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The thermodynamics of order-disorder in mineral solid solutions are handled with sym-
metric formalism, whereby the mineral is treated as a solid solution between an indepen-
dent set of end-members with which the range of composition and states of ordering of
the phase can be represented. An n-component mineral, requiring s independent order
parameters to represent the state of order in the mineral, involves an independent set of n
* s end-members. Symmetric formalism involves ideal mixing-on-sites with regular-so-
lution activity coefficients. It is applied to omphacite, orthopyroxene, ferromagnesian cli-
noamphibole, and alkali feldspar. The model for omphacite, with a single order parametet
successfully produces the topology of paired miscibility gaps with tricritical points at their
apices and with a critical curve connecting them. Ferromagnesian orthopyroxene is shown
to behave effectively as an ideal solution at all geologically relevant ternperatures. Cum-
mingtonite-grunerite solid solutions are slightly positively nonideal in either a two-site or
a three-site model. Na-K alkali feldspars with order-parameter coupling involving tetra-
hedral site occupancies can show the essential topologic relationships in this system, with
only one independent binary interaction energy. The power of symmetric formalism comes
from the simplicity of its representation of the thermodynamics of minerals and its flexi-
bility with few adjustable parameters.

INrnonucrroN ordering requires n end-members, and n - I independent

The increasing availability, in both quality and quan- composition parameters' to represent all possible com-

tity, of standard-state thermodynamic propertles oflJn- position variations in the solid solution' To extend this

eral end-members cannot result in a similar in..*r" in treatment to handle order-disorder requires only that the

accurately calculated phase equilibria until tfr" -i*irt order parameters be represented by additional end-mem-

propertiei of complei solid solutions can be modelefi bers' For an t?-component system with s independent or-

moie retiably. The traditional approach of taking all the der parameters' t? + s end-members are needed to rep-

nonideality into a heat-of-mixing term has rorf"d ud.- resent all possible composition and order variations in the

quately for phases that can be shown to be largely dis- solid.solution' For such a solid solution any of a variety

ordered, and this treatment of nonideality forms ihe basis of mixing. models can be chosen to handle the mixing

of modern thermobarometry. However, many phases un- between the n * s end-members. The equilibrium state

dergo progressive cation diiordering with inireasing tem- of order is determined in this (n * s)-component fictive

p".itui", ind these effects are generally ignored 
"or 

are system'_ and this is then incorporated into the thermody-

ireated by making the model heais of mixing temperature namic description'

dependent. How&er, the behavior of disordiring systems The simplest model that can introduce the necessary

involves simultaneous and correlated changes in tottr ttre degree of composition-dependent ordering involves ideal

entropy and enthalpy with composition and temperature. mixing on sites in combination with the regular-solution

The itiong 
"o*poiition 

dependence of ordering typical model: symmetric formalism of Powell and Holland

of such phases is not handled by adding a te-peiutu." (1993). A more complex approach could be adopted

dependence to the heat of mixing. Two models currently equally well, for example, using the subregular-solution

in common use, which can handle the temperature and model, if it should seem justified by the experimental
composition dependence of disordering, are the Landau data. However, symmetric formalism allows a consider-

theory (e.g., Carpenter et al. 1994; Carpenter and Salje able range of order-disorder phenomena to be modeled,
1994) and generalized Bragg-Williams models (e.g., Da- with no particular constraint from the number of com-
vidson and Burton 1987; Ghiorso 1990a, 1990b; Ghiorso ponents or the number of order parameters. Treating a
et al. 1995). phase showing order-disorder as an (n + s)-component

A solid solution of n components involving no cation fictive system, with the use of symmetric formalism, is a
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macroscopically derived equivalent to generalized Bragg-
Williams models.

The purpose of this paper is to extend symmetric for-
malism, developed in Powell and Holland (1993) and ap-
plied to phases of fixed composition in the companion
paper (Holland and Powell 1996), to cation ordering in
solid solutions. The approach is illustrated using four
mineral solid solutions: omphacite, involving convergent
ordering to form a 1:1 compound in NaAlSirOu-Ca-
MgSirOu; orthopyroxene, involving nonconvergent order-
ing on two sites in MgMgSirOu-FeFeSirOu; clinoamphi-
bole, involving nonconvergent ordering on three sites in
MgrMgrMgrSirOrr(OH)r-Fe.FerFerSirOrr(OH), ; and alka-
li feldspar, involving order-parameter coupling in Na-
Alsi308-KAlsi3o8.

Onnnn-orsoRDER rN A Two-sITE MTNERAL

The thermodynamic properties in symmetric formalism
for a binary phase involving two-site ordering are out-
lined for use in the following sections. Such a phase con-
stitutes a fictive ternary system because one order param-
eter is needed to describe its state of order. Consider that
the formulas of the end-members of the phase involve
two elements, A and 4 mixing on m sites of M1 and n
sites of M2. The three end-members used to describe such
a system can be chosen to be a : AA", b : B^B^, and,
for the ordered end-member, o : A^8,. Assuming that B
prefers M\ the order parameter can be defined as Q :
xy' - xy'. Thus, order can vary from complete disorder
at Q : 0 to complete order at Q : [@ + n)/n]X for X
< nl(m + n) and Q : [(m + n)lm](l - X) for X > nl(m
+ n), with X the bulk composition in terms of B.

The site fractions are

xX'=1-x+^! ;O

xY' :X- -4-O
m + n -

xY ' : l -  X_  \  am * n -

xX, :X*  4 -0 .  (1 )
m + n

The bulk composition, X, can be written as X : [m/(m +
n)lx{t + Iml(m + n)lx$,.The proportions (or mole frac-
tions) of the end-members are
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at:"il -_ (xyl)^(x{z), : (l _ p,)-p:

aLkd = (xMt)n(x$)" : pfQ - p")"

at:at = (xMt)^(x$r)" : (l - p,)-(l - p")"

and the regular-solution (e.g., Thompson 1967; Anderson
and Crerar 1993) activity coefficients are

RZln "y" : (l - p)poW"u + (1 - p")p"W"" - pap.W*

RZln 1, = p"(l - p)W* - p"p,W". + (1 - p)p"W*

RZ ln 1, : -p"ptW,o + p"(l - p")W". + po] - p")W.".

(3)

The W, parameters are the macroscopic interaction en-
ergies for the l-j binaries. In a strictly atomistic interpre-
tation, these would correspond to combinations of within-
site and cross-site terms (see Powell and Holland 1993).
However, although these macroscopic interaction energies
can be derived on an atomistic basis, they may also in-
clude further contributions to the nonideal mixing, such
as strain or other nonconfigurational energies.

The preceding development has been just that of the
classical regular solution for a ternary system, but the
equilibrium state of order must now be superimposed on
this. This can be accomplished by making the first deriv-
ative of the Gibbs energy, G equal to zero with respect
to Q at constant X (as required at equilibrium), or, as
shown in Appendix 1, by writing the.equilibrium rela-
tionship for the internal reaction between the end-mem-
bers, ma + nb : (m + n)o. This gives, on collection of
terms

0 : A + BQ + CX * mnRTln Ko (4)

in which

xY'xY', \ ^= -
" xffrxwz

( r - p " ) ( 1  - p o )

P"Pt
(5)

: l - X -  *  
O

m - f n

: X -  n  
o

m * n -

: 4 .  Q )

The ideal mixing-on-sites activities (e.g., Wood and
Banno 1973; Powell 1978; Anderson and Crerar 1993)
afe

and

A = A f l R + ( m + n ) W . " - n W *
)

B =,t-mzW"" t mn(W,u - W"" - Wu") - n2Wu"l
m + n -

C : m(W^ - W"" - W") + n(Wo. - W"" + W"b).
(6)

In such a fictive ternary system only three adjustable
parameters, A, B, and C are involved in representing or-
der as a function of temperature and composition. The
values of these parameters control the order-disorder be-
havior of the system as follows:

(l) If C : 0 and Wo. : W"", then the thermodynamic
properties (order parameter, enthalpy, volume, entropy,
and heat capacity) of the binary are symmetric about X
: 0.5. If C is nonzero, certain properties of the binary,
such as enthalpy of mixing, can be quite asymmetric.

(2) If A + CX:0, the system is convergent, as in the
classical Bragg-Williams model, and for stability B must
be negative. In such a case there is a critical temperature,

p" = xy'

P r :  x Y '

p" :  xY2 -  xy l



2., above which the phase is completely disordered and
below which the degree of order increases sharply with
decreasing temperature. It is found by solving the equi-
librium relation (Eq. 4) for temperature in the limit as Q
-+ 0:

r._ _BX(r 
- X)

Rmn 0)

Z" has a maximum value at X = 0.5. Convergent ordering
generally accompanies a phase transition, in which a
change in space group symmetry occurs between the
high-temperature disordered form and the low-tempera-
ture ordered form.

(3) If B : 0 and C = 0, the model reduces to the
simple disordering model used by Navrotsky (1971) and
Molin et al. (1991) for ferromagnesian orthopyroxene.
This situation might result when either all interaction en-
ergies are equal to zero or W"o : 2(W"" + Wo).Although
possible in principle, the latter is unlikely to be a common
situation.

(4) The sum A + CX can only be zero or a negative
value for stability (otherwise the anti-ordered end-mem-
ber, BMIAM2, would be more stable than o). A + CX is
referred to as the field because it expresses an energy
acting like an applied field that prevents the two sites
from becoming identical (converging) in their energetic
states. The presence of a field characterizes nonconver-
gent ordering, which typically occurs in phases that un-
dergo continuous disordering with no change in space
group symmetry and hence no phase transition to a higher
symmetry form.

In addition, the enthalpy of mixing, entropy of mixing,
volume of mixing, and heat capacity can be formulated
for the symmetrical formalism model (see Appendix 2).

OnmnrNc rN OMPHACITE

Omphacite is the name given to ordered (space group
P2ln) pyroxene at intermediate compositions along the
NaAlSirOu-CaMgSirOu join. Disordered high-temperature
clinopyroxene has space group C2/c, and the onset of
ordering below [ : 860'C (Carpenter 1981) is driven
by partitioning of Mg and Al onto separate Mla and Mlb
sites, which were equivalent above the critical tempera-
ture. The M2 sites also split into M2a and M2b, between
which Na and Ca order below {. The thermodynamics
of omphacite ordering have been investigated in terms of
generalized Bragg-Williams models (Davidson and Bur-
ton 1987) and by Landau theory (Carpenter et al. 1990;
Holland 1990). Because of the charge-balanced substitu-
tion CaMg-NaAl, the ordering on M2 is not independent
of that on Ml, and the system of four split half-sites
(Mla, Mlb, M2a,M2b) can be considered energetically
as equivalent to ordering of a pair of cations on two sites.
This simple assumption is corroborated by (l) the finding
of Carpenter et al. (1990) that the order parameter for M2
is linearly dependent on that for Ml, and (2) that for
convergent omphacite both order parameters must be zero
at 2". Thus, in what follows, we treat omphacite as an
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Frcunn 1. Order parameter Q vs. T, with contours of com-
position, X for the diopside-jadeite binary.

example of an ordered compound in a binary solid
solution.

Consider the end-members, diopside d, jadeite j, and
the ordered end-member o. The state of order can be rep-
resented by an order parameter, Q, defined as Q : XMtz
- XXru, and order can vary from complete disorder, g :

0, to complete order, Q : 2X for X < /2, and Q : 2(l
- X) for X > 1/2, where X is the proportion of jadeite in
the diopside-jadeite binary.

From the previous section, with m = n : l, the equi-
librium state of order as a function of composition and
temperature in the d-j-o fictive ternary system is given by
the equilibrium relationship for the reaction between the
end-members, d + i : 20'

0 : A + B Q + C X + R Z l n K "  ( 8 )

in which

A : L H x - W d j + 2 w d "

U = W a i - z ( W d " + W j " )

C = 2(W, - %.). (9)

Assuming that the properties are symmetrical about X =

0.5, then C : 0. Furthermore, because omphacite disor-
ders convergently, A = 0 because A + CX must be zero.
With the known value of T": ll33 K at X : 0.5, Equa-
tion 7 gives B : -4R4. Only one further piece of in-
formation is required to solve these relations for all the
unknown interaction energies. The activity measurements
of Holland (1983) and the calorimetry of Wood et al.
(1980) give the value Wo, : 26 kJ. Therefore, Wot : 26,
Wo" = 16, Wrc : 16, and AI1. = -6.0 kJ' With the use
of these data, the state of order can be calculated as a
function of temperature and composition using Equation
4 (see Figs. I and 2). In the latter figure, the state of order
is presented on a d-j-o triangle to emphasize the ternary
nature of the system, with the fully disordered phase lying
along the baseline (p" : 0) and the fully ordered phase

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER:II
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0.2 o.4 x 0.6 0.8

Frcunn 2. Order-disorder in the diopside-jadeite binary rep-
resented as a fictive temary in terms of end-members jadeite,
diopside, and omphacite, contoured for Z.

lying at the om apex (p. : 1). Calculated activities for
the jadeite component at several temperatures are shown
in Figure 3. The square root of the activity is plotted to
show the effective one-site activity behavior (including
adherence to Raoult's and Henry's laws at high and low
values of X, respectively). Note the miscibility gaps and
the extremely steep activity-composition slope near X :

HOLLAND AND POWELL: TTIERMODYNAMICS OF ORDER-DISORDER: II

0.2 0.4 0.6 0.8 1
X

Frcurn 3. Activity-composition relationships (a-X) for the
diopside-jadeite binary, contoured for RZ (in kilojoules). The ac-
tivity of jadeite is shown; the activity of diopside is identical
following reflection across X : 0.5. The activity is shown as
Y a,, so that ideal mixing is given by a line of unit slope. The
horizontal lines are tie lines across the miscibility gaps.
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Frcunn 4. A P-X section for the system jadeite-diopside-
quartz involving quafiz, albite, and pyroxene (cpx) in the jadeite-
diopside binary in projection from quartz at 600 "C. The exper-
imental results are from Holland (1983); the open and solid
symbols are reversed brackets of the cpx composition in the equi-
librium [see Holland (1983) for details]. The section itself was
produced with THERMOCALC (Powell and Holland 1988).

0.5. The enthalpy of mixing, entropy of mixing, and heat
capacity as a function of composition and temperature for
this system are shown in Appendix 2.

The close agreement of the simple model with the ex-
perimental results of Holland (1983) is illustrated in the
P-X section of Figure 4. Some petrologic consequences
of ordering in omphacite are illustrated in a calculated P-
Z diagram (Fig. 5), which shows three univariant reac-
tions, jadeite + qtrartz = albite, jadeite"" + quartz : om-
phacite." + albite, and omphacite." + quartz = diopside""
+ albite. The third reaction gives the minimum pressures
for the stability of eclogitic rocks containing ordered om-
phacite + qtartz. These equilibria were calculated with
the use of a recent update of the thermodynamic data set
of Holland and Powell (1990).

This system shows development of paired miscibility
gaps at low temperatures, with tricritical points at their
apices and the critical curve connecting them (Fig. 6).
This occurs when there is a large positive enthalpy of
mixing for the disordered solid solutions in the binary
join coupled with a strong tendency to order at an inter-
mediate composition. At high temperatures the solid so-
lutions are homogeneous and disordered, whereas at low
temperatures an ordered omphacite develops that is cen-
tered on the composition X = 0.5. This strong ordering
tendency splits what might otherwise have been a broad
simple solvus into the pair of miscibility gaps shown in
Figure 6. The model here reproduces the topology pro-
posed by Carpenter (1980) for the convergent ordering of
omphacite.
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Frcunn 5. A calculated P-I diagram for the system jadeite-
diopside-quartz in projection from quartz, produced with THER-
MOCALC and symmetric formalism description of the jadeite-
diopside binary outlined in the text. The position of the jadeite
+ albite + quartz equilibrium is also shown. The om : cpx
equilibrium marks the coexistence of omphacite, disordered cpx
(.Q : O), albite, and quartz. Note that the state of order and the
composition of the cpx vary along the equilibria.

Above, the convergent behavior of omphacite was dis-
cussed. With the addition of a small field, however, A is
small and negative and the resulting mineral is noncon-
vergent. This smoothes the features associated with Q
dropping to zero at the critical temperature, as can be seen
in Figure 7. The order parameter drops to low values but
never reaches zero even at very high temperatures. In a
T-X diagram, certain ranges of parameter values also lead
to paired miscibility gaps, but in contrast to the conver-
gent case there is no phase transition, and hence no crit-
ical curve, and the solvus crests are rounded rather than
cusp-peaked (Fie. 8).
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Frcunn 7. Order parameter Q vs. Z, with contours of com-
position, X, for a nonconvergent system created from the diop-
side-jadeite binary (see text), using parameters such that the tem-
perature for Q :0.5 remains the same. See Figure I to compare
with the convergent case.

NONCONVBNGENT EXAMPLES: FERROMAGNESIAN
ORTHOPYROXENE

The thermodynamics of nonconvergent ordering in or-

thopyroxene have been discussed extensively in the re-

cent literature (e.g., Sack 1980; Chatillon-Colinet et al.

1983; Carpenter and Salje 1994; Sack and Ghiorso 1994;

Kroll et al. 1994), and a wealth of experimental data on

the ordering now exist (Saxena and Ghose 1971; Besan-

con 1981; Grammenopoulou 1981; Anovitz et al. 1988;

Molin et al. l99l; Skogby 1992;Yang and Ghose 1994).

Ferromagnesian orthoplroxene is represented by a fictive

ternary system involving enstatite (en, MgrSirOu), ferro-

silite (fs, FerSirOu), and a fully ordered ferromagnesian

pyroxene (fm, FeMgSi,Ou) in which Fe prefers the M2

site over the Ml site. Parameters for use in Equation 4
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Frcunn 6. A l-X phase diagram for diopside-jadeite con-
toured for order parameter Q. The ordered phase (dark gray) is
separated from the disordered (Q -- O) phase (light gray) by the
critical line, at which Q goes to zero with increasing Z The solvi
open at tricritical points on the critical line with decreasing 7. 7"
(at X : 0.5) is 860 "C.
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Frcunn 8. A 7-X phase diagram for a nonconvergent system

created from the diopside-jadeite binary (see text), contoured for
order parameter Q. There is no critical ltne; Q decreases with
increasing lbut does not become zero at finite Z The solvi have
rounded tops (compare Fig. 6).
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X
Frcunp 9. Order parameter Q : x{! - ;1$r vs. X for exper-

imental site-distribution data ati}O.C for orthopyroxene in com-
parison with the calculated Q-X line at this remperature obtained
using the parameters produced by regression of all the data (see
text).

were derived by nonlinear regression of the values of e
= XY: - Xgl from the sire-disrribution dara, yielding A
= -11.7, B: -l l .2kJ, with C = 0 within error. This
implies that Iy"",- = Wr.r_. The individual interaction en-
ergies and the enthalpy, AI1., for en + fs : 2 fm are
determined from Equation 6

A:  LH* -  W^o + 2W." ,^

B = W - ^ - 2 W * , ^ - 2 W n , ^ (10)

requiring at least one further piece of information. The
possible constraint provided by the enthalpy-of-mixing
measurement of 2.0 kJ atX : 0.5 and e = 0.3 (Chatillon-
Colinet et al. 1983) unfortunately yields interaction en-
ergies that are too large to satisfy the precise partitioning
experiments of von Seckendorff and O'Neill ,199?D.

These experiments provide a powerful constraint on the
magnitude of the orthopyroxene energetics because the
Fe-Mg interaction energy in olivine is well known. W'. r"
is given as 4.0 kJ/atom, a compromise between the values
of 3.7 * 0.8 from Wiser and Wood (1991), 4.5 -f 1.0
from Hackler and Wood (1989), and 5 -r 3 from Figure
3 in the review of von Seckendorff and O'Neill fl993).
The olivine-orthopyroxene partitioning experiments,
combined with IIz. u : 4 kJ and the constraints A :
-11.7,  B = -11.2 kJ,  g ive W*n:6.8,  W"" , -  :  4 .5,  W^,^
: 4.5, and AHR = - 13.9 kJ.

The results of the fitting of the experimental data are
summarized using four figures: Figure 9 is a Q-X diagram
indicating the appropriateness of the form of Equation 4
at constant temperature; Figure 10 is a e-T diagram with
all the experimental data projected to X : 0.5 to show
the overall quality of fit to the data; Figure 11 shows the
close fit to the olivine-orthopyroxene partitioning data of
von Seckendorff and O'Neill (1993); and Figure 12 is an
a-X diagram indicating that the calculated activities ex-
hibit very little deviation from ideality at all petrologi-
cally applicable temperatures, confirming the conclusions

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: II
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Frcunn 10. All the experimental site-distribution data for or-
thopyroxene plotted against d, projected to X : 0.5, in compar-
ison with the calculated Q-T line for X : 0.5 obtained using the
parameters produced by regression of the data (see text).

reached by Chatillon-Colinet er al. (1983) and Perkins
and Vielzeuf (1992). Without further phase-equilibrium
or intercrystalline partitioning constraints such as the data
of von Seckendorff and O'Neill (1993), orrhopyroxene
could be made to have quite large nonideality within the
limits provided by Equation 10. If the magnitude of W.,*
were made a little larger (e.g., 6.8 kJ), then the magnitude
of W"" * would become rather large (15.5 kJ) and thus
propagate to much larger calculated nonideality.

FnnnolracNESIAN cLINoAMpHTBoLE

The ferromagnesian clinoamphibole cummingtonite-
grunerite, (Fe,Mg),Si,O,,(OH),, exhibits ordering on at
least three separate sites: M2, M4, and a combined Ml
+ M3 site (M13), with Xo.ro )) X..r,, ) X..r, (Hirsch-
mann et al. 1994). The partitioning between M4 andM2
is quite pronounced, but that between M2 and M13 is
much less so. The highJow cummingtonite phase tran-
sition, which occurs at quite low temperatures, probably
contributes little to the energetics of the system and is
ignored in this study. The thermodynamics of this system
have been extensively analyzed using the generalized
Bragg-Williams model by Ghiorso et al. (1995) and
Evans and Ghiorso (1995). The approach here is entirely
equivalent to the three-site and two-site models used by
Ghiorso et al. (1995) but with symmetric formalism pro-
viding a very compact and simple representation of the
same information. To deal with ordering on three sites,
two ordered end-members are required in addition to the
binary end-members cummingtonite (c, Mg3MgrMgr) and
grunerite (g, Fe.FerFer), and the pair a (MgrFerFer) and
b (Fe.Mg,Fer) is adopted in terms of sites M13, M2, and
M4. In this solid solution two order pulrameters are need-
ed, for example Q, : Xy: - XMr3 and Q, = XH. - XXr.
They are determined by solving the equilibrium relation-
ships for the two independent reactions
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Frcunr 11. Ferromagnesian partition between olivine and
orthopyroxene at 1000 "C. The curve calculated using symmetric
formalism of this study is compared with the experimental data
(solid circles) of von Seckendorff and O'Neill (1993).

3 c + 4 9 - - 7 a

2 c + 5 9 = 7 b . ( 1 1 )

The experimental data of Hirschmann et al. (1994) sug-
gest that the equilibrium constants for the above reactions
do not depend on X, and so the analogs of the C term in
Equation 4 are zero. For each of the above reactions there
is a relationship, like Equation 4, found from substituting
the activities into the equilibrium condition, giving

0 : A, * BrrQ, t BrrQ. + RZln K'

0 : A, t B'Q, t BrrQ, + RZ ln K, (12)

in which the C terms have been set to zero. The subscripts
I and 2 correspond to the first and second reactions writ-
ten above. The parameters, in terms of the interaction
energies are, for the first reaction

A r = L H , + 1 w . b - 5 W . ,

12'

Bu : 7W." - 2W. - 3W"o * 7W., 
- 5W" - 4W*

(1000'C,16 kbar)

(  l3 )
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Frcurn 12. Calculated activity-compositionrelationshipsfor

orthopyroxene at a series of temperatures, in terrns of the square
root of the activity of ferrosilite; the activity of enstatite is the
mirror image reflected across X: 0.5' The proximity to a 1:l
line shows that orthopyroxene is effectively ideal in this tem-
perature range, in agreement with Perkins and Vielzeuf (1992).

site-partitioning data alone are not sufficient to determine
the five separate parameters by regression, so the follow-
ing assumptions were made to reduce the number of free
parameters: W" :3W.u = 13.5 H,W*r = 2W*, = 9 kJ'
and W., = 3W.r. + 2WM2 *W-rr.*, : 22.5 kJ were de-
termined on the basis that a typical value for the regular-
solution parameter for Fe-Mg mixing on an octahedral
site is approximately 4.5 kJ (as in orthopyroxene), and
that the cross-site term between M13 and M2 is zeto.
With these assumptions, the site-distribution data of
Hirschmann et al. (1994) were regressed to yield values
for A, : -94.4, A, : -88.4, and W., : 39.8. Substitution
of these assumptions and constraints gives the remaining
unknowns:  LH, :  - '77.8,  LH' :  -63.5 '  W." :  l9 .2,and
W,o = 26.1kJ.

The variation of the order parameters with composition
at 700 "C is shown in Figure 13, illustrating the close
agreement with the site-distribution experiments. Figure
14 shows the interrelation of Q, and Q, on a Q'-Q, plot
at several temperatures. Finally, the calculated activities
of grunerite are shown in Figure 15 for several temper-
atures. The variation with temperature is not great, and
the activities show a small positive departure from ide-
ality at all geologically relevant temperatures. The activ-
ity of cummingtonite, if plotted, would show identical
behavior because the solid solution is assumed to be sym-
metrical. As with orthopyroxene, more nonideal mixing
than is shown in Figure 15 can be obtained with a larger
value of Ws, while maintaining consistency with the site
distributions.

Because the partitioning of Fe-Mg between M2 and
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and for the second reaction

A . = L H , + 7 W . " - 4 W . "

)^
B r , = - ; W , " - 6 W , ^ - 8 W " ^' l

Br, :  Brr '  (14)

Unfortunately, as in the orthopyroxene case above, the
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Frcune 13. Order parameters Q, : xM4 - ,M13 and, Q2 :
.{*' - rf vs. X for the experimental site-distribution data of
Hirschmann et al. (1994) at 700 'C for cummingtonite-grunerite
rn comparison with the calculated e,-X and er-X lines at this
temperature obtained using the parameters produced by regres-
sion of all the data (see text).

M13 is minor in comparison with that between either of
these sites and M4 (Hirschmann et al. 1994), it transpires
that a much simpler model involving just two effective
kinds of sites, two M4 and five M123 sites, can fit the
data satisfactorily and yield virtually identical activity-
composition relationships. Ghiorso et al. (1995) referred
to this as their two-site reduction. A single-ordered end-
member FerMg, (d) is used together with cummingtonite
(c) and grunerite (g) in a fictive ternary solution. In the
equilibrium condition for the internal reaction 5c + 2e =
7d from Equation 6

0.7 f  ("C)contours

A : A H * + 7 W . d - 2 W . *
)(l

B : ;w,"  -  l0W.o -  4w"o

C : lW"a -  7W.o -  3W*.

500

Qro'u
0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6
Q1

Frcunn 14. A calculated Q, vs. Q, diagram for a series of
temperatures, using the parameters produced by regression ofthe
data.
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( ls)

Regression to minimize residuals in Q for the site-distri-
bution data yields A : -173, B : -51 kJ, and C : 0
for Equation 4. One further constraint is required to fix
all the parameters of the model, and again the magnitude
for the Fe-Mg interaction parameter per octahedral site is
assumed to be 4.5 kJ. Thus, Wro : 5W.,* = 22.5 kJ,
which allows the determination of the remaining param-
eters from Equation 15: A11* : -145.7,I/., : 37.0, and
W.o:  6.7 kL

This model is used to generate a pressure-temperature
pseudosection for a fixed bulk composition representing
a metamorphosed ironstone in the system FeO-MgO-SiO,
(Fig. 16). In this diagram, which has been drawn for the
bulk composition SiO, : 66.67, MgO : 3.33, FeO :
30.0Vo, a univariant reaction emerges from the FeO-SiOr-
subsystem invariant point at 9.9 kbar and 650 'C. The
enthalpy of formation of the cummingtonite end-member
in the current version of the Holland and Powell (1990)
thermodynamic data set was constrained by the experi-
mental data of Fonarev and Korolkov (1980) on this uni-
variant reaction at2.9 and 4.9 kbar. In nature, the break-
down of grunerite-bearing assemblages to assemblages
containing orthopyroxene, which occurs just below the
amphibolite-granulite boundary, is calculated as being
close to 750'C for such bulk compositions. This change
occurs either through a narrow divariant band at pressures

71 0.8
\4g

0.6

0.4

0.2

Frcunn 15. Calculated activity-composition relationshipsfor
cummingtonite-grunerite at a series of temperatures, in terms of
the seventh root of the activity of grunerite. A 1:1 line corre-
sponds to ideal mixing; in this temperature range, cummington-
ite-grunerite is only slightly positively nonideal.

7- ("C) contours
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Frcunr 16. Pseudosection in FeO-MgO-SiO'-H,O with the
phases am (ferromagnesian clinoamphibole), opx (orthopyrox-
ene), o1 (olivine), and q (quartz) involved in a univariant reaction
emanating from an invariant point in FeO-SiOr-H.O [with fs (fer-
rosilite), fa (fayalite), and grun (grunerite)1. Tiivariant fields are
shaded, and divariant bands are white. Calculated using THER-
MOCALC and thermodynamic data updated from Holland and
Powell (1990).

above 7 kbar or by the univariant reaction in the range
4-1 kbar.

Ar,x.lr-r FELDSPAR

In contrast to the examples discussed above, in which
ordering occurs at an intermediate composition in a solid
solution, alkali feldspars are an example of a solid solu-
tion in which ordering occurs in both end-members of the
binary (potassium and sodium feldspar). In the compan-
ion paper (Holland and Powell 1996), the ordering be-
havior in potassium feldspar was treated separately from
that in albite, whereas the alkali feldspar join is now con-
sidered in terms of two order parameters, Q.o and Q., and
one compositional parameter, X"o, requiring four indepen-
dent end-members in a fictive quaternary solid solution.
The thermodynamics of ordering in the tetrahedral sites
is modeled with the parameters from the companion pa-
per (Holland and Powell 1996), using end-members san,
orth, and mic, and the fourth end-member is chosen to
be fully ordered albite ab.

The pair of equilibrium relations used to determine the
two order parameters Q"o and Q, are the same as used in
the companion paper (Holland and Powell 1996), mic =

san and orth : san. The site fractions for the tetrahedral
terms are identical to those in the potassium feldspar ex-
ample in that paper, and those for the alkali site are Xf,,
: X"o and X{ : I - X"o. The potassic end-member ac-

r433

0.2 0.4 xNu0.6 0.8 1

Frcunr 17. Calculated alkali feldspar I-X relations accord-
ing to symmetric formalism, showing contours of O, and 0.0 (see
text). The solid contours refer to Q.o, and the dashed ones to Q,
Calculated using THERMOCALC. I in degrees Celsius.

tivities are multiplied by I - X,o, and the ab end-member
is the original mic activity multiplied by X"o' The activity
coefficients are given by the regular-solution expression
for a quaternary among ab, san, orth, and mic. The values
for all parameters are taken from the potassium feldspar
model, except for the regular-solution parameters lV,o 

""",
W^o-,", and W"o..n. Only one of these is a free parameter,

the other two follow from compositional constraints cou-
pled with the two equilibrium relations, and the value for

lV"o-," was chosen as 16 kJ/atom to make the crest of the
alkali feldspar solvus occur near 700'C. The resulting set
of parameters is W"o"^" :28.2, W"n*": 16, and W"o.*:
24.6 W.

A calculated temperature-composition diagram is

shown in Figure 17 to illustrate the variation of the two
order parameters Q.o and Q, with composition. The firsr

order behavior seen in potassium feldspar is lost almost
immediately with the introduction of Na, and the phase

transition becomes increasingly smeared as the degree of
nonconvergence increases across the diagram toward al-

bite. The large drop in predicted Q"o at the albite end

occurs over the range 600-900 oC, in reasonable agree-
ment with the studies of Goldsmith and Jenkins (1985)

and Salje et al. (1985), confirming that the simple model
constructed for the K end-member can make good pre-

dictions across the diagram to the Na end-member.
The symmetric solvus is an obvious effect resulting

from the simple regular nature of the interactions as-
sumed here. It is not the intention of this study to model
the solvus in addition to the order-disorder relations, and
a more realistic solvus could be calculated by including
an asymmetric model for Na-K interactions.

DrscussroN

Symmetric formalism is an easy to use and flexible
formulation of the generalized Bragg-Williams approach
to order-disorder. It is completely general in that any
number of order parameters may be handled by invoking
the relevant number of end-members, which are usually

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: II
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Frcunn 18. Enthalpy of mixing, ,F1--, vs. composition, X, for
the diopside-jadeite binary, contoured for RZ (in kiloioules). The
shaded region corresponds to the Il-' of the ordered phase; the
solvus limbs against the ordered phase are the boundaries of this
region The calculated contours, metastable to the solvus tie lines
(straight lines), are marked by dashed lines.

chosen to be ordered for algebraic simplicity. It is a sim-
ple matter to incorporate the results into an internally con-
sistent thermodynamic data set because only the proper-
ties of the extra fictive end-members need to be
introduced.

Symrnetric formalism is more straightforward to use
than Landau theory in dealing with solid solutions be-
cause its use of configurational entropy makes the exten-
sion to complex solid solutions involving many compo-
sition dimensions relatively simple, and because the
composition dependence of the thermodynamics appears
naturally. The great strength and power of Landau theory
is its ability to handle nonconfigurational order-disorder
effects associated with phase transitions. It can be argued
that in some cation-ordering situations nonconfi gurational
entropy terms are important, and hence Landau theory
might be more appropriate than a Bragg-Williams ap-
proach. If such terms can be shown to be significant for
a particular example, symmetric formalism may be ex-
tended by making the A or B terms in Equation 4 func-
tions of temperature, as discussed in the companion paper
(Holland and Powell 1996).

Quite complex order-disorder problems can be tackled
with this simple model without recourse to temperature-
or pressure-dependent interaction energies. Indeed, if the
interaction energies used in any model require strong
temperature dependence, this may be indicating a prob-
lem with the algebraic form of the model. A regular so-
lution for a binary cannot deal with the entropy or en-
thalpy changes involved when cation distributions begin
to depart from the disordered case (see Figs. 18 and l9).
Thus, the common assumption that a temperature-depen-
dent interaction energy may be used to mimic the effects
of cation ordering is true only for extremely small ranges
of both temperature and composition.

The use of order-disorder models is indispensable for
the success of both phase-equilibrium calculations and
thermobarometric applications in petrology. Symmetric
formalism provides a simple and effective environment

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: II
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Frcunp 19. Entropy of mixing, S-''/R, vs. composition, X,
for the diopside-jadeite binary, contoured for RZ (in kilojoules).
The shaded region corresponds to the S.'- of the ordered phase;
the solvus limbs against the ordered phase are the boundaries of
this region. The calculated contours, metastable to the solvus tie
lines (straight lines), are marked by dashed 1ines.

for putting the thermodynamics of cation ordering into
practlce.
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AppnNorx I

A phase with order-disorder can be described in terms

of n bulk-composition parameters, X (of which n - | arc

independent because X" -- I - >l=i{), and s order pa-

rameters, Q. Macroscopically, such a phase is considered
in terms of n (macroscopic) end-members, whereas in

symmetric formalism the phase is considered in terms of

,? + .s microscopic, or fictive, end-members. In the same
way that the n macroscopic end-members form an inde-
pendent set of end-members suff,cient to describe any
(macroscopic) composition of the phase, the n * s end-
members of the phase form an independent set of end-
members sufficient to describe any microscopic state of

the phase. The logic in this appendix follows from that

of Appendix 1 in the companion paper (Holland and

Powell 1996).
The virtual Gibbs energy is a function of the bulk-

composition pa.rameters, X, and order parameters, Q
(Kroger et al. 1959; Powell 1983). It includes both non-

equilibrium and equilibrium states of the phase; the equi-
librium state of the phase, 0"0"u, is found from

/aG* \
l = l  : 0  f o r  ( k = r , 2 , . . . , s ) .  ( A l - l )
\oeo l*.n,,,_r,

The Gibbs energy for the equilibrium state of the phase,

G, is found by substitutin1 Q.o,u into the expression for

G*, so G = {G*la:o"*u. The chemical potentials of the

macroscopic end-members are related to the Gibbs en-

eryy, G, by
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(A1-2)

in which N* is the number of moles of the macroscopic
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end-member, K; G is taken to be a molar quantity, so it
is mulriplied by N, wirh N : 1i,4.

The (virtual) chemical potentials, pf;, of the model end-
members are related to the virtual Gibbs energy, G*,by

HOLLAND AND POWELL: THERMODYNAMICS OF ORDER-DISORDER: II

*r:rry)
\ dnr 

/^n,=^,

(Al -3)

If a general expression is needed for the virtual chem-
ical potentials, then, starting with Equation A1-3 and us-
ing the chain rule gives

pr : G* . > t(**) r,,-, ",(#^) ^,,-,,
.: "(H) ,,"-.(n)^.-^, (Ar-8)

Formulating G* in terms of X and Q gives a straightfor-
ward way of generating the virtual chemical potentials.
This equation, in combination with Equation Al-5, gives
the chemical potentials of the macroscopic end-members.
Note that Equation A1-8 is identical to the equations of
Ghiorso (1990a, 1990b) without recourse to Darken's
equation, observing that he delivered equations for the
virtual chemical potentials (in the notation used here).
Note that the last sum in Equation A1-8 is equal to zero
through Equation A1-1, if Equation A1-8 is to be used
only in an equilibrium context.

AppnNorx 2

The mixing properties of solid solutions are also well
handled by symmetric formalism, and these relationships
are outlined here for the two-site mixing case, with the
site proportion m: n.

The Gibbs energy of the solid solution is given by the
expression for a ternary regular solution, in terms of the
proportions of the three end-members:

G",: p"G, t poGu + p"G"-t p"poW"o + p.p"W..

* p"poWo" - ZS-,-. (42-r)

The excess Gibbs energy of mixing is found from

G.. : c", + ZS-,^ - XGu - 0 - X)G"

+ w"bx(t - x)

in which A, B, and C are from Equation 4. If, as used
here, the constituent parts ofA, B, and C are independent
of temperature, then the enthalpy of mixing is given by

|  [  R l
H^^ :  

m + n la 
+ cxtQ *  

;o ' l+  w.bx( l  -  x) .

(A2-2)

The compositional dependence of the enthalpy of mix-
ing at several temperatures for omphacite is shown in
Figure 18. The relationships are limited by the high-tem-
perature disordered behavior, which gives the familiar
regular-solution parabolic curve increasing to a maximum
at X -- 0.5. At lower temperatures, the enthalpy of or-
dering causes the mixing enthalpy to depart to more neg-
ative values from the disordered limit, with the effect be-
coming larger as X = 0.5 is approached. This leads to a
progressive enthalpic stabilization of the ordered om-
phacite as temperature is reduced. With suitable choices

in which no is the number of moles of the model end-
member, k, and G* is a molar quantity multiplied by N,
with N :2i:yn,

The chemical potentials of the macroscopic end-mem-
bers are a pafticular linear combination of the chemical
potentials of the model end-members, Equation Al-3, and
the main purpose of this appendix is to derive this rela-
tionship. This is important because in general the chem-
ical potentials of the model end-members are particularly
simple to write [for example, with symmetric formalism,
Powell and Holland (1993)1.

To generate the chemical potential of a macroscopic
end-member, pK, the starting point is the definition,
Equation Al-2, and application of the chain rule:

[tl /u,vc*t t an,\
P * : l Z  I  -  I  r r l

[;=r 1 orr, / n,,,,-,,\3Nr) n.*,,,.*

. > (H) ,,n,.,,(ffi).^*,]n:n.": (Ar-4)
From using Equations A1-1 and Al-3 in Equation A1-4,
it follows that

Thus, Equation Al-5 allows the chemical potentials of
the macroscopic end-members to be written in terms of
the virtual chemical potentials of the model end-mem-
bers. In many simpler cases p" : {pf }o=o.n",,, where K
has the same composition as ft.

Obtaining the equilibrium values of e to substitute into
the p,,t in Equation Al-5 involves using Equation Al-1.
This is accomplished most simply by using

fg)  : t fg)  p,r :o (4,_61
\6Qo 1p,,.^, "n \oQ,lr^,-,-'

for each Q., following Appendix I of Holland and powell
(1996). The sum in Equation ,4,l-6 for each eo is equiv-
alent to an equilibrium relationship for a balanced reac-
tion between the model end-members:

) r,p,* = 0 for (f : l , 2, .. . , s) (Al-7)
t : l

where r., are the reaction coefficients for the ftth reaction.
Although many reactions can be written between the
model end-members, there are only s independent ones.
This equation is more convenient for formulating the
equilibrium conditions than using Equation Al-l directly,
particularly if the virtual chemical potentials are simple
to formulate.

r,*: i r*rr":^",(ft)*,..n (Ar_s)
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of parameters the enthalpy of mixing can be positive near
the ends of the binary join but negative near the center.

For the same assumption of independence with respect
to temperature as used above in Equation A2-2, the en-
tropy of mixing is given by

l /
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(A2-3)

If the constituent pafis of A, B, and C are a function of
temperature, then the terms in Equation A2-2 are the con-
stant parts, and in Equation A2-3 additional terms of the
form of Equation A2-2 involving the temperature deriv-
atives of A, B, C, and W"o occur.

The entropy of mixing as a function of composition at
various temperatures is shown in Figure 19. It is bounded
by the maximum disordered entropy at high temperatures.
The behavior is very similar to the enthalpy of mixing
seen in Figure 18, except that the minimum at X : 0.5
at very low temperatures does not become negative (un-
less the ordered intermediate end-member has a negative
vibrational excess entropy or some other negative non-
confi gurational contribution).

Heat capacities are found from the relation

.": (#), = (#),,. (#).,(#)^ (A2-4,
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The heat capacity of omphacite as a function of temper-
ature at different compositions is shown in Appendix Fig-
ure 1, calculated using Equation A2-4.The heat capacity
is slightly curved at low temperatures but approaches lin-
ear behavior at high temperatures, dropping to zero at the
critical temperature (Appendix Fig. 1). As composition
moves away from X : 0.5, the maximum C" and the
critical temperature both fall.

If any terms in Equation 4 are pressure dependent, then
the volume of mixing has the same form as Equation
A2-2, involving the pressure derivatives of A, B, C, and
W"n. It is reasonable to consider that the volume of mixing
is zero unless a case can be made for the ordered end-
member having a volume different from the average of
the two binary end-members, as might occur if lattice
strains on ordering lead to an excess volume (at X : 0.5).
In general, all the Irys are expected to be pressure inde-
pendent, except for W"o, which is the usual regular term
for excess volumes of mixins in disordered solutions.

2.5

RT
AppnNorx Frcuno 1. Heat capacity of mixing, Qt'/R, vs. RZ

(in kilojoules) for the diopside-jadeite binary, contoured for X.


