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ABSTRACT

The enthalpy of ordering of Al and Si between tetrahedral sites in framework structures
is now known from several studies to be in the range 0.3-1.4 eV per two Al-O-Si linkages,
depending on the structure and type of linkage between tetrahedra. On the basis of this
value a simple Bragg-Williams model predicts an ordering phase transition at a tempera-
ture, 7, on the order of a few thousand degrees after adjusting the estimate to account for
fluctuations in short-range order. However, there are several materials with 7' below 1800
°C (a typical melting point), with some having 7, so low that it cannot be observed because
of the slowness of the ordering kinetics, e.g., gehlenite and leucite. We discuss two mech-
anisms that can reduce T, substantially: low effective dimensionality and low Al concen-
tration. The cases of sillimanite, gehlenite, cordierite, and leucite, and some simple dem-
onstration systems, are treated quantitatively with the aid of Monte Carlo computer
simulations. Other materials (kalsilite, anorthite, albite, and nepheline) are discussed qual-

itatively in terms of the same principles.

INTRODUCTION

The purpose of this paper is to deduce some of the
important factors that determine the phase transition
temperature for Al-Si ordering in aluminosilicate min-
erals. In particular, we want to understand why there is
a wide variation of transition temperatures, ranging from
values too low to be measured to values substantially
higher than melting points, even though aluminosilicates
have very similar structures. At one level the processes
behind the Al-Si order-disorder phase transition are eas-
ily understood. At low temperatures the enthalpy dictates
that an ordered state will be preferred. To a large extent
this is simply related to the tendency for Al-O-Si and Si-
O-Si linkages to be preferred over Al-O-Al linkages, the
well-known rule of Loewenstein (1954). At high temper-
atures entropy favors disorder, and the balance between
the enthalpic and entropic contributions to the free en-
ergy determines the temperature at which the phase tran-
sition occurs. To quantify these simple considerations,
though, is far from a trivial exercise in statistical me-
chanics. The starting point is an equation for the ordering
energies where we only need to consider nearest-neighbor
interactions (Yeomans 1992):

1
E=E + > Jioo; (1)
L

where E is the total energy of the material, E, is the
energy of the disordered state, 7, j denote pairs of sites,
and associated with each site is a variable 6, = +1 or —1
when the site is occupied by an Al or Si, respectively.
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Equation 1 is subject to the constraint that 2 ¢; has a
constant value, for example, equal to zero when the num-
bers of Al and Si atoms are identical. The sum in Equa-
tion 1 is over all pairs of sites with each pair counted
once. The coefficient J, is given by the energy of ordering:

Ji=Va + Vs — 2Vas )]

where V.., Vi, and V,s are the energies of the linkages
Al-O-Al, Si-O-Si, and Al-O-Si, respectively. The gener-
ally large and positive value of J; is a quantitative state-
ment of Loewenstein’s (1954) rule: The energy required
to form Al-O-Al linkages is sufficiently high that in prac-
tice the number of such linkages in an aluminosilicate is
frequently very small. Equation 2 can be generalized if
we consider interactions beyond the nearest-neighbor
linkage and if we have more than one type of tetrahedral
site in the disordered phase:

E=FE,+ % E Joo; + E Ks0; G)
ij i

where the coefficients J, are now generalized for neigh-
bors beyond the nearest-neighbor linkage, and g, has the
nature of a chemical potential for the site of type s. The
chemical potential accounts for the fact that certain sites
may be preferentially occupied by Al or Si independent
of the degree of long-range order.

A popular approach to solving for the equation of state
from Equation 1 is the use of the Bragg-Williams (1934)
approximation (see also Rao and Rao 1978; Putnis 1992),
which leads to the prediction of a second-order phase
transition at a temperature determined by J;:
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kT, = 7/ @
where J,,, is obtained by summing J, over all neighbors.
Examples of the application of the Bragg-Williams model
in mineralogy are given by Burton (1987) and Davidson
and Burton (1987). The Bragg-Williams model is known
to be quantitatively incorrect because it neglects fluctua-
tions in the short-range order. The only short-range order
is that determined by the degree of long-range order at
temperatures below 7,. However, there have been so many
studies of the statistical mechanics of Hamiltonians with
the form of Equation 1 (e.g., Yeomans 1992) that we now
have a reasonable idea of the effect on T, from fluctua-
tions of short-range order of similar form to the long-
range order. The transition temperature is modified by a
numerical factor, and for the paper the relevant factors
are 0.676 for a structure with tetrahedral coordination
(e.g., a diamond lattice), 0.752 for a structure with octa-
hedral coordination (e.g., a simple cubic lattice), and 0.567
for a square lattice (these factors are listed in Table 33.4
of Ashcroft and Mermin 1976). To complete the picture
we also must consider cases in which the number of Al
atoms does not equal the number of Si atoms. Denoting
the concentration of Al atoms by x, we can rewrite Equa-
tion 3 in a form which we called the adjusted Bragg-
Williams (ABW) estimate for 7.

0.676 1
0.752 f(x)-ZJm &)
0.567

in which we have taken account of the normal fluctua-
tions in short-range order as described above. The new
factor f(x) depends on the way we model the difference
between the numbers of Al and Si atoms. From the the-
ory of ordering in alloys, in which we expand about the
point x = 12, we have

SIx) = 4x(1 — x). (6)

In this case it is assumed that x is not very different from
Y2 and that there is ordering over equal numbers of two
types of site. On the other hand, if we require that the
number of sites of each type in the ordered phase must
equal the number of atoms of each type, it is not difficult
to obtain the result

ks T(ABW) =

fx) = 4x* M

for x < Y. These two forms give different values for f{(x),
but the differences are not significant in the examples that
we will discuss in detail in this paper.

How good is the ABW estimate of 7.,? Let us consider
two cases in which the Al:Si ratio is 1:1 (i.e., x = '),
anorthite and kalsilite. For anorthite, CaAlSi,O,, J, has
been estimated from experiment to be 0.40 = 0.12 eV
(Phillips et al. 1992). Using the prefactor for tetrahedral
coordination, and including four nearest-neighbor inter-
actions in J,,,, we obtain an estimate for 7, from Equation
5 of 3140 + 940 K. This is not very different from the
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estimates of 2280 + 85 K given by Carpenter et al. (1990)
and 2490 K by Carpenter (1992). In the case of kalsilite,
KAISiO,, which from a topological point of view is not
significantly different from anorthite, an estimate for J,
of 0.33 eV from the electronic structure calculations of
De Vita et al. (1994, and in preparation; see below for a
further discussion of these calculations) gives an estimate
for T, of 2600 K. Given that no evidence of disorder has
been obtained for temperatures below the melting point
of 2010 K, this estimate appears reasonable. A similar
situation holds for the related material nepheline.

Contrary to the “success” of the ABW estimate of T,
for anorthite and kalsilite, there are many cases in which
the ABW estimate fails spectacularly, and these are the
central focus of this paper. Recently we have deduced
estimates of the ordering interactions J, for sillimanite
(Bertram et al. 1990), gehlenite (Thayaparam et al. 1994),
leucite (Dove et al. 1993), and cordierite (Thayaparam et
al. 1996). The values are reproduced in Table 1, and giv-
en the importance of these values in the present work we
discuss them further in the next section. Using these pa-
rameters we estimated 7.(ABW), using Equation 5, for
some of these examples. In the case of sillimanite, the
experimental 7, is between 2000 and 2100 K and the
estimated T.(ABW) is 3766 K (Bertram et al. 1990; note
that we incorporated the appropriate correction for short-
range order). For cordierite, the experimental 7, is around
1750 K, and the estimated 7,(ABW) is 7830 K (see be-
low). The important point in these examples is that the
estimates of 7, from the ABW model are substantially
higher than the actual transition temperatures; indeed, in
the cases of leucite and gehlenite the observed transition
temperature is so low that long-range order has not been
observed.

In this paper we are concerned with the reasons why,
in cases like the ones we have used as examples, the ABW
model fails so badly. The problem surely lies in the ne-
glect of fluctuations of short-range order; but since the
ABW formula (Eq. 5) already includes a factor that usu-
ally accounts completely for fluctuations in short-range
order we need to understand the nature of the fluctuations
that can drastically reduce 7. below the estimated
T.(ABW). After all, the ABW estimate works reasonably
well for anorthite and kalsilite. In principle it should be
possible to develop a statistical mechanics calculation that
considers all the effects of short-range order. For exam-
ple, the Cluster Variational Model (CVM) (de Fontaine
1979, 1994) should be capable of giving reasonably ac-
curate estimates of 7,. However, experience with the CVM
model in mineralogy has not been satisfactory. Burton
and Davidson (1988b) compared three models for order-
ing of octahedral cations in omphacite, which experimen-
tally has a 7, value around 1123 K (Carpenter 1981). The
models required values for J, appropriate for the partic-
ular ordering processes. These were derived by Cohen
and Burnham (1985). Monte Carlo simulations of the
ordering (Cohen 1988) gave an estimate for T, of 850 +
250 K (the large error was not explained). The close
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agreement between the Monte Carlo values and observed
values shows that the ordering energies for omphacite
deduced by Cohen and Burnham (1985) are reasonably
accurate. The simple Bragg-Williams model, which was
initially developed for omphacite by Davidson and Bur-
ton (1987), gave an estimate for 7, of 5154 K. This is
substantially greater than the observed value. Burton and
Davidson (1988a, 1988b) pointed out that a CVM cal-
culation performed by Cohen (1986) did not yield an or-
dering phase transition at all because it did not contain
all the relevant physical information. A more detailed
CVM calculation by Burton and Davidson (1988b), which
purported to contain all the essential physical ingredients,
gave a value for 7, of 3820 K. This is lower than the
Bragg-Williams estimate by a factor of 0.74, similar to
the factors already cited in connection with the ABW
estimates of Equation 5. Thus the CVM model of Burton
and Davidson (1988b) captured only the usual effects of
short-range order, i.e., those incorporated into the ABW
estimate (Eq. 5), but the CVM estimate of T is still sub-
stantially above the observed value. Burton and David-
son (1988b) explained this by suggesting that the ordering
energies derived by Cohen and Burnham (1985) were in
error. But the agreement of the Monte Carlo T, with the
observed T, indicates that the problem really lies in the
CVM calculation, which overestimates the Monte Carlo
T. by a massive factor of 4.5.

What this discussion shows is that a proper CVM cal-
culation must contain all the essential physics if it is to
produce anything that is quantitatively meaningful, and
simply making a CVM calculation complicated will not
of itself guarantee that the essential physics will be prop-
erly captured. Instead it is essential to understand the
basic physics behind the ordering process before devel-
oping a detailed statistical mechanics model. We also ar-
gue that a good statistical mechanics model should nec-
essarily give a reasonably accurate estimate for 7, as a
test calculation. In the present paper we aim to identify
two essential physical features that arise in some cases of
Al-Si ordering and that lead to a large reduction of T,
from the ABW estimate. It should be noted that, by com-
paring the experimental T, with the ABW estimate rather
than with the normal Bragg-Williams formula, we are
already taking account of the normal fluctuations that
lead to a reduction of 7., and that a standard CVM cal-
culation automatically considers. We focus on two im-
portant mechanisms that lower T, namely low effective
dimensionality and low Al concentration. We note that
frustration will also lead to a reduction of T, but we do
not encounter this factor explicitly in the examples we
discuss in this paper. In the last section we consider the
case of cordierite, in which both factors operate at the
same time.

METHODOLOGY
Calculations of the ordering interactions

In this paper we do not derive the ordering interactions
J,, but, since we use results from a variety of (consistent)
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TaBLe 1. Values of the ordering interactions J, (in eV) per 2Si
+ 2Al atoms for the materials studied in this paper
r = 1 (nearest-neighbor interaction)
Sillimanite 1 Jran e
0.98 0.56
Gehlenite 2 Juy e
(T2 -T2 -(T1 -T2
0.52 0.44
Leucite 3 0.65
Cordierite 4 Jy J;
(T1 -T2 «(T2-T2)
0.84 1.34
Kalsilite 5 0.43

r = 2,3 (second- and third-neighbor interactions)

Sillimanite 1 Joane Joap Jbap
0.17 0.14 0.22
Gehlenite 2 Joap Jsap Jie oo
—0.075 -0.009 —0.066 0.072
Cordierite 4 Jb Ji Jé Jy
0.092 0.136 0.336 0.124
J3 Jy Jy Js
0.172 —0.008 0.556 —0.264
I
-0.269

Note: The precise specifications of the different types of neighbor are
given in the cited references, and in the present context are less important
than the comparison of the range of values. References: 1 = Bertram et
al. (1990), 2 = Thayaparam et al. (1994), 3 = Dove et al. (1993), 4 =
Thayaparam et al. (1995), and 5 = De Vita et al. (1994, and in preparation).

sources, some comment about the methodology is appro-
priate. For the systems we study in this paper the ordering
interactions have been obtained by two computational
approaches. The first approach uses empirical interatom-
ic pair potentials of the shell-model type described by
Winkler et al. (1991) and Patel et al. (1991). Detailed
studies using the shell model have been carried out for
sillimanite (Bertram et al. 1990), gehlenite (Thayaparam
et al. 1994), cordierite (Thayaparam et al. 1996), and, to
a lesser extent, leucite (Dove et al. 1993). The method-
ology has been explained in detail in these papers. In
essence, for a given material calculations of the lattice
energy, with all atomic positions being relaxed, were per-
formed for a large number of Al-Si configurations within
a supercell. The energies of the different configurations
were then fitted to Equation 3 by a least-squares proce-
dure. Care was taken, in part guided by preliminary re-
sults of the fitting, to include a wide range of different
types of configurations to span the full energy surface. For
cordierite we included the chemical potential parameter
w« to account for the existence of two distinct tetrahedral
sites in the disordered phase. The results of the calcula-
tions of J, for sillimanite, gehlenite, leucite, and cordierite
are given in Table 1.

The general experience is that although these potentials
can predict bond lengths and cell parameters with rea-
sonable accuracy for any given aluminosilicate (Dove
1989; Winkler et al. 1991; Patel et al. 1991), they are less
accurate than quantum mechanical calculations for actual
energies because the models were not developed taking
account of binding energies. Therefore the second ap-
proach involved the complete ab initio solution of the
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Schrédinger equation. The only substantial approxima-
tion is use of the local density approximation for the elec-
tron exchange and correlation energy, which is known to
give very good accuracy in materials with strong ionic or
covalent bonding. Because they are computationally far
more demanding than the empirical shell-model calcu-
lations, the ab initio calculations were restricted to a small
set of calculations of the ordering energies in kalsilite,
KAISiO, (De Vita et al. 1994, and in preparation). The
experience gained from these calculations was then used
in the calibration of the shell-model calculations. The
total energy was calculated for a number of different con-
figurations in a supercell of 16 tetrahedra, allowing full
relaxation of all atoms to their equilibrium positions. The
results were then interpreted in terms of J,. The most
important conclusion was that the value of J; is the sum
of two contributions. The first, 0.2 eV, was due to the
charge and chemical differences between Al and Si atoms
(De Vita et al. 1994, and in preparation). The second
contribution varied between zero and 0.4 eV and was due
to the size difference between Al and Si atoms causing
local strains when disordered; its magnitude depends very
much on the local surrounding structure and distribution
of Al and Si atoms. The total J, value therefore ranged
from 0.2 to 0.6 eV, an average best estimate for general
disorder being J; = 0.33 eV. The shell-model calculations
were then performed using the same configurations for
comparison. It was found that the two approaches gave
broadly similar results for the local strain contribution to
J, (De Vita et al. 1994, and in preparation), but the ionic
contribution was overestimated by about 0.1 eV by the
shell model, which is hardly surprising since it employs
full ionic charges of +3 and +4 for Al and Si, respec-
tively.

Monte Carlo simulations of ordering phase transitions

To help calibrate the calculated ordering interactions
against experimental data, and also to enable us to gain
a physical picture of the ordering processes, we per-
formed a number of Monte Carlo simulations using the
calculated ordering interactions and energies of the form
in Equation 3 (Heermann 1986). These simulations were
performed on a massively parallel processor, the Cam-
bridge AMT DAP 610/20 with 4096 individual proces-
sors, which allowed 4096 unit cells arranged on a 16 x
16 x 16 grid. We wrote the Monte Carlo program in the
formalism of Equation 3, and so changes in the occupan-
cy of a site from Al to Si or vice versa were represented
by flipping the sign of the individual ¢, values. The Me-
tropolis algorithm was applied to the corresponding en-
ergy change AF, calculated from Equation 3. The fact that
the one-atom flips are unphysical does not invalidate the
procedure if sampling the configurational phase space.
However, it does not conserve the number of Al and Si
atoms in the whole sample. This problem was overcome
by adding an extra term to the energy:

Ecomrol w _gQ, (8)
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where g is a control chemical potential, and
Q' =Z20;= Na — Ns. )

N, and Ng are the total numbers of Al and Si atoms,
respectively. The summation is over all sites in the com-
puter sample. The value of g was adjusted at each tem-
perature until the correct value of Q' was obtained in the
ensemble. Although this approach may seem to be more
complicated than the usual process of swapping the val-
ues of g, on pairs of sites [which would necessitate the use
of the Kawasaki (1972) rather than Metropolis update
scheme], it has the advantage that it is easily and effi-
ciently programmed for a massively parallel processor.

THE MAGNITUDE OF THE ORDERING
INTERACTIONS J,

Analysis of the ordering interactions

From the comparison in Table 1 of the results for J,
values calculated for the four materials mentioned and
kalsilite, it is seen that J; varies widely between the dif-
ferent structures and also between nearest-neighbor link-
ages of different type in the same material. Values in the
range J, = 0.4-1.4 eV were obtained from the shell mod-
el. An energy of about 0.4 eV was determined by Bell et
al. (1992) from calculations on some zeolite structures
using the same potentials. The spread in values of J; can
be interpreted as arising from local strain effects, in ac-
cordance with the results on kalsilite mentioned above
and the fact that the distance and geometry between joined
tetrahedra are nearly constant. There is no apparent cor-
relation of J, with the T-O-T bond angle or the T-T dis-
tance, and so the variation of J, must be caused by local
strain around the pair of sites when occupied by two Al,
two Si, or one Al and one Si, respectively.

From Table 1 it can also be seen that the magnitudes
of J, to second and more distant neighbors are an order
of magnitude smaller than the values of J,, and they vary
in sign. The variation in sign implies that the values of
these distant interactions must be dominated by local
strain effects.

It should be noted that the form of Equation 3, with J,
truncated after second or third neighbors, does not give
a perfect representation of the energetics, indicating that
the J, ordering interactions have long-range tails owing
to the Coulomb interactions and strain effects.

In this paper we use the values of J, obtained from the
shell model, recognizing that the values of J, should prob-
ably be reduced by about 0.1 eV as suggested by the ab
initio calculations on kalsilite quoted above. It is not
known what correction to apply to the more distant J,.

Calibration of the calculated ordering interactions

Whereas the ab initio calculations provide one means
of calibrating the ordering interactions calculated using
the shell model, it is also important to calibrate against
experimental data. Unfortunately the experimental situ-
ation is not satisfactory in this regard. Navrotsky et al.
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(1982) have reported ordering enthalpies from calorim-
etry for some aluminosilicate glasses that, when inter-
preted in our terms, give J; values in the range 0.4-0.8
eV, consistent with the results in Table 1. We noted above
that Phillips et al. (1992) have deduced a value of J, =
0.40 = 0.12 eV for anorthite. These results, however,
cannot be directly used to judge the shell-model calcu-
lations, given the way that J, varies from structure to
structure. We hoped to make a precise comparison for
cordierite, for which Putnis (1994) combined the calori-
metric measurements of Carpenter et al. (1983) with the
NMR measurements of the number of Al-Al nearest-
neighbor linkages as a function of annealing time (Putnis
and Angel 1983; Fyfe et al. 1986) to give an estimate for
J, of 0.35 eV. Unfortunately a reexamination of the NMR
data showed that this is not possible because the calcu-
lated number of Al-Al linkages is extraordinarily sensi-
tive to small measurement errors in the strengths of the
NMR lines. Taking the data of Putnis et al. (1985) at face
value, and extending the analysis of Putnis and Angel
(1985) explicitly account for T1-T2 and T2-T2 linkages,
gives negative values for the number of Al-Al linkages on
neighboring T2 sites. From detailed Monte Carlo simu-
lations (Thayaparam et al. 1996) and a reanalysis of the
experimental data using a different Monte Carlo method
(Dove and Heine 1996) it appears that this number should
actually be very nearly zero for each data set, but the
negative values arise from subtracting two large quanti-
ties with associated errors. The estimated value for J,
given by Putnis (1994) for the enthalpy per Al-Al linkage
must therefore be considered as a rough approximation.
We have used a Monte Carlo method to obtain configu-
rations, and hence the numbers of Al-Al linkages, that
match the NMR spectra exactly (Dove and Heine 1996).
This yielded an upwardly revised value for J, of ~0.4 eV.
However, this procedure suggested that there should have
been small peaks in the NMR spectra corresponding to
Si with no Al neighbors, and these were apparently not
observed by Putnis et al. (1985). By modifying the NMR
data, and supposing that the intensities of these peaks are
nonzero but small enough that they could have been
missed in the raw data, we found that the calculated num-
ber of Al-Al linkages could be significantly increased
(Dove and Heine 1996). We then reanalyzed the NMR
data analytically by including the constraint that the
number of Al-Al linkages on neighboring T2 sites is zero
rather than negative (Thayaparam et al. 1996) and allow-
ing there to be a small number of Si with no Al neighbors.
We obtained an increase in the calculated enthalpy of
ordering by a factor of two without altering the quality of
the fit. This led to a revised value for the experimental
enthalpy of ordering of 0.7 eV, although with a large un-
certainty, and this is for linkages between T1 and T2 sites.
The value for this interaction obtained from the shell-
model calculations given in Table 1 is 0.84 eV. When we
subtract 0.1 eV to take account of the overestimate in our
calculations suggested by the comparison with the ab in-
itio calculations discussed above, the agreement between
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Ficure 1. A linear chain of sites occupied alternately by Al
(A) and Si (S) atoms, except for energetically unfavorable S-S
and A-A linkages at a distance of £ sites apart on average.

our calculated value for J, and the experimental values
is satisfactory. Nevertheless, we recognize that the exper-
imental situation itself is far from satisfactory. Further
NMR studies on cordierite may allow us to resolve these
problems.

QUASI ONE-DIMENSIONAL STRUCTURES:
SILLIMANITE AND GEHLENITE

General considerations

In describing materials as having a quasi one-dimen-
sional structure we are not referring to their atomistic
structure as a whole but rather that interactions between
T sites are much stronger in one direction (say along z)
than in the other (x,y) directions. Without any x,y inter-
actions the T sites would form a set of purely one-di-
mensional chains, which cannot have long-range order at
any temperature except 0 K. The basic reason is illus-
trated in Figure 1, showing Al (A) and Si (S) on a chain
of T sites. Suppose we have one “wrong” linkage (i.e.,
A-A or S-S) on average every £ sites. The energy of each
wrong linkage is ¥2J, higher than an A-S linkage, and it
can occupy approximately ¢ different positions, giving it
an entropy of k; In £ The free energy of the system per
site is therefore

F(T) = £'(0J, = kT In §) (10)

where we have ignored any J, beyond nearest-neighbors.
F(T) can always be made negative by choosing a large
enough value of & Although the entropy always favors
some disorder in a system, in the special case of one
dimension a single wrong linkage destroys long-range or-
der. The range £ of short-range order can be obtained by
minimizing Equation 10 with respect to £, giving

£ = exp(YJ /ksT) (11)

which becomes very large for T < '%J\/kg, 1., for T
below the estimate 7,(ABW) in Equation 5. We therefore
expect T, to be controlled largely by the weak x,y inter-
actions and to be less than the estimate of 7.(ABW) from
Equation 5, in which all interactions are given equal
weight.

In sillimanite the T sites are linked into ladders parallel
to the ¢ axis (Fig. 2); the linkage from each tetrahedron
to the left and the right of the ladder is to the pillars of
edge-sharing AlQ; octahedra in the structure, which do
not participate in the Al-Si ordering. Thus in the absence
of J, beyond nearest-neighbors we have a set of isolated
one-dimensional ladders, and the argument of Equations
10 and 11 can easily be extended to show again that there
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Ficure 2. Al (A) and Si (S) atoms ordered on one ladder of
tetrahedral sites in sillimanite parallel to the ¢ axis. Note the
linkages on the left and right edges of the ladder are connected
to columns of AlQ4 octahedra not participating in the ordering
process.

is no long-range ordering. In reality long-range ordering
is ensured by the weaker interactions, J,, between ladders;
but their magnitude is considerably smaller than J, (Ta-
ble 1), and T is correspondingly reduced.

An illustrative example

Before discussing sillimanite in more detail we dem-
onstrate what happens in a simpler case and give a the-
oretical interpretation. Consider a simple cubic (or te-
tragonal) structure with equal numbers of A (Al) and S
(Si) atoms and nearest-neighbor interactions with the pa-
rameters J, = 4 and J, = J, = 0.1, giving k, T ,(ABW) =
1.58 (in arbitrary units). From Equation 3, the value of
T.(ABW) is dominated by the value of J,; the contribu-
tions of J, and J, are minor. Using the Monte Carlo sim-
ulations described above the real transition is at kz 7T, =
0.82, which is appreciably below the estimate of
ks T.,(ABW). Note that the equation for k3 T,(ABW) in-
cluded the numerical prefactor of 0.752 that is appropri-
ate for the simple cubic structure (Eq. 5). The difference
between the Monte Carlo 7, and 7,(ABW) contrasts with
the situation in the simple cubic nearest-neighbor Ising
model (with suitable parameters, in arbitrary units, for
equal numbers of A and S atoms) where J, =J,=J, =4
and, by construction, k7. = kz7.(ABW) = 4.51. More
revealing is Figure 3 which shows the correlation C,,(T)
between nearest-neighbors (i,7) in the z direction:

Com (T) = —(0.0)) (12)

where ( ) denotes a thermodynamic average over time
and all sites. This quantity is unity for perfectly alternat-
ing ASAS . .. order in the z direction and gives the degree
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Ficure 3. Correlation C,,.(7) between nearest-neighbors in
the z direction for the quasi one-dimensional system, Equation
12 (squares), as a function of temperature, compared with that
for the isotropic model, Equation 15 (circles). Temperature is
plotted relative to T, in each case.

of short-range order above 7. Figure 3 shows that with
J.=J,=J, C,.(T) ~ 0.2 near T,, which is typical for
normal three-dimensional systems, but the quasi one-di-
mensional system has much stronger short-range order
above T..

We now give a theoretical interpretation of the behav-
ior of the quasi one-dimensional model to give an ap-
proximate formula for 7.. The build up of correlation
(short-range order) in the z direction follows Equation 11
for the reason already given, with each chain treated, as
a first approximation, as independent of the other chains.
As T decreases, correlated sections of chain become more
or less perfectly ordered ASAS ... or SASA ... for a
length £, which we can represent by a single Ising spin
variable, 1. The long-range ordering then develops
through the sideways interactions of these sections. Be-
cause of their length, their x,y interactions have magni-
tude ¢£J,,£J,, which, if substituted into the Bragg-Williams
form (Eq. 4) with a prefactor of %2 (justified below), gives

kpT, = %E(Tc)(l/zJx + 11J)
~ %(J,, + J)exp(2J./ksT,)

= %('/4 2 J,)exp(at./ ks T,) (13)
where the last step gives a generalization. Equation 13 is
in fact exact for the two-dimensional case, in which J, =
0 and in the extreme anisotropic limit J, < J, (Onsager
1944), which explains our choice of prefactor. Equation
13 must be solved numerically for our quasi one-dimen-
sional model, giving k, 7. = 0.74, in reasonable agree-
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Ficure 4. The structure of sillimanite projected onto the a-b
plane. Shaded areas are columns of edge-sharing AlOQ, octahedra
running parallel to the ¢ axis (a). Between these are ladders (shown
in b), also running parallel to the ¢ axis, of pairs of tetrahedra
joined by one T-O,-T linkage in the g-b plane. The other three
O atoms of each tetrahedron are shared with the columns of
octahedra. One-half of the O atoms (labeled O,,0,) are attached
to only one T site, whereas the others (O,) are connected to two
T sites vertically above one another in the ¢ direction, and so
the O, provide T-O,4-T linkages in that direction.

ment with the Monte Carlo result. Equation 13 can be
solved approximately as

kyT. =~ ¥2J,/In(4J./2];,) (14)

or
T./T, (ABW) = 1/In(4J,/2J,.). (15)

We see that T, is indeed controlled by Z J;;,, but it de-
pends on it only logarithmically.

Application to sillimanite

The sillimanite, ALSiO;, structure is shown in Figure
4. As noted in connection with Figure 2, the T sites form
ladders, with each ladder rung being a T-O,-T linkage in
the a-b plane and the ladder sides being T-O,-T linkages
in the ¢ direction. The ladders are otherwise connected
only to the columns of octahedra and not directly to one
another. Thus in terms of the J; values the different lad-
ders are connected by somewhat distant J, only. The val-
ues of J; obtained by Bertram et al. (1990) are given in
Table 1. J,,, and J,, are for the interactions involving the
linkages in and perpendicular to the a-b plane, respec-
tively; the other J, values apply to second and further
neighbors and are defined by Bertram et al. (1990). As
we see from Table 1, the interactions between ladders are
nearly an order of magnitude smaller than those within
a ladder, and we have a quasi one-dimensional system.
To map it directly onto the model given by Equation 13
we can suppose that J,,, is sufficiently large near 7', that
the two T atoms forming one rung of a ladder are nearly
always either an Al-O_-Si or a Si-O.-Al combination, i.e.,
one rung can be represented as a single Ising spin variable
connected by interactions J, = 2(J,, — Jou) = 0.76 €V,
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Ficure 5. The correlation C,,,(7) between nearest-neighbor
T sites in the ¢ direction in sillimanite from the interactions in
Table 1.

where the factor 2 arises from the two T atoms. Similarly
the interaction between ladders can be expressed in terms
of the more distant J, giving £ J,, = 0.16 eV. Our esti-
mate of T, from a numerical solution of Equation 13 is
2032 K, which can be compared with the temperature
2670 K we have determined using Monte Carlo simula-
tions. We also performed the Monte Carlo simulations
after subtracting 0.1 eV from the values of J,, and J,,
as discussed previously, and obtained a revised 7, of 2160
K. The nearest-neighbor correlation along the ¢ axis is
shown in Figure 5 and is large near 7, compared with the
results for the isotropic Ising model shown in Figure 5.

Because sillimanite decomposes on heating at atmo-
spheric pressure before it disorders, there is no direct ex-
perimental value of T, for comparison with our calcula-
tion. However Holland and Carpenter (1986) and
Greenwood (1972) have inferred a value of T, between
1970 and 2070 K by extrapolation of high-pressure data.
Our Monte Carlo value of T, = 2120 K with the corrected
values of J, agrees well with the experimental value, and
we take this as a general endorsement of the calculation
of the J, values. The strong short-range order calculated
above T (Fig. 5) becomes even stronger below 17, which
is consistent with the fact that there is very little notice-
able disorder in natural specimens of sillimanite, as dis-
cussed by Stebbins et al. (1993).

In conclusion, we have shown how quasi one-dimen-
sional systems in general, and sillimanite in particular,
display substantially lower values of T, than given by
T.(ABW) in Equation 5. The low T is accompanied by
very strong short-range order governed by the J, terms.

Application to gehlenite

The structure of disordered gehlenite, Ca,Al,SiO;,, con-
tains two formula units per tetragonal cell, as shown in
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FiGURE 6. The unit cell of the gehlenite structure with T1
and T2 tetrahedra marked. Note that the T2 tetrahedra are not
linked in the ¢ direction, each having an apical O atom.

Figure 6. The T1 sites (Fig. 6 lined) are always occupied
by Al, and so ordering takes place only among equal
numbers of Al and Si atoms on the T2 sites. The T2 sites
effectively consist of isolated pairs in the sense that in the
a-b plane the T2 pairs are linked only through the Al T1
tetrahedra, i.e., there are no nearest-neighbor J, type of
linkages between T2 sites except within each pair. There
are also no nearest-neighbor linkages in the ¢ direction
through a shared O atom. The different interactions J, are
defined in Figure 7 and their values given in Table 1. The
interactions J,. and J,. in the ¢ direction are an order of
magnitude smaller than J,,, and J;,,.

We now consider the Al-Si ordering process, decreasing
in temperature T from a completely disordered state at
very high T. At a temperature k7 < Y2J,,,, T < 3000 K,
the interactions J,,, and J7,, favor one Al in T1 and one
Al and one Si in each T2-T2 pair. The disposition of the
Al and Si atoms makes no difference energetically be-
cause the pairs are isolated from one another with respect
to nearest-neighbor linkages.

We now suppose that each T2-T2 pair of sites is oc-
cupied by an Al-Si pair and consider its ordering, Al-Si
or Si-Al, with respect to other pairs as the temperature is
decreased further. It is important to realize that the J,,,
interaction gives zero effect in this regard. If the site
marked with a dot in Figure 7a is occupied by an Al
atom, because of the mirror plane m (Fig. 7a), there is no
energy difference between the pair labeled J,,,, J,,, on the
left of Figure 7a being occupied by AlSi or Si,Al. This is
a rigorous consequence of symmetry. Further ordering
therefore is driven by the next largest interactions, name-
ly J,. and J,.. These have opposite sign and reinforce one
another in ordering Al-Si pairs above each other in the ¢
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(@ (b)

Ficure 7. Definition of the interactions, J,, between the T2
sites marked by the heavy dot and other T2 tetrahedra as marked:
(a) in the a-b plane, (b) in the next layer in the +c¢ direction.
Note the mirror plane m.

direction in the same way. The relevant energy for this
ordering is |J,. — J..| = 0.14 eV, corresponding to a
temperature of 1620 K. At and below this temperature
one-dimensional order is expected to develop in chains
parallel to the ¢ direction. We have confirmed this by
Monte Carlo simulations. The only interaction between
chains comes from the very small J,,, resulting in three
dimensional order at 7. = 640 K as determined by our
Monte Carlo simulations. This is too low to be verified
experimentally. Louisnathan (1971) reported that a nat-
ural gehlenite sample showed a slight spontaneous strain,
indicative of some degree of long-range order, but this
has not been found by other workers checking a wide
range of samples (M.A. Carpenter, personal communi-
cation). The value of J,,, is so small that its magnitude,
and even its sign, must be regarded as quite uncertain.
Thus our estimates of 7, and of the ordered structure are
also uncertain but we can nevertheless conclude that 7,
must be small.

Low Al CONCENTRATION: LEUCITE AND ALBITE
General considerations

A second type of situation causing a low T is a low Al
concentration, i.e., x < '2. Examples are x = % in albite
and x = 5 in leucite. The ABW formula, Equation 95,
contains an appropriate reduction factor f{x), but we show
in this section that this does not give a sufficient reduction
of T,. Therefore with only four linkages from each T site,
there are too few Al atoms to interact fully enough through
the nearest-neighbor J, coupling to give long-range order.
Consider the planar square lattice in Figure 8 populated
with Al (A) and Si (S) atoms in the ratio 1:3. The lowest
energy is achieved when there are no A-A nearest-neigh-
bor linkages, but this can be realized in many ways with-
out long-range order, as shown in Figure 8. The ground
state has a finite entropy and no long-range order, and no
ordering phase transition is possible if there are only first-
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Figure 8. One of many arrangements of Al (A) and Si (S)
atoms on a planar square lattice with the proportion of Al atoms
x = 0.25, in which each Al atom has 4 Si nearest neighbors,
showing no long-range order. Each such configuration has no
Al-Al linkages and has the same energy ignoring all interactions
beyond nearest-neighbors.

neighbors interactions. The important point is that with
a low concentration of Al atoms it becomes possible to
have complete Al-Al avoidance arising from short-range
order without the establishment of long-range order.

An illustrative example

Consider the simple model of the square lattice with
an ALSi ratio equal to 1:3 and only nearest-neighbor in-
teractions J,. We start from an ordered arrangement with
Al concentration x = % as shown in Figure 9a. Perfect
order means that there are no Al-Al linkages, but any
rearrangement that leads to the reduction in long-range
order necessarily leads to some Al-Al linkages. To reduce
the concentration to x = ¥ we replace half of the Al atoms
by Si. The replacement can be selected at random without
any cost in energy; this gives rise to a nonzero entropy in
the ground state. Actually there is still some vestige of
long-range order in this arrangement because the Al at-
oms occupy only a subset of the total number of sites.
However, true long-range disorder can be created by
moving some of the Al into the original Si sites but with-
out creating any Al-Al linkages, as shown in Figure 8,
resulting in even greater entropy. Thus the free energy is
minimized by disordering at any infinitesimal tempera-
ture above 0 K without any increase in energy, i.e., with-
out creating any Al-Al linkages. This demonstrates that
complete Al avoidance can be achieved as a result of
short-range order without the need to establish any long-
range order.

Of course in real materials there are more distant in-
teractions J, beyond first neighbors. We therefore develop
the model further (still with Al concentration x = %) by
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Ficure 9. Ordered arrangements of Al (A) and Si (S) atoms
on a planer square lattice with an Al concentration (a) x = 0.5
and (b) x = 0.25.

adding a second neighbor interaction J, = J,/10, which
is on the order of magnitude found by the shell-model
calculations. The energy is minimized by each Al having
all Si second neighbors, giving the ordered structure of
Figure 9b. We evaluated the correlation function

C.(D)= —[(tf,-O'j> - (0;')(0'/')] (16)

between second-neighbor sites by Monte Carlo simula-
tion, shown in Figure 10. Short-range order is driven by
J, and becomes larger below T.(ABW), but long-range
order is driven by the smaller J, giving a much lower T,
of 0.069T.(ABW).

Application to leucite

We now apply these ideas to leucite, KAlSi,O,. The
crystal structure consists of four-membered rings of linked
tetrahedra, and it is possible to populate the sites with
equal numbers of Al and Si atoms in an ordered arrange-
ment such that each Si atom has only Al neighbors and
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Ficure 10. The short-range correlation C,(7) between sec-
ond-neighbor sites on the square lattice of Figure 9b (i.e., in a
diagonal direction), for J, = 0.1J; and Al concentration x = 0.25.
Note how T, is much less than 7,(ABW).
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The cordierite structure. (a) Hexagons of T2 sites
in an g-b plane are linked by T1 sites lying half-way between
successive planes of T2 sites. The ordering and orthorhombic
unit cell are shown. (b) A chain of square rings parallel to the ¢
axis consist of T1 sites linking adjacent hexagons of T2 sites in
one a-b layer and hexagons in adjacent layers.

FiGure 11.

vice versa. (Ordered arrangements of this kind are always
possible when the structure consists of even-membered
rings but impossible when there are odd-membered rings.)
Following our treatment of the square lattice above we
replace one third of the Al atoms by Si to reduce the Al:
Si ratio from 1:1 to the required value 1:2. This can be
done in many ways, and then the remaining Al atoms can
be moved around leading to a zero-point entropy as be-
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fore. This sort of disorder has been confirmed experi-
mentally in cubic Cs-exchanged leucite and the related
cubic analcime (Phillips and Kirkpatrick 1994; Dove and
Heine 1996). Thus in the presence of J, only, there would
be no ordering at any temperature, compared with
T.(ABW) = 4530 K using J, = 0.65 eV from Table 1. In
the case of leucite only J; has been calculated (Dove et
al. 1993), and so we assume that J, = 0.1J, by analogy
with the other materials we have studied. We take the
estimate of 7./T.(ABW) = 0.069 from the 1:3 diluted
square lattice above (noting that the difference in dimen-
sion between the two cases is taken into account by the
adjustment prefactors in the equation for T.(ABW),
Equation 5, and that the number of nearest-neighbors is
the same in leucite and the square lattice), and with J, =
0.65 we obtain 7, = 310 K. This is a very low value, as
in gehlenite, too low to be studied experimentally because
of the slowness of the ordering kinetics at such temper-
atures, and it explains why long-range Al-Si ordering is
not found in leucite.

Application to albite

We consider albite, NaAlSi,Os, as a further application.
The T sites in feldspars are arranged in linked four-mem-
bered rings and can be occupied by a perfect alternation
of Al and Si atoms as in anorthite. The replacement of
one-half the Al by Si in albite leads to a large entropy as
argued above. In the first section the value 7, = 2300-
2500 K was suggested for anorthite, and with a value for
x of Y instead of ¥ in Equation 6 for f{x) we can use the
anorthite 7, to give a rough estimate of 7,(ABW) ~ 1800
K (Eq. 5) for albite, assuming that the J values are similar
in both cases. The actual T, for albite is complicated by
the fact that the C2/m-CT transition is a combination of
Al-Si ordering and lattice displacement. Analysis has
shown that the displacive part of the transition occurs
first on lowering the temperature from the disordered state,
pulling the Al-Si ordering with it at lower temperatures,
and that the latter would occur at 833 K by itself (Salje
1990). The actual ordering 7. is again substantially below
the ABW estimate as a result of the low Al concentration,
similar to the case of leucite.

Al-Si ORDERING IN CORDIERITE

Cordierite, Mg,Al,Si;O 4, has a somewhat complex or-
dering pattern (Fig. 11), and it shows both of the factors
noted in the preceding sections. T, for Al-Si ordering has
been estimated as 1750 = 30 K (Putnis, personal com-
munication), from the TTT diagram on annealing (Putnis
et al. 1985). This value is just below the melting point.
It is not very low in the sense of 7 for gehlenite or leucite,
but it is significantly lower than T.,(ABW). The cordierite
structure has two types of tetrahedra, with 24 T2 sites
per orthorhombic ordered cell arranged in hexagonal rings
that are linked by 12 T1 sites. In the ordered structure
each hexagonal ring has 2 Al and 4 Si T2 tetrahedra,
whereas two-thirds of the T1 tetrahedra are Al. Thus for
the basic unit of 3T1 + 6T2 sites, there are 12 T1-T2
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Ficure 12. The percentage of Al-Al linkages among T1-T2
(squares) and T2-T2 (circles) linkages as a function of tempera-
ture from the interactions J, of Table 1. Complete randomness
would give (%)* = 19.8%.

nearest-neighbor links and 6 of type T2-T2. The corre-
sponding interactions J, and J7, respectively, are given in
Table 1. For J,,, in Equation 5 we take a weighted average
(ignoring the smaller more distant J,)

Jow = 4J (average) = 4 (5J, + 5J) = 4.04eV  (17)

which (with the atomic concentration x = %) gives
T.(ABW) = 7830 K. This is quite high because of the
relatively large values of J, and J;. There are seven ine-
quivalent second-neighbor interactions, J; to J¥, whose
precise definitions are immaterial here and are given by
Thayaparam et al. (1996). Only one type of third-neigh-
bor interaction was included, corresponding to a diagonal
across the hexagonal rings: It might be significant for the
ordering among the T2 sites.

Consider now the equilibrium degree of order with de-
creasing temperature, notionally with the structure re-
maining solid. Below 7,(ABW) strong short-range order
sets in, driven by J, and J;. It is therefore not surprising
that crystalline cordierite formed from cordierite glass at
1670 K already has strong short-range order when this is
measured within a few minutes of formation, with only
a few percent of nearest-neighbor linkages being between
two Al atoms (Putnis and Angel 1985; Dove and Heine
1996).

Figure 12 shows the percentage of Al(T1)-Al(T2) link-
ages and Al(T2)-Al(T2) linkages in equilibrium deter-
mined by our Monte Carlo simulation. The proportions
are quite small near T, which in the case of the T2-T2
linkages, is helped by the large value of J; and by the
energy preference of Al for the T1 sites over the T2 sites
(which is reflected in the value of u, Table 1). The T1
sites all lie in chains of four-membered rings in the c
direction consisting of two T1 and two T2 sites. Perfectly
alternating SiAlSiAl ordering is possibie on these with all
the T1 sites in a chain occupied by either Al or Si. Thus

Ficure 13. The topology of the T sites and their linkages in
an a-b layer of cordierite, showing a disordered arrangement of
Al (A) and Si (S) atoms but with no Al-Al nearest-neighbors.
The T2 sites are the corners of the small hexagons, and the T1
sites are denoted by dots linking the hexagons, giving nine-mem-
bered rings.

there is no barrier to easy short-range ordering in these
rings and hence in their chains.

However long-range order is more difficult to attain in
this structure. A Monte Carlo simulation of the ordering
transition using the interaction parameters in Table 1 gave
T. = 2110 K, in reasonable agreement with experiment
and substantially below the estimate 7.(ABW). The fact
that 7, (both the experimental and simulated values) is
so much lower than 7.(ABW) indicates that the long-
range ordering is driven more by the second- (and high-
er-) neighbor interactions than by J, and J;.

We can understand why long-range order only sets in
at such a low T, as follows. The chains of four-membered
rings are one-dimensional, and, as in sillimanite and geh-
lenite, do not result in long-range order in themselves.
The ordering between the chains acts through the hexa-
gons of T2 sites, and the low Al concentration of ¥ gives
considerable freedom of arrangement. More precisely, two
Al can be placed on a hexagon of six sites in nine different
ways without being nearest-neighbors. And since the
number of Al atoms on any one hexagon can vary from
zero to three without necessarily causing any unfavorable
Al-Al linkages on the hexagon, there can be even more
possible configurations. Thus the hexagons do not give
any strong ordering link between the chains. In fact it is
not difficult to draw structures with perfect order in the
chains in the ¢ direction but disorder in the a-b plane
while having no Al-Al linkages. One such structure is
shown in Figure 13, which is a piece of a larger drawing
extending over 56 hexagons. Indeed we developed a sys-
tematic way of extending the pattern indefinitely, and by
counting the number of choices we could estimate an
entropy of about (‘)ks In 2 per chain. This tends to zero
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per site if the chains are considered to be infinitely long;
but since the ordered regions within any chain must be
of finite size (as a result of ordering not being possible in
one dimension, as discussed in the first section) this en-
tropy may be significant in lowering T..

To summarize, in cordierite we have an interplay of
the two mechanisms described in the previous two sec-
tions. The small dilution of the ALSi ratio from 1:2 to
4:9 is enough to allow there to be configurations with no
long-range order in three dimensions but with sufficient
short-range order for there to be no Al-Al linkages. But
this short-range order involves quasi one-dimensional or-
dering along the T1-T2 chains, which cannot lead to long-
range order at nonzero temperatures; so there must be
some breaks in the order and hence a nonzero number of
Al-Al linkages along the chains. This picture is broadly
in agreement with the NMR data (Putnis and Angel 1985;
Dove and Heine 1996). Complete long-range order is only
obtained by second- and third-neighbor interactions across
the T2 hexagons. Since these interactions are weaker than
the nearest-neighbor interactions, the resultant 7, is sub-
stantially below an estimate based on the strength of
nearest-neighbor interactions.

CONCLUSIONS

Long-range order, short-range order, and the
transition temperature

Although the transition temperature 7 is not the most
basic item of information about an ordering transfor-
mation, it has a pivotal significance. We have highlighted
the fact that T, for Al-Si ordering varies over a rather
wide range from a few hundred degrees to inferred values
of several thousand. This is a striking result. Since many
of the structures considered are tetrahedrally coordinated
frameworks with very similar local structure, we might
expect that the same basic Bragg-Williams treatment
would apply equally well (or equally badly) to each struc-
ture. Instead the Bragg-Williams model works really well
in some cases (e.g., anorthite and kalsilite), but in other
cases it significantly overestimates 7, even when the usu-
al fluctuations in the short-range order have been ac-
counted for (e.g., sillimanite, gehlenite, leucite, cordier-
ite).

The free energy in the Bragg-Williams model, from
which 7, is estimated, has two contributions. The first
contribution is the enthalpy, which is calculated assum-
ing that the dominant interactions are the nearest-neigh-
bor interactions. At first sight this is reasonable, since the
nearest-neighbor interactions are typically ten times
stronger than the interactions between more-distant
neighbors. For a state with less than perfect order, as
found for temperatures near 7, the enthalpy is calculated
using a simple statistical argument. Any interaction be-
tween the atoms on two tetrahedral sites is considered to
be a weighted average of the relevant Al-Al, Si-Si, and
Al-Si interactions; the weighting reflects the probabilities
of both sites being occupied by either atom type. The
second contribution to the free energy is from the entro-
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py, which is calculated using a similar statistical treat-
ment to that used in the calculation of the enthalpy. Giv-
en the probabilities of each crystallographic site being
occupied by an Al or Si, the entropy is evaluated simply
by counting all the configurations that are consistent with
these probabilities. The assumptions in both cases are
essentially that every configuration for a given degree of
order is energetically equivalent. This approximation be-
comes exact in the limit of a large number of nearest
neighbors.

It is known that in the general case short-range order
modifies the behavior close to T, and the corrections to
the Bragg-Williams treatment that arise from critical fluc-
tuations are well understood (e.g., Rao and Rao 1978).
Indeed, we have incorporated these into our adjusted
equation for 7,, Equation 5. Our examples where T is
significantly below our estimates of 7,(ABW) point to
deeper flaws in the Bragg-Williams model. One of these
is low effective dimensionality, which arises from certain
topological considerations. This is easy to see in the sil-
limanite and gehlenite structures but it also features in
the ordering process in cordierite. The effect of low di-
mensionality is that there can be considerable short-range
order along one direction, and long-range order is driven
by weaker interactions between the chains. Another im-
portant factor is dilution. This is probably the most com-
mon factor because it relates to chemistry rather than
topology. Even in cordierite, in which the Al:Si ratio is
5:4, the effects of dilution are of considerable importance.
The existence of some dilution allows Al avoidance to be
fully satisfied as a result of short-range order, without the
need for long-range order. With complete Al avoidance,
the driving force for long-range order must come from
distant neighbors. Thus both of the central ideas of the
Bragg-Williams model are negated: The nearest-neighbor
interactions produce short-range order rather than long-
range order, long-range order is then driven by distant-
neighbor interactions rather than the stronger nearest-
neighbor interactions, and the entropy is greatly reduced
by the existence of short-range order.

On our calculations of the nearest-neighbor interactions

An important aspect of our enquiry lies in the question
of whether there is any way in which the interactions J,
from computer simulations can be compared directly with
experiments. The broad sweep of values of J, in Table 1
compare well with the measurements of Navrotsky et al.
(1982) for a range of glasses and with the value of J de-
duced for anorthite (Phillips et al. 1992); but since they
are different materials one cannot say anything more
quantitative. Our study of cordierite was initiated with
the expectation that a direct comparison would be pos-
sible with the enthalpy of ordering per Al-Al linkage an-
nealed out of the material, but as we have discussed here
and elsewhere (Dove and Heine 1996; Thayaparam et al.
1996) there are problems with the experimental data that
lead to significant uncertainties. In any case, it is now
clear that the experimental data yield only J, and not Jj.
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Cordierite is nevertheless a good model system for ex-
periment, and we hope that further measurements are
made.

The only hard numbers we have are the 7, values of
sillimanite and cordierite and the comparison between
the experimental values and our computations using
Monte Carlo simulations. In both cases there would be
no long-range order under the influence of the nearest-
neighbor interactions only. The long-range order is ulti-
mately driven by the interaction of more distant neigh-
bors, which is unsatisfactory since these are small and
therefore have greater uncertainty. In the quasi one-di-
mensional case of sillimanite the dependence on the more
distant interactions is logarithmic (Eq. 13) and rather
weak, which helps. The same is probably true also for
cordierite. Under these circumstances the agreement of
T, from simulation with the observed T, for sillimanite
and cordierite is better than we hoped. In any event, these
tests tell us little about our calculated values of J;.

We can turn the question of the validity of the calcu-
lated J, values around: Instead of emphasizing the simi-
larity of the local structure of linked tetrahedra in all the
minerals studied, we can ask why J, varies between them
to the degree that is shown in Table 1. In particular, why
is J} so large in cordierite? After all, the calculations for
the different structures were performed using the same
potential model, which is known to be transferable be-
tween different aluminosilicates with a consistent level of
accuracy. We might therefore have anticipated that the
values of J, would be more similar between different
structures than they have proved to be, and so we could
have hoped that J, would itself be transferable between
different (but similar) structures. However, a clear con-
clusion from our work is that the value for J; found for
any structure, whether from experiment or calculation,
cannot be transferred to any other structure. We have no
complete answer to this problem except to refer to our
argument in the second section that the largest contri-
bution to the J, terms is from local strain induced by the
size difference between Al and Si tetrahedra when these
are disordered. The strain energy is large if the structure,
as a three dimensional whole, is cross-braced and rigid
or small if the structure is more floppy in the sense that
local difference in tetrahedron size can be accommodated
by changes in the T-O-T bond angles, which have rather
weak force constants. The degree of such rigidity can, of
course, be very anisotropic in a given material.
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