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Abstract

Parallel 6-rings are linked by 4-rings into the infinite set of ABC-6 nets, and the 98 simplest
nets are enumerated. These include the following types: afghanite, cancrinite, chabazile,
erionite, gmelinite, levyne, liottite, losod, offretite, sodalite and TMA-E(AB). Unobsened
species with fairly simple stacking and high symmetry include AABC, AABCB, AABAB, AB
CACB, AABBCCBB, AABCAACB, AABCBBAC, AABABBAB and ABCABACB.

Nets with 4-connected nodes at the vertices of face-sharing Archimedean polyhedra in-
clude: sodalite (truncated octahedron [TO]), Type A zeolite (TO and truncated cuboctahe-
dron [TCO]), faujasite (TO and hexagonal prism [H]), Mobil ZK5 zeolite (TCO and H'), and
Esso Rho zeolite (TCO and octagonal prism). Nets with complex connectivity were devel-
oped by systematic removal one-by-one of planes of symmetry. Net 214 is related to fluorite
by Ca -+ cube and F + tetrahedron.

Introduction

The 4-connected frameworks of gmelinite (#82)
and chabazite (#83) were obtained in paper II of this
series from the 4.6.12 net (Smith, 1978), and the
framework of cancrinite (#95) in paper III (Smith,
1979). The present paper provides a systematic enu-
meration of the infinite set of ABC-6 nets obtained
by linking parallel 6-rings by tilted 4-rings, and the
set of nets related to face-sharing Archimedean poly-
hedra. Reference is made to the stereo-views in
"Atlas of Zeohte Structure Types" by Meier and Ol-
son (1978).

Enumeration of ABC nets

The 4.6.12 2D net provides two distinct positions ,4
and B for the projection of the 6-rings of a 3D frame-
work (Smith, 1978, Fig. 7), and each 4-ring of the 2D
net can be transformed into a tilted 4-ring of the
framework. For convenience, consider a framework
in which the nodes lie at the corners of regular hexa-
gons and squares, even though this regularity is not
necessary from the topological viewpoint. Each regu-
lar hexagon of the framework projects vertically onto
a regular hexagon of the horizontal2D net, but each

tilted 4-ring projects as a rectangle whose edge ratio
is the cosine of the angle of tilt from the horizontal.
Hence a regular 2D net must be compressed to repre-
sent the projection of a 3D framework composed of
regular polygons.

Only one framework is obtained from single hexa-
gons of type A and B alternating with tilted 4-rings,
and this is found in cancrinite. Two adjacent planar
6-rings are linked by three pairs of zig-zag 4-nngs to
form the cancrinite cage (Meier and Olson, p. 23),
which is completed by three boat-shaped 6-rings.
Each planar 6-ring is shared by two parallel cages
and successive face-sharing yields a cancrinite col-
umn. Adjacent columns are dove-tailed across the 4-
rings to give a 3D framework containing cylindrical
channels spanned by l2-rings. The cancrinite frame-
work can be denoted AB wherc A and B represent
the two positions for the 6-rings, and it is understood
that a tilted 4-ring lies between symbols.

The gmelinite net (Table l, #82) is obtained from
the cancrinite net by replacing each hexagon with an
Archimedean hexagonal prism (Meier and Olson,
1978, p. 43). [t can be denoted AABB. Hexagons of
the same type are separated by six vertical 4-rings,
whereas hexagons ofdifferent types are separated by
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three tilted 4-rings. Replacement of a hexagon by an
Archimedean hexagonal prism corresponds to the
sigma-transformation of Shoemaker et al. (1973).
The gmelinite cage consists of two hexagons sus-
pended between three triplets of edge-shaped
squares, thereby generating three boat-shaped 8-
rings.

The centers of the hexagons in the cancrinite net
and of the hexagonal prisms in the gmelinite net are
connected topologically in the same way as the cen-
ters of spheres in hexagonal closest-packing. By anal-
ogy the ABC connectivity of spheres in cubic closest-
packing leads to t}lre ABC arrangement of parallel
spheres in sodalite (Table l, #108) and the AABBCC
arrangement in chabazite (Table l, #83). Just as for
cubic closest-packing of spheres, the unit cell of soda-
lite is isometric (Meier and Olson, 1978, p. 8l), and
each hexagon is perpendicular to a triad axis; fur-
thermore the 4-connected nodes lie at the vertices of
a closest-packed array of parallel truncated octa-
hedra. The sodalite net is therefore a member of the
Archimedean 4-connected nets (next section). In the
chabazite net (Meier and Olson, 1978, p. 25), each
corner of the rhombohedral unit cell lies at the center
of a hexagonal prism, and cages are connected by
non-planar 8-rings. Each cage contains two opposing
hexagons suspended between six pairs of double 4-
rings by the edges of six 4-rings. The cages are con-
nected through octagonal windows to form a 3D
channel system.

These four nets are merely the simplest members
of an in-finite series which is now enumerated. The
positional symbols A, B and C are less convenient
than operators J, a and c because the starting choice
of A, B and C is purely arbitrary. Let s (for same)
map each hexagon of one horizontal layer onto a
hexagon of the next layer to produce a hexagonal
prism. The symbol s stands for either AA or BB or
CC. Change of horizontal position can involve either
a clockwise operation (c) or an anticlockwise one (a),
and a tilted 4-ring is involved in both operations. The
alphabetical order ,4 ---> B, B + C, C + A is clock-
wise and r4 + C, C + B, B + r4 is anticlockwise. Be-
cause of the mirror symmetry of a 4.6.12 net, there is
no topological difference between a particular se-
quence and its a --) c equivalent; thus aacac is
topologically equivalent to ccaca. Furthermore, the
direction and starting point of a sequence are mean-
ingless: thus aacac = cacaa = acaca. For ease of enu-
meration, it is desirable to arrange a sequence in a
standard order. Sequences are grouped first in order
of repeat length and number of s operators, and then

arranged so that s precedes c, and c precedes a,
whenever a choice is allowed.

The only restriction on sequences is that adjacent s
operators are not allowed. To nake an enumeration
for a particular repeat number p, first determine the
maximum number of s operators; this is p/2 when p
is even, and @ - l)/Z when p is odd. Insert c oper-
ators between the s operators, and then systerh-
atically replace c operators by a operators one by one
from the right of the sequence and move them suc-
cessively to the left. Check that each new sequence is
not merely a cyclic or interchanged version of an ear-
lier sequence. Then remove the s operators succes-
sively, and repeat the replacement of c by a operators
for each stage.

In order to close a sequence so that the unit cell
has the geometry of a l20o hexagonal prism, (n" -

n") must equal 3m, where m is an integer, and n" and
n" are the numbers of clockwise and anticlockwise
changes. A complication arises for sequences whose
prismatic cell is triply-primitive, and which can be
represented by a rhombohedral cell with one-third
the volume of the prismatic cell. Thus the levyne se-
quence sccsccscc corresponds to a 9-repeat hexagonal
prism (Meier and Olson, 1978, p.5l), while the scc
triplet corresponds to the inclined edge of a rhom-
bohedral unit cell. The topological "complexity" of
the levyne sequence is expressed just by the triplet
scc, alnLd levyne has a less complex sequence than liot-
tite (Meier and Olson, 1978, p.53) whose ccacaa se-
quenoe requires a 6-repeat prismatic cell. A rhom-
bohedral cell is obtained only for sequences whose
prismatic repeat is 3q, where q is an integer, and for
which the positions repeat cyclically at r, (r + q) and
(r + 2q). Thus levyne has the rhombohedral se-
quence AAB(CCA)(BBC). For sodalite with ccc :

ABC, t}lLe 3-layer prismatic cell reduces to the l-layer
rhombohedral cell represented formally by c : A;be-
cause of special geometrical relations, the rhombohe-
dral cell is actually isometric. The cacaca sequence
does not give a rhombohedral cell because thle ABA
-8,4,B sequenc€ corresponds to three prismatic cells of
AB.

Table I lists prismatic repeats up to 8, and rhom-
bohedral repeats up to 5. Rhombohedral sequences
are denoted by a star, and the sequence of operators
is expressed as (... )3. The comments provide hints
on the process of enumeration. A computer program
was written, and a copy of the sequences up to a pris-
matic repeat of 1l can be obtained from J. M. Ben-
nett (9 repeat, 96 sequences; 10, 230; ll, 529. The
proposed lO-layer sequence of ABCABCBACB of
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franzinite (see below) has been designated #201, but
numbers have not been given to sequences not listed
in Table l. The enumeration in Table I corresponds
to "coloring" a trigonal rod'group so that each tri-
angle has two unoccupied vertices and one occupied
vertex.

The highest space group and the circuit symbol are
listed in Table 2 for each ideal framework. The cir-
cuit symbols can be obtained from the operators by
the following procedure: (i) replace a and c by a dot,
(ii) read off the circuit symbol from the following
table, where the dagger denotes the position of a
node for which the symbol is derived:

s f s
st
^ r ^
r i l s

st
J
I

For brevity, the numerical circuit symbols are de-
noted by d-h in Table 2. Readers can deduce the
types of cages in a particular net by using the follow-
ing key:

,'
ca
ccc
csa
ccaa
ccsc
CSCSC

hexagonal prism
cancrinite
sodalite
offretite (or gmelinite)
losod
levyne
chabazite

The space group can be determined analytically.
Rhombohedral sequences have a vertical mirror
plane and only R3m and R3m need consideration. A
center of symmglry indicates R3m. Thus sequence
AABCABBCABCCABC (#196) has a center of sym-
metry between the first and second A, and at the
fourth A; each center maps z4 onto A, and B onto C.
A vertical mirror plane in the first position is present
in all prismatic sequences, and a rotation hexad is
not allowed. Space group P6r/mmc is present only
for sequences with an even-numbered repeat (p), and
then only when,4(v) + A(v + p/2) and B(w) + C(w
+ p/2), or a cyclic equivalent, where v and w are any
positions in a sequence of layers. Thus sequence
ABCB (#110) withp : 4 has l(l) ---> C(3) and B(2)
+ B(4). The only remaining space groups with a ver-
tical mirror plane in the first position are P1ml,
P3ml and P6m2. Because 6 = 3/m, the presence of a
horizontal mirror plane provides an easy criterion for
assignment of P6m2; thus in AAB (#106). mirror
planes pass mid-way between the two ,4's and di-

rectly through ,8. The remaining sequences go into
P3ml if a center of symmetry is present, and into
P3ml if not; thus AABAC (#ll4) has a center be-
tween the first two A's and at the third A, and B is
mapped onto C by them.

All observed members of the ABC-6 family (Table
3) have relatively simple connectivity with respect to
unobserved members. Nine unobserved members
with fairly simple stacking and high symmetry are
listed in the abstract.

There are many structural complexities in the ob-
served members. Chabazite gives X-ray di-ffractions
consistent with AABBCC stacking (Dent and Smith,
1958), and the reduction of symmetry below the ideal
space group R3z results from cation positions and
not from the topology. Stacking faults (e.9.,
AABBAA) would lead to twinning on hexagonal
(0001), and are presumably responsible for the inter-
penetrant rhombohedral habit. Gmelinite with ideal
AABB stacking (Dent and Smith, 1958) shows fre-
quent stacking faults (Fischer, 1966) which are pre-
sumed to be at least mainly of AABBCC type, but
which require further study by electron microscopy.
Offretite (AAB) and erionite (AABAAq were not
originally distinguished as separate minerals, but
combined X-ray and electron-gptical studies have re-
vealed the ideal stacking sequences and faults (Ben-
nett and Gard, 1967; Kawahara and Curien, 1969;
Gard and Tait, 1971, 1972; Kokotallo et al., 1972)
and microprobe analyses (Sheppard et al., 1974; R.i-
naldi, 1976) have demonstrated a chemical relation
to the stacking sequence. Levyne (AABCCABBC) oc-
curs intergrown with offretite (Sheppard et al., 1974),
and channel systems are compared for levyne and re-
lated zeolites in Barrer and Kerr (1959).

The term cancrinite-like has been applied to vari-
ous feldspathoid minerals that do not have the ABC
stacking of sodalite. Ideal cancrinitehas AB stacking
(Jarchow, 1965), and framework ordering reduces
the symmetry to P6r. Complications arise from order-
ing of the channel constituents in a framework with
l,B stacking, and superstructures with c increased by
5, 8, ll, 16 and 27 have been observed (Brown and
Cesbron, 1973; Foit et al., 1973). The superstructure
di-ffractions lose intensity upon heating in response to
increasing disorder of channel constituents. Micro-
sommite has a superstructure with a increased bV J3.
Complex stacking variations were imaged electron-
optically by Rinaldi and Wenk (1979), and partly
published studies have characterized hottite (ABA
BAC) and afghanite (Merlino and Mellini, 1976).
Furthermore Rinaldi and Wenk state that franzinite

436'g
4t6t
42629'
426'g
4',60

e
d
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Table l. Enumeration of simpler nets of the ABC famlly

0pera tors Pos i t i ons  No . 0pe ra to r s  Pos i t i ons  No .Conment Comment

2  l a y e r s  ( l  p o s s i b i l i t y )

ca  AB  95

3  l a y e r s  ( 2  p o s s i b i l i t i e s )

sca AAB ]06
* ( c ) 3  A B C  l o 8

4  l a y e r s  ( 3  p o s s i b i l i t i e s )

scsa AABB 82

sccc AABC I  09

ccaa  ABCB l l 0

f caca ] ;  I s csc ]

5  l a y e r s  ( 5  p o s s i b i l i t i e s )

s  n o t  p o s s i b l e

on l y  cho i ce  f o r  one  s
=  aaa ;  *ac tua l  l y  i some t r i c

on ly  cho ice  fo r  two s

reduces  to  two ca  and sc

AABBCAC 129

AACCABC 
'I 
30

AABCCAB I 3I

AABCCAC 132

AABAABC I 33

AABCABC I 34

AABCACB I 35

AABCBCB I  36

AABCBAB 137

AABCBAC I 38

AABABAB I 39

AABABAC I 39a

AABACAB 
'i40

ABCABCB 1 41

ABCABAB '142

ABCACAB I43

AABBCCBB 144

two s two apart ;  a at  end

;  a  i n  m i d d l e

AABBC I  I  I

AABCB 112

AABAB I I 3

AABAC I I 4

ABCAB I I 5

I scsascsa ]

scscscac

scsccsca

d o .

o o ,

0 0 ,

d o .

d o .

s c s c c

s c c a a

cccca

* 1 s c ) 3

s c s a c a

s c c c c a

s c c c a c

s c c a c c

ccca a  a

I c a c a c a ]

scsasca

scsccca

AABBCCAB 
' I45

AABBCCAC 
' I46

AABBAABC 147

AABBCAAB I 48

AABBCAAC I 49

AACCABBC 
'] 
50

AABBCABC 
'I5']

AABBCACB 152

AABBCBCB I  53

AABBCBAB 1 54

AABBCBAC I 55

MBBABCB 
'1 
56

AABBABAB ]57

MBCCABC I58

AABCCACB I 59

AABCCBCB 
'I 
60

AABAABCB I  6I

AABAABAB 16?

AABAACAB I 63

AABAACAC I 64

AABAACBC 
. I65

s c s c c a c

sascccc

s c c s c c a

s c c s c a c

s c a s c c c

s c c c c c c

scccaaa

scacaac

ccccaca

cccacca

one s ;  =  saaaaaa

do.  ;  ccc  a t  f ron t

d o . ; t h i r d c m o v e s

d o . ;  d o .

d o . ;  d o .

th i rd  c  moves

s c a c c a a  =  s c c a a c a

second c  moves

n o  s ;  f i v e  c  a t  f r o n t

f i f th  c  can on ly  move once

four th  c  can on ly  move once

f ou r  s  mus t  a l t e rna te

reduces to tr,lo scsa
' 1 ,1 ,3  

be tween  s ;  a  a t  end

= sasaa; only choice for  2s p-- l -qJel !  (45 possib i l i t ies)

adjacent  c

one apart

two apart ;  = sacca

6  l aye rs  ( ' 10  poss ib i l i t i e s )

; a moves

;  o o .

1 ,2 ,2  be tween  S i  a  a t  end

MBBCC 83

AABBCB I I 6

AABBAB 
' I  
I7

AABCCB I  l  8

AABAAC 
'I 
I9

AABCAB 120

AABCAC 121

AABCBC 122

ABCACB 123

ABCBCB 124

AABBCCB 125

AABBAAB 126

AABBMC 127

AABBCAB 128

s  cs  caca a

scsaccaa

s c c s c c c c

; move a

i  d o .

I  O O .

;  nex !  c  moves

;  l a s t  c  m o v e s

= rhombohedra l  sc

s one apart ;  second c at  f ront  sasccscc

do .  ;  second  c  i nm idd le  scsccccc

s two apart ;  two c at  f ront  scsccaaa

reduces to two sca

one s;  four c at  f ront

d o , ; a m o v e s f o r w a r d

0 0 .

no s;  three c at  f ront

reduces to three ca sccsacaa

scasacca

three s;  two a at  end scasacac

do. ;  ca at  end scasaacc

do. ;  ac at  end [scccsccc]

two s one apart ;  a at  end scccsaaa

I , 5  be tween  s ;  s i x  c

do.  ;  three c at  f ront

d o .  ; l a s t c m o v e s

d 0 .

7  l aye rs  ( 20  poss ib i l  i t i e s )

d o .  ;  d o .

o 0 .

o o .

2 ,4  be tween  s ;  s i x  c

do.  ;  three c at  f ront

d o .  ; l a s t c m o v e s
d o .  ; m i d d l e c m o v e s
o o . ;  l a s t  c  moves

d o .  ; m i d d l e c m o v e s
d o .  ; l a s t c m o v e s
d o .  ; m i d d l e c m o v e s

reduces to two sccc

3,3 between s;  three c at  f ront

(Merlino and Orlandi, 1977\ was found to have AB
CABCBACB stacking by Merlino and Mellini.

To a first approximation, all silicates belonging to
the ABC-6 family have X-ray diffraction patterns
which can be indexed on a hexagonal prismatic cell
with a - 13.0t0.3A and c - p x (2.6+0.1;A. nhom-

AABCAACB t b b

bohedral varieties have systematic absences for (ft -

k) * 3n. Because the angle of tilt of the 4-rings de-
pends on chemical interactions between framework
and non-framework species, there is not a unique re-
lation between cell dimensions and the ratio of s to (c
* a) operators. However, existing data on cell dimen-
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Table 1. (continued)
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0pera tors Pos i ti ons I'lo .

9  l aye rs  p r i sma t i c  ( 3  l aye rs  r hombohed ra l )

examination of cell dimensions of a new phase. The
pa/c vafue of 4.8 for franzinite is consistent with ab-
sence of an r operator in the proposed ABCABC
BACB sequence. Caution is needed in comparing the
space group and diffraction intensities of an un-
known material with the space group and calculated
diffraction intensities for a theoretical sequence with
idealized geometry.

Enumeration of 4-connected Archimedean nets

The sodalite net (#108) has tetrahedral nodes at
the vertices of a space-filling array of closest-packed
truncated octahedra; indeed this Archimedean poly-
hedron is one of the five parallelohedra (or Fedorov
solids) that can fill space completely just by trans-
lation. The present enumeration of 4-connected nets
whose nodes lie at the corners of Archimedean poly-
hedra is based on Moore and Smith (1964) with a
correction in Moore and Smith (1967). Space filling
by Archimedean polyhedra was described by An-
dreini (1907).

The Archimedean polyhedra contain regular faces,
not all of the same kind, arranged in the same order
around each vertex. Six polyhedra, and the infinite
series of antiprisms, have four edges meeting at each
vertex, and cannot be used to generate 4-connected
3D nets because additional edges would appear upon
joining polyhedra together. Polyhedra with pen-
tagonal faces cannot share faces to generate a 4-con-
nected net with lattice symmetry: however, the pen-
tagonal dodecahedron can share faces with l4-, l5-,
and l6-dedra (5'262u\ to form nets in gas hydrates
(Wells, 1975, p.544); furthermore the sodalite net is
the basis of type (a) gas hydrates. The truncated tet-
rahedron and truncated cube were discarded by
Moore and Smith because of their 3-rings; however
they combine with a truncated cuboctahedron to give
net 207 a (Table 4). Of principal interest are the trun-
cated octahedron (TO), truncated cuboctahedron
(TCO), and the prisms, of which the hexagonal prism
(H') and octagonal prism (O') are the only ones
needed. The cube (C), which is a Platonic solid, is
also useful for description. Square, hexagonal and
octagonal contacts are denoted S, H and O. The pos-
sible nets are enumerated from systematic consid-
eration of all ways of placing faces in contact, com-
bined with all combinations of opposing faces from
the attached polyhedra. A simple description lists the
types ofadjacent polyhedra, the type ofcontact, and
the types of faces opposing across the contact. Thus
sodalite is (TO, 6)-5-(T0, 6). For convenience, C, H'
and O'will also be listed as contacts.

s c c a s a a c

I  scacscaa ]

scacsaca

scccccaa

s c c c c a c a

s c c c c a a c

s  cccacca

scccacac

s c c c a a c c

sccaccca

s c c a c c a c

s c c a c a c c

s  ca  cccc  a

saccccca

[ccaccaaa ]

I  cacacaca]

c  cc  cccca

* 1 5 c c )  3

* 1 s c a ) 3

AABCBBCB 167

AABCBBAB 
'I68

AABCBBAC I 69

AABABBAB 170

AABCABCB ]71

AABCABAB 172

AABCABAC 173

AABCACAB 174

AABCACAC 175

AABCACBC 176

AABCBCAB 177

AABCBCAC 
'I 
78

AABCBCBC 179

AABABCAB 
'IBO

AABABCAC 
'I81

AACABCAB 182

ABCABACB 1 83

ABCACACB I 84

ABCACBCB I 85

ABCBCBCB I86

ABCBCBAB 
' I87

ABCABCAB I 88

las t  c  moves

d o .
q o .

;  m idd ' le  c  moves

f ive  c  a t  f ron t

fi fth c moves

d o .

four th  c  moves

f i f th  c  moves

four th  c  moves

th i rd  c  moves

f i f th  c  moves

four th  c  moves

second c  moves

f i f th  c  moves

f i r s t  c  m o v e s

four  c  a t  f ron t

fourth c moves

o o .

'12 
layers pr ismat ic (4 layers rhombohedral)

AABCCABBC lB9 one s;  sca is  pnismat ic

ABCBCACAB 
' l 90  

no  s ;  on l y  poss ib i l i t y

AABCBBCACCAB l9 l  Isc]6 is  chabazi te

AABABBCBCCAC lS2 [scsa]3 is  pr ismat ic

ABCACABCBCAB 
'1 
93

" ( scca )3
* 1 5 c a c ) 3

* ( ccca  )  
3

l5 layers pr ismat ' ic  (5 layers rhombohedral)

* ( s c s c a ) 3  ( A A B B C ) 8 . . c . .  1 9 4  [ s c s c c ] 3  i s  p r i s m a t i c
* ( s a s c c ) 3  ( A A c c A ) 8 . . c . .  1 9 5
* ( scccc )3  (AABCA)8 . . c . .  ' 196  

no te  A+B*C
* (sccca )3  (AABCA)C . .B . .  ' l 97  

no te  A *C*B
* ( sccac )3  (MBCB)c . . 8 . .  t 98  [ sccaa ]3  i s  p r i sma t . i c
* ( cccaa )3  (ABcAc )8 . . c . .  199  [ scaca ]3  i s  p r i sma t i c
* ( ccaca )3  (ABcBc )8 . . c . .  zo0

sions of ABC-6 structures suggest that the function
pa/c increases from -4.9 when s is zero to -5.5 when
s is highest, with -5.2-5.3 for intermediate values of
s/(c + a). This observation by J. A. Gard in Shoe-
maker et al. (1973) should be useful in a preliminary
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Table 2. Simpler nets of the ABC family

N o  7 .
I

7,  H ighes t
space qroup c ( A )

N o  Z +  C i r c u i t
" symbol

.  H e x a o o n a l
_  H t g n e s r  6
"  s p a c e  g r o u p  c ( A )

N o .  Z .  C i r c u i tI symbol
7 - ^  H i g h e s t  

H e x a g o h a l

"  s p a c e  g r o u p  c ( A )

9 5  1 2  f ?

1 0 6  l 8  d d h

108 6  f :

82  24  e4
. l09  

24  dg

I t 0  2 4  f ,

I I |  3 0  e e d h d

l l 2  3 0  d g f g d
. l 1 3  

3 0  d o .

l l 4  3 0  d o .

i l5  30  f .

8 3  1 2  e 6 ( e 2  r h )

l l6  36  eedggd

1 ' ] 7  3 6  d o .

l t 8  3 6  d h d d h d
' i l g  

3 6  d o .

I 20 36 dgffgd

121 36  do .

1 2 2  3 6  d o .

123 36  f6

124 36  do .
'| 
25 42 eeeedhd

126 42 do.

127 42  do .

I 28 42 eedgfgd

129 42 do.

I  3 0  4 2  d o .
' I  
31  42  dhddggd

132 42  do .

133 42  do .

I 34 42 dsfffsd

1 3 5  4 2  d o .

136 42  do .

12  P6" /mmc

l8  P6n2

1 2  l 4 3 m

24 P6^/mmc

24 P3ml

24 P6./mmc

30 P3ml

30 P6n2

30 P6nz

30 P3ml

30 P3ml

36 R3m

36 P3nl

36 P3ml

36 P6^/mmc

36 P6-lmnc
J

36 P3ml

36 P3ml

36 P3ml

36 P6"/mmc

36 P6n2

42 P3n1

42 P6n2

42 P6n2

42 P3n l

42  P3ml

42 P3ml

42 P3nl

42  P3ml
'42 P3nl

42  P3ml

42 P6n2

42 P6nz

137 42 dgfffgd

I  38  42  do .

139 42  do .

139a 42  do .

140 42 do

141 42 f7

142 42 do

143 42  do .

144 48  e ,
'I 
45 48 eeeedggd

146 48  do

I  47  48  do .

I 48 48 eedhddhd

]49  48  do
. ] 5 0 -  

4 8  d o .

1 5l 48 eedgffgd

1 52  48  do .

1  53  48  do .

I  54  48  do .

i  55  48  do .
'I 
56 48 do.

157 48  do .

I 58 48 dhddgfgd
' l59  

48  do

160 48  do

I  61  48  do .

1  62  48  do .

I  63  48  do .

I  64  48  do .

I  65  48  do .

I  66  48  dgsddgsd

167 48  do .

]68  48  do

42 P3ml

42 P3n l

42 P6nz

42 P3m1

42 P6n2

42 P3m'l

42 P3ml

42 P3n l

48 P6-lmc

48 P3ml

48 P3m1

48 P3ml

48 P3nl

48 P3ml

48 P3ml

48 P3ml

48 P3ml

48 P3ml

48 P3ml

48 P3m1

48 P3ml

48 P3ml

48 P3m'l

48 P3nl

48 P3ml

48 P6nz

48 P6nz

48 P3ml

48 P6nz

48 P6n2

48 P6./mmc

48 P6n2

48 P3ml

I 69 48 dggddggd

I  70  48  dggddsgd

I 71 48 gffffffq

172 48  do .

1 7 3  4 8  d o .

174 48  do .

I  75  48  do .

1 7 6  4 8  d o .

177 48  do .

I  78  48  do .
' l  
79  48  do .

I  B0  48  do .

1 8 1  4 8  d o .

I  82  48  do .

lB3 48  fB
'lB4 

48 do

185 48  do
'186 

48  do  .

] 8 7  4 8 '  d o .

]88  48  do .

1 8 9  l B  d h d  ( r h )

190 
'18  

f3

I  91  24  dggd

192 24 do.

193 24 fA

I  94  30  eedhd

I  9 5  3 0  d o .

I 96 30 dgfgd

I  9 7  3 0  d o .

1 9 8  3 0  d o .

1 9 9  3 0  f 5

200 30  do

201 60  f . t0

48 P6./mc 20

48 P6./mc 20

48 P3m1 20

48 P3ml 20

48 P3nl 20

48 P3ml 20

48 P3ml 20

48 P3n1 20

4B P3ml  20

48 P3ml 20

48 P3ml  20

48 P3ml 20

48 P3ml 20

48 P3nl 20

48 P6",/mmc 20

48 P6m2 20

48 P3ml 20

48 P6n2 20

48 P6"/mmc ?0

48 P3nl 20

54 R3m 22.5

5 4  R 3 m  2 2 . 5

72 R3m 30

72 R3m 30

72 R3m 30

9 0  R 3 n  3 7 . 5

90 R3m 37 .5

90 R3n 37  .5

90 R3m 37.5

90 R3m 37.5

90 R3m 37 -5

90 R3m 37.5

60 P3n1 25

5

7 . 5

( c u b i c )  9
'10

t 0

t 0

1 2 5

1 2 . 5

1 2 . 5

1 2 . 5

1 2 . 5

l 5

1 5

l 5

l 5

l 5

t 5

t 5

l 5

l 5

l 5

1 7  . 5

1 7  . 5

1 7  . 5

1 7 . 5

1 7 5

1 7 . 5

1 7 . 5

1 7 . 5

1 7  . 5

1 7  . 5

1 7  . 5

t 7  . 5

1 7  . 5
' t 7 . 5

1 7 . 5
1 7  . 5
1 7 . 5
1 7 . 5
1 7  . 5
1 7  . 5
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Zt  number  o f  te t rahedra ' in  a  symet r ic  un i t .  Zc  number  o f  te t rahedra  in  un i t  ce l l

Face-sharing of prisms does not yield 4-connected
3D nets. The truncated octahedron can share square
faces in only one way to give the sodalite net. The
hexagonal faces can be shared in two ways because
of alternation of square and hexagonal faces around
each hexagonal face. Sodalite can also be described
as (TO, 4)-H-(TO, 6). Certain combinations of link-
age do not yield frameworks because of unsuitable
angles: thus (TO, 4)-H-(TO, 4) does not yield a net
by itself. However, net 183 of the ABC-6 family can
be generated by deliberate use of both (a)-H-(a) and
(a)-H-(6); adjacent faces perpendicular to the c-axis
are (4)-(4) and ones inclined to c are (a)-(6). The
Type A zeolite (Meier and Olson, 1978, p. 57) results
from (TO, 6)-C-(TO, 6). A TO lies at each corner of
a primitive unit cell, a regular hexahedron at the
mid-point of each edge, and a TCO at the body-cen-
ter. Alternative descriptions for zeolite A are (TCO,
4)-O-(TCO,4), (TCO,6)-C-(TCO, 6) and (TO,4)-
H-(rco-4).

The faujasite net (TO, 4)-H'-(TO, 6) can be ob-
tained by replacing each C atom of diamond with a
TO (Meier and Olson, 1978, p. 37). Replacement of
each shared hexagonal face by a hexagonal prism in
net 183 yields net 204 whose TO match the C atoms
in lonsdaleite. An infinite polytypic series, analogous
to the diamond-lonsdaleite (or blende-wurtzite) se-
ries, can be derived from the faujasite net. Natural
faujasite and synthetic relatives commonly crystallize
as interpenetrating octahedra twinned on (lll), and
the twin interface presumably results from a planar

array of hexagonal prisms with (a)-(a) tnkage. The
faujasite net contains a wide 3D channel system
whose intersections generate a 26-hedron with four
hexagons, eighteen squares and four non-planar do-
decagons as faces, and net 204 contains cages com-
posed of six hexagons, 2l squares, two regular do-
decagons and three boat-shaped ones.

The net of the Mobil ZK5 zeohte (Meier and 01-
son, 1978, p. 47) is obtained by linking hexagonal
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Table 3. Observed members of the,4BC familv

P6./mmc

R3m?

P6"

P6n2

P62c

P63lmc

P6"/mc

P6n2

a

R3m

b

a P63lmc or P63mc or P62c. b p3nl or p3ml or p32l

faces of adjacent TCO by (4)-H'-(8). In addition to
the TCO cage, there is a cage comprised of two octa-
gons, four sets ofthree squares, and four boat-shaped
octagons, which can be obtained from the gmelinite
cage by increasing the symmetry from 3-fold to 4-
fold. The net of the Esso Rho zeolite is obtained by
joining TCO either (4)-O'-(4) or (a)-H-(8). The en-
tire volume is filled by TCO and OP (Meier and Ol-
son, 1978, p.79).

Truncated octahedra and truncated cuboctahedra
can be linked in only two ways to form 4-connected
nets. The linkags (4)-H-(4) gives the net of the A ze-
olite, and the linkage (4)-H'-(4) gives net 207 n
which each F atom of the fluorite structure is re-
placed by a TO and each Ca atom by a TCO. Each
face-centered cubic cell contains 384 tetrahedral
nodes, and the Archimedean polyhedra surround 4
large cages. Each is defined by 24 squares, 8 hexa-
gons, 6 regular octagons and 12 elongated octagons,
and this 50-hedron with m3m point symmetry is con-
siderably larger than the 26-hedron of the faujasite
net. Elongated O' also occur. Net 207 is not repre-
sented by either a natural or synthetic material.

The net of paulingite (Meier and Olson, 1978, p.
75) contains TCO and O', but it is not [sted here as
an Archimedean net because a non-Archimedean
cage links the Archimedean polyhedra. This cage is
the l8-hedron found rn ZKs, and the net of pau-
lingite can be symbolized as (TCO, 4)-O,-(18h, 4)-
o'-(18h, 4)-o'-.

Enumeration of 4-connected near-Archimedean nets
Shoemaker et al. (1973) developed the A and rho

nets from the sodalite net by addition of a mirror
plane in successive o-transformations. The approach
by Moore and Smith automatically produced nets
with a symmetrical arrangement of o-transforma-

tions, and the less-symnetrical arrangements (Table
5) are now determined.

A TCO with attached O'(Fig. l) contains six mir-
ror operations when linted into an infinite array as in
the rho net (#206). It can be transformed into a TO
of the sodalite net (#108) by removal of the six mir-
ror operations. Shoemaker et al. enumerated all the
simple nets obtained by removal of one to five mirror
operations from net 206. Each o operation in the
waist of an O' is labeled with a subscript 1,2 or 3 to
denote the arbitrary choice of a, b and c reference
axes, and corresponding o operations passing
through the centroid of a TCO in Figure I are la-
beled 4, 5 and 6. The distinction between subscripts I
and 4 is merely formal in the rho net because each o
operator passes through the waist of an O' and then
passes through the centroid of an adjacent TCO;
however, it becomes meaningful if a distinction is
made between positions 2 and 5, or 3 and 6. Shoe-
maker et al. assigned arbitrary Greek letters u-r, and
the sequence 208-217 follows that order. However, it
is convenient to follow a different sequence in which
o-operations are added successivly to the sodalite net
(Table 6).

Nets 208 and209 contain a TCO and nets 210 and
2ll contain a TO. All nets contain either one or two
non-Archimedean polyhedra with l8 to 22 faces
(Table 5). Each of these polyhedra contains eight
hexagons which survive from the TO of the sodalite
net, and a variety of S, H and O faces which depends
on the number of o-operations applied to the original

Fig. l. The six types of o-transformations for a truncated
cuboctahedron with attached octagonal prisms.

Reference a ( A )  c ( A )

B 2
83

95
1 0 6
108
'i l0

il8
l r 9

124
187
189
201

g m e l i n i t e  s e e  p a p e r  I I

c h a b a z i  t e  d o .

c a n c r i n i t e  s e e  p a p e r  I I I

of fret i  te do.

s o d a l i t e  s e e  T a b l e  4

l o s o d  S i e b e r  &  l i t e i e r  ( 1 9 7 4 )

I M A - E ( A B )  G r o n e r  &  M e i e r  ( t 9 7 9 )

e r i o n i t e  S t a p l e s  a n d  G a r d  ( 1 9 5 9 )

l i o t t i t e  l 4 e r l i n o  &  0 r l a n d i  ( 1 9 7 7 )

a f g h a n i t e  B a r i a n d  e t  a l .  ( 1 9 6 8 )

l e v y n e  l 4 e r l i n o  e t  a l .  ( 1 9 7 5 )

f r a n z i n i t e  M e r l  i n o  a n d  0 r l a n d i  ( l ' 9 7 7 )

1  3 . 7  r  0 . 0
1 3 . 2  t 5 . l
1 2 . 7  5 . 1
1 3  3  7 - 6

1 2 . 9  1 0  5
1 3 . 3  I  5 . 2
1 3 . 3  t 5  I
1 2  I  r 6 . t
l 2 . 8  2 t  3
l 3  3 4  2 3 . 0 1
I  2 .88  26  58
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Table 4. Simple 4-connected nets based on Archimedean polyhedra

No.  7 t  C j  r cu i  t
symDo I

H i  ghes t  Ce l  I  .
space  g roup  edge  (A )

Connect i  v i  ty Po1 yhedra

*Two  
s imp les t  members  o f  i n f i n i t e  po l y t yp i c  se r i es  ana logous  t o  d i amond  and  l onsda le i t e .  T0  t r unca ted

oc tahed ron l  TT  t r unca ted  t e t r ahed ron ;  TCO t r unca ted  cuboc tahed ron ;  H '  hexagona l  p r i sm ;0 ' oc tagona l  p r i sm ;

DOP d i s t o r t ed  oc tagona l  p r i sm ;  C  cube ;  h  hed ron .

io8 6 q2a4 lz
I 83' 48 q2o4 48
zoz 24 q3aze 24
203* 48 +363 1g2
204* 96 +303 96
zo5 48 +3a2e 96
206 24 +303 48
zoi  s6 1+303;1 1+302e11 384
2o1 a 24 3,4,6282 96

1 M J M  J

P 6 ^ / m m c  a l 3 , c 2 0
J

Pm3m 12

Fd3m ?5

P 6 - l m m c  a 1 7 , c 2 7
J

Im3m I  9

Im3m 
. l  

5

tmJm J I

Fm3m 1 9

Reference

B a r t h  ( 1 9 3 7 ) ;  T a y l o r  ( 1 9 6 7 )

H o l l o w a y  e t  a l .  ( ' ] 9 7 2 )

Sah l  (  I  980)

Dans ( l  966)

R e e d  &  B r e c k  ( ' l 9 5 6 ) ;  G r a m l i c h  &  M e i e r  ( 1 9 7 1 )

B e r g e r h o f f  e t  a l .  ( 1 9 5 8 )

M e i e r  &  K o k o t a i l o  ( 1 9 6 5 )

R o b s o n  e t  a l .  ( 1 9 7 3 )

( T 0 , 6 ) - s - ( T o , 6 )  T o
(T0 ,  4 ) -H - (T0 ,  4  and  6 )  T0
( T o , 6 ) - c - ( T o , 6 )  T 0 ,  T C o ,  c
( r 0 ,  4 ) - H ' - ( T o ,  6 )  T 0 ,  H ' ,  2 6 h
( r 0 ,  4 ) - H ' - ( T 0 ,  4  a n d  6 )  T 0 ,  H ' ,  3 2 h
( r c o ,  4 ) - H ' - ( T C o ,  8 )  r c o ,  H ' ,  l 8 h

(Tco ,  4 ) -H - (TCO,  B )  r co ,  0 '
( T 0 ,  4 ) - H ' - ( T C o ,  4 )  T C o ,  T 0 ,  H ' '  D O P
(TcO,  a ) -0 - (Tc ,  8 ) ;  r cO ,  TC '  TT
( T c O ,  8 ) - H - ( T T ,  3 )

Type

1 0 8

1 0 8

1 0 8

1 0 8

202

203

205

206

Name

sodal  i  te group

he l  v i  ne

b i  c chu l  i  t e

l - r r n t r r n i  l - a

type A

Mobi  I  ZK5

Esso  rho

Space Group

P43n

P43n

I43m

I 4

Fm3c

Fd3m

Im3m

I43m?

Cel l  Edge

8 . 9

8 . 3

8 . 8

2 4 . 6

2 4 . 7

1 8 . 7
' l E  

l

square faces of the TO. All nets also enclose one or
more C, H'and O'polyhedra.

Net 214 (Fig.2) is remarkable because of its face-
centered cubic symmetry and small value of 2,. Dur-
hg algebraic enumeration, it was expected that the
14 positions of the o operators would lead to tetra-
gonal synmetry, but examination of a model re-
vealed that net 214 can be constructed by replacing
each F atom of the fluorite structure by a cube of
linked tetrahedra. Each Ca atom is replaced by a tet-
rahedral node, and each of the four branches is
linked to a tetrahedral node at the vertex of a neigh-
boring cube. The cage is a truncated rhombic dode-
cahedron, and the net can be developed from a462,64
2D tessellation. Nets 2ll and 216 also have small
values of Zt.

Figure 3 shows how the 3D nets can be described
with reference to 2D nets. The sodalite, A and rho
nets respectively project onto nets with the following
nodes; 46' and 6o;462 and 468; 4'6 and 468. Not all

the polygons are regular, and even greater com-
plexity is found for the projected nets 2l I and 209.

Pairs of3D nets can form an infinite polytypic se-
ries if they have an identical 2D cross-section. Thus
the sodalite aud 2ll nets differ only by a o(3) trans-
formation and the (001) plane provides a fit to yield
polytypes with a tetragonal unit cell a 9Ac (9p +
12$A where p and q are integers.

The only other new nets that can be developed
from the Archimedean nets in Table 4 by one or
more o-transformations, each of infinite planar extent,
belong to an infinite polytypic series obtained from
net 204. Conversion of each hexagonal prism lying
perpendicular to the c-axis to a hexagon produces net
218, and intermixing of nets 204 and 208 produces a
polytypic series. Whereas each 42t66125 cage of net
204 is joined to adjacent cages by two near-circular
l2-rings and three boat-shaped l2-rings, each
4'"6610'122 cage of net 218 retains the near-circular
l2-rings but has three boat-shaped l0-rings. The
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Fig. 2. Projection of net 214. Nodes at height +15 and t35
hundredths form cubes whose vertices are linked bv branches
from nodes at 25 and 75 hundredths.

growth step of l25A in zeolite ZSM-3 corresponds to
a complex polytype (Kokotailo and Ciric, l97l).

Application of a o-' transformation to individual
polyhedra not lying in a plane yields further nets. Re-
tention of the perpendicular hexagonal prisms in net
204, and conversion to a hexagon of all the others
yields net 219. This net belongs to the ABC-6 series,
and would be coded as sccccsaaaa. It contains 4e6683
and gmelinite-type cages which form a 3D-channel

system connected through 8-rings; TO and H' also
occur. Conversion of all the prisms yields net 183 of
the ABC-6 series with sequence ccccaaaa. A poly-
typic series can be obtained by inserting s only at
some of the ca boundaries. These d'-transformations
do not result in angular distortion of TO, but appli-
cation of a o-' transformation to all Archimedean
nets in Table 4, except as already described, results in
distortion. A o-' transformation can be applied suc-
cessively to near-planar arrays of H' in the faujasite
net, and four such transformations yield the sodalite
net. Because of the distortion, called, pleating by
Shoemaker et al., the three intermediate nets are not
listed in Table 5. Similar transformations can be ap-
pted to H' tn net 207.

Conclusion

ihe present investigation systematizes the studies
by earlier workers on the ABC-6, Archimedean, and
near-Archimedean nets, and demonstrates the cross-
relationships. Just as for the nets developed in the
earlier papers of this series, natural and synthetic ma-
terials tend to assume a framework with simple con-
nectivity. However the occurrence of minerals with
8- and lO-layer repeats in the ABC-6 series provides
justffication for systematic enumeration of nets with
complex connectivity. Just as in organic chemistry,
there is an intellectual challenge to find a way to syn-
thesize materials with nets so far known only from
mathematical invention. Success might provide ma-
terials with valuable physical properties.

i-----r
i ss,es i
l l

! - - - - - {

I

35.65 ,' l

I
- - - - - {

\

)--  -  -  -  -

35,65
A - - - - - J

25)

25"

?s

.,75
Y

I

35,65 i
I

Table 5. Complex 4-connected nets based on Archimedean polyhedra

15,85

15,85

5)

No.  7 t  C l r cu l t  s ymbo l  7 .  H ighes t
'  space group

Cel  1 
"edges

Connect  i  ons Po1 yhedra

208
209

210
211
z t z

L I J

214

215

216

2 1 7
218
219

1 8 3

40
32

20
l 6

22
t d

t 0
22
t 6
34
84

60

48

compl ex

40 P4lmmm

32 P4lnrnm
20 P4lmmn
16 P4lmmm

22 Pmnm
28 P4lmmm

40 Fm3m
22 P4r/nnc

32 l4lnrnm

34 P4r/nnc
84 P6rlmmc

,60 P6r/mmc

48 P6r/mmc

a l 4 , c l 2

a  1 2 ,  c  l 4

a  l l ,  c  9

a  9 ,  c  l 2

a  1 2 ,  b  
' l 4 ,  

c  l 0

a  l l ,  c  l l

t 3

a  1 2 ,  c  9

a  
. l 4 ,  

c  l 0

a  
' l 2 ,  

c  l 4

a 1 7 , c 2 1

a 1 2 , c 2 5

a 1 2 , c 2 0

o ( l - 5 ) - s o d a l i t e

o ( 1 - 4 ) - s o d a l i t e

o ( 1 , 2 ) - s o d a l i t e

o ( 3 ) - s o d a l i t e

o (  3 , 5 , 6  )  - s o d a l  i  t e

o ( ' l , 2 , 6 ) - s o d a l j t e

o ( 1 , 4 ) - s o d a l i t e

o (  1  , 5 )  - soda1  i  t e

o ( l , 2 , 4 , 5 ) - s o d a l i t e

o ( l , 2 , 4 , 6 ) - s o d a l i t e

o- l  (H'  ,ooot  )  -zoq

o - l ( H ' ,  i n c l i n e d ) - 2 0 4

o - l ( r r ' ) - z t s

H '  ,0 '  , tco,4861 282

c,  H 
"o 

'  , tco,+601 2

rc,c ,qsa12a2
ro,c,+6ol  2

c,u '  ,q8a12e2,q6a12
l '  ,o '  ,4861282,q6a12
^ "6-12t , , q  o

H'  ,4601 
2

H '  ,q9a12e2
H'  ,o '  ,4861 

282

H '  , q l 8 o 6 l o 3 r z 2
H ' , t 0 , 4 9 6 6 3 8 , e

to ,+5o l  I

G gme l i n i t e - t ype  cage



I
I

. r S r .

IOB sodo/ite
(SSS) only

rr ! rr

H
211 (SSS') , (HHS)

296 rho (O'O'O')
onlY

C

I
I
H \T

o9
H

2 (H'H'S') ,  (OOO')

for convenience

2lo (s's's),(HHo) 208 (H'H'O') ,(O'O'O)

Fig. 3. 2D projections of three Archimedean and four near-Archimedean nets. Three symmetrical o-operations @atched arrow)

*rruirt net l0g (sodalite) to net 202(A), and three more operations yield net 206 (rho). The truncated-octahedral cage of sodalite has

square 4-rings (S and squares) perpendicular to cubic axes, and these transform to the TCO cage with attached octagonal prisms (O') in

the rho net. There are two c"g.. io th" A o"t: a truncated cuboctahedron with octagonal faces (O and 88888), and a truncated octahedron

with attached cubes (S'). One o-operation converts 108 into 2l I (open arrow) which is viewed perpendicular to the tetragonal c-axis; one

cage has two hexagons (H and 66666) and a square in cubic directions, and the other has two S and one S'. Each S'is viewed down a

diad axis, and it overlaps with a vertical hexagon. Net 210 is obtafued from 2l I by a further o-operation, and is viewed down thrc tetrad

axis. In nets 208 and 209, H'and O'overlap, but only one symbol is listed at each place to avoid confusion. Net 208 is viewed down a

tetrad axis.

202 A (S'S'S',),(OOO)
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Table 6. Enumeration of o-related nets

787

P o s i t i o n ( s )  o f Label  s  for

1 , 4

1 , 2

. l , 6

I l , 2 , 3 ]

1 , 2 , 6

. | , 3 , 6

1 , 2 , 3 , 6

1 , 2 , 4 , 5

1 , 2 , 4 , 6

1  , 2 , 3 , 4 , 5

2r 'r ( 6 )

2 1 4 ( o )

2 1  0 ( v )

2r5 ( r )

[202  (A)  ]

2 1 3  ( n  )

2 1 2 ( e )

20e(  B)

2 l  6 ( u )

217 ft)

208 (s)

0n1y one choice for  one operator ;  posi t ion 3
chosen because of  te t ragonal  symmetry.

0n1y one choice for  two paral le l  operators;  net

has  i some t r i c  sy rnme t r y ,  and  1 ,4  =  2 ,5  =  3 ,6 .

0nly  one choice for  two non-paral1e1 operators in
s a m e  t r i p l e t ;  =  . l , 3  =  2 , 3  =  4 , 5  =  4 , 6  =  5 , 6 .

0n1y  one  cho i ce  f o r  two  non -pa ra l l e l  ope ra to rs  i n
d i f f e r e n t  t n i p l e t s ;  =  . l , 6  =  2 , 4  =  2 , 6  =  3 , 4  =  3 , 5 .

0n1y one choice for  three operators f rom same
t r i p l e t  =  4 ,5 ,6 ;  A rch imedean  ne t .

Three non-para11el  operators,  two f rom one t r ip let ;
=  1 , 3 , 5  =  2 , 3 , 4 .

Two  pa ra l  l e l  and  one  non -pa ra11e l ;  =  1 ,3 ,4  =  2 ,3 ,5
=  2 , 3 , 6  =  1 , 2 , 4  - -  1 , 2 , 5 .

Th ree  ' i n  one  t r i p l e t ,  and  one  i n  t he  o the r ;
=  1 , 2 , 3 , 4  =  1 , 2 , 3 , 5  =  1 , 4 , 5 , 6  =  2 , 4 , 5 , 6  =  3 , 4 , 5 , 6 .

Two  pa i r s  o f  pa ra l l e l  ope ra to rs ;  =  2 ,3 ,5 ,6  =  . l , 3 ,4 ,6 .

Two paral le l  and two non-para11e1 operators.

F ive ooerators.
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