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ABSTRAC"T

An effisient met.hod is developed to construct potential
solutions of phase diraggams, using dual networks, which
are graphs composed of divariant fields linked together by
univariant lines. The assemblages observed in thin section
define the chemography of the system. Once tie chemo-
graphy is established, the invariant points and divariant
fields can be constructed, aud the divariant fields are then
used to constnrct tle dual network. A potential solution
for the phase diagram is obtained by inverting the dual net-
work to obtain a basic form, and ttren adding the metasta-
ble equilibria to the basic form. The dual network is shown
to be uniquely related to the potential solution when all
of the divariant fields are placed in the dual network. f,)ud
networks can be usd in two ways. Firstly, a topologically
correct potential solution of tle phqse diagmm can be con-
structed from information contained in the invariant points
or divariant fields. Otler potential solutions can then be
obtained by transposition. Secondly, given a known poten-
tial solution or phase diagram for an (z + 3)-phase system,
a new potential solution can be constructed for a system
with more tlan (z + 3) phases. The mahod can be used with
any number of components, but is illustrated with exam-
ples from two- and tlree-component systems. A phase dia-
gram is constructed for serpentinites modeled by tlre
2-component (MgO-SiO2, projected through H2O),
7-phase system brucite, forsterite, lizardite, chrysotile,
antigorite, enstatite and talc.

Keywords: chemographlc analysis, dual networks, poten-
tial solutions, serpentinites, phase diagrams.

Sormerns

On a d€veloppdune fagon efficace de construte des solu-
tions possibles d'un diagramme de phases; il s'agit de la
mdthode de rdticules doubles oi, dans un graphique, les
champs bivariants sont li€s par courbes univariantes. Une
fois la chimiographie Ctablie, oo peut construire les points
invariants et les champs bivariants. Ces derniers servent
ensuite i construire le r€ticule double. On obtient une solu-
tion possible du diagramme de phases eninvertissant ler€ti-
cule double pour obtenir la forme fondamentale, et en y
ajoutant emuite les 6quilibres m€tastables. On montre que
le r€ticule double est li6 i la solution possible de fagon uri-
gue quand tous les champs bivariants font partie du r€ti-
cule double. On se sert de r6ticules doubls l) pour cons-
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truire une solution topologiquement correcte d'un
diagramme de phases i partir de l'information contenue
dens les points invariants ou champs bivariants (es autres
solutions possibles en ddcoulert par transposition); 2) pour
trouver une nouvelle solution possible pour un systbme i
plus de ra+3 phases, 6tant donn6 une solution possible ou
un diagramme de phases pour un systBme i trois phases.
La m6thode peut servir pour un nombre quelconque de
composants; on prdsente des exemples choisis de systdmes
i deux ou trois composants. On construit un diagramme
de phases pour les serpentinites dans le syst0me binafue
MgO-SiO2 $rojection A travers H2O) a sept phases (bru-
cite, forstdrite, lizardite, chrysotile, antigorite, enstatite et
tdc).

(Traduit par la Rddaction)

Mots-c6s: atralyse chimiographique, rdticule dopble, solu-
tion possible, serpentinites, diagramme de phases.

INTRoDUcTIoN

The investigation of the topologic properties of
phase diagramsappears to have begun withthe work
of Schreinemakers (1925) on the relationships of
invariant, univariant and divariant uiuilibria about
and between invariant points. The introduction of
the representation polyhedron, in which all invari-
ant, univariant and divariant equilibria of a system
were visualiz€d as apices, edges and faces of a geo-
metric figure, began the methodical study of the
topologic properties of phase diagrams (7en 1966,
1967). Several workers investigated the role of the
representation polyhedron in determining the rela-
tionships between various nets, which are internally
consistent grids of invariant points and univariant
lines (Zen 1966, 1967, Zen & Roseboom l972,Day
1972). These papers concentrated on u-component
(z + 3)-phase systems. At the same time, Kujawa el
al. (l%5) preented the relationships betweqr the sta-
ble equilibria of unary systems with many phases.
They showed that the stable equilibria of any unary
system had one of a lirtited number of topologies.
More recently, Guo (1980), Roseboom & Zen (1982)
and Usdansky 0981) began research on (z + 4)-phase
systems. Roseboom & Zen (1982) used the represen-
tation polyhedron to reproduce the results of Kujawa
et al. and extended the work to binary systems. Guo
(1980), using the representation polyhedron, dis-
covered that tle phase diagrams of unary 5-phase
systems belonged to one oftwo equivalence classes,
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based on the number of metastable invariant points
in the phase diagram. This result was reproduced by
Usdansky (1981), who also determined the number
of equivalence classes for systems with up to four
components. Usdansky worked within the restrigtion
of the combinatorial assumption that each
equilibrium appears once and only once in a phase
diagram.

Chemographic analysis, formalized by Stout
(1985), uses a method, developed by Mohr & Stout
(1980), by which all topologically possible potential
solutions for a phase diagram of an (n + 3)-phase sys-
tem can be construgted given only the phase chemog-
raphy, which is tle relative position of the phases
in composition space. This methodology is impor-
tant because available data are used to eliminate
impossible solutions uutil the correct form of the
phase diagram is found. If more than one solution
is left after comparison with available data, inspec-
tion of the remaining solutions will indicate the data
that must be obtained to determine the correct
diagram.

To use the methodology of chemographic analy-
sis, as given by Stout (1985), one must construct the
first potential solution by connecting invariant points
together. For example, there are 6 invariant points
among 6 phases in a ternary system. Each invariant
point can exist stably or metastably and with either
a riglt- or left-handed parity, for a total of Arnvar-
iant points. (Note that the stability level of an
equilibrium refers to the relative Gibbs free energy
of that equilibrium with respect to other equilibria
of the same type. A stable equilibrium has tle lowest
free energy, a metastable equilibrium has the next
lowest free enerry, etc.). The Z invariant points can
be subdivided into six sets of four invariant points
each. Then, one invariant point from each set must
be chosen such tlat the six invariant points can be
assembled in a consistent manner. Choosing a sub-
set of the total number of invariant points to con-
struct the fust potential solution does not hinder the
investigation of n +3 systems if ns3, because tle
total number of invariant points that must be exa-
mined is small. For systems with more than n+3
phases, the initial potential solution is difficult to
construct eying to the large number of invariant
points to be assembled.

The purpose of this paper is to present a method
by which potential solutions of phase diagrams can
be more readily constructed. The method is based
on dual networks, which are graphs composed of
points representing divariant fields linked together
by lina that reprsent univariant reactions. Dual net-
works have two uses in this context. First, dual net-
works caa be used to construct a topologically cor-
rect potential solution of the phase diagram for an
n+3 system from information contained in the
divariant fields. Two systeurs will be used to illus-

trate this application of dual networks. The
2-component 5-phase system described by the com-
ponents MgO-SiO2-H2O, projected through H2O,
with the phases brucite, antigorite, lizardite, chryso-
tile and talc (S-phase serpentine system) and the
3-component, Gphase system described by tle com-
ponents Al2O3, SiO2 and H2O with the phases
andalusite, diaspore, kaolinite, pyrophyllite, quartz
and H2O (alumina system). The second use for dual
networks is to construct a potential solution for sys-
tems with more than n * 3 phases where a potential
solution or the phase diagram for an (z+3)-phase
system is already known. The serpentine system will
be used to illustrate this application. The potential
solutions generated for the serpentine system will be
discussed in a companion paper (O'Hanley 1987).

CHEMocRAPrilc ANALYSIS

Chemographic analysis concentrates on invariant
and univariant equilibria to construct potential solu-
tions for the phase diagtam of the system. Once a
chemography is established, the invariant points are
constructed by tal<ngn+2 phases at a time until all
n+2 combinations are used. For a nondegenerate
r?+3 system, with r=3, 6 combinations of n +2
phases are possible. As each invariant point has four
forms, 24 invariant points are possible. One invari-
ant point from each of ttre six subjects must be
assembled in a consistent manner to construst the
fust potential solution. For nondegenerate systems,
in which each equilibrium appears once and only
once, there axe exactly l(n+2) (n+3)+2I construc-
tions of this kind (Mohr & Stout 1980). Once the first
potential solution is constructed, all otlers may be
obtained from it by transposition, an operation by
which the parity of external invariant points is suc-
cssively changed until all permissible solutions are
generated (Mohr & Stout 1980).

The combinatorial equation gives the number of
each type of equilibrium (invariant points, univari-
ant curves and divariant surfaces) in a nondegener-
ate system in which each equilibrium appoars once
and only once (Zen 1960.

E = PtlPet (P-PJ!

where E represents the number of equilibria in tbe
system, P is the number of phases in the system, P"
is the number of phases involved in the equilibriun,
and (!) represents the factorial operation. Chemo-
graphic analysis, as developed by Mohr & Stout
(1980) and Stout (1985), is based on the assumption
that each equilibrium occurs exactly once.

Table I shows how the number of invariant points,
divariant assemblagc and divariant fields varies with
r and P. The total number of possible forms of
invariant points is also shown. Where P is greater
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TABLE 1. UNIQUE EOUIUBRIA IN N€OMPONENT, P.PHASE SYSTEMS lines represent stable univariant equilibria, ttre
dashed and dotdashedlines represent metastable and
doubly metastable equilibria, respectively. Invariant
points are represented by the symbol of the phase
missing from the invariant point. If we remove all
but the stable equilibria, we obtain the basic form
for the potential solution in Figure la, represented
by the heavy lines in Figure lb. To obtain the dual
network, each divariant field is represented by a
point placed in that divariant field. These points are
then linked with lines drawn across the respective
univariant lines, which delineate the divariant fields
in the basic form. Removing the basic form leaves
the dual network shown in Figure lc.

The importance of dual networks, as pointed out
by Kujawa el al. (1965\, is their unique relationship
to a basic form. This uniqueness implies that the dual
network contains the parity and stability informa-
tion of the invariant points in tle basic form. For
n + 3 systems, the dual network has all the informa-
tion necessary to construct the corresponding poten-
tial solution as well as the basic form, because each
invariant point is connected to every other invari-
ant point. Thus a sufficient number of constraints
are placed on invariant points not in the basic form
to insure uniqueness. In general, for z + 4 and larger
systems, the dual network does not uniquely deter-
mine the potential solution because a given invariant
point is not connected to all other invariant points.
A proof of tle nonuniqueness of the relationship
between dual networks and potential solutions for
r?+4 systems is presented by Roseboom & Zen
(1982). However, this author has determined that if
a sufficient number of divariant fields are included
in the dual network, tlen the potential solution is
uniquely determined because the basic form has
enough information in it to constrain the metasta-
ble equilibria.

CoNsrnuc-noN oF TrrE Duar, NsrwoRK

It is clear that &e methodology of Mohr & Stout
(1980) and Stout (1985) is applicable to n+4 and
larger systems, although the details of transposition
and trivial conjugates lthe trivial coujugate of a
potential solution is obtained by changing the
stability, but not the parity of the invariant points
in the solutionl are more complicated (Usdansky
1961, Mohr & Stout 1980). The methodology of
Stout (1985) is implicit in the rest of this paper. ,,

A valid dual network must satisfy tle following
criteria:
l. No linkage lines may cross. Linkage lines join
points in a dual network. Crossed linkage lines inter-
sect at a point, and a point in a dual network
represeirts a divariant field. As all divariant fields
are alieady accounted for, no new ones are possible.
2. The number of sides in each polygon within the

I 3.._..-........1.._........_..2..........._....__....3......................_..............3
4........-...../....-.._.......1 6_......._._..,.......4...._......_.......,................4
5.............._t 0...._.._....60.............._........5............................_........5

2 4,...............1 ..-............-..4
5...............5..-.........,..20.............._........10......-...........................a
6......--......15............-90_..__._._.....,....15.._............_..................16

5-..............1......-..-..-2...-..-....
6-..-,.-....J................24

4 8_.._....-.._1......_.._....2..._......-.._-.._..J5....-..-_.._.._...._.._.._..6
7 -.. -.... -.. J - -.. -........28......,.__........__35

-Tnb €rqudon 19 only applopdalE tor bnra

than (n+2), this number can be calculated by mul-
tiplying P by 2 (representing the number of parities
for each invariant point) andthenby (m-l) [the num-
ber of stability levels in a /r-component, (n+rn)-
phase systeml. Thus a 3-component, 6-phase system
will have 6 x 2 x (3-l) or Z invariant points. T:he 2.4
invariant points can be generated from the six invar-
iant points construsted by taking n +2 phases at a
time. In Table l, note how quickly the number of
invariant points increases as compared to the num-
ber of divariant fields, especially for a given z as P
is increased. Thus the utility of dual networks is
grcatest for systems for whish P is greater than
(n+3). As the method presented here concentrates
on the divariant fields ratler thanthe invariantpoints
as a basis for the construction of phase diagxams,
the number of elements used to construct a poten-
tial solution remains manageable.

Duar, Nnrwonrs

Dual networks are graphs in which the stable
divariant fields are represented by points and the
points are connested by lines representing the reac-
tions that relate the divariant fields to each other.
Dual networks were fust used in this context by
Kujawa et al. (1965) to enumerate the stable unary
equilibria; agraph of stable equilibria is called abasic
form (Kujawa et al. 1965). Their work was extended
to binary systems by Roseboom & Zen (1982), who
determined that the divariant field, not the divari-
ant assemblage, was the appropriate equilibrium to
use in the dual network.

The relationship between dual networks, basic
forms and potential solutions is shown in Figure 1.
Figure la shows a topologically correct potential
solution for the serpentine system modeled by the
2-component, S-phase system consisting of brucite,
antigorite, lizardite, chrysotile and talc. The solid
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(c)
Frc. l. Construction of a dual network from a potential solution or phase diragram. (a) An oriented potential solution

or phase diagram. Solid and dashed linc represelrt stable and metastable reactions, respectively. Dot{ash lines repr€s€trt
doubly metastable reactions. (b) A binary basic form, constructed by removing the metastable and doubly metasta-
ble equilibria from tle potential solution or phase diagram. The divariant frelds are connected with linkage lines
drawn perpendicular to tle respective reaction. (c) The dual network.
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dual network is equal to the number of phases at the
invariant point. Each area within a polygon
represents an invariant point, and tle number of
reactions emanating from the invariant point is
related to the number of phases at the invariant
point. As each linkage line is perpendicular to a sta-
ble univariant reastion, and tle number of reactions
is related to the number of phases at the invariant
point, each polygon must have as many linkage lines
as phases.
3. The dual network is composed of closed polygons
only. The open side of a polygon represents a miss-
ing reaction. As each point in a dual network
represents a divariant field, upon inverting the dual
network the missing linkage line will juxtapose two
divariant fields in the phase diagram with no reac-
tion between them, which is imnossible.

4. A dual network can only be altered by removing
or adding a divariant field such tlat none of the
criteria outlined above is violated.

Construction of the first dual network need not
include all of the unique divariant fields of the sys-
tem, although the more divariant fields in tle dual
network, the gf,eater the constraints on the poten-
tial solution. At present, the number of divariant
fields necessary to descrih a phase diagam uniquely
is-not known for most systems. For n+3 systems'
only two levels of stability (stable and metastable)
are possible for each invariant point. As each invar-
iant point is sonnected to wery other invariant point,
tle dual network uniquely describes tle potential
solution because any invariant point not in the basic
form is metastable and can be added to tle basic
form in only one way. The addition of a phase to
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an (n+3)-phase system requirc a third level of arisesbecauseeverypotentialsolutionhasatrivial
stability for the invariant points and the ttrer- conjugate, in which the relative order of the free
modynamig constraint tlat every reaction pass energies for each type of equilibrium is reversed.
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ble invariant point must also pass through a doubly
metastable invariant point. Two such invariant
points must be connected by a metastable invariant
point (Usdansky 1981). A necessary consequence is
that some invariant points are not directly connected
to others (Usdansky & Stout 1981). For unary r + 4
systems, Guo (1980) has found that all potential solu-
tions can be grouped into one of two equivalence
classes (Usdansky 1981), based on the number of
metastable invariant points in the potential solution.
Of a total of ten invariant points (Table 1)', unary
(n +4)-phase potential solutions have either 4 or 6
metastable invariant points (Guo 1980) and must
contain at least one stable and one doubly metasta-
ble invariant point. Therefore, a basic form contain-
ing 4 or 5 stable invariant points leads to an unique
potential solution because the metastable and dou-
bly metastable invariant points can be added to the
basic form in only one way. The drial network of
abasic form containing4 or 5 stableinvariantpoints
will contain all 5 unique divariant fields. Thus con-
structing a dual network containing all 5 unique
divariant fields in a one-component, 5-phase system
will yield a unique phase-diagram.

coNsrRugrrNc rrm Fnsr PorErr.lrIAL sorutlott

In principle, the mettrod of dual networks can be
used to sonstruct the first potential solution for sys-
tems with any number of components. For tle sake
of clarity, examples will be from two- and three-
compon€nt systems. First, the tlree-component alu-
mina system will be used to illustrate the construc-
tion of potential solutions for systems for whish no
information is known regarding which divariant
assemblages are stable. The two-component serpen-
tine system will be used to illustrate the construction
of potential solutions for systems for which infor-
mation regarding stable assemblages is known. The
two-component system will also be used to illustrate
how new potential solutions axe constructed when
additional phases are added to the system's chemog-
raphy.

Stout (1985) investigated the system involving the
components Al2O3, SiO2 and H2O and the phases
andalusite (A), diaspore @), kaolinite (K), pyrophyl-
lite (P), quartz (Q) and water (W) Gig. 2). To con-
struct the initial dual network, it is neccessary first
to construct each invariant point. Thus, all the
equilibria characterizing the system must be identi-
fied. In this sense, the method of dual networks is
equivalent to the method of Stout (1985) because
both require that all the equilibria of the system be
known. For the alumina system, the invariant points,
univariant lines and divariant fields are shown in
Figure 2. The chemography of this system is shown
as divariant field 4 within invariant point [A]. Inspec-
tion of tle six invariant points in Figure 2 shows that

ofthe 28 divariant fields pres€nt, 13 areunique. They
are labeled l-13. This number is less than that listed
in Table I for 3<omponent, Gphase qystems because
of the colinearity of quartz, pyrophyllite and dia-
spore The unique divariant fields are used to assem-
ble the dual network.

Assuming that nothing is known about the stabil-
ity of the divariant assemblages, no advantage is
gained by choosing particular divariant fields to be
placed in the dual network. The divariant fields from
the invariant points [A], [D], tQl and Kl were chosen
arbitrarily. A polygon is formed using the divariant
fields from invariant point [A] (Fig. 3a). Another
polygon can be formed bythe divariant fields in [K].
Because divariant fields labeled I and2 arepaft of
lKl as well as [A] (Fig. 2), the two polygons share
the points represented by the common divariant
fields. Divariant fields 2 and 7 are common to [K]
and [Q], so tlat divariant fields 2 and 7 can be used
to form another polygon with the ls6aining di-
variant fields in [Q]. Note that divariant fields 2 and
9 are common to [A] and [Q], so the polygons
formed by the divariant fields of [A], [K] and [Q]
must have divariant field 2 in cornmon (Fig. 3a). At
this point, the dual network consists of three linked
polygons. Invariant point [D] shares divariant fields
6 and7 with [K], and fields 7 and 8 are shared with
tQl. Thus four of tle five divariant fields that
represent [D] are already in the dual network. Com-
pleting a new polygon with the remaining divariant
field (10) from [D] makes a dual network with four
polygons. These four polygons satisfy the criteria
given earlier for valid dual networks.

The basic form is found by reversing the process
illustrated in Figure 1. Place a point (Fig. 3b) into
each polygon of the dual network and connect the
points with lines drawn agross the lines of the dual
network (Fig. 3b). These linq represent univariant
reactions, and the points are invariant points. Label
thd reactions using the information in Figure 2. For
example, the linkage line connecting divariant field
3 to divariant field 4 represents the reaction
P + W = K + Q. As expected, inspection shows that
invariant points [A], [D], [K] and tQl are stable.
Once all reactions and invariant points are identi-
fied, the reactions must be oriented properly about
each invariant point (Fig. 3c). Note that the reac-
tion P + W = Q + K passc througfi invariant points
lAl and tDl (Fig. 3b). As each equilibrium can occru
once and only once, these two segments must be
joined together. This will enclose tQl in a triangle
formedbyinvariantpoints [A], Kl and [D]. To con-
struct the potential solution, metastable extensions
are added to tle reactions at each invariant point and
made to converge at ttre appropriate metastable
invariant point, in this case [P] and [W]. Adding
doubly metastable reactions that extend away from
the metastable ractions completes the potential solu-
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tion. This is potential solution 29 of this system
(Stout 1985). The basic form (Fig. 3b) for potential
solution 29 contains 13 divariant fields, whereas the
dual network (Fig. 3a) contains 11. The other divar-
iant fields were generated by indifferent crossings
Ven l96f,). An indifferent crossing occurs when two
reactions cross in P-T space but do not represent an
equilibrium between all the phases in both reactions.
The indifferent crossing of reactions P = A + K + Q
and D+K=A*W produced divariant f ield 11,
and the indifferent crossing of reactions
D + P = A + K  a n d  K + q = P + W  g e n e r a t e d
divariant field 12.

In the pFevious example, it was assumed that no
information was available regarding the stability of
various minglat assemblages of the system. If such
information is available, it suggests which divariant
fields to use in the dual network. For example, the
following ten assemblages have been reported for Mg
serpentinites: antigorite (A) + talc CI), A+ brucite

(B), B+ chrysotile (C), A + forstqrite (F), ! + t'
d l r ,  l za rd i t e  (L )+8 ,  L+c+B ,  L+c  and
F + E (Evans et al. 1976, Wicks & whittaker 1977,
Dungan 1979).

These two-phase assemblages are likely to be di-
variant, and thus the phases of interest can be
represented by two compon€nts. Choosing the phases
brucite, antigorite, lizardite, chrysotile and talc yields
a 2-component system because the phases are
colinear. The chemography (Fig. 4, under ttre top
row of invariant points) consists of ttre two-
component system MgO-SiO2' representing tle
3-component system MgO-SiO2-H2O, projected
though water: The projection is used because for-
sterite and enstatite will be added to the chemogra-
phy later on. The invariant points and tle unique
divariant fields for tle n + 3 system are shown in the
top row of Figure 4. The unique divariant fields are
labeled 1-6. Lizardite and chrysotile are pollmorphs
in this system; they form an internal degeneracy. As
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fieldof then +3 systeminthedual
that some assemblage in the divar-

assemblages q + T, A + B, A + F and F + T should
be stabilized {s temperature increases. Two of ttrese
assemblages, C + T and A + B, are in the system of
interest and, 0herefore, the divariant fields ftrat con-

will be used to construct the dual network. The
assemblage B + T has not been reported in the [ter-
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a result tie total number of divariant fields in this
system will be less than that given in Table l. The
implications of assuming that lizardite and chryso-
tile are polymorphs will be disqussed in a compan-
ion paper (O'Hanley 1987).

The six unique divariant fields for the z + 3 sys-
tem are represented by their assemblages (i.e., the
divariant field containing the assemblages B + C and

Using a
network
iant field is Evans et al. (l97O stated that the

tain these (fields B-A-T and B-C-T)

ature that tle observed oscurrences of bru-
1962, Hostetler et al. 196),alidcite (Faust &

divariant B-T will not be placed in the dual
network.

At this , two divariant fields have been
chosen, but polygons have been formed. Divari-

ant field B-C-T cannotbe linked directlyto B-A-T
because they are not related by a single reaction.
These tivo divariant fields can be linked if field B-
C-A-T is placed between them (Fig. 5a). As no
closed polygons have been formed and divariant field
B-T has been excluded, fields B-L-A-T and B-L-
T will be used to form closed polygons: B-L-T is
linked to B-C-T, and B-L-A-T is linked to B-C-
A-T. Field B-L-A-T can also be linked to B-A-T.
This process yields two closed polygons (Fig. 5a).
Cogitation will show that excluding B-T from the
dual network, along with the need to use fields B-
A-T and B-C-T, could only result in the dual net-
work in Fieure 5.

Where no information is available, constructing
a dual network for a binary S-phase system is equiva-
lent to constructing a hierarchical diagram (Rose-
boom & 7*n 1982). The divariant field with the
$eatest number of stable phases is drawn first.
Interior phases are removed one at a time' generat-
ing divariant fields related to tle first field until all
divariant fields are accounted for.

To obtain the basic form, place an invariant point
in each polygon ofthe dual network and connect the
invariant points with reactions (Fig. 5a). Then label
tle reactions and the divariant fields about all sta-
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Frc.5. Construction of a potential solution or phase diagam from a dual network. (a) The dual network is shown
with the reactions drawn perpen6i"o1a11q &e linkage lines. [B] = [B,F] and [T] = [T,F] are stable. (b) The reactions
are arranged about the invariant points, and the metastable extensions are added to tle reactions. (c) Extension
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ble invariant points. The basic form is obtained by
orienting the reactions about the invariant points.
The first potential solution is obtained by adding
metastable extensions to the stable reagtions emanat-
ing from the invariant points in the basis form @ig.
5b) and then adding metastable invariant points at
the intersection of the metastable extensions (Frg. 5c).
The sequence of divariant fields (particularly B-T)
that represent the invariant points [A], tcl and [L]
are not in the dual network.

Eleven divariant fields were used to construct the
dual network for the alumina system, whereas five
divariant fields were used for the serpentine system.
After the dual network has been construsted, obtain-
ing the potential solution is straightforward. To con-
struct a potential solution for either the serpentine
or the alumina system using invariant points, six
invaridnt points must be assembled in a consistent
manner. The parity of the invariant points is deter-
mined by how they are assembled and, as a result,
the assembled potential solution must be examined
to insure tlat the stable divariant fields are gener-
ated in the proper sequence about each invariant

point. Dual networks gbnerate the proper sequence
of divariant fields automatically because the parity
of the stable invariant points is predetermined.

Ewrancnc A SYSTEM BY ADDTNc A PHASE

Most, if not all, rosk systems contain more than
z + 3 phases. For example, ifall ofthe phases given
above for the serpentine system were used at once,
the chemography would define an n + 5 system.
However; chemographic analysis is understood best
f.or n + 3 systems; to use tle metlod of Stout (1985)
effectively, one should use a n + 3 system. DuaI net-
works can be used to construct potential solutions
for n + 3 systems, but their advantage is brought out
when they are used for larger systems. Adding a
phase to tle chemography increases the complexity
ofthe analysis. For each additional phase, another
level of stability is added to both the invariant points
and tle reactions. The number of potential solutions
also increases, although the total number ofpoten-
tial solutions is not known for most systems; for
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unary n * 4 systems, the total number of potential
solutions is 1320 (Usdansky & Stout 1981).

Given the increase in the total number of poten-
tial solutions, construction of all of them with a sub-
sequent search is not feasible. An alternative is to
use dual networks to augment the pOtential solutions
or the phase diagrams of snnaller n + 3 systems. Dual
networks also provide a means of joining two r + 3
systems that describe different P-T regions of the
same bulk chemistry. For example, the serpentine
system, which describes the low-temperature region
of hydrated ultramafic rocks, could be joined to the
system gsnlaining tle phases anthophyllite, ensta-
tite, forsterite, talc, quartz and H2O used by Cher-
nosky el al. (1985) to study the behavior of Mg-
anthophyllite. In either proces, the dual network of
an existing potential solution or phase diagram is
used as a base for the larger system.

The potential solution constructed for the S-phase
serpentine system (Fig. 5c) was used to construct 19
other potential solutions. The results of examining
this set to eliminate thermodynamically impsssi6lt
solutions are reported in a companion paper (O'Han-
ley 1987). The potential solutions in Figures I and
5c are two of four that remain after eliminating ther-
modynamically impossible solutions for the a + 3
system. The dual networks for the four remaining
potential solutions of the r * 3 system are shown in
the first column of Figure 6.

The phases chosen 1e eemprise tle n + 3 system
describe the low-temp€rature region of the phase dia-
gram for the serpentine system. Thus the r? + 3 sys-
tem describes a small region of P-T space. To extend
the area of P-T space described by the system, the
chemography must be expanded by adding phases.
The logical approach is to add aphaseto the chemog-
raphy that is stable in the region of P-T space next
to the region already described by the ,? + 3 system.
This way, larger regions are described by adding
divariant fields containing observed assemblages to
the exterior of the existing dual networks.

The extension ofthe 5-phase serpentine system is
made by inspection of the remaining observed assem-
blages not included in tle 5-phase system. Forsterite
is stabilized during the prograde qetamorphism of
serpentinites and is observed in ihe assemblages
A + F and F + T (Evans et al, 1976, Frost 1975).
Therefore, forsterite was added to the z + 3 system,
yielding -the (n + 4)-phase system B-F-L-C-A-T.
The additional divariant fields for this system are
illustrated in rows 2 and,3 of Figure 4. The n + 4
system has 12 unique divariart fields (Fig. 4); six are
inherited from the z + 3 system, and six from
divariant fields containing forsterite. As forsterite
is stable at highff temperatures than any of the
phases in the n + 3 system, and the orientation.of
the dual networks in P-T space is known, the
divariant fields containing the observed assemblages

A+F and F+T have been added to the high-
temperature side of the dual networks, the side on
which divariant field B-A-T is located. The dual net-
works for the n * 4 system are shown in the second
column of Figure 6, in the same row as the a+ 3 dual
networks from which they were made. Note tlat all
four dual networks for the n + 4 system contain
divariant fields with the assemblages A + F and
F + T. Focus on the third row of Figure 6. A poten-
tial solution for tle /, + 4 system, that has dual net-
work 3 as its base, is shown in Figure 7. Note that
Figure 5c is contained within Figure 7. This is a rsult
of choosing tle additional phase (forsterite) such that
the new potential solution of the n + 4 system
extends the region of P-T space described by the
potential solution of the r + 3 system.

Usdansky (1981) has determined that binary
(n +  )-phase potential solutions belong to one of
three equivalence classes, containing 6, 7 or l0
metastable invariant points, respectively. By inspec-
tion of the dual networls for the z + 4 potential solu-
tions in Figure 6, between 5 and 7 ofthe 15 invariant
points are stable, so that the basic forms could belong
to one of two equivalence classes. In these cases the
dual network does not uniquely determine the poten-
tial solution because the metastable invariant points
could be added to the basic form in two different
ways. Dual network 8 actually contains 8 polygons,
and one would expect that it would have at least 8
stable invariant points. However, the polygon
repres€nted by divariant fields B-L-T, B-F-L-T and
B-F-L-A-T represents an indifferent crossing
because these divariant fields do not define an in-
variant point.

Based on thermodynamic vslsening glven by
O'Hanley (1987), the potential solution shown in
Figure 7 is tle best one to account for the observa-
tions tlat apply to phases in the n + 4 system. Con-
structing an n + 5 system by adding enstatite to the
chemography of the z + 4 system yields a system that
includes all of the observed assemblages of mag-
nesium serpentinites. The n + 5 system is B-F-L-
C-A-E-T. The remaining observed assemblage is
F + E. Thus a potential solution for the n + 5 sys-
tem is constructed by adding the divariant fields con-
taining tle assemblage F + E to tle dual network of
the n * 4 system shown in the third row of Figure
6. The divariant fields generated by coustructing the
invariant points containing enstatite are not shown.
Owing to the absence of antlophyllite in this sys-
tem, the reaction F+ T = E + W would generate
tle F + E assemblage @vans 1977), so that the dual
networks in Figure 6 have been augmented by adding
the divariant field B-F-E-T to tle field B-F-T. The
dual networks were completed by adding divariant
fields that contain the assemblage F + E. The poten-
tial solution shown in Figure 8, obtained by augment-
ing the dual network of the potential solution in
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Figure 7, contains the summary diagram of Evans
(197?) for temperatures less than 700oC.

CoNcLUSIoN

The potential solution in Fieure 8 has 35 invari-
ant points and 31 reactions. To construct this dia-
gram using invariant points reqririres fiading 35 in-
variant points out of a possible 280 that cari be
counected in a consistent maririer. It'is much easier
to use 12 divariant fields to construct such a diagram.
Note that the dual network related to the potential
solution in Figure 8 contains 13 divariant fields,
whereas the potential solution contains 14. The 14th
divariant field was generated by an indifferent
crossing.

Dual networks present an opportunity to expand
pre-existing systems. Starting with an r? + 3 system
allows chemographic analysis as developed by Stout
(1985) to be used on a manageable number of poten-
tial solutions. Once a small number of solutions are
found, the system can be expanded, aid the result-
ing set ofnew potential solutions investigated. This
approach also suggests that the z + 3 system be
chosen to describe as small a region of P-T space
as possible. The region described can then be
increased by adding phases to the existing chemo-
gaphy.

Theproblem of uniqueness remains. Howwer, the
work of Guo (1980) and Usdansky (1981) indicates
that we can have uniqueness in certain cases. At this
point in our understanding, using all or a large num-
Oo' o11trs unique divariant fields in the dual network
will yield a unique potential solution. The potential
solution in Figure 8 is not the only possible diagram
that could be generated from its basic form. It
includes correctly the observations on serpentinites
besause the method used to construct it builds in the
observations. It contains the summary diagram of
Evans (1977) for serpentinites for temperatures less
than 7@oC.
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