries in general, we call such groups
crystallographic point groups if a space lattice is left
invariant under every element of the group. (Note
that the crystallographic point groups are special
because, in general, given a point group G there may
not exist such a lattice). Moreover, if all of the ele-
ments of the group are proper rotations we call it a
proper crystallographic point group. An improper
crystallographic point group is one that contains at
least one improper rotation.

Possible turn angles for lattice
invariant isometries

Let P denote a rotation that leaves a lattice T’
invariant. For convenience, we will choose as its turn
angle representative an angle p such that —180° < p
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< 180°. It is proven in a number of places that since P
leaves I' invariant, the only possible turn angle repre-
sentatives of p must be one of the angles 0°, +60°,
+90°, £120°, 180° (see for a matrix argument, Seitz,
1935; Burckhardt, 1947; Lomont, 1959; and Janssen,
1973; and see, for a geometric argument, Hilton,
1903; Robertson, 1953; Buerger, 1963; and Bloss,
1971). We will present a new and different proof of
this fundamental property of a rotation that leaves a
lattice invariant. First we observe that in the case of
any such non-identity rotation, P, there must exist a
two-dimensional sublattice I'" of I' in the plane per-
pendicular to the rotation axis of P (¢f Seitz, 1935;
Zachariasen, 1945; and Boisen and Gibbs, in prepa-
ration). Boisen and Gibbs show that if r is a shortest
nonzero vector in I'" and if 5 is a shortest nonzero
vector in I noncollinear with r, then the set { st
serves as basis generating I, that is I = fur + vs |
u,v € Z} (the fact that such vectors r and g exist is also
shown by Boisen and Gibbs). Let 7 be a shortest non-
zero vector in I''. Without loss of generality, we may
place the X axis of our cartesian coordinate system
along r and the Z axis along the rotation axis of P
since it is perpendicular to I''. This situation is shown
in Figure 2b. If we define the unit length along the X
axis to be |Ir|| then 7, = (1,0,0). Let s be the image
of r under P, that is P(r) = s. Hence, s < I, and ||rH
= ||s|| If the turn-angle of P is 0° or 180°, then p is
one of the possible turn angle representatives enu-
merated above and we would be done. On the other
hand, if p is not equal to 0° or 180°, then 7 and s are
not collinear and S, being the same length as r is
clearly a shortest non-zero vector in I' non-collinear
with r Hence, r and s constitute a basis for I' and
each vector e T’ must be an integral combination of
r and £ 1.e.,_t) = ur+uvs where # and v are integers.

TaBLE 1. Symbols and Names for Rotations
Associated w1th the Eight Possible Turn Angles

Symbol for rotation
associated with

Turn angle p turn angle Name of rotation
180° 2 half-turn
120° 3 third-turn
90° 4 quarter-turn
60° 6 sixth-turn
0 1 identity
—60° 6" negative sixth-turn
—90° 4! negative quarter-turn
—120° 3! negative third-turn
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Then, as demonstrated in Figure 2b, s = (cosp, sinp,0)
and P(s) = (cos2p,sin2p,0). Since P(s)e 1", it must be
an integral combination of {r.st, ie, P(s) = ur + vs
where u and v are integers. Therefore,

(cos 2p, sin 2p, 0) = u(1, 0, 0) + v(cos p, sin p, 0)

= (u + v cos p,vsin p, 0)

from which it follows that sin2p = vsinp. Replacing
sin2p by 2sinpcosp, we see that 2sinpcosp = vsinp.
Since p # 0 and p # 180, sitlp # 0 and so cosp = v/2.
Because cosp is a function bounded by +1 and v is an
integer, the only possible solutions are cosp = 0,
+1/2, £1. Hence p is one of the following eight
possible turn angles: 0, £60°, +90°, +£120°, 180°.
Recall that a positive p angle is measured in a
counterclockwise direction. The symbol and name
corresponding to the rotations associated with each
of the eight turn angles are given in Table 1.

The symbols listed in the table describe only the
turn angles of corresponding rotations but lack
information about the orientation of the rotation
axis. Hence, when specifying a non-identity rotation
using this symbolism, a description of the orientation
of the rotation axis is required. When discussing a
point group that leaves a particular lattice I' in-
variant, it is customary to choose a conventional unit
cell (Table 2.2.2, International Tables, vol. 1) outlined
by the cell edge vectors {a,b,c} (note that {a b c} is not
always chosen to be a prlm_l'tlve triplet; that 1s {a b o
is sometimes not a basis for I'). The conventional
choice of 4a, b and ¢ (Table 2.3.1, International Ta-
bles, vol. I) turns out to be such that if £ is the axis of
a rotation that leaves T invariant, then there exists a
vector r = ug + vh + we along { such that u, v, and w
are 1ntegers (see Zacharlasen 1945; Buerger, 1963).
Since the components u,0,w, of r completely define
the orientation of the rotation axis with respect to
{abg [uvw] will be used as a left superscript on the
rotation symbol to specify the orientation of the rota-
tion axis. Hence, ®*n where n = 2, 3, 4, or 6
symbolizes a 1/n turn about the line ua + vb + we.
Thus.U'%12 symbolizes a half-turn parallel to a,/014
synmibolizes a quarter-turn parallel to b whereas
(71113-1 symbolizes a negative third-turn parallel to
—a- b+c The one exception to our rule is when
the rotation axis parallels —=¢; in that case no ori-
entation symbol is attached to the rotation sym-
bol, hence 47! denotes a negative quarter-turn about
[ We will always place the Z axis of our cartesian
‘Coordinate system along ¢. For groups requiring ori-
entation symbols, ,a and b will be chosen so that they
are perpendicular to ¢ and X will be chosen to lie
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along 4. (The fact that g and b can be placed
perpendlcular to ¢ is not obvious and is explored by
Seitz, 1935, and Boisen and Gibbs, in preparation.)

As observed earlier, if ® denotes a rotoinversion,
then ® = Pi for some proper rotation P. We will
assign as the turn angle of ® the turn angle of P and
as the rotation axis of @ the rotation axis of P. Hence
the orientation symbol for ® is the orientation sym-
bol for P. The names and symbols for the
rotoinversions corresponding to the eight possible
turn angles are given in Table 2. Note that 2i = 2 can
also be visualized as a reflection denoted by m, where
m refers to the mirror plane about which the reflec-
tion occurs. The orientation symbol given to m is
inherited from the half-turn perpendicular to the mir-
ror plane. For example,!®m denotes a reflection
whose mirror plane is perpendicular to a while m
denotes a reflection whose mirror plane is
perpendicular to c.

Proper crystallographic point groups

If G is a finite group consisting of rotations of the
type listed in Table 1, then G may be shown to leave
some lattice I" invariant (Boisen and Gibbs, in prepa-
ration). Consequently, the search for proper crystal-
lographic point groups is equivalent to the search for
those finite groups consisting of rotations of the type
listed in Table 1. When all of the rotations of G have
the same rotation axis, we call G a proper monaxial
group. When G has two or more rotations with dis-
tinct axes, then we call G a proper polyaxial group.

Proper monaxial groups

It is evident that each of the following collections of
crystallographic rotations {1}, {2,1}, {3,37',1}, 4,2,47",
I}, and {6,3,2,3°', 67 ',1} forms a proper monaxial
group where all of the rotations in each collection
take place about the same axis. (Recall we need only
demonstrate closure to conclude that each is a group.
For example, for {3,37%,1} we observe that each of
compositions 33 = 371,331 =1,31=3,3""3=1,
3137t =3,3"1=3"13=313""=3"tandll =
lisin {3, 37, I} and so we have demonstrated closure
for {3, 371, 1}.) The list of monaxial groups given
above exhausts those that can be made from the ro-
tations presented in Table 1. This can be quickly
checked by considering each of the remaining col-
lections and showing that no other such group is
possible (e.g., {1,2,3} is not closed because 23 = 6*
& {1,2,3}). Since {6,3,2,3°1,67',1} = {6,66°6%6°6°,
we call {6,3,2,3-',67',1} a cyclic group generated by
6. In group theoretic notation we write (6) = {6,6%,
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TaBLE 2. Names and Symbols for the Rotoinversions
Associated with the Eight Turn Angles

Symbol for roto-
inversion associated Name of
Turn angle p with turn angle rotoinversion
180° m = i2 = 2i = 2 |reflection
120° I=1i3=3i third-turn inversion
90° I=i4=4i quarter-turn inversion
60° 6= i6= 6i sixth-turn inversion
0 i=il=1i=1 |inversion
—60° 6 ' = i6™" = 6 'i | negative sixth-turn
inversion
—90° 4 ' = it™" = £ 'i | negative quarter-
turn inversion
—120° 37! = i37' = 37'i | negative third-turn
inversion
6%,64,6°6°% = {6,3,2,3°1,6°1,1} and denote the group

by 6. Note that ¢4 = {67,6%6 %6 *6°6°
= {6°.,37',2,3,6,1}. Since the order of listing the
elements is immaterial, we see that (§) = (6°) and
hence 6°! is another generator of the group 6. A
similar situation exists for the other monaxial groups
as evinced by Table 3. In summary, we have shown
that all of the proper monaxial crystallographic point
groups are cyclic. Because of theoretical considera-
tions used later in this paper, we require a more
formal definition of a cyclic group. A group G is a
cyclic group if and only if there exists an element g
G such that G = (g) = {g"|n € Z}. Here g is referred to
as the generator of the group. In the case where G is a
finite group it is sufficient to consider only the posi-
tive powers of the generator as borne out by our ex-
amples above. In fact, if (g) is finite and ¢ = #((g)),
then ¢ is the smallest positive integer such that g
= 1. For example, in the case of (4~!), the smallest
positive integer ¢ such that (47')" = I is ¢t = 4, hence
#(4~Y) = 4 as evinced by Table 3. As seen in Table 3,
there is only one distinct monaxial group of each
order about a single axis. If G is a proper monaxial
group of order n, then we will use the symbol n to

TasLe 3. The Proper Monaxial Groups,
Their Generators and Elements

Group symbol Group generators and elements
1 (1 = {1}
2 (2) = {1, 2}
3 @H=@H=1{1,33"
4 @ =")=1{1,424"
6 (6)=(6"")=1{1,6,3,23"6"




152 M. B. BOISEN,
designate the point group. The axis common to all of
the rotations of a given monaxial group n (wheren =
2, 3, 4, or 6) will be called an n-fold axis. (When n is
different from 1, 2, 3, 4, and 6, a perfectly good point
group results in the manner described above. How-
ever, for such a point group no space lattice is left in-
variant and hence it is not a crystallographic point

group.)
Proper polyaxial groups

In our investigation of the polyaxial groups, we
will be examining combinations of monaxial groups.
The task of finding the possible proper polyaxial
point groups will be considerably more difficult than
that of finding the monaxial point groups. It will
require some fairly sophisticated arguments and a
considerable amount of notation which will be ex-
plained as we go along. The main aim of this section
is to establish the inequality which in loose terms will
state that three monaxial groups with orders »,, v,,
and »,, respectively, may be used to form a proper
polyaxial point group only if

/v + /vy, + 1/vy > 1.

To facilitate our proof that will establish this in-
equality we will consider the surface § of a unit sphere
centered at 0. Any point isometry & acting on 8
maps & onto itself. In fact, ® is completely
determined by its action on 8 because the effect of ®
on 8§ determines the end-points of (D(t) <I>(/) and
®(k) and therefore the components of(b(z) CD(]) and
(I)(k) A non-identity proper rotation h about the
rotation axis ¢ leaves exactly two antipodal points on
8 unmoved. These points are precisely the points at
which { and 8 intersect and are called the pole points
belonging to A. If these two points are labelled p and
g, then they are the only points x on $ that satisfy the
equality A(x) = x. Let G be a proper polyaxial group.
The trivial group / has already been treated as a
monaxial group and since it has no pole points we
deliberately exclude it from consideration in the
remainder of this discussion. Hence we will assume
that #(G) = 2. To help illustrate a number of the
concepts given below, we will on occasion use the
proper polyaxial group 322 as an example. However,
none of the theoretical concepts that follow depend
on the assumption that 322 exists. The rotations of
322 are {1,3,3-1J1012[1101201012}  Since 322 con-
sists of 6 distinct rotations, by definition #(322) = 6.
The orientation of each of these rotations is shown
in Figure 4a (recall that the left superscript is only

JR.,
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TaBLE 4. Group Multiplication Table for Group 322
322 I 3 3—1 [100]2 lllﬂiz [010]2
1 1 3 3—1 (100]2 [110]2 [010]2
3 3 3—1 1 [110]2 [010]2 I100]2
3—1 3—1 1 3 [010]2 [100]2 [110]2
[100]2 [100]2 [010]2 [ilU]z 1 3—1 3
lllOIz [110]2 [100]2 lUlO]z 3 1 3—1
[010]2 IOIO]Z [110]2 [10012 3—1 3 1

assigned to a rotation symbol when the rotation oc-
curs about an axis other than Z), and the pole
points belonging to the rotations of 322 are de-
picted in Figure 4b. The multiplication table for 322 ~
given in Table 4 serves to define the structure of the
group by enumerating the compositions of all
possible pairs of group rotations. Since the only
rotations that appear in.the table are the six rota-
tions already listed for 322, we may conclude that
322 is closed under composition and hence is a
group.

Let p denote a pole point of G. Then the collection
of all rotations of G that have p as a pole point is
designated by G, i.e., G, = {g€ G|g(p) = p}.* If
81, 82 € Gp, then £:8:(p) = 8.(8:p)) = &:(p) = p.
Since g, and g, were arbitrarily chosen rotations
of G, and since g,g, € G,, we conclude that G, is
closed under the composition and hence a sub-
group of G. Since the rotations of G, leave p fixed,
they all have the line Qp containing Q and p as their
rotation axis. Consequently, G, is a proper monaxial
group and therefore one of the cyclic groups listed in
Table 3.

In the case of 322, (322)pm = (322)p; = {1992,1},
(322)p5, = (322)py5 = #1912,1}, (322),, = (322)m =
{01012,1} and (322),,, = (322)‘,,12 = {3,37',1}. We ob-
serve in this example that two pole points are associ-
ated with each monaxial group (Fig. 4). It is also evi-
dent that the pole points p,;, Pas, Pas, Psi, Paa, and pag
are each associated with the group 2 where the rota-
tion axis of each has a different orientation. The re-
maining pole points p,; and p,, are similarly associated
with group 3 (see Table 3). (The significance of the
double subscripts attached to each pole point belong-
ing to 322 will be discussed later. For the time being,
the subscripts may serve to distinguish distinct pole
points.)

* The subset G, of G, consisting of all g € G for which g(p) =
p, is a subgroup of G sometimes called the stabilizer of p.
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taaz]pz; {y, ez

(322),,33: ), [010l5)

N

(322)p =11,3,3°'t

X

/(322)p32= (l'noolz;

(322)p, = {1, (M0l

FIG. 4. The orientations of the rotation axes and the associated pole points for point group 322 are
shown in (a) and (b), respectively. The bases vectors a; b C lie along X, Y, and Z, respectively, and so
are not shown. Note that in this figure X, Y, and Z are not mutually perpendicular, since the angle
between X and Y is 120° (the angles between X and Z and Y and Z are both 90°).
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Theorem 1. Let p and ¢ be pole points belonging to
the proper polyaxial group G such that there exists a

M. B. BOISEN, JR.,

rotation g € G such that g(p) = g. Then the cyclic

groups G, and G, have the same order; that is #(G,)

= #Gg).**

Proof. From the discussion above we know that G,
and G, are monaxial and hence cyclic groups. Let &
be a generator of G, and let n = #G,) and m = #G,).
We want to show that m = n. As observed in the
section on proper monaxial groups, n is the smallest
positive integer such that A = 1. Consider the rota-
tion ghg~' where g(p) = q (such a g exists by the
hypothesis of the theorem). Since g=%(g) = p and h(p)
= p, we observe that ghg='(q) = gh(g (@) =
gh(p)) = g(p) = q. Hence ghg~* (¢) = g demonstrat-
ing that ghg™' € G,. We next show that ghg='is a
generator of G,. Let f be an arbitrary rotation of G,.
Then g~'fg € G, because g~'fg(p) = g '(flgWp))) =
g ') = g7%(q) = p. Therefore, since G, = (),
g g = h' for some integer 1 < ¢ < n. Hence gh'g™!
= g(g g)g ' = f. Therefore
f=ghe!

= ghh --- hg~' (where h occurs ¢ times)

= gh(g~'g)h(g~'g)h --- (g7'g)hg™" (since g~'g = 1)

= (ghg~')Nghg™") - -- (ghg™') (by associative law)

= (ghg™')

Consequently f is a power of ghg~"'. Since f was an
arbitrarily chosen rotation of G,, we have shown that
G, = (ghg™"). Since m = #G,), as observed earlier
m is the smallest positive integer such that (ghg=*)™ =
1. However, since n = #(G,), (ghg™')" = gh"g™* =
glg™* = 1, but m is the smallest such integer hence
m < n. But (ghg='y" = gh™g~* = I and accordingly
h™ = g~'g = 1. However n = #(G,) is the smallest
positive integer such that A = I. Hence n < m.
Therefore, since n < m and m < n, we conclude that
m = n and so #G,) = #Gy).

In our example 322, if we consider the cyclic
group (322),,, = {1,119} we see that UI02(p,,) = ps,.
Hence, according to Theorem 1 we can conclude that
#((322)p,,) = #((322)p,,). We observe that this is in-
deed true because (322) p,, = {17912} and hence both
sets contain two rotations. Similarly Y%12(p,,) =
P12 and therefore we can conclude that (322),,, and
(322),,, have the same order. Again an examination
of Figure 4 shows this to be the case since (322),,, =
{1,3,37"} and (322),,, = {1,3,37'}. It may also be pre-

** Those familiar with group theory will recognize that this
theorem shows that G, is isomorphic to G, since they are both
cychc.
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dicted from Theorem 1 that there will be no group
element in 322 that maps p,; to p;; because their cor-
responding groups (322),,, and (322),,, are of differ-
ent orders. This is easily verified by considering the
rotations in 322 one at a time and observing that in-
deed none of them map p;, to pi,.

We will now investigate an important relationship
that exists between the pole points of any given rota-
tion group G. We define ®(G) to be the set of all pole
points belonging to the rotations of G, i.e., ®(G) =
{p € 8] there exists at least one g€ G such that g # 1
and g(p) = p}. For example, in the case of 322, #(322)
= {pi,Dr2:P21sPeasPassPs1sPazsPas}. We now define a
relation on ®(G) by defining for each p,,p, € ®(G)
that p, is equivalent to p, (symbolized p, ~ p,) if and
only if there exists a rotation g € G such that g(p,) =
p.- Hence, if p, ~ p,, then from Theorem 1 we know
that G, and Gp, are cyclic groups of identical
orders, i.e., #Gp,) = #GCp,)-

We observe the following important properties of
®(G) with respect to the relation defined in the last
paragraph:

(1) Reflexive: For all pe ®(G), p ~ p. (This is
because G has an identity element I and I(p) = p.
Hence p ~ p.)

(2) Symmetric: For all p,, p,€®(G), if p, ~ p,, then
P2 ~ pi. (This is because if g& G such that g(p,) = p,,
then g has an inverse g~ € G so that g7'(p;) = p;.
Hence p, ~ p..)

(3) Transitive: For all p,, ps, ps € ®(G), if p, ~ p.
and p, ~ ps, then p, ~ ps. (This is because if g(p,) = p.
and h(p,) = p, where g, hc G, then hg € G and
hg(p,) = h(g(Pl)z = h(p.) = ps. Hence p, ~ p;.)
Any relation defined on a set satisfying these three
properties is called an equivalence relation. Let p c
®(G), then we define the equivalence class determined
by p to be [p] = {g€®(G)|p ~ ¢}.* That is, [p] is the
set of all pole points of G equivalent to p. Since p ~ p,
we have p € [p] and so every element of ®(G) appears
in some equivalence class; hence ®(G) is the union**
of all of its equivalence classes. Furthermore, if [p]
and [g] have one or more elements in common (sym-

bolized by [p]NIg] # £),*** then [p] = I[q].

* The subset of § consisting of all g{p) as g ranges over all G is
sometimes called the orbit of p.

** The union of a collection of given sets is the set consisting
of all those elements that appear in at least one of the given sets.
The union (3)f two sets A and B is symbolized A U B and the
symbolism l,Lle A, means A; U A; U As.

*** The expression “A () B” denotes the intersection of sets
A and B, i.e., the set of all elements that are in both A and B.

The symbol @ denotes the empty set; i.e., the set containing no
elements.
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Accordingly, distinct classes are disjoint, i.e., they
have no elements in common. A thorough discussion
of equivalence classes including proofs of our obser-
vations above can be found in most modern abstract
alegbra texts (e.g., Larsen, 1969; Shapiro, 1975).

In our example of 322, the elements of the equiva-
lence class of p,, in ®(322) are [ps] = {p,c®(322)| pa
~p =
{p; € ®(322)| there exists an elementg &322 such that
8(p21) = put

= {g(vx) | 8 € 322}
= (I(p21), 3(P21), 37 (p21),

Y 2020), M 2p2), " 2(p))
= {Da1, P22s D2as Pors P2as P2s}

= {Pm, D22, Pza} .

Following the same procedure one may calculate
each of the equivalence classes of ®(322). The results

are: [pai] = [p22] = [Pas] = {ParPaz.Pas), [pa] = [ps2] =
[Pss] = {PsuPsa,Pssl, and [pu] = [pr2] = {Pupra}. We
notice that it is indeed true that these equivalence
classes are disjoint and that ®(322) is their union.
The pole point notation for 322 was deliberately
chosen at the outset so that points with the same
first subscript would be in the same equivalence class.

Let ¢t denote the number of distinct equivalence
classes of ®(G)where C,(G), CG), - *,C,(G) denotes
the equivalence classes of ®(G), i.e., C(G) = [p] for
some p € ®(G), hence

U C(G)=®G) and C(G)NCG) =@ if i#)

It should be observed that ®(G) is a finite set because
G is a finite set and each non-identity element of G
has only two pole points. Hence, each C,(G) is a finite
set and we let n, denote the number of points in C,(G);
that is, n;, = #(Ci(G)). Therefore, we may list the
elements of C,(G) as pyy, puz,* * * ,Pun. 10 the case of our
example, C,(322) = {py;,p1a}, Cx322) = {P21,P22,P23},
and Cy(322) 3= {Ps1,Da2,Psal and as observed above,

®(322) = U C(322) = C,(322) U G(322) U

Cs(322). In addition, notice that n, = #(C,(322)) = 2,
ny = #(Cx(322)) = 3 and ny, = #(Cy(322)) = 3.

Let H;; denote Gy, the group of all rotations in G
that leave pi; fixed. Since p;; and p;, are both in C,(G),
#(H;;) = #(H.x) because p,; ~ p; (see Theorem 1).
Hence H;,Hi, <+, Hi, all have the same order
which we signify as »,. It follows that H;; is a cyclic
group of order », and if we let 4, be the generator for
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Hy, then H, = {hh3;, - -,h‘t’;‘}. Moreover the axis
common to the rotations of H;; is a ;-fold axis (this
axis of course passes through p,;; and the origin,
0). In the context of our example 322, we see
that Hy, = {1,3,37'}, H;; = {1,3,37'}, Hy = {1,10012},
Hee = {(1,01012}, Hyy = ({1,111012}, Hy = {1,110]2},
Hy, = {I,1/0012} and H,; = {1 0012}, In addition
we observed that #(H;;) = #(Hy2) = vi = 3, #(Hs) =
#(Hzz) = #(Hzs) = v2 = 2, and #(Ha1) = #(Hs2) = #(Hss)
=y, = 2,

We are about to present a lengthy derivation of
some important relationships between many of the
concepts discussed above. These relationships will be
used to develop facts about G which will ultimately
enable us to determine all of the proper
crystallographic point groups which we then list in
Table 6. In an attempt to present this discussion in a
more understandable fashion, each of the more im-
portant relationships will be set off in a box at the
beginning of each argument where the relationship is
established.

t

AN — 1) = 2 n; — 1)

i=

1

Recall that N = #G), v, = #(Hy), ni = #(C«(G)),
and ¢ is the number of equivalence classes of pole
points. The basic strategy for establishing Equation
(1) will be to find two distinct ways of counting the
nonidentity rotations of G. The result will be two
expressions each equaling twice the number of non-
identity rotations of G. This will establish Equation
(1) since these two equal expressions will be precisely
those appearing in the equation. We begin by taking
each pole point p,; in ®(G) one at a time and counting
the number of non-identity rotations of G leaving py,
fixed. The sum of these numbers taken over all the
pole points in ®(G) will equal twice the number of
nonidentity rotations in G because each of these rota-
tions leaves exactly two pole points fixed and hence is
counted twice. The number of non-identity rotations
leaving p,; fixed is #(Hy) — 1 =», — L. Thus, for the
pole points in C,(G) we have

#(non-identity rotations leaving
py fixed) = v, — 1 l
#(non-identity rotations leaving
Pz fixed) =», — 1
‘ = n;equations

#(non-identity rotations leaving
Pun. fixed)=v», — 1
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TaBLE 5. Display of the Derivation of Equation (1) for Group 322

Notation for -
group G Notation for group 322

®*(G) ®(322) = {Pn, D125 D215 P22s P23, P31s P32, 1733}

C.(G) Ci(322) C,(322) Ci(322)

Dij Pu P12 D21 P22 Dag P P32 Das

Gpij

= {g € Glgy) |32y, = | 3220, = | (322)s,, = | (322),, = | (322)p,, =| (322, = | (322),, = | (322}, =
= pil {1,3,37") | {1, 3,37} | (1,12} | {1, "2} | {2, "™2}] (1,2} | {1,"""2) | {1,""""'2)

v:— 1) 3-1 B3-1 2-1 2—-1 Q-1 2-1 2-1) 2—1

n@;, —1) 23— 1) =4 32—1=3 32—1)=3

2, — 1) 4 + 3 + 3 = 10

i=1

2A#G)— 1 2A#B32) — 1) = 26— 1) =10

Summing up these numbers we find that the contribu-
tion from C,(G) is ny(v; — 1). Following the same
argument, we see that the contribution from C,(G) is
n(v; — 1) foreach | <i <t. Adding the contribution
from each otf the ¢ equivalence classes, we find that

the sum is Z ni(v; — 1). Since N — 1 is the number of
2 =1

non-identity_rotations in G, it follows that twice the
number of non-identity rotations in G is 2(N-1) and
so we have established Equation (1), namely

t

AN — 1) = Y ni(w, — 1).

i=1

¢Y)

Returning to our example 322, we observed earlier
that N=6,n,=2,n,=3,n,=3,v,=3,v, =2, and
v; = 2. The notation used in the derivation of Equa-
tion (1) is displayed for 322 in Table 5. It is clear from
the table that, as predicted by Equation (1), 2(#(322)
— 1) =10 = my, — 1) + nyw, — 1) + na(ws — 1).

N=n,—vif0rlSi_<_t

(2)

Since the following argument is quite tedious, the
reader may choose to skip to Equation (3) on first
reading. This can be done without sacrificing a basic
understanding of the development. An argument es-
tablishing Equation (2) using the following para-
graph and the footnote is presented for those who are
already familiar with group theory. The role of Equa-
tion (2) is to facilitate the analysis of the implications
of Equation (1).

Let i be any positive integer such that | < i < 1.

Then for this particular i we want to show that N =
nwv,. Consider the pole points belonging to C,(G). For
each p;;, there exists at least one rotation g€ G such
that g(pi1) = pi;. We single out one such rotation for
each j and label it g;. Then for each 1 < j < n,, g/(pi1)
= p,. By the way the g’s were chosen, the col-
lection of pole points {g(pi), 8Apu), s &n;
() = P Pzt Pt = CiG). We now form
the following list where as before, h;, is a generator of

Hy (ie, Hiy = (i ki, - - B
g, gl -, glh',f{'
&k, ghir’s -, A

gm'hils gmhilzg 22E 5 Lni h‘;{*

We now wish to show that every rotation in G
appears in this listing exactly once so that the number
of entries in the list equals #(G) = N. Let g& G, then,
since g maps p;; to an equivalent pole point, g(p;;) €
C.(G) and hence g(p;,) = p;; = g;(pir) forsome 1 < j <
n;. Therefore, g7'g(p,) = pu. Accordingly, g,7'g €
Hy = {hLh?,- - W) and so gy'g = hf for some

* Those familiar with group theory will recognize that each row
in our list is actually an enumeration of a coset of H;. Further-
more, the rotations in G that rotate p;, to p; are all listed in the
k™ row. Hence each row corresponds to a pole point in C(G)
and conversely. Consequently there is a one-to-one corre-
spondence between the number of pole points in C,(G) and cosets
of H;;. Hence there are n; cosets of H;; and since #(H;;) = v, we
have, by Lagrange’s theorem, N = nw,.
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1 < k < v,. Hence, g = g;h# which appears in our
list. Since g is an arbitrarily chosen rotation of G, we
may conclude that every rotation in G appears in the
list at least once. Our next task is to show that no
rotation of G appears more than once in the list. Sup-
pose that g € G appears in the list as g = g% and as
g=ghiwithl <k m<ypandl <r, s <n. We
wish to show under these circumstances that r = s
and k = m. Since p,, is a pole point associated with
hi,, we have ghfi(p) = g-(pn) = pir and gh%(ps) =
g:(pi1) = pis. Since g.hfi = gh%, by the definition of
equal mappings, p;» = p;s and so r = s. With this re-
sult we can now write g.h% = gA7% which implies by
the cancellation law that 2% = A7 and so k = m since
1 < k, m < v,. Therefore, r = s and k = m as re-
quired. Thus, we have shown that every rotation in G
appears exactly once in the list. Since the list consists
of n, rows and », columns, there are nw, symbols
listed, and since each rotation in G is listed exactly
once, we conclude that #G) = N = nw,.

Returning to our example group 322, we construct
the same list as in the general case using ps, as our
pole point, and V1912 as the generator’ of the group
Hei. Since 1(ps) = ps = [”0]2(1’31)’ 3(pa1) = ps =
[0]0]2(}’31), and 37'(py) = pss = [100]2@31)a we must
select g, to be either 1 or V1912 g, to be either 3
or 01012 and g, to be either 3~ or /912 We will
choose I as gy, 3 as g,, and 92 as g,. Hence, our
list for 322 using ps; as our pole point and /1012 as
our generator of H;, is as follows:

{t10] 110 2

102 ol

[110] 110 2

32, 3ol

[100]2[110]2 [100]2[“0]22
L

After forming these compositions (see Table 4), the
list becomes

[110]2 1
k]

[010]2 3
3

3—-1, [100]2'

It is apparent that each rotation of 322 is listed
exactly once and that v3-n, = 2:3 = 6 = #(322).

3

2—-2/N= 22— 1/) 3)

1=l

Since N = nyw, it follows that n, = N/»,. Replacing
n; in Equation (1) by N/v, we obtain

2N = 1) = > (N — 1)

i=1

AN — 1) = 2 N1 — 1/v)

i=l

2—-2/N= E (1 — 1/v).

i=1

Because Hy; is a subgroup of G, we can conclude
that #(H;;) = v; < #(G) = N. Also, since H,, is the set
of all rotations in G that leave the pole point p;; fixed,
it must, by the definition of a pole point, contain at
least one rotation in addition to the identity. Hence
2 < y; < N. Using the fact that », must be greater than
or equal to 2, the right member of Equation (3)
satisfies the inequaltiy

=1/ >

i=1

Z (1-1/2) = Z (1/2) = t/2.

Also, since N > 2, we can write

t
2>2—2/N= 2, (1= 1/»)>1/2.

=1
Therefore, 2 > t/2 and hence 4 > ¢. Thus ¢ can only
be equal to 1, 2, or 3. We can thus conclude that there
are no rotation groups having more than 3
equivalence classes of pole points. We now examine
each of these three cases for the value of .

Case where t = 1. In this case, Equation (3) be-

comes

1

2—2/N= >0 —1/m)=(1— 1/n)

t=1
or 1—2/N= —1/n.

The left member of this equation is always
nonnegative because N > 2, but the right member is
always negative because », = 2, which is a
contradiction. Therefore, ¢t cannot equal 1, from
which we conclude that ®(G) must contain more than
one equivalence class of pole points; t must equal 2 or

3
Case where ¢ = 2. In this case Equation (3) becomes

2
2-2/N= 20— 1/)
i=1
=0 —=1/m)+ 1 = 1/v)
By a little algebraic manipulation we find that
2=N/vi+ N/v,.

From Equation (2) we have that N/v; = n;, and so the
above expression simplifies to

2=n+ n, -

Because n, and n, are positive integers, we conclude
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TasLE 6. Possible Proper Crystallographic Point Groups

Symbol for G = va; | #(G)=N | #(CuG)) = N/v | #(Co(G)) = N/vs | #(Cs(G)) = N/vs
222 4 2 2 2
322 6 2 3 3
422 8 2 4 4 Dihedral groups
622 12 2 6 6
332% 12 4 4 6 Tetrahedral group
432 24 6 8 12 Octahedral group

1 The group 332 is usually designated by 23.

that n, = n, = 1 is the only possible solution. Hence,
for a rotation group with ¢+ = 2, we have two
equivalence classes consisting of one pole point each.
Altogether G has a total of two pole points, which
accordingly define one and only one rotation axis.
Therefore, those groups with two equivalence classes
of pole points must be the monaxial groups given in
Table 3. The number of elements in each of these
possible monaxial groups is equal to the order of the
rotation axis, #G) = v, = v,.

Case where ¢ = 3. In this case Equation (3) expands
to

2=2/N=(—=1/v)+(1 = 1/v)) + (1 — 1/v5)-
Rewriting this result we see that
1+2/N=1/vy+ /vy + 1/vg - “)
Since N = 2, it follows that 1 + 2/N > 1 and so
/v, +1/v,+ 1/p5>1 - %)

For convenience, we can assume that v, > v, > v,.

In constructing Table 6 we have considered all
possible combinations of vy, v,, and vs; selected from
the permissible values 2, 3, 4, and 6; and recorded
those that satisfy Inequality (5). Note that the other
possibilities for v,w,v, are 632, 442, 642, 662, 333, 433,
633, 443, 643, 663, 444, 644, 664, and 666. A quick
check shows that none of these sets satisfy Inequality
(5). (Note that the derivation of Inequality (5) did
not require v,, vy, and v; to be 2, 3, 4, or 6. Hence a
large number non-crystallographic point groups may
be formed that satisfy Inequality (5). For example,
n22 satisfies (5) for all n > 1.) * The orders of each of
the potential polyaxial crystallographic point groups
in Table 6 are found by substituting v,, »,, and v, into
Equation (4) and solving to obtain N = #G) =
2 wws/(vws + vy + ww, — vwary). The order of
C,(G) = n; is found by appealing to Equation (2),

* See Klein, Weyl, or Zassenhaus for a derivation of the non-
crystallographic rotation groups based on these ideas.

which yields n; = N/v,. These ate also recorded in
Table 6.

Determination of the interaxial angles

We have shown above that there are only 11 pos-
sible proper crystallographic point groups, namely [,
2, 3, 4, 6, 222, 322, 422, 622, 332, and 432. The
monaxial groups 1, 2, 3, 4, and 6 were established
earlier. However, we have not yet established the fact
that each of the polyaxial combinations actually
yields a group. Also, the possibility remains that
some of these combinations may lead to two or more
groups which may arise by assuming different inter-
section angles between the rotation axes (these angles
are called interaxial angles.). We will see later in this
section, however, that each of the possibilities leads
to precisely one point group. In the process we will
actually determine the interaxial angles used in the
formation of these point groups. Inherent in the
strategy we will follow in determining these inter-
axial angles is the observation that before a poly-
axial combination qualifies as a group it must
satisfy the requirement that each of its rotations
permutes the pole points within each of the three
equivalence classes. Hence a rotation must map a
given pole point to another pole point in the same
equivalence class. We recall that because equiva-
lence classes are disjoint no two distinct equivalence
classes share a common pole point. This observa-
tion will also be of considerable use in the determina-
tion of the interaxial angles. In addition it will be
helpful to observe that if a half-turn maps the point
p € 8 to g then its axis must bisect both of the arcs
determined by p and g. Hence, if r is a pole point
of such a half-turn, then p? = g7.

Interaxial angles for the dihedral groups v,22

We begin by considering the interaxial angles that
must exist for a polyaxial combination of the form
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»,22 (when v, = 2, 3, 4, 6) to be a group. Table 6
shows that there are exactly two pole points which we
denote p;; and py, in the equivalence class C,(¥,22).
Let A be a non-identity rotation in G such that A(p,,)
= pu, I.e., h& Hyy. Then h(p,;) must equal p,, or p,,
since every rotation in »,22 must permute the equiva-
lence class C(#,22) = {p,1,p12}. Because it was assumed
above that A(p,;;) = p;, and because A cannot map
two distinct pole points to the same pole point, we
conclude that A(p,,) must not equal p,; and hence
h(p,») = p:.. Therefore p;, and p,,; both lie on the axis
of the rotation h. Consequently, p;; and p,, are antip-
odal points and so there is exactly one »,-fold axis
associated with C,(#,22). Also each of the equivalence
classes associated with the cyclic groups of order 2
contain », pole points. Accordingly, we write Cy(v,22)
= {PasPazs * P} and Cy(#:22) = {Pa1Ps2, ' P}
Moreover, since there is a total of #(Cy(v,22)) +
#(C4(#,22)) = 2», pole points associated with the
2-fold axes, there must be exactly v, 2-fold axes assoc-
iated with Cx(»,22) and C;(»,22). Now that we know
the number of each kind of rotation axis present in
v,22, the task is to discover the appropriate inter-
axial angles between these axes so as to form a group.
If we place the Z axis along the »,-fold axis, then
pn and py,; are the points where the Z axis intersects
with the surface § of the unit sphere. The question
now is “Where can a 2-fold axis associated with say
pz be placed so that the associated half-turn g will
permute {p1;,p12}7 If g(P11) = puss then g(p1;) = pia.
Since g has only two pole points, p,; must be either
Pu Or py;, which is a contradiction because the
equivalence classes of pole points are disjoint. Hence
g(p11) = Pia, and py, bisects the arc p/l_l})m. Therefore,
since pf}m = p’z?plz and since p/u\p21 + ﬁz?pu =180°, it
follows that gD, = 90°. Accordingly, it follows that
the 2-fold axis associated with p,;; must be
perpendicular to the »,-fold axis. A similar argument
shows that the 2-fold axes associated with the remain-
ing pole points in Cy(¥,22) and C,4(v,22) are also per-
pendicular to the »,-fold axis. Thus, the », 2-fold axes
in »,22 are all perpendicular to the »,-fold axis.

The remaining question is ‘“What must the inter-
axial angles be between these 2-fold axes?” Without
loss of generality, because p,, is on the equator (the
great circle perpendicular to Z), we can place the X
axis of our coordinate system so that it passes
through p,,. We know that the images of p,; under the
rotations along the »,-fold axis are all in C,(v,22).
Moreover, because of the nature of the rotations
about the »,-fold axis, we obtain », points (hence all
of the points in C;(#,22)) spaced equally on the equa-

tor so that the arc length between any two adjacent
points is 360°/»,.

We now observe that there is only one rotation A
associated with the pole points in C,(»,22) such that
h(pa1) = pae where py; and py, are adjacent pole points
in Cy(»,22). If we let /%12 denote the half-turn
about the X axis then Y%12(p,) = py, and
the rotation AY%12 has the property that A/%12(p,,)
= py. However, A2 # h because if AUY2 =
h, then AY%12 = p . ] which according to the
cancellation law would yield the contradiction that
[10012 = . But h was the only rotation associated
with C,(»,22) which maps p, to p,. Hence AU/%12
must be a rotation associated with a pole point in
either Cy(#,22) or Cy(v,22). Therefore /%12 must be
a half-turn which maps p,, to p,, and whose rotation
axis is perpendicular to the Z axis. Thus the axis of
K012 must bisect the arcs along the equator deter-
mined by p,, and p,,. Let ¢ denote the pole point
belonging to H!%T2 which bisects the shorter arc be-
tween p,, and p,,. Since p,; and p,, are adjacent pole
points in C,(»,22), g cannot be in Cy(r,22) and hence
must be in C4(»,22). The images of ¢ under the rota-
tions about the »,-fold axis are the remaining pole
points in C3(»,22). In summary, we have shown that,
if ;22 (where v, = 2, 3, 4, 6) is to be a group, there is
only one possibie arrangement of rotation axes. The
interaxial angles for this arrangement are such that
the angle between the »,-fold rotation axis and each
of the 2-fold rotation axes associated with the pole
points in Cy(#,22) and Cy(v,22) is 90° and the angle
between any two adjacent 2-fold axes is 180°/v,. Re-
ferring to Figure 4, we see that our example group
322 does indeed satisfy this interaxial criteria. The
fact that »,22 actually forms a group when its inter-
axial angles are as described above can be shown by
preparing a multiplication table (note that this can
now be easily done by those familiar with matrix
theory since the matrix representation for the rota-
tions in »,22 is completely determined by the inter-
axial angles).

Interaxial angles for the tetrahedral group 332 (i.e., 23)

Our next task is to determine the interaxial angles
for 332. It is clear from Table 6 that there are two
equivalence classes associated with the 3-fold axes
containing 4 points each, and one equivalence class of
pole points associated with the 2-fold axes containing
6 pole points. Accordingly, there are four 3-fold axes
and three 2-fold axes in 332.

We begin by considering the placement of the three
2-fold axes. Let p,, denote a point in C3(332). Since
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C5(332) contains all of the pole points associated with
the half-turns in G and since the antipodal point of
Pa 1s associated with the same half-turn associated
with p,,, it follows that the antipodal point of p;,
which we denote by ps, is in C3(332). Without loss of
generality, we place the Z axis along the line segment
PaiPsz2. Let py; be any one of the remaining pole points
in C3(332) We will show that P/a?Paa = 90° by assum-
1ng that pg,pss # 90° and arrlvmg at a contradlctlon
If papas # 90°, then either py, pas < 90° orpalps,4 < 90°
where py, is antipodal to psg. Without loss of
generality, we may assume that @)33 < 90°. If we let
2 denote the half-turn along the Z axis (with pole
points pal,paz) then 2(p33) ps; for some py; € C4(332).
Hence paps = p31p33 < 90°. By our cearlier
observation on the effect of a half-turn, p;, bisects
p/3,7)33, hence pj?p;,a < 90° + 90° = 180°. Therefore p;;
# Pas SINCE PagPs; = 180°. Moreover, it is clear that p;,
& {Ps1,Ps2,Pas) . Hence the rotation axis associated with
Ps; is different from those associated with {ps,,ps,} and
{Dss,Das}. Therefore, ps; must be one of the remaining
pole points in C (332) say ps; = pss. We also observe,
since py; bisects pagpss, that Ops,, Op83 and Op35
are coplanar where O is the origin of R®. Hence
the three axes associated with haif-turns are all
coplanar. We now make an obvious but important
observation about third-turns. If g is a third-turn and
q is a point not on its rotation axis, then the points
{q.8(q).g%(q)} determine a plane perpendicular to the
axis of g. Hence given any point g in C3(332) and any
3-fold axis belonging to 332, there exist two other
pole points in C4(332) such that the plane determined
by g and these other two points is perpendicular to
the 3-fold axis. But, under the hypothesis that p/ansa
# 90°, we have shown that all the pole points of
Cs(332) are coplanar and hence all of the 3-fold axes
must be perpendicular to the plane determined by
these pole points. This means that 332 can have only
one 3-fold axis, which is a contradiction because we
know that there are four such axes. Therefore, the
angle 17:;1\1)33 = 90°. Since p,, was an arbitrarily chosen
point in C43(332) and since ps; was selected to be any
pole point except py; and ps;, we see by similar reason-
ing that py,pss = 90° and p;;zJas = 90°. Consequently,
the three 2-fold axes are mutually perpendicular.
Note that this says that 222 is contained in 332.
Now we will turn to the placement of the four 3-
fold axes. Letp11 be a pole point in C,(332). Then p,,
appears on § in one of the octants delineated by the
three 2-fold axes. Without loss of generality, we can
assume that p,, is located somewhere in the first oc-
tant (denoted by the shaded region in Fig. 5). If we let
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ps1 play the role of ¢ in our observation in the previous
paragraph, then we know that the 3-fold axis through
pu is perpendicular to some plane containing ps; and
two other pole points in Cg4(332). By inspecting all
such planes containing ps; and remembering that the
3-fold axis cannot be coincident with any of the 2-
fold axes, it is clear that the plane determined by ps,
Pss, and ps; (see Fig. 5) is the only possibility. There-
fore the third-turn associated with p;; maps ps; to pas,
P to pss, and pss to ps requiring that p,, be
equidistant from the pomts Paxs Pssy and ps; (see Fig.
6a). Therefore pmpu p33pu 1)351711 Solving in the
standard way the spherical triangles that arise from
these relationships, we conclude that ﬁ?pu = 54.74°.
The images of p,; under the half-turns in 332 yield the
four pole points belonging to C,(332) = {pi1, P12, P1ss
p1s} as pictured in Figure 6a. The antipodal points to
those appearing in C,(332) are not in C,(332), but
they are the pole points that form C,(332). The result-
ing set of all pole points belonging to 332 are shown
in Figure 6b. We have therefore shown that this
arrangement yields the only possibility for 332 to be a
group. If a multiplication table is prepared, it can be
shown that this arrangement does indeed yield a
group. A list of selected interaxial angles between the
rotation axes in 332 is given in Figure 6¢, from which
the remaining angles may be deduced.

FiG. 5. The orientations of the 2-fold rotation axes for the
tetrahedral group 332 = 23 with their associated pole points
shown as solid circles, The surface area on the unit sphere where
pole point p,; must lie is shaded.
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FIG. 6. (a.) Stereographic projection of the 2-fold rotation axes of the tetrahedral group and the pole
points belonging to C,(332) where the solid circles denote points on the upper hemisphere and the
open circles denote points on the lower hemisphere. (b.) Stereographic projection of all the pole points
for the tetrahedral group. (c.) Stereographic projection of the rotation axes of the tetrahedral group and
pole points appearing in the upper hemisphere. Selected interaxial angles are given by the following
arc lengths: P‘sTPu i P:bss = PuPss = P2z = PsiPrz = P’sL\Pu = 54-740;[’:?1722 = P’z;Pu = P:-\ZPN — P’szu =
70.32°; Piiprz = Pagbas = 109.47°; pripas = 90°; pipes = 125.26°,

Interaxial angles for the octahedral group 432

The final case in our consideration of proper rota-
tion groups is 432, which has three 4-fold axes, four
3-fold axes, and six 2-fold axes (see Table 6). Implicit
in the three 4-fold axes are three 2-fold axes. Since
there are more than one 3-fold axes present, the argu-
ment given in our discussion of 332 allows us to
conclude that the three 4-fold axes are mutually per-
pendicular. We use the same orientation for these 4-
fold axes as for the 2-fold axes in 332 (see Fig. 5).
Since the 6 pole points belonging to the 4-fold axes in
432 are arranged in exactly the same way as the 6 pole
points belonging to the 2-fold axes in 332, the 3-fold

axes in 432 must also be arranged in the same man-
ner. That is to say that 332 is contained in 432. Hence
we have placed all of the 4-fold and 3-fold axes pres-
ent in 432 (see Fig. 7a). Since there are half-turns
implicit in the horizontally placed 4-folds and since
these axes are perpendicular to the vertically placed
four-fold axis, we can conclude that 422 is contained
in 432. Hence by our discussion of 422 we know that
there are 2-fold axes bisecting the horizontal 4-fold
axes. Hence the point p,, placed as shown in Figure
7a is a pole point belonging to Cy(432). The
remaining eleven pole points in C4(432) can be found
by locating the images of p;; under the rotations of
432 which have already been placed. The placement
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F1G. 7. (a.) Stereographic projection of the 3-fold and 4-fold rotation axes and pole point ps, for the
octahedral group 432. (b.) Stereographic projection of the rotation axes for the octahedral group.

of all the rotations of group 432 are shown in Figure
7b. The interaxial angles can be deduced from those
given for 332. Also we note that by forming a multi-
plication table, one can verify that this arrangement
of the axes involved in 432 does in fact yield a group.

In summary we have found interaxial angles for the
eleven proper crystallographic point groups 1, 2, 3, 4,
6, 222, 322, 422, 622, 332, and 432. It can be shown
that for each of these groups there exists a lattice that
is left invariant under each of the rotations of the
group and so they are all bonafide crystallographic
point groups (Boisen and Gibbs, in preparation).
Furthermore, we have shown that there.are no other
proper crystallographic point groups.

Improper crystallographic point groups

In the previous section we showed that there are
only 11 proper rotation groups, and we derived each
of them. In this section we will show how each of the
improper crystallographic point groups can be con-
structed from these proper crystallographic point
groups. This will be easily accomplished once we
have established the following important theorem.

Theorem 2. If | is an improper crystallographic
point group, then there exists a proper crystallo-
graphic point group G such that either

(1)1 = G U Gi where { is the inversion.(Here
Gi = {gilg € G})

or

(2) 1 = H U (G\H)i where H is a subgroup of G

such that #G)/#H) = 2. (Here (G\H)i =
igillg G andg & H))

Furthermore, all of the sets constructed from a
proper crystallographic group G as in (1) or (2) are
groups and hence improper crystallographic point
groups.

Before presenting the proof of Theorem 2 we will
use the theorem to derive the collection of all im-
proper crystallographic point groups, give some ex-
amples, and record in Table 7 all of the crystallo-
graphic point groups.

If H is a subgroup of G such that #G)/#(H) = 2,
then we say that H is a halving group. This theorem
shows that if we take each proper crystallographic
point group G one at a time and first form G U Gi
and then H U (G\H)i for each of its halving groups
M (note that in certain cases G does not have any
halving groups), then the resulting collection of
groups is precisely the collection of all improper crys-
tallographic point groups.

Note that the improper crystallographic point
groups of the form G \U Gi have order 2#G) and
are those that contain the inversion (sincel & G).
Hence we have a total of eleven improper rotation
groups that contain the inversion. When a group G
has a halving group H, then we can form the im-
proper crystallographic group H U (G\H)i which
has order #G) and has the property that it does
not contain the inversion (since I ¢ (G\H)). Table 7
shows that there are ten such groups, bringing the
total number of crystallographic point groups to 32.

If @ is a rotoinversion such that ® « G U Gi or
® < H U (G\H)i, then there exists an element
g € G such that ® = gi. By the definition of the
rotation axis of an improper rotation given earlier,
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TaBLE 7. The 32 Crystallographic Point Groups and Their Orders as Derived From the Proper
Crystallographic Point Groups

The 11 Proper Crystallographic Halving The 21 Improper Crystallographic Point Groups
Point Groups Groups* Containing { (centrosymmetrical) Not containing {

G #(G) H GU Gi #(G U Gi) HU (G\H)i | #HU (G\H))
1 1 none T 2 none =
2 2 1 2/m 4 m 2
3 3 none 3 6 none —
4 4 2 4/m 8 4 4
6 6 3 6/m 12 6 6
222 4 2/ mmm 8 mm2 4
322 6 3 32/m 12 3mm 6
422 8 4 4/mmm 16 4mm 8
222 2m 8
622 12 6 6/mmm 24 6mm 12
322 62m 12
332 =123 12 none 2/m3 24 none ==
432 24 23 4/m32/m 48 43m 24

* The halving groups H of a given proper crystallographic point group G can be easily found by examining those
groups in column 1 that have one half the number of elements as G. If L is in column 1 such that # (L) = # (G)/2,
then L is a halving group of G if (1) all of the rotations of L also appear in G and (2) the corresponding interaxial angles
between these rotations are the same in L as inG. In certain cases like 422 where 222 occurs in more than one orientation,
there is technically more than one group of the form H'U (G\ H)i for a given H. However, the construction of these
groups results in the same point group but in different orientations, and consequently we do not make a distinction

between them.

the rotation axis of @ is the same as that of g. Hence,
the rotation axes appearing in G |J Gi and H U
(G\H)i are the same as those in G Therefore it
follows that the interaxial angles obtained for G ap-
ply to both G U Gi and H U (G\H){ as well. By the
way Table 7 is constructed and because of the rela-
tionship between the proper and improper groups, all
the crystallographic point groups with the same inter-
axial angles appear in the same row. We note again
that in this paper we have not demonstrated for each
of these crystallographic groups the existence of a
lattice T" which is left invariant. However, this fact
can be shown and will be explored in a future paper.

We will now do several examples of the
construction described in Theorem 2 followed by
Table 7 showing the results we obtain by applying
this construction to all eleven proper crystaliographic
point groups. We recall that the orientation symbo
attached to a given rotation or rotoinversion is
dependent on the choice of the basis. In each of
our examples the basis will be chosen to be con-
sistent with the International Tables for X-ray
Crystallography (see Table 2.3.1 , Henry and Lons-
dale, 1952). We then conclude the paper with the
proof of Theorem 2.

To illustrate the use of Theorem 2 in the construc-
tion of the improper crystallographic groups, we will
first consider the constructions G | Gi and H U (G\H)i
where G is the proper monaxial group 6. For this case
G U Gi becomes 6 \J 6i = {1,6,3,2,3,6' U
(1, 6,3 2 34,6°Y% =1{,6 32 3"'6"%U
{li, 6i, 3i, 2i, 37% 674 = {I, 6, 3 37, 677,
i, 6,3, m, 37!, 6~} which is denoted by 6/m. To
construct the group H U (G\H)i, G must contain
a subgroup H such that #H) = #G)/2. As noted in
Table 7, if such an H exists, it must appear in col-
umn 1 of the table. In the case under consideration
#(6) = 6, hence #(H) = 3. The only group in column
1 with order 3 that qualifies as a possible halving
group in 6 is the proper monaxial group 3. Since all
the rotations in 3 are contained in 6, we conclude
that 3 is the only halving group in 6. Accordingly, it
is clear that H U (G\H)i becomes 3 |J (6\3)i =
(1, 3, 371 U 6, 2, 67% = {I, 3, 3%, 6i, 2i
6% = {1, 3,3, 8 m, 6~} denoted by 6.

In our next illustration, we will construct G U Gi
and H U (G\H)i where G is the proper polyaxial
group 322. In this case G U Gi becomes (322) U
(322)i = {1, 3, 37,0012 11012 101032 j 3, 3-1 [100]pm,
(110}, 019m} denoted by 32/m. The monaxial group
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3 qualifies as the only halving group in 322 because
#(3) = 3 and because all the rotations in 3 are con-
tained in 322. Thus, H {UJ (G\H)i becomes 3 U
((B22)\3)i = {I, 3, 371, U00lm, U0y, [10lp) de-
noted by 3mm.

Finally we consider the improper crystallographic
point groups that are constructed from G = 422. The
G U Gi is constructed as before and results in the
group 4/mmm. Two proper groups 4 and 222 in
Table 7 qualify as halving groups in 422, Letting H =
4, we construct 4 {J ((422)\d)i = {I, 4, 2, 47,
[1001m, 1110)m, 010)m, T10)m} denoted by 4mm. Letting
H = 222, we construct (222) U ((422)\(222))i =
{1, 2, U002, w1012, g 4-1, U0lm, Wi0lm} denoted
by 42m.

Note that group 332 lacks halving groups despite
the fact that groups 322 and 6 both have orders one-
half that of 332. This is because a six-fold axis is not
contained in 332 and the interaxial angles between
the 2-fold and the 3-fold rotation axes in 322 and 332
are different.

Proof of Theorem 2

Let | denote an improper crystallographic point
group and let k,, k,, - - -, k, be the proper rotations in
I. We know. that | does have some proper rotations
since / < I, which is a proper rotation. We now
consider two cases; (1)icland (2)ig I.

Case where i € |. In this case, each of isometries k,,
ko, <, kn, kid, kol - -+, kyi arein |, We will show that
this is a complete listing of the elements of I. Let t
I, then we want to show that ¢ appears in the list. If ¢
is a proper rotation, then t already appears in the list
ki, ks, -+, k. If t is not a proper rotation, then it
must be an improper rotation and hence can be writ-
ten t = fi where f'is a proper rotation. Since i = | we
know that (fi)i = fc I. Hence f= k; forsome | <j <
n and consequently fi = k,i is in the list. Therefore |
= {ky, ko, -, kn, kii, ko, ---, kni}. Since the
composition of two proper rotations is again a proper
rotation, we see that {k,, k,, --:, k,} forms a
subgroup of I. Let G denote the group consisting of
{ki, -+ ,kn}. Thenl = G | Gi and so | is of the form
described in statement (1) of the theorem.

Case where i ¢ |: Again let ky, - - - , k, denote the
proper rotations in |. The set of all improper rota-
tions in | can be written in the form {s.i, s,i, **+ Spi}
where s, is a proper rotation for all | < j < m. Since
i & I, 5, is not the identity for all 1 < j < m. First we
want to show that m = n. That is, the number of
proper rotations in | equals the number of improper
rotations in I. We begin by considering the set of
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rotations {k,8,0,k,8,0, - - ,k.8,}. By the cancellation
law we know that these are distinct rotations. Hence
we have found a list of » improper rotations in |I.
Therefore n < m. Now consider the set of rotations
{(820)(81),(818)(840), =+ -, (818} (Smi)}. Since the inversion
commutes with any proper rotation we have
(8:8)(s58) = (s,0)(is;) = s,d%; = 8,5, which is a proper
rotation. Hence we have that {52, §,8,, - , S8} IS
a set of m distinct (by the cancellation law) proper
rotations in | and so m < n. Hence m = n. Next we
consider the set of proper rotations G = {k;, - - ,
kn, 81, **+ , 8y} (remember that the s,’s are not
in 1). We will show that G is a group by showing
closure. Let a, b € G. Then we have four cases
to consider. First, if ¢ and b are both k’s then
since they are proper rotations belonging to I, the
composition ab is also a proper rotation in | and so
ab is one of the k’s listed in G. Second, if @ = k, for
some |l <j<nandb =s. forsomel < r < n,
then ab = k;s,. But since (k;5,)i = kys/i) € 1,ab =
k;s. is, by the cancellation law, some s, listed in G.
Third, if @ = s, for some t <j < nand b = k, for some
| < r < n, then ab = s5k,. Since (s,))k, = s;k,i €1,
ab = sk, is some s, listed in G. Fourth, if a = s, for
some | <j<nand b = s, forsomel < r < n, then
ab = 5,5, = 58,4 = (8;1)(s,i) € . Hence ab is a proper
rotation in | and so appears as one of the k’s. There-
fore it has been shown that G is closed under com-
position and hence a group. Note that if we set H =
{ki, -+, ka}, then H, being the set of all proper rota-
tions in |, is a group and so H is a subgroup of G.
Also HG)/#(H) = 2n/n = 2. Since | = {ky, -~ , kp,
Sify, -+, sudh, | = H U (G\H)i as required.

Now to establish the final remark of the theorem
suppose that G is a proper rotation group. Then,
using the techniques employed in the above proof, it
is easy to show that G (U Gi is closed and hence a
group. Next we suppose that G has a subgroup H
such that #G)/#(H) = 2. We wish to show that the
set H U (G\H)i is closed and hence a group.* Leta, b
€ H U (G\R)i. Ifa,b € H then clearly ab = H and so ab
€ H U (G\H)i as required. If @ € H and b € (G\H)i,
then b = gi for some g « G\H. Now ag ¢ H forifag c
H, then g = a~'(ag) € H which is not the case. Hence
agc G\Hand so ab = (ag)i € (G\H)i and so againabc
HUJ(G\R)i. Similarly, if a € (G\H)i and b < H, then ab
&€ H U (G\H)i. Now suppose that a,b c(G\H)i.Thena
=g,i and b= g,ifor some g,,g, € G\Hand ab=(g )(g.i)
= g.8,. Hence we want to show that g,g, € H.We have

* The reader who is familiar with factor groups may recognize
immediately that H (U (G\H)i is closed.
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proved above that the product of a rotation in (G\H)
with a rotation in His in G\H. Hence g,;H = {g:h| h € H}
C G\H. By the cancellation law, # (g:H) = # (H)
and so # (g,H) = # (G\H). Therefore g,H = G\H. Con-
sequently, if g,g, € G\H, then g.g, = gk for some
h = H. But then, by the cancellation law, g, =
h < H, which is a contradiction. Therefore, g,g. € H

and so ab = (g.i)(gi) = g8 € H. Hence H U
(G\H)i is closed and so is a group.
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