Description and crystal structure of Yvonite, Cu(AsO₃OH)2H₂O

HALIL SARP¹ AND RADOVAN ČERNÝ²

¹Département de Minéralogie du Muséum d'Histoire naturelle de Genève, 1, route de Malagnou, CH-1208 Geneva, Switzerland ²Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland

ABSTRACT

Yvonite, Cu(AsO₃OH)2H₂O, was found in the Salsigne mine near Carcassone (Aude, France). It forms aggregates or radiating spherules consisting of individual crystals (maximal size $0.3 \times 0.15 \times 0.06$ mm) of turquoise blue color. They are elongated in c, flattened on (010), and have a perfect cleavage on (100). The mineral is triclinic, $P\overline{1}$, a = 7.632(3), b = 11.168(3), c = 6.020(3) Å, $\alpha = 89.32(3)$, $\beta = 86.55(5)$, $\gamma = 74.43(3)^{\circ}$, V = 493.4(3) Å³, Z = 4, $D_{\text{meas}} = 3.20(2)$ g/cm³, and $D_{\text{calc}} = 3.22(1)$ g/cm³. Mohs hardness 3.5–4. Luster vitreous transparent, streak blue; optically biaxial (-) with $\alpha = 1.615(2)$, $\beta = 1.660(2)$, and $\gamma = 1.700(2)$ at 589 nm; 2 $V_{\text{obs}} = 82(2)^{\circ}$, 2 $V_{\text{calc}} = 84(1)^{\circ}$. Pleochroism weak with Z = blue, Y = light blue, and X = light blue to colorless. Associated minerals: geminite, lindackerite, arsenopyrite, native bismuth, chalcopyrite, and pushcharovskite. The crystal structure was solved by direct methods (MoK α radiation) and refined using 1429 observed unique reflections to R = 0.069, $R_w = 0.043$. There are two symmetrically independent distorted $CuO_5(H_2O)$ octahedra in the structure. They share edges and form cis $[CuO_3(H_2O)]$ chains parallel to [001]. Two symmetrically independent distorted AsO₃(OH) tetrahedra cross-link these chains to form sheets parallel to (100). Two symmetrically independent H₂O molecules are located between the sheets, which are linked by a network of hydrogen bonds, accounting for the perfect cleavage of yvonite. The mineral is structurally related to geminite, Cu(AsO₃OH)(H₂O), and fluckite, CaMn[(AsO₃OH)(H₂O)]₂.

INTRODUCTION

The gold-bearing sulfo-arsenic mine of Salsigne has attracted the attention of many mineralogists and collectors due to the large variety of mineral species found there. This mine is located on the south hillside of the Montagne Noire, 15 km north of Carcassone in the department of Aude (France). It lies at the center of the gold-bearing district of Salsigne. This district is limited on the west by the granite of Brousses, on the south by Tertiary formations discordant on the Paleozoic, on the east by the north-south Valley of Argentdouble, and on the north by the mica schists and gneisses of the axial zone of the Montagne Noire. The deposits and the goldmineralized zones are found in the schists of Cabardès and in the Paleozoic formations of Minervois. The genesis of the deposit is still controversial. Bonnemaison et al. (1986) proposes a volcano-sedimentary origin, and Lepine et al. (1988) an exhalative-sedimentary type. The dominant minerals are arsenopyrite, pyrrhotite, and pyrite. Accessory phases are chalcopyrite, galena, bismuth species, and gold. Among the bismuth minerals are native bismuth, bismuthinite, maldonite, cosalite, kobellite, gustavite, and matildite. Galena, sphalerite, magnetite, and löllingite are rare. Recently, Marcoux and Lescuver (1994) have found gudmuntite, bournonite, emplecite, and tetrahedrite.

The mine is also very rich in late-stage supergene hydrated minerals. The phosphates ludlamite, vivianite, messelite, and childrenite were reported by Descouens and Baffaly (1985), and the sulfates, melanterite, chalcanthite, siderotile, and halotrichite by Descouens (1986). Recently, based on the work of M.G. Favreau (personal

FIGURE 1. Scanning electron microscope photograph of yvonite crystals, elongated in the c axis direction and flattened on (010). Bar scale is 10 μ m,

TABLE 1.	Optical	and	physical	properties	of	yvonite
----------	---------	-----	----------	------------	----	---------

Biaxial, negative	(all data for wavelength of 589 nm)
$\alpha = 1.615(2)$	$2V_{obs} = 82(2)^{\circ}$ (universal stage)
$\beta = 1.660(2)$	$2V_{calc} = 84(1)^{\circ}$
$\gamma = 1.700(2)$	Pleochroism: weak
Dispersion: $r > \nu$ medium	Z = blue, $Y =$ light blue, $X =$ light blue to colorless
$\Delta = 0.085$	Absorption: $Z > Y > X$
Orientation:	
on (010): $X \wedge c = 42^{\circ}$ and Z normal to (010)	
on (100): $Z' \wedge \text{normal to } [001] = 0-2.5^{\circ} \text{ and } X' \wedge c = 3-5.5^{\circ}$	
Color: turquoise blue	Streak: blue
Luster: vitreous transparent	Tenacity: brittle
Hardness: ~3.5-4	Fracture: irregular
Cleavage: perfect on {100}	Twinning: very rarely multiple lamellae, composition plane (010),
poor on {010}	twin axis \perp (010)
D _{meas} : 3.20(2) g/cm ³ (heavy liquids)	Non-fluorescent under LW and SW
D _{calc} : 3.22(1) g/cm ³	Soluble rapidly in HCI

communication), an eminent mineral collector, the number of the supergene secondary minerals has increased. In fact, Favreau collected samples from the dump and from the mine and has recognized the presence of hydrated arsenates such as pharmacosiderite, picropharmacolite, rauenthalite, scorodite, sainfeldite, lavendulane, hoernesite, mimetite, olivenite, clinoclase, and pharmacolite and of sulfates such as jarosite, beudantite, chalcophylite, brochantite, posnjackite, serpierite, and siderotil. We have found in one sample supplied by M.G.

FIGURE 2. Optical orientation of yvonite. Angles between edges were measured with the polarizing microscope.

Favreau from the dump, a new mineral, which we have named yvonite in honor of Klaus Yvon, professor of crystallography at the University of Geneva, Switzerland. The new mineral and the name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The holotype material is deposited in the department of mineralogy of the Natural History Museum of Geneva, catalogue no. 450/33.

OPTICAL AND PHYSICAL PROPERTIES

Yvonite occurs as aggregates or radiated spherules of maximum size 1 mm in diameter, which are formed by individual crystals of maximum size $0.3 \times 0.15 \times 0.06$ mm. The megascopic color is turquoise blue. The crystals are elongated parallel to *c*, flattened on (010), and have one perfect {100} cleavage and imperfect {010} cleavage. The most prominent forms are {010} and {100} (see Fig. 1) with some very small crystals also exhibiting {*hkl*} and {001} forms. The small size of these crystals and the poor quality of the reflections observed by the optical goniometry preclude identification of the {*hkl*} forms.

Yvonite is transparent and shows a weak pleochroism with thicker fragments. The optical and physical properties are summarized in Table 1 with the optical orientation in Figure 2.

TABLE 2. Chemical analysis [wt%] of yvonite

33.20
48.01
18.79
100.00

TABLE 3. Powder diffraction data of yvonite (Guinier-Hägg

TABLE 3—Continued.

		()	(
	camera, Cul	κα ₁)		hkl	d _{calc}	dobs	I _{obs}
hkl	d _{calc}	d _{obs}	lobs	220	2 279	2.076	5
				230	2.210	2.270	5
100	7.339	7.35	100	202	2.260	2.262	<5
001	6.009	6.014	<5	321	2.257	2.254	5
020	5.379	5.380	<5	331	2.215	2.213	5
011	5.236	5.239	50	141	2.190	2,190	5
120	5 029	5.028	<5	231	2.158	2.154	<5
111	4 685	4 694	5	212	2,140	20.444	
111	1 113	4.440	60			}2,141	5
4 4 4	4 1 1 1	4.440	00	331	2 137		
0.0.1	4.121	4.120	5	231	2 102		
021	4.017	4.017	5	201	6.106	}2.101	5
1 1 1	3.937	3.936	60	1 5 1	0 100		
		,		121	2.102	0.000	-
121	3.928			151	2.084	2.086	5
120	3.872	3.871	<5	232	2.076	}2.075	5
210	3.798	10 707	~F	-		,	-
		33.797	< 5	311	2.076		
121	3.789			341	2.024	10.004	25
200	3.670	3.667	<5			}2.024	6
130	3 629	3 632	<5	051	2.023		
030	3 586	3 592	5	042	2.008	2.010	<5
220	3 500	2 502	5	251	1 981	1 982	<5
101	3.300	3.303	< 5	013	1 968	TIOOL	
121	3.307	3.302	40	211	1.065	11.064	15
	0.001	,		341	1.900	31,904	15
211	3.301			0.4.0	1 004		
121	3.205	3,201	10	242	1.964	1	
211	3.127	3.131	15	240	1.936	1.934	<5
031	3,073	12 070	15	113	1.899	1 896	10
		33.072	15) 1.000	10
131	3.073			410	1.895		
002	3.005	3.008	50	332	1.893	1.891	5
221	2.956	2,957	<5	350	1.886	14.004	-5
130	2.927	2,928	10			1,004	~5
012	2,897			312	1.883		
	=.00.	}2.890	10	023	1.874	1.873	<5
012	2 900			142	1.862	1.861	<5
102	2,030	0.040	95	232	1.851	1.850	<5
102	2,840	2.840	35	202	1.944	1.000	~5 E
140	2.777	}2,777	5	302	1.044	1.043	5
÷		,	-	400	1.035	1.034	10
211	2.777			241	1.824	1.822	5
231	2.732	2.731	5	431	1.794	}1.793	5
112	2.709	12 697	-5			,	
		, 2.007	~5	060	1.793		
040	2.690			-			
112	2.681	2.684	10				
131	2.660	2.663	5				
022	2.628	10.000			CHEM	ICAL COMPO	SITION
		}2.626	<5		CHEM		SITION
122	2.622			Yvonit	e was analy:	zed with a Ca	ameca electron micro-
022	2.618	2.614	<5		in a conception	a valtage of	5 1-W harmen annual of
112	2.578	2.575	5	probe, us	ing operating	g voltage of .	5 KV, Dealli cultent of
141	2.538	2 540	5	6.8 nA, a	and a beam	diameter of 1	5 μm. The following
221	2 515	21010	0	standarda	wara usad	chalconvrite	(CuLa) arcanic matal
	21010	}2.513	10	stanuarus	were used.	chalcopyfile	(CuLu), alsonic metal
240	2 5 1 5			$(AsL\alpha), a$	and corundur	n (AlKα). Th	e results of eight anal-
1 41	2 504	2 503	-5	vses perfe	ormed on fiv	e crystals and	the average are given
0 1 1	2.504	2.505	< 5	yses perio		e er ystuis und	the uverage are given
041	2.439	}2.454	5	in Table	2. The H_2O	content was o	btained by the weight
0.4.4	0.454	-		loss mea	sured by the	ermal gravime	etric analysis (Mettler
041	2.451		_		surva og und		
300	2.446	2.449	<5	TAI). Th	e empirical	formula base	d on six O atoms is:
221	2.430	2.432	<5	Cu., Al.,	H (AsO.).		nd the ideal simplified
122	2.414	2.415	<5	C			
202	2.395	10 202	F	tormula,	Cu(AsO ₃ OH	$)2H_2O$, was c	confirmed by structure
		12.000	5	determina	ation.		
311	2.390			The C	Indatone Dal	la constants	of Mondarino (1081)
241	2.350	2.349	10	THE U	laustone-Da	le constants	OI Mandarino (1961)
222	2.343			along with	th the oxide	proportions,	determined from the
		}2.342	5	electron	micronrobe (lata and from	the crystal structure
122	2.335						i die erystal structure,
330	2.333			lead to K	c values of	0.200 and 0.	198, respectively. The
		}2,330	5	value of	Kn (Mandar	ino 1981) ca	lculated using the av-
140	2,331	,		· under OI		11 (1 (50)	ad the sale 1 of 1
032	2 208			erage ind	ex of retract	tion (1.658) a	nd the calculated den-
212	2 201	12 204	5	sity from	the empiric	al formula, is	s 0.205. For the same
241	2 200	12.204		011040.000	index of	rootion and 4	the coloriated density
	2.200			average 1	index of rel	raction and t	me calculated density
				from the	idealized for	mula, Kp is ().204. The compatibil-

FIGURE 3. The structure of yvonite: (a) projected onto (100), (b) viewed in [001], (c) viewed in [010]. The coordination polyhedra of Cu1 and As1 are in light gray, that of Cu2 and As2 are in dark gray. Hydrogen bonds are shown as dashed lines.

ity index is 0.025 for the empirical formula and 0.030 for the idealized formula, indicating excellent compatibility (Mandarino 1981) between the physical and chemical data.

X-RAY CRYSTALLOGRAPHY

Powder diffraction data for yvonite were obtained using both Gandolfi (114.6 mm diameter, Ni-filtered Cu $K\alpha$) and Guinier-Hägg (Cu $K\alpha_1$) cameras. The Guinier-Hägg data, indexed by program ITO (Visser 1969) and reported in Table 3, led to the conclusion that this mineral is a new species because the results were not consistent with any known mineral species.

Details of the single crystal X-ray data collection and structure refinement of yvonite are given in Table 4. The crystal was first checked by the precession method (Nifiltered CuK α) and the same crystal was measured on a four circle diffractometer. Data reduction and structure refinement were done by the Xtal3.2 package (Hall et al. 1992). The structure was solved by direct methods with the program SIR92 (Altomare et al. 1994). All non-H atoms were found. Atomic coordinates, standardized by the program Structure Tidy (Gelato and Parthé 1987), and anisotropic displacement parameters for non-H atoms are given in Table 5; a list of interatomic distances in As and Cu coordination polyhedra is given in Table 6.

DESCRIPTION OF THE STRUCTURE

Yvonite contains two symmetrically independent distorted Cu ϕ_6 octahedra (where ϕ is an unspecified ligand) and two symmetrically independent distorted As ϕ_4 tetrahedra in the structure. It consists of infinite cis [Cu ϕ_4] chains parallel to *c* formed from Cu ϕ_6 octahedra, which share edges O2-O4 and O6-O8 (Fig. 3a). Two chains related by the inversion center are linked along *b* by sharing vertices with the As ϕ_4 tetrahedra. The resulting sheet of

TABLE 4.	Crystal data and	I details of the X-ray	y data collection and	I refinement for	yvonite
----------	------------------	------------------------	-----------------------	------------------	---------

Cu[H ₂ O HOAsO ₃]·H ₂ O $M_r = 239.5$ Triclinic $a = 7.632(3) \text{ Å} \alpha = 89.32(3)^{\circ}$ $b = 11.168(3) \text{ Å} \beta = 86.55(5)^{\circ}$ $c = 6.020(3) \text{ Å} \gamma = 74.43(3)^{\circ}$ Cell parameters from 34 reflections, 2 $\theta = 11-58^{\circ}$, program Stoe DIF4 (Stoe and Cie 1988)	Irregular fragment 0.056 × 0.032 × 0.016 mm $P \overline{1}$ $V = 493.4(3) Å^3$ Z = 4 μ = 11.03 mm ⁻¹ MoKα radiation, graphite monochromator, $\lambda = 0.71073$
Philips PW1100 diffractometer Measured reflections: 6242 Unique reflections: 2870 Absorption correction: analytical from measured crystal shape and size according to Blanc et al. (1991)	$\theta/2\theta$ scanning mode; $2\theta_{max} = 60^{\circ}$ -10 < h < 10 -15 < k < 15 -8 < l < 8
Refinement on F Observed reflections: 1429 Extinction correction: Becker and Coppens (1974) R = 0.069 $R_w = 0.043$ GoF = 1.48	Weighting scheme: $1/\sigma^2$ $F_{obs} > 4 \sigma(F_{obs})$ Extinction parameter $g = 0.13(8)$ Parameters: 146 Residua in ΔF map: -2.06, 2.72 e/Å ³

polyhedra is parallel to (100), and the O3 and O7 atoms, which are not directly bounded to any cation, are located between the sheets (Figs. 3b and 3c).

Because no H atoms could be found in the ΔF map due to insufficient resolution of the measured X-ray data, the concept of bond valences (Brown and Wu 1976) was used to propose the possible hydrogen bonds. The data of Brese and O'Keefe (1991) were used to calculate the bond valences (excluding H) for all non-H atoms (see Table 7). The O3 and O7 valence sums are 0, thus these sites represent H₂O molecules not included in the coordination of cations. The sums for O2 (0.51) and O8 (0.45) suggest they probably represent H₂O molecules, and likewise the sums for O1 (1.13) and O10 (0.96) suggest they probably represent OH groups. The sums for all other O atoms range from 1.76 to 1.92, thus indicating that some of them form H···O bridges. Valence sums for both Cu and both As atoms are in good agreement with their corresponding ionic charge, and their coordination polyhedra are $CuO_5(H_2O)$ and $AsO_3(OH)$.

Based on the dependence of $H \cdots O$ bond valence on $O \cdots O$ distance according to Brown and Altermatt (1985) we have proposed possible hydrogen bonds (assuming normal $O-H \cdots O$ bond angles). The results are given in Table 7. The H₂O molecules O3 and O7 contribute by their hydrogen bonds to the bonding between two [CuO₃(H₂O)] chains in the same sheet. The H₂O molecules O2 and O8 form with their H atoms one intralayer and one interlayer bond each. The OH group O1 forms an interlayer hydrogen bond. The (100) cleavage is consistent with the direction of weakly bonded sheets.

DISCUSSION OF THE STRUCTURE

Both $CuO_5(H_2O)$ octahedra show a strong distortion associated with Jahn-Teller instability (Jahn and Teller

TABLE 5. Atomic positions and displacement parameters (Å₂) for yvonite (except hydrogen)

							1 7 0	,		
Atom	x/a	y/b	z/c	U _{eq}	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₁₂	<i>U</i> ₁₃	U ₂₃
Cu1	0.1141(3)	0.8034(2)	0.2145(3)	0.0127(7)	0.012(1)	0.008(1)	0.018(1)	-0.0031(8)	0.006(1)	0.0038(9)
Cu2	0.0865(3)	0.6631(2)	0.7243(3)	0.0126(7)	0.013(1)	0.009(1)	0.015(1)	-0.0010(8)	-0.005(1)	-0.0002(9)
As1	0.1663(2)	0.0730(1)	0.1464(3)	0.0098(6)	0.0091(9)	0.0070(8)	0.013(1)	-0.0010(7)	-0.0014(8)	0.0028(7)
As2	0.1579(2)	0.3676(1)	0.6752(3)	0.0091(6)	0.0075(9)	0.0065(8)	0.013(1)	-0.0005(7)	-0.0014(8)	-0.0001(7)
O1 (OH)	0.348(1)	0.1377(9)	0.102(2)	0.011(4)	0.013(6)	0.011(5)	0.012(6)	-0.005(4)	0.002(5)	0.000(5)
O2 (W)	0.709(1)	0.2870(8)	0.147(2)	0.009(3)	0.012(5)	0.011(5)	0.005(6)	-0.002(4)	0.003(5)	-0.002(4)
03 (W)	0.375(1)	0.4519(8)	0.159(2)	0.013(4)	0.013(6)	0.010(5)	0.014(6)	-0.002(4)	0.002(5)	-0.001(5)
04	0.003(1)	0.6686(8)	0.161(2)	0.012(4)	0.010(6)	0.011(5)	0.016(6)	-0.005(4)	0.003(5)	-0.001(5)
05	0.247(1)	0.9271(8)	0.242(2)	0.011(4)	0.010(5)	0.009(5)	0.013(6)	-0.002(4)	0.000(5)	0.001(5)
06	0.017(1)	0.1608(8)	0.335(2)	0.013(4)	0.011(6)	0.011(5)	0.015(6)	-0.002(4)	0.002(5)	-0.004(5)
07 (W)	0.633(1)	0.0844(9)	0.346(2)	0.017(4)	0.017(6)	0.019(6)	0.018(7)	-0.006(5)	-0.004(6)	0.003(5)
08 (W)	0.316(1)	0.6804(9)	0.355(2)	0.016(4)	0.017(6)	0.018(6)	0.013(6)	-0.004(5)	-0.003(5)	0.004(5)
09	0.113(1)	0.3804(9)	0.404(2)	0.013(4)	0.012(6)	0.016(6)	0.010(6)	-0.003(5)	0.000(5)	-0.002(5)
O10 (OH)	0.362(1)	0.2457(9)	0.690(2)	0.017(4)	0.013(6)	0.016(6)	0.020(7)	0.000(5)	-0.004(6)	0.001(5)
011	0.219(1)	0.4908(8)	0.766(2)	0.011(3)	0.010(5)	0.012(5)	0.011(6)	-0.004(4)	-0.004(5)	-0.001(5)
012	0.094(1)	0.0747(9)	0.889(2)	0.016(4)	0.014(6)	0.016(6)	0.016(7)	-0.001(5)	-0.005(5)	0.001(5)
Note: The	e equivalent	isotropic aton	nic displacem	ent paramete	rs are expres	sed as $U_{eq} =$	 (1/3)Σ,Σ,U_{ii}a 	a,* a,* a, ⋅a,. Esds a	re given in pare	entheses.

387

Cu1-O12	1.922(9)	02-04	2.92(1)
Cu1-O5	1.94(1)	02-08	3.05(1)
Cu1-O4	1.95(1)	02-05	3.31(1)
Cu1-O8 (W)	1.993(9)	02-012	3.53(1)
Cu1-O2 (W)	2.558(9)	06-08	3.19(1)
(Cu1-O)	2.83(1)	06-05	3.45(1)
〈Cu1-O〉	2.199	06-012	3.50(2)
Δ	0.023	06-04	3.58(1)
		04-08	2.75(1)
		04-012	2.78(1)
		05-08	2.75(1)
		05-012	2.79(1)
Cu2-O9	1.93(1)	04-02	2.92(1)
Cu2-O11	1.940(9)	04-011	3.19(1)
Cu2-06	1.950(9)	04-09	3.65(1)
Cu2-O2 (W)	1.99(1)	04-06	3.51(1)
Cu2-04	2.66(1)	08-02	3.01(1)
Cu2-O8 (W)	2.78(1)	08-06	3.19(1)
(Cu2-O)	2.208	08-011	3.41(1)
Δ	0.023	08-09	3.73(1)
		02-06	2.70(1)
		02-011	2.75(1)
		09-06	2.79(1)
		09-011	2.81(1)
As1-06	1.679(9)	01-012	2.64(1)
As1-012	1.68(1)	01-05	2.77(1)
As1-05	1.689(9)	01-06	2.77(1)
As1-O1 (OH)	1.73(1)	05-06	2.77(1)
⟨As1-O⟩	1.695	05-012	2.79(1)
		06-012	2.84(1)
As2-04	1.66(1)	010-011	2.69(1)
As2-011	1.67(1)	010-09	2.75(1)
As2-09	1.68(1)	010-04	2.79(1)
As2-O10 (OH)	1.777(9)	04-011	2.78(1)
(As1-O)	1.697	04-09	2.81(1)
		09-011	2.78(1)

TABLE 6. Interatomic distances (Å) in As and Cu coordination polyhedra

Note: Δ is a root-mean-square deviation from the mean distance (= $\Sigma[(I - I_0)/I]^2/6)_*$

TABLE 7. Bond valences and their sums (Σ) for each atom

1937). The axial bonds are strongly lengthened. The dependence of mean values of Cu- ϕ bond length on the bond-length distortion $\Delta = \sum [(l - l_0)/l]^2/6$ (Table 6) follow the linear relationship given by Eby and Hawthorne (1993). Both AsO₃OH tetrahedra are acid groups, and the As-OH distance is the longest As- ϕ distance in each of the tetrahedra (Table 6).

The structure of yvonite, Cu(AsO₃OH)2H₂O, belongs to the group of infinite sheet structures with M = M-T type of sheets according to the classification of Eby and Hawthorne (1993). The ideal octahedral sheet is only half occupied by Cu²⁺ in yvonite, which gives cis [CuO₃(H₂O)] chains parallel to *c*. Opposing each vacant octahedral site is the arsenate group, alternatively from each side of the sheet. The sheets are linked solely by hydrogen bonding involving the (H₂O) groups of the CuO₅(H₂O) octahedra, the (OH) groups of the AsO₃(OH) tetrahedra, and the (H₂O) groups in between the sheets.

The same type of sheets can be found in geminite, Cu(AsO₃OH)(H₂O) (Sarp and Perroud 1990; Cooper and Hawthorne 1995), and fluckite, CaMn[(AsO₂OH)(H₂O)], (Catti et al. 1980). The structure of geminite was described by Cooper and Hawthorne (1995) in the nonstandard space group $C\overline{1}$. It can be transformed to $P\overline{1}$ with a cell of half volume, and the geminite shows isotypy with koritnigite, Zn(AsO₃OH)(H₂O) (Keller et al. 1980); cobaltkoritnigite, (Co,Zn)(AsO₃OH)(H₂O) (Schmetzer et al. 1981); and Co(AsO₃OH)(H₂O) (Zettler et al. 1979). One (100) sheet in the vyonite structure is similar to the (001)sheet in geminite or (010) sheet in fluckite. The structure of geminite comprises two sheets; the structures of yvonite and fluckite feature a single sheet. In all three structures the sheets are linked only by hydrogen bonds; in yvonite there are also two isolated (H₂O) groups that participate in the interlayer hydrogen bonds. The total number of interlayer hydrogen bonds is 3 per 2 formula units in yvonite, 1 pfu in geminite, and 3 pfu in fluckite. Twinning of yvonite crystals was observed very rarely (see Table 1) in contrast to geminite (Sarp and Perroud 1990).

	01 OH	02 W	O3 W	04	O5	O6	07 W	08 W	O9	010 OH	011	012	Σ
Cu1		0.09		0.46	0.49	0.04		0.40				0.50	1.98
Cu2		0.42		0.07		0.48		0.05	0.45		0.55		2.02
As1	1.13				1.36	1.31						1.35	5.15
As2				1.39					1.41	0.96	1.21		4.97
H1		0.79	0.21										1
H2		0.79					0.21						1
H3			0.79								0.21		1
H4			0.79						0.21				1
H5					0.21		0.79						1
H6							0.79					0.21	1
H7			0.21					0.79					1
H8								0.79		0.21			1
H9	0.79						0.21						1
H10	0.21									0.79			1
Σ excluding H atoms	1.13	0.51	0	1.92	1.85	1.83	0	0.45	1.86	0.96	1.76	1.85	
Σ including H atoms	2.13	2.09	2.00	1.92	2.06	1.83	2.00	2.03	2.07	1.96	1.97	2.06	
Note: The bond vale	ences for	H atoms	were fixed	to 1.									

Yvonite has been identified in two specimens collected from the dumps of the Salsigne mine near Carcassone in the department of Aude (France). As was mentioned, many supergene secondary hydrated minerals have also been discovered in this mine, such as arsenates, sulfates, and phosphates. These mineral species were found in the samples collected either in the dumps or in the mine. Yvonite is associated with geminite (Sarp and Perroud 1990; Cooper and Hawthorne 1995), lindackerite (Sarp and Dominik 1995), arsenopyrite, native bismuth, chalcopyrite, and with pushcharovskite (Cu[AsO₃OH]H₂O, new mineral recently approved by I.M.A.; Sarp, unpublished data). Yvonite is therefore a secondary alteration mineral, as are the arsenate minerals that occur with it. It is very difficult to distinguish whether yvonite was formed in-situ in the mine or exterior to it. As it is associated with the geminite, lindackerite, and the pushcharovskite, which all have been discovered at the same place in the Cap Garonne mine, yvonite may also occur in the latter.

ACKNOWLEDGMENTS

.We thank J. Wüest for carrying out the scanning electron microscope photographs and J. Bertrand for reviewing the manuscript.

References cited

- Altomare, A., Burla, M.C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., and Polidori, G. (1994) SIR92—A program for automatic solution of crystal structures by direct methods. Journal of Applied Crystallography, 27, 435.
- Becker, P.J. and Coppens, P. (1974) Extinction within the limit of validity of the Darwin Transfer Equations. II., Refinement of extinction in spherical crystals of SrF₂ and LiF. Acta Crystallographica, A30, 148–153.
- Blanc, E., Schwarzenbach, D., and Flack, H.D. (1991) The evaluation of transmission factors and their first derivatives with respect to crystal shape parameters. Journal of Applied Crystallography, 24, 1035–1041.
- Bonnemaison, M., Crouzet, J., Thiercelin, F., and Tollon, F. (1986) Controls on exhalative gold deposits hosted by volcanoclastic sediments in the "schistes x", Salsigne gold district, Montagne-Noire, southern France. Proceedings of the Gold Symposium, Toronto, p. 457--469.
- Brese, N.E. and O'Keeffe, M. (1991) Bond valence parameters for solids. Acta Crystallographica, B47, 192–197.
- Brown, I.D. and Altermatt, D. (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–247.
- Brown, I.D. and Wu, K.K. (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallographica, B32, 1957–1959.
- Catti, M., Chiari, G., and Ferraris, G. (1980) Fluckite, CaMn[HAsO₄]₂:2H₂O, a structure related by pseudo-polytypism to krautite MnHAsO₄:H₂O.

Bulletin de la Société française de minéralogie et de cristallographie, 103, 129-134.

- Cooper, M.A. and Hawthorne, F.C. (1995) The crystal structure of geminite, Cu²⁺(AsO₃OH) (H₂O), a heteropolyhedral sheet structure. Canadian Mineralogist, 33, 1111–1118.
- Descouens, D. (1986) Minéraux de salsigne. Monde et Minéraux, 72, 20-22.
- Descouens, D. and Baffaly, C. (1985) Les phosphates de la mine de salsigne (Aude). Monde et Minéraux, 67, 4–5.
- Eby, R.K. and Hawthorne, EC. (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallographica, B49, 28– 56.
- Gelato, L.M. and Parthé, E. (1987) Structure Tidy—A computer program to standardize crystal structure data. Journal of Applied Crystallography, 20, 139–143.
- Hall, S.R., Flack, H.D., and Stewart, J.M. (1992) Eds. Xtal3.2. Reference manual. Universities of Western Australia, Geneva and Maryland.
- Jahn, H.A. and Teller, E. (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proceedings of the Royal Society of London, Series A 161, 220–235.
- Keller, P., Hess, H., and Riffel, H. (1980) Die Kristallstruktur von Koritnigit, Zn[H₂O]HOAsO₃]. Neues Jahrbuch f
 ür Mineralogie Abhandlungen, 138, 316–332.
- Lepine, J., Talayssat, M., Crouzet, J., and Tollon, F. (1988) Les minéralisations sulfo-arséniées cambriennes de la mine traditionnelle de Salsigne (Aude, France)-Les gisements métallifères dans leur contexte géologique. Bureau de Recherche Géologie Minière Document 158, 627– 650.
- Mandarino, J.A. (1981) The gladstone-dale relationship: IV. The compatibility concept and its applications. Canadian Mineralogist, 19, 441– 450.
- Marcoux, E. and Lescuyer, J.L. (1994) Les minerais sulfo-arseniés aurifères de Salsigne, Aude, France: Evolution paragénétique d'une minéralisation tardi-hercynienne syntectonique en contexte sédimentaire. Canadian Mineralogist, 32, 159–177.
- Sarp, H. and Dominik, B. (1995) Redéfinition de la lindackerite: sa formule chimique, ses données cristallographiques et optiques. Archives Science de Genève, 48/3, 239–250.
- Sarp, H. and Perroud, P. (1990) La geminite, Cu₂As₂O₇·3H₂O, un noveau minéral de la mine de Cap Garonne, Var, France. Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 309–314.
- Schmetzer, K., Horn, W., and Medenbach, O. (1981) Über kobaltkoritnigite (Co,Zn)[H₂O]AsO₃OH], ein neues mineral, und pitticit, Fe₂O₃·As₂O₅·9-10 H₂O, ein röntgenamorphes Fe-Arsenat-Hydrat. Neues Jahrbuch für Mineralogie Monatshefte, H.6, 257–266.
- Stoe and Cie (1988) DIF4. Diffractometer control program. Version 7.0. Darmstadt, Bundes Republic Deutschland.
- Visser, J.W. (1969) A fully automatic program for finding the unit cell from powder data. Journal of Applied Crystallography, 2, 89–95.
- Zettler, F., Riffel, H., Hess, H., and Keller, P. (1979) Cobalthydrogenarsenat-monohydrat. Darstellung und kristallstruktur. Zeitschrift für anorganische und allgemeine Chemie, 454, 134–144.

MANUSCRIPT RECEIVED FEBRUARY 3, 1997

MANUSCRIPT ACCEPTED OCTOBER 16, 1997