TWO-STAGE HYDROTHERMAL FORMATION OF A LOWER PROTEROZOIC SEDIMENT-HOSTED MASSIVE SULFIDE DEPOSIT, NORTHERN LABRADOR TROUGH, QUEBEC

TIMOTHY J. BARRETT, ROBERT P. WARES AND JOSEPH S. FOX
Mineral Exploration Research Institute, Department of Geological Sciences, McGill University, Montreal, Quebec H3A 2A7

Abstract

The Soucy #1 massive sulfide deposit in the northern Labrador Trough of Quebec represents one of the few known ancient sediment-hosted Cu-Zn deposits. Despite the regional deformation of the Lower Proterozoic host sequence, the deposit is very well preserved. The massive sulfide lens is up to 40 m thick and 400 m long, and averages ∼2% each of Cu and Zn (with <0.2% Pb). It consists of sub-spherical pyrite frambooids in a fine-grained matrix of metal sulfides and ferruginous gangue minerals. The ore lens is conformably overlain by a more laterally extensive blanket of up to 50 m of laminated, aphanitic, base metal-poor sulfides, consisting of pyrite microspheres disseminated throughout a pyrrhotite–iron silicate matrix.

The ore lens is hosted by silicate- and sulfide-facies iron-formation that occurs within a thick turbidite sequence. An alteration "pipe" beneath the lens is characterized by addition of iron, calcium, and most base metals, and removal of alkalis. Within the pipe, stilpnomelane, ferroan ankerite and sulfides were precipitated in veins and in adjacent sediments. A zone of more intense footwall alteration, ∼5 m thick, occurs immediately beneath the massive sulfides. The two compositionally and texturally different types of sulfide bodies indicate that two fundamentally different hydrothermal discharge processes operated during sulfide deposition. The first was a high-intensity, high-temperature process that locally precipitated the Cu–Zn-rich sulfides of the main ore lens, probably within a sub-basin on a faulted continental margin. By contrast, the overlying laminated iron sulfides are interpreted as "fallout" material which precipitated from a saturated, non-circulating, euxinic bottom layer, following decline in the temperature and intensity of discharge. In the laminated sulfides, a gross trend of decreasing base and precious metal content with distance from the massive sulfide lens may reflect continued but feeble hydrothermal discharge in the areas of the ore lens. The chemical component of interbedded silicate- and sulfide-facies iron-formation and interlayered sulfide/clastic sediments occurring along strike from the laminated sulfides is interpreted as the result of "spillover" effects from the hydrothermally influenced bottom water layer located in the sub-basin. The favored paleotectonic setting for massive sulfide deposition is a collapsed continental margin formed during early rifting of a lower Proterozoic basin, prior to extrusion of a basaltic seafloor.

Keywords: massive sulfides, laminated sulfides, copper, zinc, hydrothermal, turbidites, alteration, iron-formation, Proterozoic, Labrador Trough, Quebec.
Mots-clés: sulfures massifs, sulfures laminés, cuivre, zinc, turbidites, formation de fer, altération, hydrothermal, Proterozoïque, Fosse du Labrador, Québec.

INTRODUCTION

Sediment-hosted syngenetic Cu-Zn massive sulfide deposits are uncommon in the geological record and few have been described in detail, apart from those Phanerozoic deposits classified as “Besshi” type (Doi 1961, Klau & Large 1980, Fox 1984). Proterozoic sediment-hosted Cu-Zn deposits are even less common, although they do occur in geological settings that are similar to Phanerozoic ones, i.e., rift-related volcano-sedimentary sequences.

The Soucy No. 1 sediment-hosted massive sulfide deposit is one of four such deposits in the northern Labrador Trough of Quebec (Wares et al. 1988). The deposit is 90 km west of Kuujjuaq, an Inuit community that serves as access to that region (Fig. 1).

The deposit was explored intermittently between 1953 and 1980; drill-indicated ore reserves are estimated to be 5.44 Mt at 1.49% Cu, 1.80% Zn, 13.7 g/t Ag and 1.61 g/t Au.

The deposit is folded, intruded by gabbro sills, and partly recrystallized, but primary features are sufficiently well preserved to allow insights into the environment and mechanisms of formation of the sulfides. This paper describes the stratigraphic and geochemical characteristics of the deposit, and interprets them in terms of a composite model based on hydrothermal and sulfide depositional processes operating at modern oceanic spreading centers.

GENERAL STRATIGRAPHY AND TECTONIC SETTING OF THE LABRADOR TROUGH

The Labrador trough is a well-preserved, thrust-imbricate lower Proterozoic fold belt (2150–1850

Fig. 1. Regional geology of the northern Labrador Trough and location of Soucy #1 massive sulfide deposit. Modified from map 2001, DV 85-09 (Ministère de l'Énergie et des Ressources du Québec).
The Labrador trough is a Proterozoic sulfide deposit that stretches for 850 km from the Grenvillian metamorphic front to Ungava Bay. The trough represents the far-eastern extension of the Trans-Hudson Orogen, the deformed supracrystal sequences of which separate the Archean Superior and Churchill provinces.

The trough has been divided into three lithotectonic zones (Dimroth 1972, Dimroth & Dressler 1978, Dimroth 1981, Wardle & Bailey 1981): i) a western margin consisting mostly of autochthonous and paraautochthonous platform sedimentary rocks resting unconformably on the Superior craton; ii) a central foreland fold-thrust belt, consisting of volcanosedimentary sequences intruded by abundant gabbro sills. The foreland is of greenschist-facies metamorphic grade and exhibits westerly tectonic transport onto the craton; iii) a poorly defined eastern margin in the immediate hinterland consisting of amphibolite- and granulite-facies metasedimentary and metavolcanic rocks (Laporte Group), probably in part equivalent to rocks of the foreland belt, and of tectonized Archean rocks of the Churchill province.

The supracrystal sequence of the trough (Kaniapiskau Supergroup) consists of two distinct cycles of sedimentation and volcanism (Dimroth 1981, Wardle & Bailey 1981, LeGallais & Lavoie 1982, Clark & Thorpe submitted), primarily recognized in the Knob Lake Group. The upper Knob Lake Group (Fig. 2) comprises the platform sequence of the second cycle (Ferriman Subgroup), as well as overlying turbidites (Menihek Formation) and fluvial molasse (Chioak Formation).

The Gérido Group (unofficial name) constitutes the entirety of the foreland belt in the northern trough. The Gérido Group structurally overlies the upper Knob Lake Group, but is interpreted, for the most part, as a coeval, deeper water slope/rise sequence (Clark & Thorpe submitted). It is composed of the Abner dolomite at the base, the Baby Formation clastic-dominated sediments in the middle, and the Hellancourt basalts at the top. The whole sequence is intruded by gabbro sills of the Montagne Group, which are in part comagmatic with the Hellancourt tholeiitic suite. The Baby Formation is divided into three members. The lower is heterogeneous, composed mostly of turbidites, and includes conglomerates, quartzites, wackes, siltstones and mudstones of variable thickness and proportion. The middle Baby is an iron-formation, ~50-m thick, in the classic sense of the term (James 1954). It consists of oxide-, carbonate-, silicate- and sulfide-facies sediments distributed in an apparently heterogeneous manner (Clark 1987). The upper Baby consists mostly of rhythmically layered, thin-bedded distal turbidites and mudstones. Basalts are rare within the Baby Formation, and have not been mapped anywhere in the region of the Soucy deposit (Sauvé & Bergeron 1965, Wares et al. 1988). The Soucy deposit is located near the western margin of the foreland belt, and is hosted, along with other massive sulfide deposits in the region, within iron-formation of the middle Baby (Fig. 2).

The tectonic setting in which the Labrador trough supracrystal assemblage was deposited remains problematical. Dimroth (1972, 1981) and Dimroth & Dressler (1978) have postulated the development of a narrow, sediment-rich ensialic basin, generally floored by attenuated continental crust, which was filled by sequences of intercalated turbidites, tholeiites, and voluminous mafic subvolcanic sills. Hynes (1978), Wardle & Bailey (1981), and LeGallais & Lavoie (1982) also favor a rift setting, but emphasize that the tectonic setting of the rift is...
speculative because the supracrustal sequences represent only the vestiges of a collapsed, passive margin, and the nature of the high-grade metamorphic rocks of the eastern hinterland remains largely unknown. Although Hoffman (1987) recently postulated that deposition of cycle II sequences occurred in a migrating synorogenic foredeep, we consider an east-facing collapsed continental margin as a reasonable tectonic setting for accumulation of the Gério Group, possibly during nascent seafloor spreading as is suggested by the presence of the voluminous tholeiitic volcanism.

Geology of the Soucy Deposit

The Soucy deposit lies on the east limb of the Lac Bourgault syncline (Fig. 1), an important structure that is traceable for at least 30 km. On surface the deposit outcrops as two subparallel NNW-striking zones of gossan. Drilling outlined two corresponding massive sulfide zones. The “A” zone, which is the main sulfide deposit, is overturned, lensoid, and extends along strike for at least 400 m. The “D” zone, 200 m to the west, is thinner, tabular and overturned, and traceable for at least 500 m along strike. These features are interpreted to represent an original semi-continuous lens of sulfide that has been
affected by two coaxial deformations. The present morphology of the deposit is due to refolding, by tight upright structures, of the the limb of a west-verging isoclinal fold (Fig. 3). The abundance of lithologically homogeneous gabbro sills in the sequence surrounding the deposit does not permit a more detailed resolution of the local structure. Metamorphic grade is middle greenschist facies, which locally has caused destruction of finer primary sedimentological features in some lithologies. Nevertheless, the stratigraphy immediately above and below the main sulfide lens is well preserved.

As outcrop in the area of the deposit is extremely limited, the detailed stratigraphy (Fig. 4) was determined solely through examination of drill core. The main lithological units embracing the sulfide deposit are, from bottom to top: 1) unmineralized distal turbidites representing the regional host rock, referred to the lower Baby; 2) the “feeder pipe” alteration zone, of undetermined shape but occurring only below the massive sulfide lens; 3) a footwall alteration zone, 3 to 6 m thick, occurring immediately below the sulfide lens, and only as laterally extensive as the latter; 4) a lensoid polymetallic massive

Fig. 5: a) Vein-proximal alteration in turbidites from alteration “pipe” below main sulfide lens; b) footwall alteration in turbidites; c) laminated sulfides; d) “banded clastic”/sulfide sediment consisting of thin silt beds and mm-scale silt laminations alternating with very fine-grained pyrite-rich sediment; d’ and d’’ are enlargements of the base and top, respectively, of a 5-mm-thick clastic silt bed (central interval not shown).
sulfide body up to 40 m thick; 5) laminated sulfides, also lensoid in shape and up to 50 m thick. This unit is laterally more widespread than the massive sulfides which it blankets. Its maximum extent is indeterminate, although it has been recognized in drillholes up to 200 m along strike from the main deposit.

Units higher in the stratigraphy have been displaced by gabbro sills.

In addition to the massive sulfide to laminated sulfide transition at the perimeter of the massive sulfide lens, lateral lithofacies variants include the following units: 6) “banded” sediments consisting of

Fig. 6. Reflected-light photomicrographs of mineralogical textures and sedimentary features of sulfide-bearing lithologies. (a): medium-grained alteration assemblage in immediate footwall zone; stilpnomelane, ankerite, chlorite, alkali feldspar, magnetite and pyrrhotite are present; (b): pyrite “framboid” in massive sulfide; (c): replacement of pyrite framboid by pyrrhotite and chalcopyrite; (d): contact of laminated and massive sulfides; note sedimentary infilling textures; (e): close-up of laminated sulfides, showing pyrite microspherules and clot of pyrrhotite that replaced pyrite microparticles; (f): dense pyrite microparticle assemblage in pyrrhotite-chalcopyrite-iron silicate matrix; note chain-like arrays of particles.
thinly interbedded sulfidic-clastic layers; and 7) intercalated silicate-facies and sulfide-facies iron-formation.

Unit 1. Sediments underlying the ore lens are typically rhythmically layered, thin-bedded, light grey quartzofeldspathic siltstones, dark grey mudstones, and laminated argillites. Graded bedding and load casts are common, indicating that the beds are overturned. Mudstones may partly represent the upper fine-grained parts of siltstone turbidites. Argillites probably represent interturbidite sediments.

Unit 2. The “feeder pipe” alteration zone occurs within the sediments of Unit 1. The pipe is characterized dark green and cut by irregular, mm-scale veins generally at high angles to bedding. These veins consist of coarse-grained ankerite, stilpnomelane, pyrrhotite, and minor chalcopyrite. Intense wallrock alteration, comprising massive, fine-grained stilpnomelane and ankerite, extends for up to 1 cm from the veins and obliterates bedding (Fig. 5a). The ankerite also forms semi-continuous laminations that replace the coarser lower parts of the silt turbidites and obscures primary grading. Mudstones and argillites within this zone are pervasively enriched in alteration minerals.

The meandering, curving nature of the veins is a characteristic and important feature of this zone. We interpret these “wormlike” veins to be part of a feeder system; the style of veining suggests that the sediments were unconsolidated at the time of vein injection.

Unit 3. The footwall displays alteration over ~5 m immediately below the ore lens, but lacks the veins of the “pipe”. Carbonate occurs as clots of 1–2 mm width that give the rock a distinctive spotted appearance (Fig. 5b). Primary sedimentary features have been almost obliterated and replaced by a medium-to-fine-grained assemblage of stilpnomelane, ankerite, chlorite, grunerite, magnetite, alkali feldspar, mm-wide clots of pyrrhotite, and traces of disseminated chalcopyrite and sphalerite (Fig. 6a). The contact with the underlying feeder zone is gradual over 0.5 m.

Stilpnomelane is widespread in the Baby iron-formation of the Trough (Clark 1987), and is considered to be a low-temperature diagenetic or metamorphic phase of silicate iron-formation (Klein 1979). Stilpnomelane in the “pipe” and footwall zones may have been retrograded from a higher temperature hydrothermal assemblage. Ferruginous amphiboles, such as grunerite, are considered to be higher temperature products.

Unit 4. The contact between the footwall zone and the massive sulfide lens is sharp. The latter consists of sub-spherical pyrite framboids (1 to 3 cm wide) showing radiaxial internal structures (Fig. 6b) in a matrix of fine-grained, recrystallized, granoblastic pyrrhotite, chalcopyrite, sphalerite and traces of galena. Matrix gangue (10–15 vol. %) consists of ankerite, magnetite, and minor stilpnomelane and quartz. Pyrrhotite replaced pyrite framboids and magnetite, and is intergrown with carbonate and stilpnomelane. Chalcopyrite and sphalerite replaced the iron sulfides (Fig. 6c). The magnetite and pyritic framboids crystallized relatively early and may be either syngenetic or diagenetic.

Thin (<10 cm) lenticular beds of laminated sulfides also occur within the massive sulfide lens. These units are concordant with local bedding, and display small-scale sedimentary infilling textures at their lower contacts with massive sulfides (Fig. 6d). These beds are lithologically identical to the laminated sulfides of Unit 5.

Unit 5. The overlying laminated sulfides are a distinctive and important sediment lithofacies. Hand specimens are beige to chocolate-brown, aphanitic, and commonly display laminations <0.5 mm thick (Fig. 5c). Intervals up to a few cm in thickness that are devoid of laminations are also present. Because of their fine grain size, Unit 5 sulfides lack the metallic sheen of massive sulfides. The sediment consists of pyrite microspherules (5–10 μm diameter) disseminated throughout a coarser grained, recrystallized pyrrhotite–iron silicate–quartz–muscovite matrix (Fig. 6e). Irregular clots (0.1–5 mm wide) of pyrrhotite and chalcopyrite occur sporadically. The pyrite particles are either isolated or form short chain-like arrays (Fig. 6f). We interpret the pyrite particles to be a primary sedimentary feature; the sulfide matrix and clots, which are recrystallized, partly replace these particles.

The sub-mm-scale laminations are the result of alternating sulfide- and clastic-rich sediment. The clastic material is similar to that in the distal turbidites underlying and overlying the sulfide horizons (quartz–feldspar–mica). Silt turbidites up to 1 cm in thickness are locally present within the laminated sulfides, and display size grading, with increasing amounts of fine-grained sulfides towards the tops of beds. Aphanitic sulfide sediments lacking lamination contain scattered patches of quartz silt and coarser muscovite flakes.

Unit 6. “Banded” sediments consist of regular alternations of mm-scale sulfide-rich layers and silty turbidite layers (Fig. 5d). The laminated sulfides of Unit 5 pass laterally and locally upward into “banded” sediments through gradual increase in the number and thickness of the clastic intercalations. Microscopic textures in the thin sulfide-rich layers of the “banded” sediments are similar to those in the laminated sulfide unit. The silty turbidites, which are generally less than 1 cm thick, commonly grade from a light-colored lower siltstone to an overlying dark silty mudstone which represents the top of the turbidite. This sequence is followed either by: i) a sulfide-rich layer ~5 mm thick; ii) a very dark mud-
stone ~ 5 mm thick; or iii) a compound layer containing 2 to 3 sulfide-rich and mudstone-rich laminations, each 1–2 mm thick.

Unit 7. The laterally associated sulfide-facies iron-formation generally consists of dark green to brownish mudstones containing abundant stilpnomelane and granulite, carbonate, minor disseminated iron sulfides, and scattered quartz and feldspar. The iron-bearing minerals also occur as thin stringers sub-parallel to bedding, forming very dark layers ~5 mm thick. Thin, light-colored interbeds are common although of variable proportion; they are rich in muscovite and coarser quartz and sulfides, and contain minor plagioclase. The interbeds resemble the siltly beds of the turbidites, but are coarser grained due to strong recrystallization.

Laminated sulfide-facies iron-formation interbedded on the outcrop scale with the sulfide-facies iron-formation is perhaps more appropriately termed pyritic, graphitic slate. However, we maintain this term as it is conventionally employed in Labrador Trough mapping.

GEOCHEMISTRY

Thirty-two samples of various lithofacies have been analyzed for major and trace elements, and an additional 59 samples for trace elements and iron only. The data are given in Tables 1 and 2, respectively.

Massive and laminated sulfides. Massive sulfides analyzed in this study (17 samples) have an average composition of 1.28% Cu, 2.36% Zn and 0.19% Pb, with 22 g/t Ag and 0.8 g/t Au. Factor analysis (Table 3) indicates that the dominant components in the massive sulfides are: Zn–Cu–Pb–Ag–Au (44% of the variance), Fe–Co–Au (27%), and Cu–Ni–Au (29%). The first two components represent base-metal-dominated and iron-sulfide-

TABLE 1. CHEMICAL COMPOSITION OF MAIN LITHOLOGICAL UNITS AT THE SOUCY 1 MASSIVE SULFIDE DEPOSIT, LABRADOR TROUGH

| Sample | SiO2 % | TiO2 % | Al2O3 % | Fe2O3 % | FeO % | MnO % | MgO % | CaO % | Na2O % | K2O % | LOI % | Total Cu ppm | Zn ppm | Pb ppm | Ni ppm | Co ppm | V ppm | Cu ppm | Zn ppm | Pb ppm | Ni ppm | Co ppm | V ppm |
|----------|--------|--------|---------|---------|-------|-------|-------|-------|--------|-------|-------|---------------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| RW-296-86| 38.3 | 10.9 | 12.0 | 6.8 | 0.06 | 0.12 | 1.8 | 1.2 | 3.0 | 0.4 | 1.5 | 18.8 | 9.6 | 28.0 | 2.0 | 1.6 | 2.0 | 18.2 | 10.7 | 23.6 | 2.0 | 1.4 | 1.6 |
| RW-306-86| 36.9 | 10.7 | 12.0 | 6.8 | 0.06 | 0.12 | 1.8 | 1.2 | 3.0 | 0.4 | 1.5 | 18.8 | 9.6 | 28.0 | 2.0 | 1.6 | 2.0 | 18.2 | 10.7 | 23.6 | 2.0 | 1.4 | 1.6 |

*P = proximal, D = distal

Note: ZnM = Cu + Zn + Pb.
dominated groups, respectively, whereas the third component may reflect a Ni-bearing sulfide.

The laminated sulfides have an iron content comparable to that of the massive sulfides (≈ 26 versus ≈ 30%, respectively), but contain only 0.32% Zn and 0.15% Cu, and much lower Au and Ag contents. When the laminated sulfides are subdivided into "proximal" facies (i.e., overlying the ore lens) and "distal" facies (i.e., lateral to the ore lens), concentrations of Cu, Zn, Pb, Ag, and Au all show a further significant decrease over distances of up to a few hundred meters from the massive sulfides (e.g., Fig. 7). Thus, there are primary dispersion patterns for these metals within the laminated sulfide horizon. Factor analysis of major-element data indicates that the variance in the laminated sulfides is due to three components (dominant elements in brackets), interpreted as: 1) detrital quartz-plagioclase-rutile (Si-Ti-Al-Na: 33% of variance); 2) hydrothermal sulfides-oxides (Fe-Mn: 32%) and 3) an assemblage reflecting hydrothermal silicates-carbonates (Mg-Ca-Mn-Fe:P: 25%). The trace-element variance in these sulfides, based on a larger sample set, is controlled by three factors (Table 3). These factors are interpreted as: 1) detrital quartz-plagioclase-rutile (Si-Ti-Al-Na: 33% of variance); 2) hydrothermal sulfides-oxides (Fe-Mn: 32%) and 3) possible manganese oxide scavenging (Ni-Pb-Mn-Ag: 18%).

Figures 7c and 7d display geochemical trends for Au, Ag, and base metals in the four vertically continuous units: host turbidites, "pipe" and footwall alteration zones, massive sulfides, and laminated sulfides. Although each of the lithological units overlaps chemically, there is a general increase in precious and base metal content from turbidites to footwall alteration to laminated sulfides to massive sulfides.

Footwall alteration. Figures 8a and 8b show the average major- and trace-element compositions of unaltered and altered "pipe" turbidites. Assuming constant-volume alteration, which is suggested by apparently unmodified sedimentary textures such as smooth gradation and load casts in the turbidites, the alteration "pipe" is strongly depleted in K, Na and Ba, and slightly depleted in Si and Al relative to unaltered turbidites. Altered turbidites are enriched in Fe and Ca, as well as in most trace metals. Mg, Mn, Ti and P were apparently immobile during footwall alteration.

The most pronounced major-element compositional changes during alteration are plotted in Figures 8c and 8d: enrichment in Fe (sulfides, iron silicates) and in Ca (ankerite) accompanies a depletion in alkalis (leaching of the feldspathic component). The weakly correlated regression line included in Figure 8c indicates that there is variation in Fe₂O₃/Na₂O + K₂O in the unaltered turbidites, caused by the relative proportions of detrital ferromagnesian minerals and feldspar. The altered turbidites depart from this trend. (The enrichment in Ca in one unaltered turbidite in Figure 8d is due to 20% diagenetic calcite micnoddles.)

The immediate footwall alteration zone generally shows similar, if not more advanced, chemical alteration trends (Si, Al depletion; Fe enrichment). An important difference is that the alkalis are enriched (in the form of alkali feldspar) rather than depleted.
as they are in the alteration "pipe". This suggests that the alkali-leaching process effective in the pipe was interrupted, and in fact reversed, near the sediment-seawater interface prior to or during sulfide deposition.

Silicate iron-formation. Relative to laminated sulfides, silicate iron-formation (SIF) is enriched in Si, Mn, Mg and Ca, reflecting the abundance of ferromagnesian and carbonate minerals. SIF is depleted in Fe and all trace metals with the exception of V. Factor analysis of major-element data indicates that SIF is dominated by a detrital component (K-Al-Ti: 42%), together with hydrothermal (Fe: 17%) and secondary detrital (Na-Ti: 15%) components. Si is a fairly strong negative factor in all three components, indicating that free silica has a diluting effect on the three components.

Figure 9a shows a negative correlation between Fe and Si in laminated sulfides and unaltered turbidites. This indicates that the hydrothermal supply of Fe (as sulfide) acted as a diluent to Si supplied by clastic material in the laminated sulfides. The fact that silica decreases with increasing iron content rules out any significant hydrothermal contribution of silica in the laminated sulfides. Several SIF samples plot between the turbidites and laminated sulfides, suggesting that SIF contains both detrital silica and hydrothermal iron. The majority of SIF samples does not show an increase in Al with Si (Fig. 9b), as would be expected if the Al were associated with clastic silicates. The low Al values are consistent with the abundance of stilpnomelane and grunerite in the samples.

DISCUSSION

The Cu-Zn-rich composition of the Soucy massive sulfides is unusual for exhalative sediment-hosted massive sulfides, which tend to be Zn-Pb-rich (Gustafson & Williams 1981). The composition is in fact more typical of massive sulfides contained in bimodal volcanic sequences (Franklin et al. 1981). Sediment-hosted Cu-Zn massive sulfide deposits comparable to the Soucy sulfides occur in the Sagamagawa Schist Group, interpreted as a mixed metamorphosed volcanic-sedimentary sequence (Kanchira & Tatsumi 1970). These deposits, known as Besshi-type, typically have Cu/Zn ratios of ≈3 and are enriched in Co (≈1000 ppm). They are usually tabular or lenticular in shape and they apparently lack stringer alteration zones. Also ascribed to the Besshi type are other Cu-Zn sulfide deposits, with variable Cu-Zn ratios, which are hosted mainly by fine-grained terrigenous sediments (Fox 1984, 1988). These include deposits at Windy Craggy, Goldstream and Anyox in British Columbia, in the Blue Ridge belt of southeastern U.S.A. (Ducktown deposit: Stephens et al. 1984), in the Trondheim region of the Norwegian Caledonides (Nilsen 1978, Frietsch et al. 1979), and at Green Mountain, California (Mattinen & Bennett 1986). The Soucy deposit differs from these occurrences in having a footwall alteration zone, lower cobalt contents in the massive sulfides, a thick laminated sulfide blanket above the massive sulfides, and a regional setting within iron-formation (although metamorphosed iron-formation is associated with Cu-Zn deposits of the Kvikne district in the Norwegian Caledonides). The absence of some of these features in Besshi-type deposits may simply be a function of their higher metamorphic grade. Many of these deposits are thought to have formed in a tectonic setting analogous to that postulated for Soucy, e.g., the Caledonian deposits are located on the outer Baltoscandian shelf wedge (Gee 1975), and Ducktown in a failed continental rift related to the opening of the Iapetus (Feiss & Hauck 1980).

In modern oceans, only the sulfide-facies muds in the Atlantis II Deep of the Red Sea are significantly enriched in Zn and Cu (≈10% Zn and 2% Cu on a salt-free basis: Bäcker 1976), but these overlie young oceanic tholeiites flanked by thick evaporite sequences. The bulk composition of all facies of metalliferous muds in this Deep is ≈3.4% Zn and ≈1.3% Cu (Bignell et al. 1976).

The laminated sulfides

This unit extends at least a few hundred meters
beyond the limit of massive sulfide deposition. The fine lamination could reflect pulses of hydrothermal activity superimposed on a steady background accumulation of fine-grained clastic sediment. Lamination of apparently hydrothermal origin on a mm- to sub-mm scale has been documented in modern sulfides (Koski et al. 1984, Graham et al. 1988), and postulated for an Archean pyritic sulfide deposit (Fralick et al. accepted). On the other hand, episodic distal turbidites or annual clastic varving could interrupt more-or-less steady hydrothermal fallout. Sulfides with detrital microlaminations occur in the

![Graphs showing metal variations in massive and laminated sulfides at the Soucy deposit.](Image)
Zn–Cu-rich muds of the Atlantis II Deep, where they apparently result from seasonal variations in clastic input (Ross & Degens 1969), and in the Devonian Jason Pb–Zn deposit (Winn & Bailes 1987). The Soucy laminated sulfides also contain rare (= 1 cm) clastic turbidites; these are compositionally similar to the turbidites underlying the deposit and in the "banded" unit. Clastic turbidites have been reported from chemical sediments ranging from laminated sulfides at the Lower Proterozoic Sullivan Pb–Zn deposit (Hamilton et al. 1982), to Archean magnetite-rich iron-formation (Barrett & Fralick 1985).

The Soucy laminated sulfides bear a strong mesoscopic resemblance to the umbers associated with cupriferous massive sulfides of the Troodos ophiolite, Cyprus (Elderfield et al. 1972, Robertson & Hudson 1973). These classic ferromanganiferous oxide-rich umbers, which overlie volcanic-based massive sulfide deposits, consist mainly of goethite with subordinate quartz (Robertson 1976); fine clastic
laminations are also present. The numbers represent chemical precipitates formed by the interaction of metal-bearing hydrothermal solutions with oxygenated seawater. A similar origin has been ascribed to the chemical component of the Japanese hematite–chorite–quartz-bearing tetsusekiei which overlie the Kuroko ore deposits (Kalogeropoulos & Scott 1983). The tetsusekiei, which are <1 m thick, also contain an abundant clastic/tuffaceous component. In contrast, the very thick (up to 50 m) laminated sulfides at Soucy are dominated by pyrite–pyrrhotite, indicating that they were formed in contact with bottom waters which were anoxic, and contain quartzofeldspathic terrigenous rather than volcanic clastic material. Texturally, the closest modern analog is the sulfide-facies chemical sediment forming locally in the Atlantis II Deep, where various minerals precipitate within temperature- and salinity-stratified, oxygen-depleted layers, and settle on the basin floor as fine-grained laminated sediments (Ross & Degens 1969, Bäcker & Richter 1973, Bäcker 1976, Shanks & Bischoff 1977, Pottorf & Barnes 1983). Requisite to the formation and preservation of such lamination is the existence of a topographic sub-basin within which bottom-water circulation is limited or absent. Although the depositional setting at Soucy was likely a deeply foundered continental margin, rather than young ocean floor as in the Red Sea, topographically restricted euxinic sub-basins can form in the former setting, as evidenced by the mid-slope Orca Basin at 2000 m depth in the Gulf of Mexico (Shokes et al. 1977, Trabant & Presley 1978). We do not imply in the case of the inferred Soucy sub-basin that the bottom waters were hypersaline (as in the Red Sea and Orca Basin), but only that they were stagnant and euxinic.

Hydrothermal history

From the overall stratigraphic setting, we infer that the Soucy sub-basin was located on a foundered, deep-water continental margin block assumed to have been bounded by major faults. The presence of distal turbidite and pelitic interturbidite host sediments around the ore lens, and the abundance of thick gabbro sills, suggest a setting analogous to the early phase of spreading at the sediment-buried axis of the Gulf of California (Einsele 1982, 1985). One difference, however, is that hydrothermal solutions at Soucy apparently entered an anoxic bottom layer within a sub-basin, whereas in the Guaymas basin they are discharging into circulating oceanic bottom waters. We suggest that some of the sills at Soucy are synsedimentary, although most are coeval with the overlying Hellancourt basalts (Wares et al. 1988). The hydrothermal circulation system responsible for the massive sulfide deposit is inferred to have been driven by a heat source related to rising asthenosphere during early rifting. More advanced stages of rifting eventually led to pervasive sill intrusion on the foundered margin, and extrusion of basalt oceanward of the Soucy site.

A schematic outline of our model for the evolution of the hydrothermal systems which formed the massive and laminated sulfides of the Soucy deposit is given in Figure 10. Development can be envisaged in four main but overlapping stages.

Fig. 9. Fe–Al–Si relationships among unaltered turbidites, laminated sulfides, and silicate iron-formation. (a): Fe₂O₃ versus SiO₂; (b): Al₂O₃ versus SiO₂.
Stage 1. The central part of the Soucy sub-basin was fed directly from below by hydrothermal solutions, as indicated by the immediate footwall alteration and the veined feeder zone. The unusual curving nature of the veins indicates the sediments were not strongly lithified and did not fracture at the time.
they were traversed by the solutions. Discharging solutions in part simply may have diffused through the alteration zone; in the process, they strongly altered the sediment through removal of alkalis, Si and Al, and addition of Fe, Ca, and to a degree, trace metals.

Alkali were re-precipitated in the immediate footwall, perhaps as a result of a pH decrease related to mixing with seawater. The lack of veins in this thin footwall zone may mean that these sediments, originally within a few meters of the sediment–seawater interface, were too unconsolidated to support a vein system. If so, a series of discharge points on the seafloor may have existed, such that the lateral extent of the massive sulfides is similar to that of the highly altered sediments. On the other hand, baked surficial metalliferous sediments supporting vein systems are known to occur in the Red Sea (Zierenberg & Shanks 1983). If such veins were present in the thin zone of immediate footwall alteration at Soucy, they were subsequently destroyed by further alteration.

Stage 2. An initial phase of high-temperature, intense discharge produced the massive Zn–Cu-rich sulfides of the ore lens near a vent or series of vents. Factor analysis suggests that Pb, Ag and Au were deposited with Cu–Zn sulfides, whereas Co and Au accompanied iron sulfide deposition. As we have not observed evidence for the existence of chimney-type structures, we suggest that thin wedges of massive sulfide formed, extending perhaps several meters laterally from individual discharge sites. With time, such wedges may have coalesced laterally and vertically to produce a massive sulfide lens, particularly if discharge points shifted within a restricted lateral area situated above the main fault-controlled zones of hydrothermal upwelling. Massive sulfide deposits of about the same size have been described from the Explorer Ridge and Mid-Atlantic Ridge by Tunnicliffe et al. (1986) and Rona et al. (1986), respectively. Although these latter deposits overlie basaIs in an oxidized ocean-floor setting, they apparently formed as the result of numerous, migrating high-temperature discharge sites. Early generations of sulfides within seafloor deposits commonly have been recrystallized or partly replaced (or both) through "zone-refining" reactions with later hydrothermal solutions, as observed at Axial Seamount (Hékinian & Fouquet 1985, Hannington et al. 1986, Hannington & Scott 1988) and in the Galapagos axial valley (Embley et al. 1988). This may explain why the Soucy massive sulfides are more recrystallized and coarser than the underlying laminated sulfides, which, as discussed below, appear to represent bottom-layer fallout at much lower temperatures.

Stage 3. The Zn–Cu-rich sulfide precipitation phase was followed by a less intense, lower temperature phase which continued to inject hydrothermal solutions into a bottom-water layer. Iron sulfides were precipitated from this layer and were deposited together with thin, fine-grained clastic layers, producing the finely laminated texture. The occurrence of cm-scale wedges of laminated sulfides in the massive sulfide lens suggests that Fe-sulfide saturation of the bottom layer was achieved before the end of massive sulfide deposition. The presence of up to 50 m of laminated sulfides supports the long-term existence of a stable bottom-water layer. Based on the lateral extent of this lithology, the width of the sub-basin was = 1 km. The laminated sulfides have an iron content comparable to that of the massive sulfides, but contain only ~0.3% Zn and ~0.2% Cu. The low base metal content of the Soucy laminated sulfides relative to those in the Red Sea may reflect the existence of a low-salinity bottom layer which was not capable of transporting metals laterally (as chloride complexes) to the same degree as the hypersaline Red Sea brines. Interestingly, the base metal composition of the Soucy laminated sulfides is similar to that of the Red Sea oxide-facies metalliferous sediments which represent more vent-distal facies (Bäcker 1976).

In the laminated sulfides, the size range of the pyrite particles, which we interpret as primary chemical precipitates, is comparable to the size of particles in hydrothermal smoke at active vents in open-ocean rift settings (Converse et al. 1984). It is therefore also possible that some of the pyrite particles represent smoke derived from nearby vents, but trapped in the non-circulating bottom layer. This process conceivably could operate in addition to precipitation from a supersaturated water layer. If some of the pyrite represents smoke particles, it differs from particles at modern vents, which are dominated by pyrrhotite with lesser amounts of sphalerite and chalcopyrite, though pyrite is not uncommon (Converse et al. 1984, Feely et al. 1987). The higher Cu–Zn–Pb–Ag–Au contents of the proximal relative to distal laminated sulfides reflect either a primary dispersion as initial precipitates, or the presence of redeposited fine-grained sulfides eroded from the vent area. Only a small proportion of smoke particles enriched in base and precious metals would have to mix with the ambient fallout of iron sulfides from the saturated bottom layer to produce the observed distribution. Enrichments in Cu and Zn in suspended matter near the inferred vent sites in the Atlantis II Deep bottom layer have been observed and are thought to occur as sulfides (Hartmann 1973).

Stage 4. The bottom-water layer periodically overflowed the edges of the sub-basin, carrying dissolved or finely particulate iron laterally. As the sub-basin gradually was filled with laminated sulfides, overflow of Fe-rich solutions may have become the dominant process. Overflow could have been
instrumental in producing the silicate- and sulfide-facies iron-formations which are at least partly the lateral equivalents of the laminated sulfide unit (see also Gross 1983). Depending on the degree to which an iron-bearing bottom layer replaced more normal bottom waters, and the extent of contemporaneous turbidite sedimentation, three end-member types of lithological unit can be postulated: i) sulfide-facies iron-formation in reduced bottom waters with limited hemipelagic contribution; ii) silicate-facies iron-formation (containing ferrous and ferric iron) in less reduced bottom waters with a modest clastic contribution; and iii) “banded” sediments containing sulfide and clastic layers in reduced bottom waters with a significant input of turbidites. Because bottom topography was probably irregular, localized bottom-water layers separated by areas of variable turbidite deposition would have been the norm, leading to complex lateral and vertical facies relationships among these lithologies. Given that ocean waters in the Lower Proterozoic were probably more reduced than modern oceans (Maisonneuve 1982, Walker & Brimblecombe 1985), they may have provided some of the reduced sulfur in the sulfide-facies iron-formation (Fig. 10c). SIF may have formed authigenically and/or through metamorphic combination of iron and the fine-grained detrital quartz. Figure 10c schematically illustrates chemical sediments with a minor clastic component on one side of the Soucy sub-basin, and clastic/chemical sedimentation on the other (note the difference in lateral scales). In this model, the “banded” sediments, as well as the silicate- and sulfide-facies iron-formation, can also transgress over the laminated sulfides during waning stages of hydrothermal activity.

CONCLUSIONS

The Soucy massive sulfide deposit apparently formed in a sub-basin on the collapsed continental margin of a Lower Proterozoic rift system, prior to extrusion of basaltic seafloor. We infer that hydrothermal discharge was focused by faults related to the overall extensional regime. A massive sulfide lens, up to 40 m thick and 400 m in lateral extent, averaging \(\approx 2\% \) each of Cu and Zn, is conformably overlain by up to 50 m of laminated, very fine-grained sulfides containing only \(\approx 0.3\% \) Zn and \(\approx 0.2\% \) Cu. Laminated sulfides also extend laterally a few hundred meters beyond the massive sulfides; primary dispersion patterns are shown by Cu, Zn, Pb, Ag and Au, with highest values near the ore lens.

These relationships suggest that two different hydrothermal systems operated during sulfide deposition. The first was a high-intensity high-temperature stage that locally precipitated Cu-Zn-rich sulfides of the main ore lens. The second was a lower temperature, lower intensity stage which led to “fallout” of Fe-rich sulfides from a non-circulating bottom layer; thin clastic layers produce a finely laminated texture to these sulfides. The sharp boundary between the massive and laminated sulfides indicates that the intensity of hydrothermal discharge decreased abruptly. During deposition of the Fe-rich laminated sulfides, a base and precious metal-rich component was superimposed in the proximity of the ore lens. This component may reflect either a primary dispersion as initial precipitates, or the presence of redeposited fine-grained sulfides eroded from the vent area. The chemical component of interbedded silicate- and sulfide-facies iron-formation and interlayered sulfide/clastic sediments occurring along strike from the laminated sulfides is interpreted to have resulted from spillover effects from the hydrothermally influenced bottom-water layer in the sub-basin.

The Soucy deposit shares some general features with Besshi-type deposits, but also records stratigraphic, sedimentological, and hydrothermal characteristics which have not been recognized. This is partly a result of the low degree of metamorphism in the foreland belt of the Labrador Trough, relative to amphibolite-grade terranes of classic Besshi-type deposits.

ACKNOWLEDGEMENTS

We thank the Ministère de L’Énergie et des Ressources du Québec (MERQ) for permission to publish this paper. We thank Dr. S.D. Scott and an anonymous reviewer for their constructive comments on the paper, and Dr. W. MacLean for reviewing an earlier version of the manuscript. Mr. Tom Ben- sids did much of the drafting. This work was supported through of a research contract from the MERQ on the metallogeny of the northern Labrador Trough.

REFERENCES

PROTEROZOIC SULFIDE DEPOSIT

FYREY, B.J. (1972): Age determinations in the Circum-Ugava geosyncline and the evolution of Precambrian iron formations. Can. J. Earth Sci. 9, 652-663.

KLEIN, C., Jr. (1979): Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Econ. Geol. 68, 1075-1088.

Received October 22, 1987; revised manuscript accepted May 28, 1988.