ADDITIONAL DATA ON PETARASITE FROM MONT ST. HILAIRE, QUEBEC

GUY PERRAULT

Département de génie minéral, Ecole polytechnique, Case Postale 6079, Succursale A, Montreal, Quebec H3C 3A7

GEORGE Y. CHAO

Department of Geology, Carleton University, Ottawa, Ontario K1S 5B6

T.T. CHEN

CANMET, 555 Booth Street, Ottawa, Ontario K1A 0G1

ABSTRACT

Petarasite crystals from Mont St. Hilaire, Quebec, show the following forms in decreasing order of importance: b {010}, m {110}, c {001}, t {201}, r { $\bar{1}11$ }, l {120} and a {100}; the indices refer to the structural cell $P2_1/m$, a 10.791, b 14.505, c 6.626 Å, β 113.21° (Chao et al. 1980). The strong C2/m pseudosymmetry noted by these authors accounts for the observed order of forms, which should be symbolized 020, 110, 001, $\bar{2}01$, $\bar{1}11$, 240, 200. A new microprobe analysis, on brown petarasite, shows a greater Cl concentration (2.5% versus 2.04% for original petarasite) and $2V_z$ (43° versus 29°).

Keywords: petarasite, morphology, Mont St. Hilaire, Quebec.

SOMMAIRE

Les cristaux de pétarasite du mont St-Hilaire (Québec) montrent les formes simples suivantes en ordre d'importance décroissante: b {010}, m {110}, c {001}, t { $\overline{2}$ 01}, r { $\overline{1}$ 11}, l {120} et a {100}, où les indices se rapportent à la maille structurale: $P2_1/m$, a 10.791, b 14.505, c 6.626 Å, β 113.21° (Chao et al. 1980). La pseudosymétrie C2/m notée par ces auteurs se réflète dans l'ordre d'importance observé des formes simples, lesquelles reçoivent les indices multiples suivants: 020, 110, 001, $\overline{2}$ 01, $\overline{1}$ 11, 240, 200. Une nouvelle analyse à la microsonde électronique, sur pétarasite brune, montre une augmentation de la teneur en Cl (2.5% contre 2.04%) et de l'angle $2V_Z$ (43° contre 29° pour la pétarasite originale).

Mots-clés: pétarasite, morphologie, mont St-Hilaire, Québec.

Introduction

Shortly after the announcement of the new

mineral species petarasite, Na₅Zr₂Si₆O₁₈(OH,Cl) • 2H₂O, crystals of remarkable quality were found at the De-Mix quarry at Mont St. Hilaire, Quebec, by Professor J.C. Sisi (Ecole polytechnique). A new microprobe analysis and new measurements of the optical properties of petarasite have been performed. These new data add to our understanding of this mineral.

FORMS

The three crystal groups in the Sisi collection and one specimen in the Ecole polytechnique collection (EP-13191) contain crystals up to 3 cm long. The forms and crystal faces for this material are shown in Figure 1; ρ - ϕ angles are given in Table 1.

In their original description, Chao et al. (1980) found that systematic extinctions on X-ray photographs are consistent with the space groups $P2_1$ and $P2_1/m$; furthermore, the crystal-structure analysis of Ghose et al. (1980) shows that $P2_1/m$ is the correct space group. Chao et al. (1980) also noted "a strong pseudo-C2/m symmetry".

Our morphological observations certainly favor the centrosymmetric space group; doubly terminated crystals are common. As for the order of importance, the strong pseudosymmetry seems to prevail; with a C2/m cell, the order of importance of crystal faces would be (110), (010), (001), ($\overline{1}11$), ($\overline{2}01$), (100) and (120). Based on our few observations, the order of importance of crystal forms is (010), (110), (001), ($\overline{2}01$), ($\overline{1}11$), (120) and (100). The three inversions (110) and (010), ($\overline{2}01$) and ($\overline{1}11$), (100) and (120) are benign, as for each of these three pairs, the reticular densities are nearly equal, as is the importance of oc-

Fig. 1. Crystal forms of petarasite from Mont St. Hilaire, Quebec.

TABLE 1. $\rho\text{-}\phi$ ANGLES FOR PETARASITE FROM MONT ST-HILAIRE, QUEBEC

	hk1	φ calc(1)	ϕ obs.	ρ calc.(*)	ρ obs.
С	001	90.00°		23.210	23.5 ⁰
b	010	0.00		90.00	
a	100	90.00		90.00	
m	110	55.64	55.5	90.00	
1	120	36.21	36.5	90.00	
t	201	-90.00		42.21	42.5
r	111	-27.74		27.30	27.5

^{*} Calculated from cell dimensions by Chao et al.(1980): P2₁/m, α = 10.791, β = 14.505, α = 6.626Å, β = 113.21°

TABLE 2. ELECTRON-MICROPROBE ANALYSIS OF PETARASITE FROM ST-HILAIRE, QUEBEC

SiO ₂	42.1 %	Si ⁴⁺		6.00
TiO ₂	n.d.	Zr ⁴⁺		2.09
ZrO ₂	30.0	Na ⁺	4.81	
Na_20	17.4	Ca ²⁺	0.08	:-
K ₂ 0	0.04	K+	0.01	4.90
Ca0	0.49	C1-	0.61	
Cl	2.5	(OH)~	0.02	
H ₂ O(*)	5.91	02-	0.37	1.00
	98.44	H ₂ O		2.8
C1-0	0.56			
Total	97.88			

^{*} Weight loss at 1100°C less Cl.

currence. In terms of the C2/m cell, the forms observed should be symbolized 020, 110, 001, $\overline{2}01$, $\overline{1}11$, 240 and 200.

CHEMICAL FORMULA AND OPTICAL PROPERTIES

Results of a new microprobe analysis (Table 2) shows a significant difference in Cl content compared with the original; this material is brown (the original material was greenish yellow). Standards used are the same as those reported by Chao et al. (1980); the previously analyzed petarasite specimen was used as an internal standard. Indices of refraction are α 1.595, β 1.600 and γ 1.631, all \pm 0.001. The optic angle differs significantly from the original reported value: $2V_z = 43^\circ$ in the present observations versus 29° in the original (Chao et al. 1980).

ASSOCIATIONS

Well-developed petarasite crystals occur in cavities within pegmatitic veins of the nepheline syenite. The following minerals were noted in the same cavity with petarasite crystals: natrolite, rhodochrosite, catapléite, aegirine, calcite, microcline, ancylite, fluorite, astrophyllite, eudialyte, albite and arfvedsonite.

ACKNOWLEDGEMENTS

We thank Professor Sisi for providing us with the crystals. This research has been supported by NSERC grants A-1180 and A-5113.

REFERENCES

Chao, G.Y., Chen, T.T. & Baker, J. (1980): Petarasite, a new hydrated, sodium zirconium hydroxychlorosilicate mineral from Mont St-Hilaire, Quebec. Can. Mineral. 18, 497-502. GHOSE, S., WAN, CHE'NG & CHAO, G.Y. (1980): Petarasite, Na₅Zr₂Si₆O₁₈(Cl,H₂O)•2H₂O, a zeolite-type zirconosilicate. Can. Mineral. 18, 503-509.

Received February 1981, revised manuscript accepted May 1981,

Pseudotrigonal termination on a weloganite Long side measures 2 mm. Photograph by G.Y. crystal from the Francon quarry, Montreal. Chao.

A four-membered cyclic twin (2 mm); eudialyte, Mont St-Hilaire, Quebec. Photograph by G.Y. Chao.