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Orientation of phase and domain boundaries in crystalline solids
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- Abstract

Minimization of interfacial energy is the dominant factor controlling the shape and
orientation of crystalline precipitates and replacement products in minerals. The dimen-
sional misfit of strain-free lattices at a phase boundary is directly related to interfacial
energy and its minimization provides a convenient criterion for calculating interface
orientation. The contribution of anisotropic elasticity is relatively insignificant except when
the lattice misfit is essentially isotropic.

The existing lattice-misfit theory of Robinson and coworkers for two-dimensional
lattices and its application to chain-silicate mineral systems is reviewed, and extended to
both coincident and optimal phase boundaries. By recognizing that coincident and optimal
phase boundaries have indices (ft/c/) common to both lattices. a generalized lattice-misfit
theory for three-dimensional lattices is developed and applied to feldspar mineral systems.
For optimal boundaries, structural continuity across an interface may be improved by local
coherency stresses and dislocations. Discrepancies with observed orientations arise from
topological constraints and the decrease in specific surface area with coarsening.

Introduction

The shape and orientation of crystalline precipi-
.. 's is theoretically dependent on a variety of
complexly interrelated factors, the principal ones
being structural (or topological) constraints, diffu-
sion, minimizationof interfacial energy and precipi
tate size (or specific surface area). Recent studies
suggest that minimization of interfacial energy is the
dominant controlling factor when the precipitate
phase has a definite crystallographic relationship
with the matrix phase (Cahn, 1968; Bollman and
Nissen, 1968; Robinson, Jaffe, Ross and Klein,
1971; Willaime and Brown, 1974; Jaffe, Robinson
and Tracy, 1975; Robinson, Ross, Nord, Smyth and
Jaffe,1977; Fleet, Bilcox and Barnett, 1980; Fleet,
1981). Such crystallographically oriented precipi-
tates most commonly occur in the form of geometri-
cally-shaped inclusions with a preferred shape ori-
entation. Equidimensional, rounded inclusions
(spheres) frequently have an oriented zonal distri-
bution within the matrix.

In the present context, interfacial energy includes
the Helmholtz free energy of the interface atomic
structure and the energy required to establish and
maintain that structure. For planar interfaces, vari-
ation in the Helmholtz free energy is largely depen-
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dent on the degree of structural correspondence
between the two related phases (which simplistical-
ly may be equated with dimensional misfit of the
two lattices). Dislocations, stacking faults, and the
(three-dimensional) elastic strain energy required to
establish and maintain the interface structure raise
the total free energy of the system and therefore
must be included in the interfacial energy.

At the present time it is clearly not possible to
make meaningful calculations of interfacial energy
and thereby quantitatively to account for the mor-
phology of crystalline intergrowths. Hence atten-
tion has been directed to establishing criteria that
either are related to interfacial energy or directly
contribute to it, and which may be applied in a more
straightforward manner. Opinion is divided be-
tween the dimensional misfit of the strain-free lat-
tices (lattice misfit, Bollmann, 1967:'1970:' Bollman
and Nissen, 1968; Robinson et al., l97l:. 1977:' Jatre
et al.. 1975'. Fleet et al., 1980: Fleet, 1981) and the
elastic strain energy required to bring the two
lattices to coherence at the interface (coherent
elastic strain energy, Cahn, 1968; Willaime and
Brown, 1974).

In this paper, the existing lattice-misfit theory for
two-dimensional lattices is extended to three-di-
mensional lattices. The generalized theory is ap-
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plied to feldspar mineral intergrowths, and the
relative importance and interrelation of lattice mis-
fit and coherent elastic strain energy are critically
discussed.

Two-dimensional lattice misfit

Theory

Following Robinson et al. (1977), the conditions
under which two plane lattices are coincident along
a common line (or lines) are quite evident from
inspection of Figure l. R is a lattice vector of
magnitude r to the point (r,y) in X,y lattice space,
and a, b, and, 7 are unit-+ell parameters. The
present theory is only concerned with comparison
of vectors to equivalent points in the two lattices,
and it is convenient to normalize lattice coordinates
relative to y. Thus, x : xr : xzl!: 1ll : y2 : L For
lattice 1:

4 : 1ap)z + b? - Za6bpos(180 - y,),

and so on. When R1 and R2 have a common origin
and the same orientation, the misfit between the
two lattices in the direction of Rr, Rz is given by:
(4 - E)\r,, : [(a? - a7)xz + 2(a1bposyl

- a2b2cosf2)x + (bl - b2)llIa?xz

+ 2(a1b1 cosy)x - b?l

or

Lflr?: (r', - 4)14
: (Ax2 * B.r * C)lA1x2 * B1x * C1) (l)

where, A: ^a7 
- a7,B :2(aftposyl - azb2cosy2),

C :  b7  -  b '2 ,  A t  :  a t ,B t  :  2a lbposyr ,  Cr  :  b r .

When (Lfl|) : 0 the rwo lattices are coincident
along a common line through (x,l), with

x : [_Br_(82 _ 4AC)t/2]l2A (2.1

Since real solutions of equation (2) are limited by
4AC < 82, lines of coincidence are restricted to
specific combinations of unit-cell parameters.
When 4AC < B2 there are two (non-equivalent)
orientations of coincidence, and when 4AC : 82
there is just one. For orthogonal lattices, the re-
quirement for two (symmetry-related) lines of coin_
cidence is simply - (b7 - b2r)l(a? - a7) > 0, or b1 >
b2 with a2 ) at, etc.

Lattices oriented to coincidence along a common
line do not necessarily have common lattice points
(except for the origin). In general, points ofpirfect

registry of the two lattices l(x,l), (2x,2), etc.f are
cosets of the lattices belonging to an equivalent
class of points common to both lattices (Bollmann,
1970). If the two lattices are imagined to be juxta-
posed along a line of coincidence, they are only in
continuity along their common boundary line.
There is continuity of lattice rows across the bound-
ary, but the two lattices remain incoherent to dif-
fraction.

The angle of inclination (O) of the boundary line
to the nearest rational lattice direction ([0] in Fig.
1) is:

er : cos-r[(rz + (xa)z - b?)lLxarr], (3)

and the associated lattice rotation (f) required to
achieve coincidence is:

6 :  [10 ] r  n  [10 ]2  :  Oz  -  Or .  (4 )

For 4AC > Bz a line of coincidence does not
exist. However, the misfit between two lattices
along a common equivalent line still varies with line
orientation. The orientation which minimizes the
misfit (the optimal orientation) is obtained by differ-
entiation of equation I, which gives:

(ABr - A1B)x2 + z(Aq - ArC)x

+ (BCl -  B,C) :  0.  (5)

The point (x, 1) in Figure I then defines the optimal
boundary between two plane lattices for which 4AC
> 82. Boundary orientation and associated lattice
rotation are calculated as in coincident-boundarv
theory.

Ap p lic at io n t o i nt e r g r ow t hs of c hain- s ilic at e
minerals

The two-dimensional lattice theory has direct
application to the orientation of intergrowths be-
tween phases with monoclinic and other orthogonal
space lattices when the translation distances along
the common third axis (the unique axis of monoclin-
ic lattices) are very similar. Figure 1 then becomes
an orthogonal projection down the common axis of
the two lattices for two intergrown phases.

The two-dimensional theory accurately repro-
duces the two observed orientations and associated
lattice rotations of the lamellar phase in two-phase
intergrowths of monoclinic pyroxenes (augite-
pigeonite) and monoclinic amphiboles (tremo-
lite-cummingtonite and hornblende-cummington-
ite; Robinson et al., 1971, 1977; Jaffe et al., 1975),
and of rod-like inclusions of magnetite (cubic) in
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Fig. l. Two plane lattices oriented to coincidence along a

common boundary line: R1R2, coincidence vectors; d' boundary

line orientation; 6, lattice rotation.

augite (Fleet er al., 1980). When the effect of
temperature and pressure of intergrowth formation
on the unstrained unit-cell parameters is taken into
account, the agreement between the calculated and
observed data is only limited by experimental error.
The orientation of magnetite in augite is particularly
sensitive to temperature, and the predicted tem-
peratures of magnetite precipitation agree well with
those indicated by petrological evidence (Fleet et
al . ,  1980).

The b unit-cell parameters (unique axis Y) of
these pairs of intergrown minerals are very similar,
and only small stresses would be required to strain
the lattices of the juxtaposed phases to be coinci-
dent in two-dimensions a/ the phase boundary.
However, the phase-boundary calculations are not
predicated on this assumption. For each inter-
growth the relative difference in the b parameters is
so small that it does not result in a significant
component of phase boundary orientation outside
of the a,c plane. This is confirmed by calculations
with the three-dimensional lattice theory discussed
below.

Although the two lattices in each of these pairs of
intergrown minerals remain completely incoherent
to diffraction, lattice rotation allows the related
crystal structures to be "continuous" along the
phase boundary plane without introducing elastic
strain. Thus interfacial energy is minimized. For
intergrowths of essentially isomorphous phases, the
interface atomic structure will be generally similar
to the related crystal structures. In contrast, the
interface structure of augite-magnetite intergrowths
must be a hybrid of two quite distinct chemistries
and crystal structures. In all cases however, the

degree of structural continuity permitted by the
interface structure is sufficient to cause the interfa-
cial energy to be minimized.

Robin (1974; 1977) has used the Mohr circle
construction to calculate the stress-free strain ellip-
soid and phase boundary orientation for inter-
growths which may be reduced to two-dimensional
lattice problems. This graphical method is based on
the assumption that the strain of the interaxial angle
(e.g., yt - 72) makes a linear contribution to the
shear strain. Although this assumption may not be
val id in al l  cases (e.g.,  when f t :  7z 190') ,  the
calculated data for chain silicate and alkali feldspar
intergrowths (Robin, 1974; 1977:' Tullis and Yund,
1979) do appear quite meaningful' However, for
calculation ofphase boundary orientation alone, the
Mohr circle method of Robin is superseded by the
theory of Robinson et al. (1977; represented by
equations 1,2,3, and 4) for coincident boundaries
and by equation 5 for optimal boundaries.

Three-dimensional lattice misfit

Theory

When the construction in Figure I is considered
as an orthogonal projection down a common axis
(Fig. 2), it becomes clear that the plane of coinci-
dence of the two lattices passing through (x,1,0) is
actually parallel to the crystallographic plane (fiI0),

where h : llx. Furthermore, intercepts on the
reference axes, normalized to 0Br : b1, 0B2 : b2,
result in lines in the projection (A1B1, AzBz) which
are identical in magnitude and orientation to the
coincidence vector, R. Thus the two lattices can be
placed in coincidence in the lattice plane represent-
ed by ArBr by simply translating lattice 2 along the
line BzBr.

Yz Yl

Fig. 2. Equivalence of coincidence vector R and normalized

intercepts ArBr,A2B2.

x l
xe



The equivalence of R and A1B1,A2B2 forms the
basis of the present three-dimensional optimal
phase-boundary theory and leads to the srarement
of a crystallographic law: that coincident and opti-
mal phase boundaries have indices (ftkl) common to
both crystal lattices. The points of intersection of an
(hkl) plane with the three reference axes define a
reference triangle (Fig. 3) in each lattice. The sides
of the reference triangle are normali zed by setting
0B : b. For intergrown phases which are iso-
morphs, and which therefore have topological
equivalence for unit translations along crystallo-
graphic axes, the corners of the reference triangles
are equivalent points in the two juxtaposed struc-
tures. Thus if it were possible for their lattices to
have a common plane of coincidence, the crystal
structures of two intergrown isomorphous phases
would be continuous along their common phase
boundary.

In fact, it is not possible for two different strain-
free triclinic lattices to have a common plane of
coincidence. They may have common lines of cojn-
cidence. Indeed each of the sides of the reference
triangle may perhaps be separately and indepen-
dently brought to coincidence by an appropriate
lattice rotation and translation. However. the rota-
tion and translation required to bring a second side
to coincidence necessarily destroys the coincidence
of the first.

The orientation of the optimal plane for two
triclinic lattices may be estimated by applying the
two-dimensional lattice theory to the normalized
axial plane projections: h and I are given, respec-
tively, by the indices (/zl0) and (01/). However, this
procedure assumes the constrained lattice rotations
of the two-dimensional projections rather than the
actual lattice rotation appropriate to (hkt), and
therefore yields only approximate orientations.

In the present theory, the orientation of optimal
phase boundaries is predicted by minimizing the
area misfit between normalized equivalent (ftkl)
planes in two related lattices. Area misfit is given by
P =le11l * le22l, where, e;i is the two-dimensional
strain tensor, formed from five linear strains (the
sides of the reference triangle, Fig. 3, and the
bisectors of its two largest enclosed angles) comput-
ed from the strain-free unit-cell parameters. Area
misfit is minimized by inspection, using computer
program EeLAG. Strain calculations are made se-
quentially at grid points on a hemisphere about the
Y-axis. Grid points are defined by the spherical
coordinates (D,E), where D is a counterclockwise
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Xi
Fig. 3. Reference triangle ABC common to lattices of two

intergrown phases.

rotation about the Y-axis (D : 0 in the b,cx plane)
and E is a clockwise rotation about an axis normal
to the Y-axis and (90 + Df from c* (E : 0 in the
ax,c* plane). Each grid point locates the stereo-
graphic pole of an interface plane. The output can
be displayed in contoured stereographic projection.
Thus the present approach yields the orientations of
all planes of low area misfit (not just the optimal
one) ranked relative to the quantitative parameter
P, and permits a visual impression of the variation
in misfit in the immediate vicinity of each pole. ,

EpLAc does not give precise values for lattice
rotation, since this would require additional minimi-
zation of area misfit by rotation about the pole of
the optimal (hkt) plane. Knowledge of the lattice
rotation is not required here in the calculation of
optimal phase-boundary orientation as it is in the0-
lattice theory (Bollmann and Nissen, 1968; Boll-
man,1967,1970). Recognition of the equivalence of
the reference triangle in both lattices reduces lattice
rotation to a passive role. However, the magnitude
of it may be estimated semiquantitatively from the
angles subtended by the pole of the optimal plane to
the respective crystallographic axis.

The grid interval in Bpr-ec can be adjusted to the
requirements of any particular problem. An interval
of 5" is convenient for most reconnaissance work
and, with interpolation between grid points, was
entirely adequate for study of feldspar mineral
intergrowths (below).

ErLAG precisely reproduces the orientation and
lattice rotation calculated with the two-dimensional
theory for the planes of coincidence in the augite-
pigeonite and augite-magnetite intergrowths dis-
cussed in the previous section. This is a necessary
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first step toward establishing the correctness of the
present approach, and is reinforced by the favor-
able agreement with the observed orientation of
feldspar intergrowths reported in the following sec-
tion.

Coherent elastic strain energy is calculated with a
modified version of EILAG by setting elastic strain
components equal to the corresponding principal
two-dimensional strains. Stress components out-
side of the plane of the interface are not set to zero
as in the procedure of Willaime and Brown (1974),
although the quantitative effects of this modification
are rather trivial.

Application to feldspar mineral intergrowths

Feldspars are triclinic and monoclinic framework
aluminosilicate phases belonging essentially to two
separate solid solution series; (a) plagioclase-Na1-*
Ca*Alr+*Sir-xO8, with albite (Ab, NaAlSisOs) and
anorthite (An, CaAl2SizOs) end-members; and (b)
alkali feldspar-K1-*Na*AlSi3O8, with orthoclase
(Or, KAlSi3Os) and albite end-members. Lamellar
and lamellar-like intergrowths, mostly resulting
from phase-separation processes, are an important
diagnostic and genetic characteristic, and have been
extensively studied (Smith, 1974). The classifica-
tion of Willaime and Brown (1974) is adopted in the
present study.

(a) Plagioclase

Ordering in triclinic plagioclase solid solutions is
complicated by the low mobility of the tetrahedrally
coordinated cations, Si and Al. An intimate modula-
tion of end-member components (e-plagioclase su-
perstructure) and three separate and compositional-
ly distinct lamellar intergrowths (i. peristerite,
-AnZ with -An25; ii. B@ggild, -An48 with
-An58; and, iii. Huttenlocher, -An70 with -An95)

exist in natural phases.
In a previous study with eprec (Fleet, 1981), it

was shown that the computed minima for lattice
misfit and coherent elastic strain energy for albite-
intermediate plagioclase and anorthite-intermediate
plagioclase interfaces adequately accounts for the
compositional dependence of the orientation of the
plane of modulation of the e-plagioclase superstruc-
ture. This suggests that minimization of interface
energy is the dominant factor controlling the shape
and orientation of the ordered domains of albite and
anorthite in the superstructure.

The observed orientations of lamellar inter-
growths in plagioclase are summarized in Figure 4:

these data include the compilations of Smith (1974)
and Willaime and Brown (1974) and an exhaustive
survey of more recent literature. Poles to plagio-
clase lamellae have two distinct spatial distribu-
tions; (1) near to [010] (and the zone of s vectors,
which describe the intermediate plagioclase super-
structure, Fleet, 1981), and (2) [010] zone, generally
near to [l00]. Comparative data for lattice misfit
minima and coherent elastic strain energy minima
(Table 1; Fig. 4) have been calculated with unit-cell
parameters obtained by constructing smoothed
unit-cell parameter-composition distributions from
the data of Grundy and Brown (1969, 1974), andthe
room-temperature elastic stiffness coefficients of
Ryzhova (1974). The ambient temperatures of the
calculated data are within the approximate tempera-
ture ranges commonly associated with plagioclase
intergrowths (e.9. McConnell, 197 4).

In view of the complexity of the effects which can
perturb real intergrowth boundaries, the agreement
between the orientations of the calculated optimal
and near-optimal boundaries and the actual inter-
growths is very good, and could clearly be im-
proved by arbitrary manipulation of the composi-
tions and ambient temperature of the coexisting
phases. Furthermore, for [010] zone intergrowths,
the consistent discrepancy between the observed
orientations and misfit orientations (which are cal-
culated from the strain-free unit-cell parameters)
may be attributable to the topological constraint
which required the b* vectors in the two intergrown
phases in [010] zone peristerite to be coincident
(Mclaren, 1974). As is expected from the relatively
large misfit anisotropy of plagioclase intergrowths
(P-u*/P-1., Willaime and Brown, 1974), the calcu-
lated minima for coherent elastic strain energy
more-or-less correspond to the respective misfit
minima. However, the areas of the coherent elastic
strain energy minima are much more diffuse (Fig. a)
and, therefore, the minima themselves are less well
defined.

(b) Alkali feldspar
Alkali feldspar solid solutions unmix to give

perthite intergrowths of K-rich feldspar (K-feld-
spar) and Na-rich feldspar (Na-feldspar). The ef-
fects of ordering of the tetrahedrally coordinated
cations, Si and Al, are superimposed on the simple
solvus phase relations. High temperature K-feld-
spar (sanidine, orthoclase) is monoclinic; low tem-
perature K-feldspar (microcline) and Na-feldspar
(anorthoclase, high and low albite) are triclinic.
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Fig. 4. Orientation of lamellar intergrowths in plagioclase: stereographic projection; circles, observed; p, peristerite; B, Bdggild; H,
Huttenlocher; triangles, lattice-misfit minima; squares, coherent elastic strain energy minima; continuous/broken lines are contours
ofrelative percent lattice misfit/strain energy for intergrowth No. 3; labels on calculated data refer to Table l.

Willaime and Brown (1974) recognized four crysral-
lographically and morphologically distinct groups of
perthite:

(1) normal perthite. Spinodally and homoge-
neously unmixed lamellae, film, vein and patch
perthite oriented near (601), (801): (scale; crypto-,
micro- and macroperthite).

(]) braid perthite. Intersecting pairs of (hkl) and
(hkl) lamellae of Na-feldspar forming a braided
pattern parallel ro (100). The (lf0), (ll0) combina-
tion is most common, but (36I), (36-I) and (320),
(320) are also frequent. Albite twin lamellae have a
preferred orientation in Na-feldspar (the major
phase); each lamellar orientation is associated with
a particular twin orientation: (micro- and macro-
perthite).

(3) diagonal association perthite. Lozenge-
shaped units of diagonally-associated microcline
(Smith and MacKenzie, 1959) in a zig-zag pattern
parallel to (63I),(6tf) or (66D, (66-I) (willaime and
Brown, 1974).Each lozenge orientation appears to
be associated with a particular diagonally-associat-
ed twin orientation: (cryptoperthite).

(4) plate perthite. Irregular plate-like lamellae of

untwinned low albite approximately parallel to (011)
of untwinned microcline (Laves and Soldatos,
l%2). Individual plates may consist of smaller
plates arranged en echelon (Smith, 1974): (macro-
perthite).

The observed orientations of perthite inter-
growths are summarized in Figures 5, 6, and 7.
Comparative data for lattice misfit minima and
coherent elastic strain energy minima have been
calculated with room-temperature unit-cell parame-
ters from the compilation of Willaime and Brown
(Table l,1974) and from smoothed unit-cell param-
eter-composition distributions from the data of
Wright and Stewart (1968), and the room-tempera-
ture elastic stiffness coefficients from the compila-
tion of Willaime and Brown (Table 2, 1974). The
calculated orientations reported in Table I and
Figures 5, 6, and 7 have been selected from a large
number of individual calculations made to estimate
the effects of composition, structural state, topolog-
ical constraints, anisotropic elasticity and misfit
parameters on perthite intergrowth orientation. The
relevance of these data to each group of perthite
intergrowth is summarized below:
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Fel dspa r
lntergrorth l lo.

Table l. Calculated phase-boundary odentations for feldspar
intererowths

respective misfit minimum, as expected from the
earlier studies of Willaime and Brown (1974), Robin
(1974) and Tullis and Yund (1979). However, for
sanidine-anorthoclase unit-cell parameters the
strongest minimum of coherent elastic strain energy
is near [010]!

(2) braid perthite. Optimal and near-optimal
boundary orientations for coexisting orthoclase-
low albite are in good agreement with one of the
lamellar orientations in each of the pairs of inter-
secting lamellae reported for braid perthite (Table 1;
Fig. 6). The symmetry relations of the two lamellae
in each pair suggest they are related by the albite
twin operation [(010) twin plane], and this is con-
firmed by minima calculated with Na-feldspar unit-
cell parameters modified by a' : 180 - a, y' : 180
- y (Fig. 6). The symmetry relationship of the.
calculated orientations for albite-twinned lamellae
only exists when the K-feldspar phase is monoclin-
ic. It deteriorates for intermediate microcline (Fig.
6). and is nonexistent for maximum microcline.
Thus the present misfit theory clearly indicates that
braid perthite develops through equilibration (un-
mixing or replacement) between orthoclase and low
albite, and that the albite twin lamellae were present
during this process. The present results on the
applicability of optimal phase boundary theory to
braid perthite directly contradict the conclusions of
Willaime and Brown (1974). Furthermore, calculat-
ed minima for coherent elastic strain energy are
only in fair agreement with the observed lamellar
orientations (Fig. 6).

(3) diagonal association perthite. Diagonal asso-
ciation perthite appears to be a maturation feature
of Na-rich moonstone and anorthoclase (Willaime,
Brown and Gandais, 1976). Optimal boundaries for
appropriate combinations of sanidine or intermedi-
ate microcline and high or low albite are only in fair
to poor agreement with the reported observed inter-
face orientations (Fig. 4). However, the latter ap-
pear to have been estimated from transmission
electron microscope (TEM) micrographs of (010)
cleavage fragments, and may have been rounded to
be consistent with the calculated boundaries of
Willaime and Brown (1974). The precise measure-
ments of Lorimer and Champness (1973) actually
correspond to (992), which is in excellent agreeqlent
with the present optimal boundaries, and (992),
which, following the previous analysis of braid
perthite lamellae, is probably twin-related to (992).
Logically, (992) should be related through diagonal-
ly associated twinning to (992), and the data for
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l a b r a d o r i t e ;  B y t , b y t o i n i t e ;  A n , a n o r t h i t e ;  S a n , s a n i d i n e ;  A n o r t h , a r c r t h o c l a s e ;

.  I n t , i r t e r r e d i a t e i  l l a x , m x i n u n ;  M i c , m i c r o c l  i n e ;  ( $ & B ) ' ! i  I  l a i m e  a n d  B r d m ;
( e t H ) , B o l l n a n n  a n d  N i s s e n ;  A ,  a l b i t e  t w i n - r e l a t e d  u n i t - c e l l  D a r a r e t e r s  w i t h

o ' = 1 8 0 - a ,  v ' = 1 8 0 - y .
t  s o u r c e  o i  u n i t - c e i l  d a t a :  l .  G r u n d y  a n d  E r o w n  ( 1 9 6 9 ;  1 9 7 4 ) ,  s e e  t e x t ;  2 .
'  

x r i o h t  a n d  S t e w a r t  ( ' 1 9 6 8 ) ,  s e e  t e x t ;  3 .  H i l l a i m e  a n d  E r o w n  ( 1 9 7 4 '  l a b l e  l ) ;

4 .  6 o l l m a n n  a n d  N i s s e n  ( 1 9 6 8 ) .

(1) normal perthite. The optimal boundary for
the coexisting monoclinic alkali feldspars Or50-
Or25, representing the early stages ofalkali feldspar
unmixing, is in good agreement with the orientation
of cryptoperthite lamellae (Table l; Fig. 5). Howev-
er, the calculated boundaries for coexisting strain-
free monoclinic K-feldspar-triclinic Na-feldspar
and triclinic K-feldspar-triclinic Na-feldspar are
inclined by 40 to 50' to [010]. Clearly, the phase
boundary of cryptoperthite intergrowths in which
Na-feldspar is triclinic are constrained to lie in the
[010] zone, near to (6101). As in [010] zone perister-
ite, there is a topological constraint which requires
the b* vectors in the two intergrown phases to be
coincident. This is manifest in anomalous unit-cell
parameters (Smith, 1974). The calculated minimum
for coherent elastic strain energy for sanidine-
sanidine unit-cell parameters corresponds to the
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coexisting intermediate microcline-intermediate al-
bite (Fig. 4) tend to support this supposition. Alter-
natively, it is possible that the symmetry-related
interface pairs are related to preexisting coarse
albite twin lamellae in the Na-feldspar: this would
result in a more regular intergrowth texture. How-
ever, the present analysis indicates quite positively
that the fine albite twin lamellae in the Na-feldspar
post-date intergrowth development. This is in
agreement with Lorimer and Champness (1973),
and contradicts the theory of Willaime and Brown
(1974\. Calculated minima for coherent elastic
strain energy are only in fair agreement with the
observed orientations (as indicated above), but dif-
fer from the equivalent data of Willaime and Brown
(1974): data for maximum microcline-albite-
twinned (equivalent monoclinic) low albite are in-
cluded in Table I for comparison.

(4) plate perthite. The optimal boundary for co-
existing maximum microcline-low albite does not
agree with the orientation of plate perthite (Fig. 7).
However, the near-optimal boundary (1T,3,5),
which is associated with an area of minimum misfit
extending to the [00] zone, is in closer agreement.
For coexisting sanidine-anorthoclase the equiva-

lent near-optimal boundary itself is in fair agree-
ment with the observed orientation (Fig. 5). How-
ever, the discrepancy between the calculated and
observed data is more likely to be attributable to
uncertainty in the morphology and orientation of
the intergrowth, and to its coarse nature. Minima
for coherent elastic strain energy have a distinctive-
ly different spatial distribution to the misfit minima
(Willaime and Brown, 1974; Figs.7 and 5).

Discussion

Previous theories and concepts

The 0-lattice theory (Bollmann, 1967, 1970) is
rigorously derived for two identical lattices differing
only in orientation and (possibly) origin. Hence it is
essentially only applicable to subgrain boundaries
and to grain boundaries between grains of the same
phase. Bollmann and Nissen (1968) applied ?-lattice
theory to alkali feldspar intergrowths by introduc-
ing a minimization parameter for lattice misfit, P :
(btld)2 I (bzld)z, where, b1 and by are Burgers
vectors for dislocation arrays ofspacings d1 and ds.

oo l
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This revised ?-lattice theory has similarities to the
present misfit theory, but it is not equivalent to it:
the optimal and near-optimal boundary orientations
for the intergrowth example used by Bollmann and
Nissen (1968) differ by about 16'and 10o, respec-
tively (Table 1).

For intergrowths between cubic alloy phases
lattice misfit is isotropic, and therefore there is no
tendency for lattice rotation to minimize it. Fine
scale precipitates in such systems are generally
oriented parallel to elastically soft planes (Cahn,
1968), and TEM studies confirm that this phenome-
non is related to minimization of coherent elastic
strain energy. However, the existence of intersect-
ing lamellae and high-resolution TEM studies show
quite convincingly that coherency stresses must be
very local, and that lattice strain is relaxed within a
few unit cells of the interface. Presumably this is
accommodated by shear stresses outside of the
interface plane and by dislocations.

Willaime and Brown (1974) generalized the con-
clusion of Cahn (1968) to include intergrowths be-
tween phases of non-cubic symmetry, arguing that
all juxtaposed lattices are strained to coherence at
the time phase-boundary orientation is defined.
However, the present ErLAG data suggest that the
observed orientations of feldspar intergrowths are
much more consistent with minimization of lattice
misfit than with minimization of coherent elastic
strain energy. Very few feldspar intergrowths are
properly coherent under laboratory conditions, and
semicoherency effects are usually referable to topo-
logical constraints rather than to coherency con-
straints imposed by interface planes. The only
feldspar intergrowth for which the coherent elastic
strain energy model gives better agreement that the
simple misfit theory is plate perthite, which, ironi-
cally, is coarse in scale and has a pronounced lattice
rotation (Laves and Soldatos, 1962).

Intergrowths of chain-silicates (Robinson et al.,
1977:Fleet et al.. 1980D exhibit a lattice rotation and
a phase-boundary orientation that are precisely
reproduced by two-dimensional lattice misfit the-
ory. There is no doubt that the lattice misfit at the
phase boundary has been reduced by lattice rota-
tion. Coincident phase boundaries do not directly
negate the general applicability of the coherent
elastic strain energy theory (since coherent elastic
strain energy is also zero at coincidence), but they
do demonstrate that the concepts of lattice coher-
ence and structural continuity, which have emerged
from study of intergrowths between cubic alloy

phases, have to be modified for intergrowths be-
tween phases of non-cubic symmetry.

Optimal phase boundaries

It seems clear from the foregoing discussion that
minimization of lattice misfit is the dominant factor
controlling the orientation of phase boundaries in
crystalline solids of low symmetry. The available
evidence suggests that the contribution of anisotro-
pic elasticity is relatively insignificant except when
the lattice misfit is essentially isotropic. Hence the
phase boundaries of intergrowths will, in general,
represent optimal boundaries, except where special
circumstances permit coincident boundaries with
no residual coherency stresses.

It is expected that structural accommodation at
optimal phase boundaries is facilitated by local
coherency stresses, dislocations and stacking
faults. The contribution of local coherency stresses
should decrease with coarsening. In the early stages
of phase separation it may be a dominant factor.
However, the calculation of the total energy contri-
bution associated with such stresses is fraught with
problems. In particular, the effects of strain relax-
ation and of topological constraints, which intro-
duce elastic strains outside ofthe plane ofthe phase
boundary, have to be taken into account.

Top olo gic al c ons traint s

The two principal perturbing factors in the repro-
duction of phase-boundary orientation with optimal
phase-boundary theory are topological constraints
in fine-scale intergrowths and coarsening. Neither
may be quantitatively compensated. The effects of
coarsening are self-evident, since it leads to a
reduction in specific surface area.

Topological constraints may be expected in inter-
growths of isomorphous or pseudo-isomorphous
phases whose crystal structures contain infinite
chains, sheets or frameworks of strongly bonded
atoms. Coincidence vectors arise through the re-
quirement to equalize bond distances in shared or
equivalent structural features. Such features are not
necessarily parallel to optimal planes calculated
from the strain-free unit-cell parameters. It has
been noted previously that the b* vectors in peris-
terite and cryptoperthite intergrowths tend to be
coincident. Anomalies also exist in chain-silicate
intergrowths. Hornblende lamellae in augite (Smith,
1977) and biopyribole intergrowths (Veblen and
Buseck, 1980) are oriented parallel to (010), with
[100] and [001] vectors coincident, rather than the
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[010] zones as suggested by optimal phase boundary
theory.
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