Demicheleite, BiSBr, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy

FRANCESCO DEMARTIN,¹ CARLO MARIA GRAMACCIOLI,^{1,*} ITALO CAMPOSTRINI,¹ AND PAOLO ORLANDI²

¹Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, via Venezian 21, I-20133 Milano, Italy ²Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Via S. Maria 53, I-56126 Pisa, Italy

ABSTRACT

Demicheleite, ideally BiSBr, is the first natural bismuth sulfohalogenide so far discovered. It is identical with the corresponding and analogous synthetic compound and is one of the very few minerals where bromine is an essential component. It was found in an active high-temperature fumarole at the rim of La Fossa crater, Vulcano Island, Aeolian archipelago, Sicily, Italy. The mineral occurs as prismatic translucent crystals up to 0.5 mm in size in an altered pyroclastic breccia, together with pseudocotunnite, bismuchinite, cotunnite, and challacolloite.

The mineral is orthorhombic, space group *Pnam*, with a = 8.0424(9), b = 9.8511(11), and c = 4.0328(5) Å, V = 319.50(6) Å³, Z = 4 (from single crystal); the habit is prismatic with {110} and {210} as prevailing forms, terminated by minor faces of another prism {011}, a pinacoid {010}, and a bipyramid {111}. The color is dark red to black; the streak is red; the luster submetallic. Non-fluorescent. Tenacity: brittle. Cleavage and fracture: not observed. The calculated density is 6.312 g/cm³.

The chemical analysis obtained by EDS microprobe gave (wt%) Bi 67.6(4), Br 17.4(7), Cl 4.1(4), I 0.6(1), S 10.1(1), total 99.8, corresponding to the empirical formula (based on 3 apfu): $Bi_{0.99}S_{0.97}(Br_{0.67}Cl_{0.35}I_{0.02})_{\Sigma=1.04}$

The crystal structure has been refined to a final *R* index of 0.037 and contains Bi in sevenfold coordination at the center of a monocapped trigonal prism. By sharing the triangular bases, such polyhedra form rows extending along [001]. These rows are connected to symmetry-related rows by sharing S-S edges of the pyramidal caps; these double rows are connected to each other by sharing Br/Cl atoms. The bond lengths are close to those of the synthetic counterparts BiSBr and BiSCl, with Bi-S bonds 2.593(3) and 2.720(2) Å long and Bi-Br/Cl bonds 3.009(1) and 3.488(2) Å long.

The strongest 6 lines in the X-ray powder diffraction pattern $[d_{obs}(Å)(I) hkl]$ are: 4.220 (68) (120), 3.740 (62) (210), 2.909 (100) (121), 2.036 (47) (321), 1.865 (63) (022), and 1.774 (88) (411).

The mineral is named after Vincenzo de Michele (b. 1936), former curator of the Section of Mineralogy of the Museo di Storia Naturale, Milano, Italy. Both the mineral and the mineral name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA 2007-022). The type specimen is deposited (no. 2007-1) in the Reference Collection of Dipartimento di Chimica Strutturale e Stereochimica Inorganica of Università degli Studi di Milano.

Keywords: Demicheleite, new mineral species, bismuth, sulfobromides, crystal structure, Vulcano Island, Aeolian Islands, Italy

INTRODUCTION

The fumaroles at La Fossa crater, Vulcano, Aeolian Islands, have long been the object of mineralogical investigation. By the end of the nineteenth century, two new species, hieratite (Cossa 1881–1882, 1882, 1884) and cannizzarite (Zambonini et al. 1924) had been discovered. After a long period of reduced activity, in 1988–1990 these fumaroles have notably increased their temperature. Therefore, in recent years a renewed interest in the rare minerals occurring in this environment has arisen, leading to the discovery of additional lead-bismuth sulfosalts, including new species such as mozgovaite PbBi₄(S,Se)₇(Vurro et al. 1999) and vurroite Pb₂₀Sn₂(Bi,As)₂₂S₅₄Cl₆ (Garavelli et al. 2005, and refer-

0003-004X/08/0010-1603\$05.00/DOI: 10.2138/am.2008.2883

ences therein). Moreover, four new complex fluorides, barberiite, NH_4BF_4 (Garavelli and Vurro 1994), demartinite K_2SiF_6 (Gramaccioli and Campostrini 2007), IMA 2006-42 $K_3Na_4(SiF_6)_3BF_4$, and IMA 2007-030 $K_2AIF_3SO_4$, were discovered, as well as two new thallium chlorides, lafossaite Tl(Cl,Br) (Roberts et al. 2006) and hephaistosite TlPb₂Cl₅ (Campostrini et al. 2008). Here we report the discovery of another new mineral, demicheleite, ideally BiSBr, which also occurs in a high-temperature fumarole (~450 °C) at the rim of the crater. A picture of the fumarole field with indications is reported in Borodaev et al. (2000).

OCCURRENCE AND PHYSICAL PROPERTIES

Demicheleite forms well-shaped red to black translucent crystals up to 0.5 mm long on altered pyroclastic breccia, together with pseudocotunnite, bismoclite, bismuthinite, cotunnite and

^{*} E-mail: carlo.gramaccioli@unimi.it

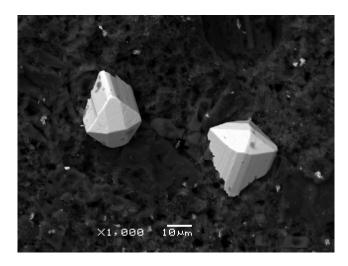


FIGURE 1. Scanning electron microscope (SEM) image (BSE) of demicheleite.

challacolloite. The crystal habit is prismatic {110} and {210}, terminated by minor faces of another prism {011}, a pinacoid {010}, and a bipyramid {111} (see Figs. 1 and 2). The streak is red; the luster submetallic. Non-fluorescent. Tenacity: brittle. Cleavage and fracture: not observed. The calculated density is 6.312 g/cm³. The indices of refraction were not determined because they are too high to be measured using the immersion method, and even more so because the crystals are attacked by all the available liquids.

Demicheleite is the natural equivalent of bismuth sulfide bromide, a substance belonging to a well-known group of synthetic thiohalogenides that have drawn much attention in recent years because of their optical, photoconducting, and ferroelectric properties (Voutzas and Rentzeperis 1980, 1984, and references therein). The same substance was also observed as a component of volcanic sublimates collected in quartz tubes in the fumaroles at Mutnovski, Kamchatka (Zelenski and Bortnikova 2005), and at least one bismuth chlorosulfide was also observed in the same conditions at Vulcano (Garavelli et al. 1997, 2005).

The mineral is named after Vincenzo de Michele (b. 1936), former curator of the Section of Mineralogy of the Museo di Storia Naturale, Milan, Italy. de Michele is one of the founders of the amateur mineral group in Milan (Gruppo Mineralogico Lombardo) and his activities were essential in providing new minerals for study, in describing Italian occurrences as well as in applying mineralogy to teaching gemology. Both the mineral and the mineral name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA 2007-022). The type specimen is deposited (no. 2007-1) in the Reference Collection of Dipartimento di Chimica Strutturale e Stereochimica Inorganica of Università degli Studi di Milano.

CHEMICAL DATA

Initial EDS scanning electron microscope examination showed Bi, S, Br, and Cl with traces of I to be the only constituents. A WDS analysis was attempted, but the results were poor, owing to volatilization of the sample under the electron beam. Therefore, chemical analyses were carried out by means of a JEOL JSM 5500 LV scanning electron microscope equipped with an IXRF EDS 2000 microprobe; (20 kV, 10⁻¹¹A, 2 μ m beam diameter). The mean analytical results are reported in Table 1. The empirical formula (based on 3 apfu) is Bi_{0.99}S_{0.97}(Br_{0.67}Cl_{0.35}l_{0.02})_{2=1.05};

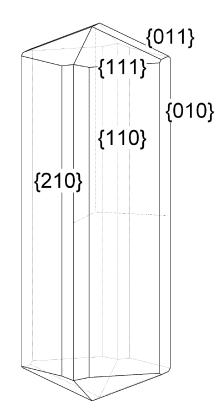


FIGURE 2. Idealized drawing of a demicheleite crystal.

the simplified formula is BiSBr, which requires Bi 65.11, S 9.99, Br 24.90, total 100.00 wt%. The natural sample here studied contains about 1/3 chlorine (in atoms) replacing Br, and is an intermediate between BiSBr and the isostructural (and most likely isomorphous) sulfide chloride, BiSCI (Voutsas and Rentzeperis 1980, 1984). This content is consistent with the result of the crystal structure refinement (see below).

DETERMINATION AND REFINEMENT OF THE STRUCTURE

X-ray powder diffraction data have been obtained using a Gandolfi camera 114.6 mm in diameter, with CuK α radiation (Table 2). A least-squares fit of these data provided the following orthorhombic unit-cell parameters: a = 8.0675(4), b = 9.8803(8), c = 4.0264(2) Å, and V = 320.94(3) Å³. A comparison between these data and those of the corresponding synthetic compounds BiSBr and BiSCl (Voutsas and Rentzeperis 1980, 1984) is reported in Table 3. Single-crystal diffraction data were collected from a crystal fragment ($0.18 \times 0.04 \times 0.04$ mm) with MoK α radiation ($\lambda = 0.71073$ Å), using a BRUKER Apex II diffractometer equipped with a 2K CCD detector. A 1 min frame-time

TABLE 1	I. C	hemica	l compo	sition o	f der	niche	leite

Constituent	wt%	apfu	Range	Standard	Probe
		-	-	deviation	standard
Bi	67.65	0.99	66.50–69.10	0.4	Bi₂Se₃
S	10.10	0.97	9.83-10.28	0.1	FeS ₂
Br	17.35	0.67	14.24–18.96	0.7	TlBr
Cl	4.09	0.35	3.19-5.81	0.4	Phosgenite
1	0.61	0.02	0.31-0.99	0.1	Agl
Total	99.80	3			

Notes: The empirical formula (based on 3 apfu) is Bi₀₉₉S_{0.97}(Br_{0.67}Cl_{0.35}l_{0.02})_{Z=1.04}. The simplified formula is BiS(Br,Cl). The end-member formula is BiSBr, which requires Bi 65.11, S 9.99, Br 24.90, Total 100.00 wt%.

 TABLE 2.
 X-ray powder-diffraction data for demicheleite and related synthetic compounds

Demicheleite		BiSBr*		Bi	BiSCI*			
I/I _° t	$d_{\rm obs}$ (Å)	d _{calc} (Å)‡	1/1 ₀	d _{calc} (Å)	1/1 _°	d _{calc} (Å)	hkl	
24	6.254	6.249	50	6.288	100	6.124	110	
			3	4.926	1	4.996	020	
68	4.220	4.213	60	4.218	90	4.199	120	
62	3.740	3.735	40	3.772	52	3.613	210	
44	3.721	3.729	21	3.745	51	3.710	011	
100	2.909	2.911	100	2.921	87	2.895	121	
40	2.848	2.850	40	2.875	47	2.782	201	
33	2.732	2.738	21	2.760	12	2.680	211	
40	2.547	2.549	22	2.551	32	2.558	031	
25	2.466	2.470	12	2.463	36	2.498	040	
43	2.429	2.431	20	2.435	41	2.429	131	
26	2.356	2.362	9	2.383	10	2.295	320	
25	2.188	2.181	4	2.202	6	2.120	311	
17	2.149	2.155	1	2.163	1	2.163	231	
33	2.086	2.083	12	2.096	13	2.041	330	
47	2.036	2.037	13	2.054	32	1.990	321	
5	2.015	2.013	21	2.025	19	1.998	002	
63	1.865	1.864	17	1.871	17	1.855	022	
88	1.774	1.774	23	1.793	16	1.718	411	
29	1.591	1.591	12	1.603	15	1.561	312	
25	1.533	1.534	5	1.550	4	1.481	520	
26	1.333	1.332	5	1.338	5	1.314	451	

* For these synthetic compounds, the reported data have been calculated from the structural data obtained by Voutsas and Rentzeperis (1980, 1984).

† Determined densitometrically from a Gandolfi camera film.

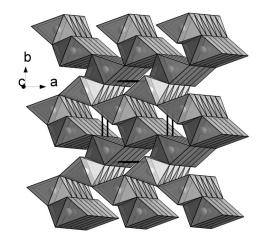
 \ddagger Calculated from the unit cell: *a* = 8.0675(4), *b* = 9.8803(8), *c* = 4.0264(2) Å obtained from least-squares refinement from the data above using the program UNITCELL (Holland and Redfern 1997).

 TABLE 3.
 Unit-cell parameters for demicheleite and synthetic BiSBr and BiSCI

	Demicheleite	BiSBr*	BiSCI*
a (Å)	8.0424(9)	8.1666(9)	7.7508(16)
b (Å)	9.8511(11)	9.8532(9)	9.9920(5)
<i>c</i> (Å)	4.0328(5)	4.0492(6)	3.9955(5)
V (Å ³)	319.50(6)	325.83(7)	309.44(8)

 TABLE 4.
 Single-crystal data and refinement parameters for demicheleite

chelette		
Crystal system	orthorhombic	
Space group	<i>Pnam</i> (no. 62)	
a (Å)	8.0424(9)	
b (Å)	9.8511(11)	
<i>c</i> (Å)	4.0328(5)	
V (Å ³)	319.50(6)	
Z	4	
F ₀₀₀	508	
Radiation	ΜοΚα	
μ (mm⁻¹)	63.47	
D _{calc} (g/cm ³)	6.312	
Measured reflections	3129	
Independent reflections	478	
Observed reflections $[l > 2\sigma(l)]$	431	
Parameters refined	21	
Final R and wR2	0.0369, 0.0940	
S	1.082	


Notes: $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; wR2 = { $\Sigma [w(F_o^2 - F_c^2)^2 / \Sigma [w(F_o^2)^2]$)^{1/2}; w = 1/[$\sigma^2(F_o^2)$ + (0.0688p)²] where $p = (F_o^2 + 2F_c^2)/3$; S = { $\Sigma [w(F_o^2 - F_c^2)]/(n - p)$ }^{1/2} where n is the number of reflections and p is the number of refined parameters

and 0.3° frame width were used. A total of 3129 reflections, corresponding to a complete scanning of the reciprocal lattice up to $2\theta_{max}$ =58.32°, were measured; of these 478 were unique. The unit-cell dimensions were refined by least-squares from 1825 reflections with $I > 5\sigma(I)$; the refined values are given in Table 4, together with other details concerning the data collection and refinement. The data were integrated using the Bruker program

TABLE 5. Atomic coordinates and displacement parameters for demicheleite $[U_{en}/U_{ii} \times 10^4]$

Atom	X/a	Y/b	Z/c	$U_{\rm eq}$				
Bi	0.13741(5)	0.13177(5)	1/4	189(3)				
Br/Cl	0.5133(2)	0.8222(2)	1/4	224(6)				
S	0.8303(4)	0.0516(3)	1/4	157(6)				
Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂		
Bi	191(4)	188(4)	189(4)	0	0	-30(2)		
Br/Cl	219(9)	241(10)	211(9)	0	0	-26(7)		
S	139(12)	170(14)	163(14)			15(11)		
Notes: The anisotropic displacement factor exponent takes the form:								

Notes: The anisotropic displacement factor exponent takes the form: $-2\pi^2[U_{11}h^2(a^*)^2 + ... + 2U_{12}hka^*b^* + ...]; U_{eq} = 1/3(U_{11} + U_{22} + U_{33}).$

FIGURE 3. A view of the crystal structure of demicheleite seen almost along [001] to show the join of the polymeric rows.

SAINT, and corrected for Lorentz, polarization, and background. An absorption correction was applied (minimum transmission factor 0.366) using the SADABS program (Sheldrick 2000). The non-standard setting for the space group no. 62 as *Pnam* was adopted to afford easy comparison with the data reported by Voutsas and Rentzeperis (1980, 1984). The structure was refined starting from the atomic positions reported by these authors using the SHELXL97 program (Sheldrick 1997) implemented in the WinGX suite (Farrugia 1999); the occupation parameter for the halide site was also refined and the result [Br = 0.61(2), Cl = 0.39(2)] is consistent with the chemical analysis (see Table 1). The final coordinates and displacement parameters of the atoms are reported in Table 5; selected interatomic distances are reported in Table 6.

RESULTS AND DISCUSSION

A projection of the crystal structure along [001] is shown in Figure 3. If the criterion reported by Voutsas and Rentzeperis (1980, 1984) for selecting the bond distances is followed, the bismuth atom is seven coordinated by three S atoms at distances 2.593(3)-2.720(2) Å and four Br/Cl atoms at distances 3.009(1)-3.488(2) Å; the corresponding polyhedron can be described as a distorted trigonal monocapped prism (see Fig. 4) of height equal to the unit-cell parameter *c*. The vertices of the triangular bases are occupied by two bromine atoms and one sulfur atom; those of one lateral face are occupied by four bromine atoms, whereas at the vertices of the other two there are instead two sulfur and two bromine atoms. One of the latter faces is almost square and

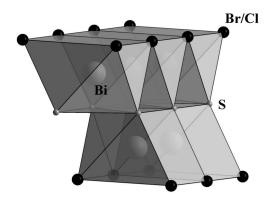


FIGURE 4. A detail of one double row of the coordination polyhedra around Bi.

is capped by a sulfur atom. By sharing the triangular bases of the prisms, the polyhedra form polymeric rows extended along [001]; these rows are joined to symmetry-related rows by sharing S-S edges of the pyramidal caps of the constituent polyhedra, thereby forming infinite double chains of composition $[Bi_2S_4(Br/Cl)_8]_n$. On their turn, these coupled rows are linked to the others by sharing Br/Cl atoms. Such aggregations result in forming planes parallel to (130) or its symmetry equivalents which are made exclusively either by S or Br/Cl atoms.

Demicheleite is another example of natural sulfohalide. Contrary to these substances that are mercury minerals [corderoite (Foord et al. 1974), lavrientievite Hg₃S₂Cl₂ and arzakite Hg₃S₂(Br,Cl)₂ (Vasil'ev et al. 1984) sometimes also containing silver [perroudite Hg₅Ag₄S₅(Cl,I,Br)₄ (Sarp et al. 1987), capgaronnite HgAgS(Cl,Br,I) (Mason et al. 1992)], the new species here described is instead a bismuth mineral and the prevailing halogen is bromine, a most unusual case. There are, however, similarities with respect to Pb-As sulfosalts also occurring in volcanic fumaroles and where halogens act as essential constituents, such as especially mutnovskiite Pb₂AsS₃(I,Cl,Br) (Zelenski et al. 2006 and references therein) where important amounts of iodine and bromine are also present together with chlorine. For La Fossa crater at Vulcano, a significant enrichment in bromine was already observed by Coradossi et al. (1996) in samples of ammonium chloride. Furthermore, a relatively high bromine content was noted by Garavelli et al. (2005) for chlorine-rich sulfosalts such as vurroite Pb20Sn2(Bi,As)22S54Cl6; a similar enrichment was also observed at Vulcano by Roberts et al. (2006) for lafossaite Tl(Cl,Br) and at Mutnovski volcano, Kamchatka by Zelenski and Bortnikova (2005) for volcanic sublimates. Sulfochlorides of Bi and Pb (such as $Bi_{19}Cl_3S_{27}$ and Pb_4SCl_6) formed at temperatures from 300 to 500 °C in guartz tubes inserted into the outlet of fumaroles at La Fossa crater, Vulcano were already observed by Garavelli et al. (1997, 2005). According to these authors (see also the list of references reported in their works) the deposition of lead sulfohalides is due to reaction of PbCl₂ (cotunnite) with H₂S or galena. Similar reactions occur in the formation of bismuth sulfochlorides from BiCl₃ and H₂S, and the sulfosalt occurrence in these conditions might well be due to reaction of previously grown chlorosulfides with H2S. All such observations underline the chemical complexity of such volcanic environments, which are currently the object of active interest.

TABLE 6. Interatomic distances (Å)

	Demicheleite	BiSBr*	BiSCI*	Weighted
				average†
Bi-S	2.593(3)	2.607 [‡]	2.605(2)	2.606
Bi-S (2×)	2.720(2)	2.721	2.711(1)	2.717
Bi-S	3.484(3)			
Bi-Br/Cl (2×)	3.009(1)	3.038	2.927(2)	3.001
Bi-Br/Cl (2×)	3.488(2)	3.539	3.367(2)	3.481
S-S (2×)	3.543(4)	3.556	3.549(3)	3.553
S-S (2×) = c	4.0328(5)	4.049	3.996(1)	4.031
S-Br/Cl (2×)	3.407(3)	3.450	3.360(3)	3.420
S-Br/Cl (2×)	3.571(3)	3.596	3.492(3)	3.561
S-Br/Cl (2×)	3.965(3)	3.990	3.873(3)	3.952
S-Br/Cl (2×)	3.640(3)			
Br/CI-Br/CI (2×)	4.265(2)	4.340	4.041(4)	4.240
$\frac{\text{Br/Cl-Br/Cl}(2\times) = c}{2}$	4.0328(5)	4.049	3.996(1)	4.031

* From Voutsas and Rentzeperis (1980, 1984).

+ Weighted average of columns 3-4 on assuming the site occupation from structure refinement (Br = 0.61 Cl = 0.39).

‡ No e.s.d. values are reported for these data.

ACKNOWLEDGMENTS

The authors are indebted to Ida Venerandi Pirri for courteous assistance. Important suggestions from the referees T. Balić-Žunić and A. Garavelli are gratefully acknowledged.

REFERENCES CITED

- Borodaev, Yu.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Organova, N.I., Trubkin, N.V., and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aeolian Islands, Italy, III Wittite and cannizzarite. Canadian Mineralogist, 38, 23–34.
- Campostrini, I., Demartin, F., Gramaccioli, C.M., and Orlandi, P. (2008) Hephaistosite, TlPb₂Cl₅, a new thallium mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 46, in press.
- Coradossi, N., Garavelli, A., Salamida, M., and Vurro, F. (1996) Evolution of Br/ Cl ratios in fumarolic salammoniac from Vulcano (Aeolian Islands, Italy). Bulletin of Volcanology, 58, 310–316.
- Cossa, A. (1881–1882) Sulla hieratite, nuova specie mineralogica. Transunti dell'Accademia dei Lincei, Serie 3, 6, 141–142.
- ——(1882) Sur la Hiératite, espèce minerale nouvelle. Bulletin Societé Française Minéralogie et Cristallographie, 5, 2, 61–62.
- (1884) Hieratit, ein neues Mineral. Zeitschrift f
 ür Kristallographie, 8, 305.
- Farrugia, L. J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837–838.
- Foord, E.E., Berendsen, P., and Storey, L.O. (1974) Corderoite, first natural occurrence of α-Hg₃S₂Cl₂, from the Cordero mercury deposit, Humboldt County, Nevada. American Mineralogist, 59, 652–655.
- Garavelli, A. and Vurro, F. (1994) Barberiite, NH₄BF₄, a new mineral from Vulcano, Aeolian Islands, Italy. American Mineralogist, 79, 381–384.
- Garavelli, A., Lavriano, R., and Vurro, F. (1997) Sublimate deposition from hydrothermal fluids at the Fossa crater, Vulcano, Italy. European Journal of Mineralogy, 9, 423–432.
- Garavelli, A., Mozgova, N.N., Orlandi, P., Bonaccorsi, E., Pinto, D., Moëlo, Y., and Borodaev, Yu.S. (2005) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite Pb₂₀Sn₂(Bi,As)₂₂S₅₄Cl₆, a new mineral species. Canadian Mineralogist, 43, 703–711.
- Gramaccioli, C.M. and Campostrini, I. (2007) Demartinite, a new polymorph of K₂SiF₆ from la Fossa Crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 45, 1275–1280.
- Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77.
- Mason, B., Mumme, W.G., and Sarp, H. (1992) Capgaronnite, HgS·Ag(Cl,Br,I), a new sulfide-halide mineral from Var, France. American Mineralogist, 77, 197–200.
- Roberts, A.C., Venance, K.E., Seward, T.M., Grice, J.D., and Paar, W.H. (2006) Lafossaite, a new mineral from the La Fossa Crater, Vulcano, Italy. Mineralogical Record, 37, 165–168.
- Sarp, H., Birch, W.D., Hlava, P.F., Pring, A., Sewell, D.K.B., and Nickel, E.H. (1987) Perroudite, a new sulfide-halide of Hg and Ag from Cap Garonne, Var, France, and from Broken Hill, New South Wales, and Coppin Pool, Western Australia. American Mineralogist, 72, 1251–1256.
- Sheldrick, G.M. (1997) SHELXL97 Program for crystal structure refinement.

University of Göttingen, Germany.

— (2000) SADABS Area-detector absorption correction program. Bruker AXS Inc., Madison, Wisconsin, U.S.A.

- Vasil'ev, V.L., Pal'chik, N.A., and Grechishev, O.K. (1984) Lavrientievite and arzakite, new natural sulfohalogenides of mercury. Geologiya i Geofizika, 7, 54–63 (in Russian).
- Voutsas, G.P. and Rentzeperis, P.J. (1980) The crystal structure of the paraelectric bismuth thiochloride, BiSCI. Zeitschrift für Kristallographie, 152, 109–118.
 ——(1984) The crystal structure of bismuth sulfide bromide, BiSBr. Zeitschrift für Kristallographie, 166 153–158.
- Vurro, F., Garavelli, A., Garbarino, C., Moëlo, Y., and Borodaev, Yu.S. (1999) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite PbBi₄(S,Se)₇, a new mineral species. Canadian Mineralogist, 37, 1499–1506.
- Zambonini, F., De Fiore, O., and Carobbi, E. (1924) Su un solfobismutito di piombo di Vulcano. Annali Reale Osservatorio Vesuviano, Ser. 3, 1, 31–36.
- Zelenski, M. and Bortnikova, S. (2005) Sublimate speciation at Mutnovsky volcano, Kamchatka. European Journal of Mineralogy, 17, 107–118.

Zelenski, M., Balić-Žunić, T., Bindi, L., Garavelli, A., Makovicky, E., Pinto,

D., and Vurro, F. (2006) First occurrence of iodine in natural sulfosalts: the case of mutnovskite, Pb₂AsS₃(I,Cl,Br), a new mineral from the Mutnovsky volcano, Kamchatka Peninsula, Russian Federation. American Mineralogist, 91, 21–28.

MANUSCRIPT RECEIVED NOVEMBER 29, 2007 MANUSCRIPT ACCEPTED MARCH 10, 2008 MANUSCRIPT HANDLED BY PAOLA BONAZZI

NOTE ADDED IN PROOF

In view of the recent occurrence of the Cl-analogue in the same environment (IMA 2008-020), a suggestion of the Chairman of the IMA CNMN is that of modifying the name of the mineral into "demicheleite-(Br)."