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INTRODUCTION

Alacranite, As8S9, was first found by Popova et al. (1986) at
the Uzon caldera (Kamchatka, Russian Federation). Due to the
similarity of its XRD powder pattern, these authors assumed
the mineral to be identical to the species occurring in the Ag-
As-Sb vein deposit at Alacràn (Chile) and described by Clark
(1970) as a natural high-temperature As4S4 phase. For this rea-
son, the mineral was named alacranite. However, the lattice
parameters of alacranite resemble barely those of the natural
b-phase from Alacràn (Clark 1970) and those of synthetic b-
As4S4 (Porter and Sheldrick 1972; Bonazzi et al. 1996). In par-
ticular, alacranite exhibits a greater unit-cell volume, in keeping
with the different chemical composition. Due to the low dif-
fraction quality of alacranite crystals, the crystal structure re-
mained unsolved; however, single crystal X-ray rotation
photographs indicated space group P2/c, while synthetic b-
As4S4 crystallizes in space group C2/c (Porter and Sheldrick
1972). The mineral and name were approved by the NMMN-
IMA Commission (Hawthorne et al. 1988) for a species having
chemical formula As8S9 and space group P2/c.

During seafloor sampling around Lihir Island (Papua New
Guinea), a specimen consisting mainly of pyrite, sphalerite,
and galena, together with red and orange arsenic sulfides, was
recovered from the top of Conical Seamount (Percival et al.
1999). According to these authors, the XRD analysis of both
the deep-red and orange crystals revealed a mixture of realgar
and alacranite. Subsequently, Burns and Percival (2001) showed
that the mineral from Papua New Guinea was structurally and
chemically identical to synthetic b-As4S4, and supposed that
the original formula of alacranite (As8S9) had been incorrectly
determined. As a consequence, alacranite was reported with

chemical formula As4S4 and space group C2/c in the recently
published Mineralogical Tables (Strunz and Nickel 2001) as
well as in The American Mineralogist crystal structure data-
base (Downs and Hall-Wallace 2003).

More recently, Bonazzi et al. (2003) studied non-stoichio-
metric sulfide minerals from the Katerina mine (Czeck Repub-
lic) with chemical compositions ranging continuously from
As8S8 to As8S9, and observed a gradual change of the transla-
tion lattice symmetry from C to P, together with a linear in-
crease of unit-cell volume as a function of the S content.

From the results of their structural study, Bonazzi et al.
(2003) also found that the non-stoichiometric As8S9–x com-
pounds crystallize as disordered mixtures of As4S4 and As4S5

molecules packed in the same way as in the b-As4S4 phase.
Because the As8S9 stoichiometry (alacranite s.s.) seems to be
the upper limit of the compositional range, the non-stoichio-
metric sulfides from Katerina mine were assumed to consist of
both As4S4 (C2/c) and As8S9 (P2/c) microdomains. This hypoth-
esis explains the observed gradual change of the translation
symmetry along the series. On this basis, one can speculate
that the alacranite structure consists of an ordered sequence of
As4S4 and As4S5 molecules.

In order to check this hypothesis, a crystal of the original
sample from the Uzon caldera was examined from the struc-
tural point of view.

EXPERIMENTAL AND STRUCTURE SOLUTION

Several crystals of the alacranite holotype (preserved at the Institute for
Mineralogy, Urals Branch of RAS, Chelyabinsk district, Miass 456317, Rus-
sian Federation, catalogue number U-2) were mounted on an Enraf-Nonius CAD4
single-crystal diffractometer and examined with graphite-monochromatized
MoKa radiation. Most were found to be composed of multiple crystallites. A
single crystal (approximately 30 ¥ 60 ¥ 120 mm) of relatively high diffraction
quality was selected for the structural study.

Unit-cell dimensions (reported in Table 1 together with data from the litera-* E-mail: pbcry@geo.unifi.it
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ABSTRACT

Alacranite from the type locality (Uzon caldera, Kamchatka, Russian Federation) was submitted
for structural analysis. A single crystal was selected and the following lattice parameters were deter-
mined: a = 9.942(4), b = 9.601(2), c = 9.178(3) Å, b = 101.94(3)∞, V = 857.1 (5) Å3. The crystal
structure was solved in the P2/c space group using direct methods and refined to R = 6.79% for 472
observed reflections. The structure of alacranite consists of an ordered sequence of As4S4 and As4S5

cage-like molecules, with a molecular packing closely resembling that found in the b-As4S4 phase.
Both As-As and As-S intramolecular distances are in the range usually observed for covalent bonds.
The structural model confirms the chemical formula As8S9 for alacranite, and accounts for differ-
ences in the unit-cell parameters of alacranite compared to those of the natural analogue of b-As4S4.
This latter mineral, therefore, should receive a new name.
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ture) were determined by least-squares refinement of the setting angles of 25
reflections (10∞ < qMoKa < 13∞). Although the strongest reflections were those
having h + k = 2n, several intensities violating the C lattice symmetry were
observed. Moreover, h0l reflections with l = 2n+1 were systematically absent.
Therefore, the space group P2/c previously determined by Popova et al. (1986)
was confirmed. Intensity data were collected (–9 < h < 9, –9 < k < 9, 0 < l < 8)
in the range 2 < qMoKa < 20∞, w-scan mode, with a scan-width of 3.2∞ and a scan-
speed of 1.65 ∞/min. Intensities were treated for Lorentz-polarization effects
and subsequently corrected for absorption following the semi-empirical method
of North et al. (1968). Monoclinic-equivalent reflections (1738) were averaged
(Rsym = 13.5%) and reduced to structure factors.

The crystal structure was solved in the P2/c space group using direct meth-
ods in the SHELXS-97 package (Sheldrick 1997) and Fourier syntheses. The
positions of all of the atoms were located on an Fo– Fourier map. Structure
refinement was performed using SHELXL-93 (Sheldrick 1993). The scattering
curves for neutral As and S were taken from the International Tables for X-ray
Crystallography, volume IV (Ibers and Hamilton 1974). By means of anisotro-
pic full-matrix least-squares cycles (80 parameters refined), the refinement
quickly converged to R = 6.79 % for 472 observed reflections [according to the
criterion Fo > 4s(Fo)] and R = 12.58% for all 806 independent reflections. In-
spection of the difference Fourier map revealed maximum positive and nega-
tive peaks of 1.81 and 0.82 e–/Å3, respectively. Fractional atomic coordinates
and anisotropic-displacement parameters are shown in Table 2. Table 31 lists
the observed and calculated structure factors.

RESULTS AND DISCUSSION

The structure of alacranite consists of an ordered sequence
of two different kinds of cage-like molecules, with a molecular
packing closely resembling that found in the b-phase (Figs. 1
and 2). The first one (2As1 + 2As2 + S1 + S2 + 2S3) is identi-
cal to the As4S4 molecule found in the structures of both real-
gar and the b-phase (Mullen and Nowacki 1972; Porter and
Sheldrick 1972), in that each As atom links one As and two S
atoms. The other molecule (2As3 + 2As4 + S5 + 2S4 + 2S6) is
chemically and structurally identical to that found in the As4S5

compound (Whitfield 1973a). In such a molecule, two As at-
oms link one As and two S atoms, whereas the other two As
atoms link three S atoms. As shown in Figures 1 and 2, the
ordering of these two different kinds of molecules accounts for
the change of the translation symmetry from C (b-phase) to P
(alacranite).

Table 4 gives the intramolecular distances in the alacranite
structure. The As-S bond distances are within the range (2.21–
2.24 Å) usually observed for covalent As-S bonds (2.228–2.247
Å in the structure of realgar, Mullen and Nowacki 1972; 2.238–
2.252 Å in the synthetic b-phase, Porter and Sheldrick 1972;
2.216–2.232 Å in the natural b-phase from Papua New Guinea,
Burns and Percival 2001; 2.23–2.26 Å in pararealgar, Bonazzi
et al. 1995; 2.229–2.268 Å in synthetic As4S5, Whitfield 1973a;
2.199–2.220 Å in synthetic a-As4S3, Whitfield 1970; 2.218–
2.234 Å in synthetic b-As4S3, Whitfield 1973b). The As-As bond
distances within the As4S4 molecule [2.579(5) Å] are similar to
those observed in both synthetic and natural b-phase [2.593(6)
Å, Porter and Sheldrick 1972; 2.596(2) Å, Burns and Percival
2001] and somewhat longer than those observed in the As4S4

molecule in pararealgar [2.484(4) and 2.534(4) Å, Bonazzi et
al. 1995]. The As-As bond distance within the As4S5 molecule
[2.566(6) Å] compares favorably with the value observed in
synthetic As4S5 (2.546 Å, Whitfield 1973a).

The shortest S-S, As-S, and As-As intermolecular contacts
are the following: 3.55(1) (S3-S4), 3.348(8) (As2-S6), and
3.690(4) Å (As2-As3).

The X-ray powder pattern calculated using the structural
data obtained in this study matches closely that originally ob-
served for the type material (Table 5).

CRYSTAL CHEMICAL REMARKS

Both the As4S4 and As4S5 molecules, as well as the As4S3

molecule found in the structure of both a-dimorphite (Whitfield
1970) and b-dimorphite (Whitfield 1973b), can be described
as As4Sn■■6–n (n = 3, 4, and 5) groups, with As atoms located at
the vertices of a disphenoid (more or less regular) and S atoms

TABLE 1. Unit-cell parameters for crystals ranging from b-As4S4 to
alacranite

 a (Å)  b (Å)  c (Å)  b (∞)  V (Å3)
CL* 9.97(1) 9.29(1) 8.88(1) 102.6(1) 803(2)
B2 9.958(2) 9.311(2) 8.867(2) 102.57(1) 802.4(3)
B1 9.962(2) 9.313(1) 8.871(2) 102.54(1) 803.4(2)
PS 9.957(3) 9.335(4) 8.889(5) 102.48(4) 806.7(6)
BP 9.943(1) 9.366(1) 8.908(1) 102.007(2) 811.4(1)
ALA15 9.940(2) 9.398(2) 9.033(2) 102.12(2) 825.0(3)
KG 9.89(1) 9.46(1) 9.05(1) 103.0(5) 825(2)
ALA2 9.936(2) 9.458(2) 9.106(2) 101.90(2) 837.3(3)
ZO 9.87(1) 9.73(3) 9.16(2) 101.52(4) 858(4)
PPV 9.89(2) 9.73(2) 9.13(1) 101.84(5) 860(3)
This study 9.942(4) 9.601(2) 9.178(3) 101.94(3) 857.1(5)
Note: CL = natural b-As4S4 from Alacràn Mine, Chile (Clark 1970); B2,
B1 = synthetic b-As4S4 phase (Bonazzi et al. 1996); PS = synthetic b-
As4S4 (Porter and Sheldrick 1972); BP = natural b-As4S4 (Burns and
Percival 2001); ALA15 = As8S8.42 crystal from the burning dump at Katerina
Mine (Bonazzi et al. 2003); KG = synthetic As2S2.15 (Kothiyal and Ghosh
1976); ALA2 = As8S8.70 crystal from the burning dump at Katerina Mine
(Bonazzi et al. 2003); ZO = alacranite from Katerina Mine (Žácek and
Ondruš 1997); PPV = alacranite from Uzon caldera, Kamchatka (Popova
et al. 1986).
* Indexed by the present authors.

TABLE 2. Fractional atomic coordinates and anisotropic displacement parameters for alacranite from the type locality

x/a y/b z/c U11 U22 U33 U12 U13 U23 Ueq

As1 0.0190(3) 0.2227(4)  0.9418(4) 0.054(2) 0.075(3) 0.043(2)  0.011(2)  0.008(2)  0.018(2) 0.058(1)
As2 0.1653(3) 0.4149(3)  0.8541(4) 0.036(2) 0.043(2) 0.064(2) –0.003(2)  0.001(2) –0.009(2) 0.049(1)
As3 0.4408(3) 0.3214(3)  0.4333(3) 0.058(2) 0.035(2) 0.037(2) –0.010(2)  0.013(2) –0.005(2) 0.043(1)
As4 0.3750(3) 0.0312(3)  0.1774(3) 0.057(2) 0.045(2) 0.036(2) –0.017(2)  0.015(2) –0.015(2) 0.045(1)
S1 0 0.0768(12)  3/4 0.082(9) 0.034(8) 0.098(10)  0  0.012(8)  0 0.072(4)
S2 0 0.5590(13)  3/4 0.076(9) 0.031(8) 0.165(15)  0 –0.020(9)  0 0.097(6)
S3 0.1854(8) 0.3210(12)  0.6404(9) 0.034(5) 0.117(9) 0.053(6) –0.005(5)  0.021(4)  0.002(6) 0.067(3)
S4 0.2806(7) 0.1733(8)  0.3216(8) 0.029(4) 0.051(5) 0.035(4)  0.008(4)  0.019(4) –0.006(4) 0.036(2)
S5 1/2 0.4457(11)  1/4 0.071(8) 0.031(6) 0.043(7)  0  0.027(6)  0 0.046(3)
S6 0.3944(8) 0.1671(8) –0.0114(9) 0.056(5) 0.040(5) 0.037(4)  0.009(4)  0.008(4)  0.007(4) 0.045(2)

1For a copy of Table 3, document item AM-03-044, contact the
Business Office of the Mineralogical Society of America (see
inside front cover of recent issue) for price information. De-
posit items may also be available on the American Mineralo-
gist web site at http://www.minsocam.org.
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bridging n among the six available (As-As) edges. There are
(6–n) disphenoid edges corresponding to As-As bonds, while
the other n correspond to longer non-bonded As-As distances.
As a consequence, the number of long edges increases with
increasing S content. Accordingly, the polyhedral volume of
the As4 disphenoidic group also increases. As shown in Figure
3, a linear relationship between the As4 polyhedral volume and
the n/(6 – n) ratio (saturation factor) exists: V(As4) = 2.37(2) +
0.444(7) [n / (6 – n)] (Å3). Data (solid symbols in Fig. 3) rela-
tive to both molecular groups in alacranite fit the regression
line very well, thus further confirming the ordered location of
S atoms around the As4 groups. Due to the generally low dif-
fraction quality of most of the molecular As-sulfides, probably
related to non-stoichiometry or/and S disorder around the As4-
group, this model can represent an useful tool to evaluate the
degree of S-saturation in this kind of molecule. As previously
shown by Bonazzi et al. (2003) for compounds with chemical
compositions ranging from As4S4 to As8S9, the unit-cell vol-

ume increases linearly with increasing S content. In Figure 4,
the linear relationship between the unit-cell volume (normal-
ized to 16 As atoms per unit cell) and the S content is shown.
Data for duranusite (As4S, unknown crystal structure), a-
dimorphite (As4S3, space group Pnam), b-dimorphite (As4S3,
space group Pnam), and uzonite (As4S5, space group P21/m),
despite the different molecular packings, are also consistent
with the model obtained (Bonazzi et al. 2003). These data were
therefore included and a new regression line was obtained.
Taken together, data shown in Figures 3 and 4 clearly indicate
that, as S increases, the unit-cell volume increases accordingly,
not only as a consequence of the “external” hindrance of the
molecule, but also because of the increase of the As4 group
volume.

Structural evidence, together with the previously acquired
chemical data (Popova et al. 1986), definitively confirms the
chemical formula As8S9 for the mineral found at the Uzon

FIGURE 1. Crystal structure of alacranite (A) viewed along the b
axis, compared with the homologous projection of the structure of the
b-As4S4 phase (B).

FIGURE 2. Crystal structure of alacranite (A) viewed along the c
axis, compared with the homologous projection of the structure of the
b-As4S4 phase (B).

TABLE 4. Selected interatomic distances (Å) and angles (∞) for
alacranite from the type locality

As4S4 molecule As4S5 molecule
Intramolecular bond distances

As1-S3* 2.226(9) As3-S6† 2.215(9)
As1-S1 2.227(9) As3-S4 2.221(8)
As1-As2 2.579(5) As3-S5 2.238(7)
As2-S3 2.205(9) As4-S6 2.209(8)
As2-S2 2.209(9) As4-S4 2.238(8)
As2-As1 2.579(5) As4-As4† 2.566(6)

Intramolecular bond angles
S1- As1-S3* 94.4(3) S4 - As3-S5 105.6(3)

As1-As2 99.5(2)  As3-S6†  97.6(3)
S3*- As1-As2 97.2(3) S5- As3-S6† 107.9(3)
S3- As2-S2 93.9(3) S4- As4-S6 102.7(3)

As2-As1 98.4(3) As4-As4†  99.9(2)
S2- As2-As1 99.6(3) S6- As4-As4† 100.1(3)
As- S1-As1* 102.1(5) As3- S4-As4 108.4(3)
As2- S2-As2* 102.4(5) S5-As3† 115.6(5)

S3-As1* 103.3(3) As4- S6-As3† 108.7(4)
Notes: symmetry codes: * = –x, y, 3/2–z ; † = 1–x, y, 1/2–z.
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FIGURE 3. As4 polyhedral volume vs. the [n/(6 – n)] ratio (saturation
factor). Filled circles refer to As4S4 and As4S5 molecules in the structure
of alacranite from Kamchatka (this study). Empty symbols refer to data
from literature: a-As4S3 (Whitfield 1970); b-As4S3 (Whitfield 1973b);
b-As4S4 (Porter and Sheldrick 1972); As4S5 (Whitfield 1973a).
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caldera (Kamchatka, Russian Federation) and named alacranite
in 1986. In this context, it also appears that the mineral discov-
ered on the seafloor around Lihir Island (Papua New Guinea)

is the natural analogue of b-As4S4. Due to its different chemi-
cal composition and space group, this mineral should not be
called alacranite, but it deserves its own name.
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