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AssrRAcr

Thermodynamics of order-disorder in minerals may be approached by treating the min-
eral as a solid solution between an independent set of end-members with which the range
of possible states of ordering of the phase can be represented. Thus, a mineral of fixed
composition (a one-component phase), requiring s independent order parameters to rep-
resent the state of order in the mineral, involves an independent set of s + 1 end-members.
This approach is applied by means of symmetric formalism, with the entropy part of the
Gibbs energy taken to be the ideal configurational entropy of mixing using a mixing-on-
sites formulation, and the enthalpy part taken to be that of a regular solution between the
s * I end-members. Symmetric formalism is shown to be formally identical to the gen-
erulized Bragg-Williams or point approximation, and its treatment of convergent and non-
convergent cation ordering is compared with that of the Landau theory. Its flexibility in
describing a wide range of order-disorder behavior is illustrated with applications to sil-
limanite, spinel, albite, and potassium feldspar, the latter two involving order-parameter
coupling.

INrnoluctlot{ of order-disorder (e.g., Salje et al. 1985; Carpenter 1992;

without knowledge of the activity-composition (a - Carpenter et al' 1994)'

! relationships for minerals, the reliable calculation of o___ __ __
the conditionJ of formation of rocks and the calculation JYMMETRTC FORMALTSM AS A MAcRoscoPIC

of geologic phase diagrams is impossible. As discussed BR-AGc-WTLLIAMS MODEL

in Wood and Nicholls (1978), Wood (1987), Ghiorso In a mineral showing cation order-disorder, there are,
(1990), and Powell and Holland (1993), for example, the in general, s independent order parameters needed to de-
task is not straightforward. As a consequence, for all the scribe the state of order. These order parameters are func-
models normally used (regular, subregular, reciprocal), tions of the site distributions describing this state. Such a
thermodynamic mole fractions are written in terms of ide- mineral in an n-component system can be treated as a
al mixing, with the activity-coefficient terms written sep- solid solution between a set of n * s end-members rep-
arately. In Powell and Holland (1993), it was shown that resenting the range of composition and order-disorder
for nonideality formulated with symmetric enthalpic in- (see also, e.g., Nell and Wood 1989; Ghiorso 1990; Sack
teractions involving all sites, including same-site (regular) and Ghiorso 1991). For a mineral of fixed composition,
and cross-site (reciprocal) interactions, an important sim- this set involves 1 + s end-members. This representation
plification of a-X relationships is possible, termed sym- can be illustrated using sillimanite.
metric formalism. The application of the approach to Sillimanite is a phase of fixed composition, t6rAl-
complex phases, which, however, do not involve inter- Al"Si'2O5, with Al and Si capable of disorderbetween the
mediate states of long-range order, was demonstrated. two tetrahedral sites, tl and t2. One order parameter is

The purpose of this paper is to extend symmetric for- necessary and can be defined as Q : X!, - X!,,, with
malism to minerals in which the state of order varies with, values ranging from zero (for complete disorder) to unity
for example, temperature and composition. The result is (for complete order). Sillimanite is considered to be a
formally identical to the well-known generalized Bragg- binary solid solution between two end-members, ordered
Williams or point approximation (e.9., Thompson 1969, sillimanite (osil) and disordered sillimanite (dsil), the tet-
1970; Sack 1980; Davidson and Burton 1987; Ghiorso rahedral site distributions of which are shown in Figure
1990; Sack and Ghiorso 1991), but because it is derived l. The proportion, or mole fraction, of the ordered end-
macroscopically the representation of the thermodynam- membeq osil, is given by p*u = Q, and the proportion of
ics of even complex minerals is straightforward. In ad- the disordered end-member, dsil, by po"u = I - Q, with
dition, the form allows ready comparison with Landau the proportions depending on temperature. The site dis-
theory, a model being increasingly applied to problems tributions are given by
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FrcunB 1. The order parameter i unO .ite distributions for
the osil and dsil end-members of sillimanite as a function of
changing temperature.
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The ideal parts of the activities of the end-members are
formulated in terms of ideal mixing-on-sites (e.g., Wood
and Banno 1973; Powell 1978; Anderson and Crerar
1993) and are given by

I
45di' : xl,x!1 -- 

i0 + Q),

d i f f f l :4(X*X!1XKX3,)" ' : (1  + OQ- D Q)

where the factor of 4 is a normalization constant to ensure
unit activity of dsil in completely disordered sillimanite,
and the power of one-half is used because Al and Si half
occupy each site in this end-member. The activity coef-
ficients are given by the usual expressions for a regular
solution (Thompson 1967; Powell 1978; Anderson and
Crerar 1993):

RZ ln "Y."" : W(l - P*)' = W(l - Q)'

RI ln "y0",, : W(I - po")' = WQ' (3)

in which W is the macroscopic interaction energy for the
binary osil-dsil and includes individual tl and t2 site-
interaction energies and the tl-t2 cross-site (or reciprocal)
energy (Powell and Holland 1993,p.1178, Eq. 20).

To find the equilibrium value of Q at any temperature,
either the Gibbs energy of the solid solution may be dif-

ferentiated with respect to Q, setting the result to zero,
or, equivalently, the equilibrium condition for the intra-
crystalline reaction may be used:

Al(Al),'(Si)"O, : Al(Al,,Si,,)"(Al,/2Si,,,)'2O,. (4)
osil dsil

Substituting the activities from above into the equilibrium
condition 0 : AG" + RZln K gives

__ l t -o \0: AH. - fAS* + PA% + RZlntt + O-J
+ R Z l n  ( 4 ) + ( 2 Q -  D W  

\  - /

= A  +  BQ+ Rzh f - - l -  g )  
t t l

\ l + g /

where A = AHR - W + PAV* and B = 2W. In these
expressions AF1* is the standard enthalpy of the reaction
osil : dsil as written above, representing the enthalpy
difference between completely disordered and completely
ordered sillimanite. Note that the factor L/q from the activ-
ity of osil, which contributes RZ ln (4) above, does not
appear in the final equilibrium relation because it is ex-
actly canceled by the -fAS* term stemming from the
difference in entropy between disordered and ordered sil-
limanite. In the remaining discussion, it is assumed that
A% : 0 unless there is specific reference to a nonzero
AV*. Equation 5 is used to determine the equilibrium val-
ue for Q at any desired temperature.

Two situations are represented in Equation 5. When the
term B : 0, it reduces to the nonconvergent, simple dis-
ordering model commonly found in the literature (e.g.,
for sillimanite, by Navrotsky et al. 1973). This simple
theory, however, is not applicable to sillimanite because
sillimanite undergoes a symmetry change at a critical
temperature above 1700'C (Holland and Carpenter 1986)
and therefore shows convergent disordering. Such behav-
ior, in which a rapid decrease in Q to zero occurs at a
critical temperature, 7,, can be handled by setting A : 0
(i.e., when W : LH"), in which case Equation 5 reduces
to the classical, convergent Bragg-Williams model also
used for sillimanite by Greenwood (1972).

Considering the sillimanite energetics, the model val-
ues W : l7 kJ and L,H* = 17 kJ give convergent behavior
with I at2044K(1112 'C). These energies, obtained as
averages from the Bragg-Williams parameters derived by
Bertram et al. (1990), yield critical temperatures in agree-
ment with those suggested by Holland and Carpenter
(1986) from their experimental study. Sillimanite is pre-
dicted to be almost fully ordered at all geologically sig-
nificant temperatures, in agreement with the phase-equi-
librium studies used to generate thermodynamic data sets
(e.g., Berman 1988; Holland and Powell 1990).

Symmetric formalism has a form that is identical over-
all to the generalized Bragg-Williams models (e.g.,
Thompson 1969,1910; Sack 1980; Davidson and Burton
1987; Nell and Wood 1989; Ghiorso 1990; Sack and
Ghiorso 1991). In such microscopic approaches silliman-
ite would be treated energetically in terms of regular so-
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Frcunn 2. Enthalpy-order parameter relationships for a reg-
ular solution between ordered and disordered end-members. The
A^F/^ is the maximum enthalpy of ordering from the disordered
state, and W is the regular-solution parameter.

r l l
AHn'^ilf : -HQ - 

ioT,Q'* irQ" 
+ 

UcQ" 
+ ...

1
Asif"'*l' = --oQ'. (9)

The field term H allows nonconvergent ordering, in which
no phase ffansition occurs (Carpenter et al. 1994). For
convergent ordering, in which H :0, Landau theory usu-
ally distinguishes among three types of ordering behavior.
Second-order phase transitions, in which Q approaches
zero as Z approaches Z" (Fig. 3), have c : 0, and hence
no sixth-order term in Q occurs. The heat capacity in
second-order transitions increases linearly with tempera-
ture and falls abruptly to zero at 2". Tricritical phase tran-
sitions, in which p approaches zero as Z approaches I
rather more catastrophically than in second-order transi-
tions (Fig. 3), have b = 0, and hence no fourth-order term
in Q occurs. The heat capacity in tricritical transitions
increases dramatically toward an infinite value as 7l is
approached, whereupon it then drops to zero. First-order
behavior, in which p jumps discontinuously to zero at the
temperature of the phase transition, can occur when b
becomes slightly negative, with the variation of heat ca-
pacity being similar to the tricritical case. Further details
of these cases may be found in Carpenter (1992).

The variation of Q with temperature in symmetric for-
malism is shown in Fisure 4 for various combinations of

lutions on the tl and t2 sites (w", w") with a reciprocal
(or cross-site) interaction energy (AG-"' : wi:.:,) and an
enthalpy of exchange (AF1.-) for the internal reaction
SitlAlt2 : Altlsit,. The equilibrium condition for this in-
ternal exchange reaction would be written by substitution
of the individual terms into the equation 0 = AGo + RZ
ln K:

o:+*nrr,( ' 1ry).Yn
tt=\ 

(6): A + B Q + R I l n l t _  
O t\  - ,

which is identical in form to Equation 5. In a comparison
of terms, the parameters W and A.F1* are equivalent to
combinations of the microscopic model values:

w=
(Wrt + Wtz - )v'J"")

AHR
( w , t + y t , z - w i : . : r )

Although the equations have the same final form as
those of the generalized Bragg-Williams models, sym-
metric formalism is not motivated by pairwise atomic in-
teractions; it assumes only that the enthalpy of disorder-
ing is a simple (e.g., regular) macroscopic function of Q
and may result as much from lattice strains or ionic size
mismatch as it does from assumed pairwise interaction
energies. The equivalence of final form arises because
pairwise interactions yield a symmetric result. However,
the AHR term in this formalism does represent the differ-
ence in enthalpies between ordered and disordered end-
members, whatever the origins of that difference.

TnnruronyNAMIC BEHAvIoR AND L,lNoa.u rHEoRy

In Landau theory different types of ordering behavior
(see below) are distinguished by careful measurement of
physical quantities such as heat capacity or order param-
eter over a range of temperature. The basic similarities
between symmetric formalism and Landau approaches to
ordering are outlined before comparing the way each de-
scribes the behavior of heat capacity and order parameter.
The enthalpies of the disordering process may be illus-
trated by considering the binary osil-dsil as in Figure 2,
where it can be seen that the enthalpy of sillimanite is
given by H"u = Ho"u - QLH" + WQQ - Q).The enthalpy
and entropy of ordering, relative to a disordered state,
depend on the degree of order, Q, and are given by

At13;c"u: QW - AF1R) - Q'W
AS3;*"* : S:*?ff'. (8)

In contrast, in Landau theory, the Gibbs energy of or-
dering from a disordered starting point is given by a se-
ries expansion in the order parameter Q, such that its
enthalpy and entropy are given by

>l

s
rq

(7)all._
z

H"*""r, = w QQ-O)

H= Hdir-de.ed - QMI + Hexcess
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Approximating the Landau model
(with temperature-dependent W)

upper curve: Landau tricritical
lower cwe: Landau second order
boxes : SFmodel

tmO t(r) 1500

Frcurn 3. Modeling Landau tricritical and second-order be-
havior with the use of symmetric formalism. Curves : Landau
variation of Q with temperature. Boxes : symmetric formalism
fit to the Landau behavior (W allowed to be a linear function of
temperature). Model values (lower curve) Al,Si, (n : 1): Landau
second-order model with T. : 2000 K, S^_ : 23.05 JlK, and
H^ : 23.05 kJ, and symmetric formalism with AIl* : 27.5 kJ
and W:  -18 .50  +  0 .0227T kJ ;  (upper  curve)  A lS i .  (n :3 ) :
Landau tricritical model with T. : 2OOO K, S.* : 18.70 J/K,
and 11-* : 24 93 kJ, and symmetric formalism with AI1^ : 29.0
kJ and lV: -1997 + O.O242T kJ. In both cases the excess
(nonconfigurational) entropy is modest, S". : -t(aI4r)/(AT)lQQ
- Q), reaching maximal values of about 5-6 IIK at Q : 0.5.

values of the parameters Iry and AI1*. As can be seen, if
W is zero or small in comparison with AI1*, then the
result is a typical nonconvergent situation with Q decreas-
ing continuously with increasing temperature. In this case
there is no phase transformation, merely a continuously
changing cation distribution. If W : LH* (classical
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Frcunp 4. Variation of order nur'u-",", Q with temperarure
for a 1: I compound (e.g., sillimanite) as a function of the relative
magnitudes of the parameters (A^F1" and IV in kilojoules). Z. is
the critical temperature If Q --> 0 when AIl* : 1,y.

T ' I T

Frcunn 5. Variation of the behavior of Q with temperature
for relative values of Al1* and W for a 1:3 compound. The sif
uation AI/R < I/ (top left) is inappropriate because it implies
that the anti-ordered state is most stable; if A11* : W (top right),
there is a first-order transformation with a transition temperature,
7", a little higher than 7". Although when (aQ)/(a?) is negative
the phase is unstable with a meaningless negative heat capacity,
the transition temperature does not occur at the point where
(aQ)/Gn changes sign but must be determined from Gibbs en-
ergy criteria (see Fig. 8). If All. is marginally larger than !V
(bottom left), there is a first-order transition and 0 drops to a
small but nonzero value, which then tails off with temperature.
If A-F1. is significantly larger than W (bottom right), the transi-
tion is continuous and nonconversent.

Bragg-Williams behavior), then Q falls off dramatically
with temperature, reaching zero at the critical tempera-
ture, I". The critical temperature for a 1:1 compound like
sillimanite occurs at T, : WIR (see Appendix 2). If AF1"
is a little larger than I4l, this behavior is modified such
that Q "tails off" above f. Gig. a). Thus, the relative
magnitudes of these parameters determine the size of the
field term and hence the degree of nonconvergence of the
disordering behavior. The condition W > LHR is not ap-
propriate because it implies that the anti-ordered state is
more stable than the ordered one. For minerals in which
there is not an equal proportion of sites, i.e., for n > l,
the phase transition in the case W : LHx does not occur
at the T. predicted above but becomes first order in char-
acter with a transition temperature just above 1", as seen
in Figure 5. However, if AF1* is a little greater than W,
the transition can be made to become continuous with a
small tail to Q above 2". Figure 5 illustrates the effect on
Q of varying the ratio AH;W slightly from unity.

The temperature variation of the heat capacity, C", in
symmetric formalism is shown in Figure 6 for various
combinations of values of the parameters W and AI1*. If
W : LH", the heat capacity increases to a maximum and
then drops to zero at 7., as is typical of convergent be-
havior. If W is a little less than AF1*, the peak in the heat
capacity becomes rounded, and the small nonconvergent
contribution to the disordering causes a tail to develop

0.00

Afl*=l{z a $

Fint Order
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Frcunn 6. Variation of heat capacity with temperature for a
l:l compound as a function of the relative magnitudes of the
parameters (AI1* and I4z in kilojoules) in symmetric formalism.
If AI1R : W, the heat capacity reaches a peak and drops abruptly
to 0, whereas if AI1" > lV, the peak becomes rounded with a tail
above 7".

above 2.. The heat capacity of the l:1 compound is al-
most linear with temperature after an initial nonlinear in-
crease and therefore closely resembles the second-order
behavior in Landau theory, whereas the l:3 compound
has an ever-increasing heat capacity up to the critical
point, much resembling the tricritical behavior in Landau
theory (Fig. 7).

An interesting feature of this approach is that 1:1
phases cannot undergo first-order transitions because of
the symmetry imposed by the regular-solution enthalpy
assumption: If there are to be two minima in Gibbs en-
ergy, symmetric formalism forces them to be at identical
positive and negative values of Q Gig. 8). Within the
general framework of this approach, 1:l phases can un-
dergo a first-order transition if the enthalpy is made asym-
metric, and this is most easily achieved by replacing the
regular solution by a subregular solution between the end-
members (see the Discussion section below).

The differences in heat-capacity behavior in Landau
theory result from varying the higher order terms in en-
thalpy (the Q term in Eq. 9), which linearly increases
heat capacity in the second-order model, and the Qu term,
which accounts for the increasingly sharp rise in heat ca-
pacity in the tricritical model). In contrast, it is the dif-
ferences in configurational entropy resulting from the dif-
ferent ratio of Al:Si that result in the two forms of
heat-capacity behavior in symmetric formalism, the l:l
ratio giving the linear increase and the l:2 and 1:3 ratios
giving the rapidly increasing heat capacities. The first
three terms in the series expansion for configurational en-
tropy of ordering for l:n materials are

0.00 0.25 0.50 0.75 1.00 1.25
T/7.

Frcunn 7. Comparison of the 1:1 and l:3 behavior of heat
capacity. The heat capacity of the 1:1 compound is nearly linear,
reaches a peak of finite size, and is like that of a Landau second-
order transition The heat capacity of the l:3 compound becomes
infinite [where (aQ)/@T) in Fig 5, top left, becomes infinite] and
resembles that of the Landau tricritical transition.

Frcunn 8. Plot of Gibbs energy of ordering against Q for
temperatures above, below, and at the transition temperature for
a first-order transition at 2,. The transition temperature occurs
where the minimums at Q : 0 and Q > 0 are at the same (zero)
free energy.

Al:Si ratio:
a l:1 e.g., sillimanite
b l:3 e.g., albite

First-Order Transition
W =14 kJ AI1*= l{f tJ
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_  R . ,  l  ls . "  =  - t ( l  +  n) lQ' -  i ( t  
-  n)2Q3

r l
|  

6 n ( l  
-  n  +  n , Y Q o  . .  . l .  ( 1 0 )

Thus, if n : l, thereare only even terms in the expansion
and the entropy of ordering is symmetric about O = 0'
whereas, if n > l, odd-order terms appear and the entropy
at negative p is not the mirror image of its value at pos-
itive Q. The Landau entropy (-1/zaQ2) does not take this
asymmetry (and heat capacity) stemming from configu-
rational terms into account but deals with them through
different higher order terms in enthalpy. Kroll et al.
(1994) also compared Landau theory with Bragg-Wil-
liams models but from a somewhat different perspective.

Pressure dependence of the disordering behavior is in-
corporated by allowing the two (or more) end-members
to have different molar volumes. In ra.re cases it could be
important to allow different thermal expansions and com-
pressibilities as well. Changing the value of AV* between
end-members can also cause the type of phase transition
to change with pressure; for example, a first-order tran-
sition in a l:3 compound with AHR = W can become
nonconvergent as pressure increases because of the in-
crease in Gibbs energy from the additional A% (P - 1)
term. To preserve the nature of the transition with pres-
sure, while allowing the transition temperature to change,
requires the pressure dependence of I4z to be equal to
AVR(W.: A%, where W : W, + W,P).

Mrnnnnr, ExAMpLES

Spinel

Magnesium spinel, t+tMgr6rAl2o4, is an example of a
normal spinel in which Mg is ordered onto the tetrahedral
site and Al onto the octahedral sites at low temperature.
This is a l:2 compound, with site distributions given by
(see Appendix 2)

X'^r=2+
J

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: I

and this expression fits well the site-distribution data of
Peterson et al. (1991), with W = 2.4 kJ and AI1* : 16.0
kJ providing as good a fit to the data as the Landau model
of Carpenter and Salje (I994a). Equation 12 is formally
identical to the expressions in Sack and Ghiorso (1991)
and O'Neill and Navrotsky (1984), the parameter equiv-
alences being ct = %(LHR + W) and F = -ToW in the
terminology of O'Neill and Navrotsky.

Recent measurements of the solubility of spinel in pal-
ladium alloys by Chamberlin et al. (1995) have endorsed
the suggestion of Carpenter and Salje (1994a) that the
ordering entropy (and enthalpy) is very much less than
the configurational estimate. The advantage claimed for
the Landau model over the classical models is that the
entropy is adjustable and not forced to take configura-
tional values. Carpenter and Salje (1994a) used the ca-
lorimetric enthalpy of ordering to scale their entropy to a
value that is approximately one-half the configurational
value. Symmetric formalism can be similarly modified by
scaling the entropy and also the enthalpy. If the config-
urational entropy of ordering is halved, then the term'zl.R
in the equilibrium condition (Eq. 12) becomes '/,R and
the values for W and AFI* must be halved. This modifi-
cation then reproduces the Landau-predicted enthalpy be-
havior in Carpenter and Salje (1994a, Fig. 5).

Order-parameter coupling in alkali feldspar
end-members

It has been suggested that order-parameter coupling, as
implied for the alkali feldspar end-members (Salje et al.
1985; Carpenter and Salje 1994a), using Landau theory
cannot be modeled by classical (Bragg-Williams-type)
approaches (Kroll et al. 1994). However (see Thompson
et al. 1974), order-parameter coupling is possible with
classical models if neither order parameter refers solely
to displacive transitions.

In potassium feldspar, KAlSi.O8, there are four tetra-
hedral sites on which one Al and three Si atoms are dis-
tributed. The ordering process can be envisaged as oc-
curring in two stages with decreasing temperature. In the
first stage the Al and Si atoms are distributed over two
tl and two t2 sites within the monoclinic structure. The
order parameter for this process, designated Q,, following
Carpenter and Salje (1994b), is defined as

YO,^Mc
r -Q ( 1 1 )

where, with Q defined as XX, - X,"r, Q : 1 for normal
spinel, p : 0 for disordered (random) spinel, and Q :
-0.5 for a completely inverse spinel. The disordering is
continuous with increasing temperature and nonconver-
gent in behavior. The equilibrium condition (see Appen-
dix 2) is

o : AH- * ln. 6Q-29)!--Q- + ee - t)w"  J  ( t + 2 O Q + Q )  ' , - '
/12\

and varies smoothly with decreasing temperature (non-
convergent ordering). Below a critical temperature near
475 "C, a second stage in ordering occurs in which the
tl site splits into tlo and tlm sites and the structure be-
comes triclinic. It has been a matter of some debate as to
whether this symmetry change accompanies a first-order
(Kroll and Voll, in Ribbe 1983; Carpenter and Salje 1994b)
or a continuous (Brown and Parsons 1989) phase transfor-
mation. A second-order parameter, Q-, is required to mon-
itor this fuither orderine behavior and is defined as

(13)
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Low Temperature
triclinic
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Frcunn 9. Site distributions and pseudoternary model forpo-
tassium feldspar. The boxes show the unequal distribution of Al
and Si between t1 and t2 sites in the monoclinic form and the
further ordering of Al onto tlo in the triclinic state. On the ter-
nary plot are shown the enthalpies of each end-member relative
to disordered sanidine and the masnitudes of the interaction en-
ergies along each join.

+m =)e_  0" ">

+m+" : j fZ_  p "^ "+2p^ , . )

-m- " : je+p* " -2p^* )

+ m - ": 
jrr - p"^ - 2p^,.)

-  m + 
"  

=i f t  + p",+ 2p^,") .  ( ls)

The conventional order parameters may be found from Q,
: | - p", and Q.o : (2p-.)l(l + Q,) : (2p-,.)l(2 - p""").

To determine the equilibrium site distribution, two con-
ditions of equilibrium must be solved, conesponding to
an independent set of two reactions among the three end-
members, which necessitates setting up the ideal mixing-
on-sites activities and activitv coefficients for mic, orth,
and san:

1 ^
a'-i: ' :*Q - p,^ +2p^'")(Z +p"^, + 2p^'.)(+ - p"^")'

I
ai"*P : ;(2 

- p,^. + 2p^,.)''o(2 + p.". - 2p^n)''o

.(2 - p"^" - 2p^*)''o(2 + p" 
"+ 

2p^n)''n

'(p,^")"'(4 - p,^)'"

a*t, = !0 - p"-^ + 2p-*)'o(2 + p"^ - 2p^r)"'- o d  
6 4 ' -  

r \ a n  -

.(2 - p"^ - 2p^,")'''(2 +p"". + 2p^")"'(4 - p"^")'

and, from the ternary regular solution formulation,

RZlnl-. =p*n(l -p-,)W..n-. + (1 -p-,")p.""W-'""",

- Po"nP*"W.nn -"

RIln1.* :(l - p.,)p^;"Wonr-i" - P^"P*"W^"*"

+ (1 -p..Jp,""W.,n*.

RZln 1""" : - p 
"* 

p ̂ ;"W "* -* + P-n( I 
- p""") W-'".""

*p."n(l -p*JIV.**". (16)

Intheseequations p"nhcanbereplacedby I - P*,- P^rc.
The energetic consequences of order-parameter cou-

pling may be seen by writing the enthalpy of ordering
first in terms of the end-member proportions and their
enthalpies,

H-*n-., = H,"p""* H"*P"^-t H^*p^t.

H"*o, : p^*p*"W^, *" + p.*P*"IV..n*.

* p.*p-nll/.*.,.

V[*i" ,* = 1O 2 kJ

tl site A site

san
(0 0 kJ)

xg: ;

I
x i? : i

x! ' , '=;

Ix;r=i

x!'e : ;

t lm

t l o

mic
(-1 1.0 kJ)

(14 )

At temperatures above the triclinic-monoclinic inversion,

Q^ is zero and only the Q, order parameter operates,
whereas below the transition both order parameters are
defined but do not operate independently; clearly as B"o
increases, the value of Q, must also increase because
more Al is being transferred from the t2 site to the two
tl sites, leading to coupling of order parameters.

In the simplest coupled representation, potassium feld-
spar is treated as a ternary regular solution involving
three end-members: ordered triclinic microcline (mic),
disordered monoclinic sanidine (san), and a hypothetical
tl-t2-ordered monoclinic orthoclase (orth) end-member.
In mic the conflguration is Al on the tlo site and Si on
the tlm site and two t2 sites; in san the Al and Si are
disordered over all four sites; and in orth all Al is ran-
domly distributed on the two t1 sites, whereas the t2 sites
contain only Si. These relationships are shown in Figure
9. For practical calculations the mole fractions of two of
the end-members, pmic and p."., are used to describe the
site ordering. The site fractions are derived by consider-
ing that during t1-t2 ordering the proportion of Al on t2
decreases by m, and that on tl increases by ln; and that
during tlo-tlm ordering, the proportion of Al on tlm de-
creases bv n, and that on tlo increases by n:

High Temperature
monoclinic

tl site t2 site

orth
(-4.2r kr)

llo.o.n., : H"^ - H^."n^." - I1.**. (ll)
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Potassium feldspar
coupled order

parameter model

t l

t2

2$ or rcc) u* 800 1000

0 200 400 6mrfc) 8m 10oo rzof.r.

Frcurn 10. Calculated distribution of Al among the various
sites in potassium feldspar (top) and albite (bottom) as a func-
tion of temperature. Note the first-order step at 470 "C in potas-
sium feldspar in contrast to the continuous ordering of albite.

and then rewriting in terms of the two conventional order
parameters, Q"o and Q' and the enthalpies of reaction of
the two independent reactions mic : san(Af/r) and orth
: san(AF1,):

I
Ho,a,;ns: Q*]t ln, - AH, - l4l-, .*" + W'*,"")

L

+ Q,(AH,- W..n*") + Oil+(W.^..,.)

1
+ Q?(W.*""") + Q*Q,i(LH, - LH2 - W"*_.)

I
+ QdQi:(W^,..un - wonn.. - w."n*")

1
+ Q'^Q,;(W""^^',)z

I
+ Qr"dQl "_(w"^h^,,1.

Thus, the ordering enthalpy for potassium feldspar is
equivalent (see also Thompson et al. 1974) to a series
expansion to second order in the two order parameters
(all bracketed terms above >0). Because Q"o monitors the

monoclinic-triclinic phase transformation, and must go to
zero at and above 2., no terms linear in p.o (field terms)
are allowed in this expansion. This allows simplification
and constrains some of the terms involved:

L H , - L H , - W . * - . : 0

W-t..o" - W"*-. - W.nn*. : 0

and

aFlr + I4l.fr"""-- LH. + W-i"""". (lg)

The experimental values for Q, as a function of tem-
perature in the monoclinic phase determined by Kroll and
Knitter (1991) allow derivation of values for AF1, and
W.* *.. With these two parameters known, the two ex-
pressions above and the known disordering temperature
(7.) can be used to determine lry-.*", AF1,, and W.*-,..
The final values for the parameters are given in Figure 9,
and the calculated site distributions are displayed in Fig-
ure 10, top. The model results suggest that the phase tran-
sition has a first-order step, in agreement with the con-
clusion of Carpenter and Salje (1994b).

Albite (NaAlSi.O*) behaves similarly to potassium
feldspar, but the ordering processes operate entirely in the
triclinic state because albite undergoes a triclinic -+
monoclinic displacive transition at much higher temper-
atures. Thus, all the equations developed above may be
used to describe the tl-t2 ordering and the tlo-tlm or-
dering but with no syflrmetry constraints on the parameter
values. However, there are calorimetric constraints on the
total enthalpy of ordering, and the studies of Salje et al.
(1985) and Goldsmith and Jenkins (1985) indicated a
sharp decrease in Q,o at temperatures close to 900 K. A
provisional set of parameters, which accounts for these
observations and for the pressure-temperature location of
the heterogeneous reaction jadeite + quartz: albite (see
below), using the three end-members low albite (abl),
t1-t2 ordered albite (abt), and high albite (abh) is as fol-
lows: W"o,"on = 12.7 kJ, l7^0,*n :3.4kJ, and I4l"0,.0,:8.3
kJ, with AHR : 13.5 kJ and AyR : 0.042 kJ/kbar for abl
: abh, and AF1* = 4.2 kJ and AVo = 0 for abt : abh.
The calculated site distributions are displayed in Figure
10, bottom, where the nonconvergent behavior in albite
is compared with first-order behavior in potassium feld-
spar (Fig. 10, top). In comparison with the Landau the-
oretical treatment of Salje et al. (1985), this model differs
in that the effects of the displacive transition in albite
(which accounts for only a few percent of the energetics)
have been ignored; however, the effects of the t1-t2 or-
dering ignored by Salje et al. (1985) have been included.

In many practical situations a single order-parameter
treatment, involving only two end-members, may sufflce
in approximating the more complex coupled order-param-
eter model. For example, a single order-parameter treat-
ment of both potassium feldspar and albite can represent
the overall energetics reasonably closely. In both cases,
the bulk of the disordering (tlo-tlm) is accomplished, in
this simplified treatment, by the convergent behavior im-
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Frcunn 11. Heat capacity of albite in the simplified, sym-
metric formalism approximation. Note that the peak is rounded
at the top [Q behavior as in Fig. 12, where (aQ)l@D never be-
comes infinitel.

parted by IV, whereas the nonconvergent component (tl-
t2) of the disordering is modeled by the field term A-FI*.
This simplified symmetric formalism for albite, using
only one order parameter, predicts a heat capacity (Fig.
l1) that is remarkably similar to that of the coupled order-
parameter Landau model of Salje et al. (1985) and that
is also in good agreement with the measured enthalpy of
disorder and the temperature of transition of albite as tab-
ulated in Salje et al. (1985). The variation of enthalpy
(AI1*) and order parameter (Q) with temperature for this
simple n = 3 albite model is illustrated in Figure 12. The
superposition of a small nonconvergent fleld onto the
convergent behavior of albite has the effect of smearing
the phase transition and producing the rounded top of the
heat-capacity spike.

In this simplified albite model, there are two end-mem-
bers, low albite and high albite, in which Al is assumed
to order onto just one of the four tetrahedral sites. For
this model AIIR : 14.0 kJ and AV* : 0.042 kJ/kbar for
the reaction ordered albite : disordered albite and I7 ftJ)
= 13.6 + 0.042P. Likewise, in the simplified potassium
feldspar model, there are also only two end-members, mi-
crocline and sanidine, in which Al orders onto just the
one tetrahedral site. For this model AI1* = 10.8 kJ and
Ay" : 0.010 kJ/kbar for the reaction microcline : sani-
dine and W : 10.6 kJ. These values closely approximate
the free energy of potassium feldspar ordering described
by Carpenter and Salje (1994b).

Drscussrox
Two principal objections to symmetric formalism

might be raised, in comparison with the Landau approach.

o
0.5

4s0 6s0 8s0 7(K) 
1050 r2so

FrcunB 12. Variation of Q and enthalpy with temperature for
the simplified (single-order parameter) albite model.

The first is that the enthalpy of ordering might, if more
accurate calorimetric data were to become available in
the future, require higher order terms in Q, and the second
is that nonconfigurational entropy contributions cannot be
properly taken into account. The first objection can be
removed by relaxing the restriction of symmetric (regular-

solution) interactions and allowing subregular or higher
order Margules terms in the enthalpy of mixing. For ex-
ample, if the ordered and disordered end-members mix
according to a subregular solution, the enthalpy of order-
ing becomes cubic in Q,

H3fo"#' : Q(W, - AFQ + (W,- zW,)Q'

+ (wt - w)Q3 (1e)

and higher order Margules mixing models can provide
higher order terms in the enthalpy of ordering if needed.
On the other hand, the higher order term in the Landau
description may lead to questionable kinetic conse-
quences at low temperatures (Kroll et al.1994).

A response to the second objection requires provision
of a nonconfigurational entropy in symmetric formalism
to account for temperature-dependent lattice distortions
and similar effects of displacive phase transformations.
There are two simple ways of introducing such an entropy
contribution: first, by making IV a linear function of tem-
perature such that W: Wn - TWri and second, by alter-
ing the entropy of the disordered end-member. The first
method adds a temperature-dependent term linear in Q'?
to the free energy, as in the Landau model, whereas the
second method adds a temperature dependence to the
field term and corresponds to the approach of O'Neill and
Navrotsky (1984). In this context, in dealing with cation
ordering in which the entropy is likely to be dominated
by configurational effects, it may be noted that the usual
Landau expression may not be completely satisfactory.
Kroll et al. (1994) addressed this point and suggested

H
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Oo6values along the JAQ boundary

Jadeite + quartz
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Frcunn 13. Calculated location of the jadeite + quanz :
albite equilibrium, using an updated version of the thermody-
namic data of Holland and Powell (1990) and the program Ther-
mocalc. The curvature of the boundary is a consequence of the
disordering of albite with temperature, with the values for the
order parameter Q* indicated. The experimental brackets are
from Newton and Smith (1967) and Holland (1980).

adding the term -ZAS"*', to the Landau free-energy ex-
pansion. This has the advantage of allowing symmetric
formalism to handle the configurational part of the entro-
py of ordering and the Landau entropy to handle the dis-
placive and other nonconfigurational contributions to the
total entropy.

Regardless of these concerns, and given the recognized
ability of Landau theory to represent a range of order-
disorder behavior, the flexibility of symmetric formalism
is apparent in its simulation of the e-T and, free-energy
behavior of the Landau tricritical and second-order mod-
els (Fig. 3). It is not surprising that nonconfigurational
entropy is required for the Landau-type behavior to be
reproduced closely over a large temperature range.

Calculations of heterogeneous equilibria, involving
phases that undergo disordering, are particularly simple
to perform with symmetric formalism and an internally
consistent thermodynamic data set. All that is required
are the thermodynamic data for each end-member of in-
terest and the mixing properties of each solid solution
(remembering that ordered and disordered end-members
are treated as a solid solution). For example, the reaction
of jadeite + quartz to albite in p-T space is considered.
At an arbitrarily fixed temperature, ?i three unknown pa-
rameters, the pressure (P) of the equilibrium boundary
and the values for the two order parameters in albite (p"on
and p"o,) must be determined; these may be found from
the following three equilibrium constraints:

NaAlSi,Ou + SiO, : NaAlSi,O, (20)
jadeite quartz abh

NaAlSi,O, : NaAlSi.O*
abl abh

NaAlSi.O, : NaAlSi,O,
abt abh

(2r)

(22)

where abl, abh, and abt refer to fully ordered low albite,
fully disordered high albite, and a fictive tl-t2 ordered
albite, respectively.

The equilibrium relation for each reaction may be writ-
ten, using the activities and activity coefficients for the
three albite end-members (the expressions for mic, orth,
and san discussed earlier may be used directly for abl,
abt, and abh albite, respectively) and the three nonlinear
equations solved by numerical methods for the values for
P, p^or, and p"0,. The values for Q, and Q^ can then be
substituted if desired. The calculated P-T curve generated
using the thermodynamic data of Holland and Powell
(1990) is displayed in Figure 13, in which the curvature
introduced by the progressive disordering is clearly
visible.

In conclusion, symmetric formalism provides a simple
and powerful way of handling the thermodynamics of cat-
ion-dominated order-disorder in minerals. As discussed in
the companion paper (Holland and Powell 1996), such
classical models are much easier than Landau models to
extend to multicomponent solid solutions.
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AppnNnrx I

The purpose of this Appendix is to consider a ther-
modynamic treatment of an r order-parameter phase of
fixed composition in terms of the mixing of its 1 * s end-
members. Each end-member was chosen to have the stoi-
chiometry of the phase. The Gibbs energy describing
nonequilibrium as well as equilibrium states, known as
the virtual Gibbs energy, G*, is a function of the s order
parameters, Q (Kroger et al. 1959; Powell 1983). The
equilibrium state of the phase, Q.q,t, can be found by
solving

/dG*\
l = l  : 0  f o r k : r , 2 , . . . , s .  ( A 1 - 1 )
\3Qo lnn,_r,

The Gibbs energy for the equilibrium state of the phase,

G is found by substituting Q"n"u into the expression for
G*, so the G : [G*la-a..,u The equilibrium state may
also be found from equilibrium relationships using the
virtual chemical potentials of the end-members, denoted
pf;, formed from the virtual Gibbs energy, G*:

*r : (#).,.r, (A1-2)

in which no is the number of moles of the end-member,
k, in the phase, and G* is taken to be a molar quantity
so that in Equation Al-2 it is multiplied by n, with n :

lllin,. From the form of Equation A1-2, these chemical
potentials are defined identically to chemical potentials in
phases without order parameters, so they can be formu-
lated in any consistent way by, for example, symmetric
formalism. Thus, the virtual chemical potentials can usu-
ally be written directly without recourse to Equation
Al-2.

To use the virtual chemical potentials to generate equi-
librium relationships, note that

G* : f  p ,p f  (A t -3 )

because the virtual Gibbs energy is a f,rst-degree homo-
geneous function of the number of moles of the end-

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: I
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members. The proportion of / in the phase is given by 4: n,/n. Differentiating Equation Al-3 with respect to 0k
glves

aiu,i,.,*o : - J*, | + nQ)@ + Qr,
\ n  +  t ) " - '

I
al,1i3[.* : 

;(l 
+ nQ)l/("+t)(n - nQ)tr"+e

'(l - Q;*a*o(n * Q);r"*t. (A2-2)

The activity coefficients are given by the regular-solution
expressions for the macroscopic mixing of ordered and
disordered end-members.

fg) =t/e?) , ,*+S"/ejc\ :o
\aQr ln,, -, r", \aQ,Jn,,,_,*' ?, ''\ae^ 

)n^,-,, 
ror_0,,

for each 0k. With the second sum identical to zero, the
first sum for each Q* is equivalent to an equilibrium re-
lationship for a balanced reaction between the end-mem-
bers. An independent set of reactions can always be cho-
sen  to  have  the  fo rm p f  :  f r }  f o r , t  =  1 ,2 , . . . ,  s  -  l .
In general, this equation is more convenient for formu-
lating the equilibrium conditions than is the use of Equa-
tion A1-l directly, particularly when the virtual chemical
potentials are simple to formulate (as, for example, with
symmetric formalism).

AppnNnrx 2

Although the discussion in the text involved silliman-
ite, in which Al and Si mix on two sites in l:l proportion,
in several other phases of interest, Al and Si mix in l:n
proportion across n + I sites. In this case the site distri-
butions are as follows:

XKt:
r -Q

Vt2 -
z r s i  -

n - t l

Ideal activities are then given by

RZ ln 1..o","0 : W(l - 91'
RZ ln 10,".*"*o = WQ,

and the equilibrium condition by

0:  AH.  + - !  ,p f  n9
- nQ)(t - Q)' " R ' f l + 1 " " " ( l

+ (2Q - r)W.

+ nQ)@ + Q)

The critical temperature is found by solving this expres-
sion for Z in the limit as O -+ 0'.

(A2-3)

(42-4)

(A2-s)

n - n Q

n * l

n + Q

n  *  l '

The relationship between symmetric formalism W and
the classical Bragg-Williams energy Wo*, for ease of com-
parison with values derived in the literature, is I4l :

{(nW,*)ll2(n + l)l}, so that the critical temperature, us-
ing the classical Bragg-Williams energy, is f" :

t('z%-)/tR(l + n)'l\.

,a^ r \  I f  thetota l  numberof  s i tes is  amul t ip leof  n + I  [as in\^'z- r) anorthite, where with n : I there Ne 2(n + 1) tetrahedral,
then the energies require scaling by that multiple and the
ideal activities require raising to the power of that multiple.


