IMMISCIBILITY BETWEEN ARSENIDE AND SULFIDE MelTS: A MECHANISM FOR THE CONCENTRATION OF NOBLE METALS

FERNANDO GERVILLA
Instituto Andaluz de Ciencias de la Tierra y Departamento de Mineralogía y Petrología, Facultad de Ciencias, C.S.I.C. – Universidad de Granada, 18002 Granada, Spain

MARC LEBLANC
Geofluides – Bassins – Eau, URA 1767 CNRS, Université de Montpellier II – Sciences et Techniques, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

JOSE TORRES-RUIZ AND PURIFICACIÓN FENOLL HACH-ALÍ
Instituto Andaluz de Ciencias de la Tierra y Departamento de Mineralogía y Petrología, Facultad de Ciencias, C.S.I.C. – Universidad de Granada, 18002 Granada, Spain

ABSTRACT

Evidence of immiscibility between arsenide and sulfide melts can be observed locally in the magmatic ores associated with the Carratraca (Serranía de Ronda, southern Spain) and Beni Bousera (northern Morocco) lherzolite massifs. They occur in the form of Fe–Ni–Cu sulfide ores containing arsenide globules. The globules are interpreted as droplets of an immiscible arsenide melt with a composition close to that of maucherite – nickeline, suspended in the sulfide melt. Both arsenide melts depleted in As with respect to maucherite and those with As contents higher than nickeline tend to dissolve increasing amounts of Co, Fe and S. The above lines of evidence support the genetic model for the chromite – Ni arsenide ores and the sulfide – graphite ores described in the Serranía de Ronda and Beni Bousera lherzolite massifs. The model considers that the early crystallization of chromite collected most Os, Ir and Ru, while gold and the remaining PGE were partitioned into an immiscible arsenide melt, leaving a sulfide melt depleted in PGE and Au. Thus, although chromite – Ni arsenide ores show higher PGE (0.9–5 ppm) and Au (3–18 ppm) contents than Fe–Ni–Cu sulfide – graphite ores (0.18–0.42 ppm PGE and 0.03–0.07 ppm Au), sulfide ores containing arsenide globules of approximate maucherite composition display intermediate noble metals abundances (0.6–1.07 ppm PGE and 0.07–0.45 ppm Au). These data suggest that PGE and Au have a higher affinity for arsenide melts than for sulfide melts, remarking their importance as collectors of noble metals in nature.

Keywords: Ni-arsenide melts, sulfide melts, immiscibility, platinum-group elements, mechanism of concentration, Ronda peridotite, Spain, Beni Boussera peridotite, Morocco.

SOMMAIRE

Des preuves de l’immiscibilité des liquides arsenié et sulfuré peuvent être observées localement dans les minéralisations magmatiques des massifs lherzolitiques de Carratraca (Serranía de Ronda, Espagne) et de Beni Boussera (Rif, Maroc). On y trouve des minerais massifs de sulfures Fe–Ni–Cu renfermant des globules d'arséniures. Ces globules sont interprétés comme des gouttelettes d'un liquide arsenié immiscible, de composition nickélière (maucherite – nickeline), en suspension dans le liquide sulfuré. Qu'ils soient relativement pauvres en arsenic (par rapport à la maucherite) ou plus riches en arsenic que
INTRODUCTION

Although arsenic is generally concentrated by late hydrothermal processes, it can also be concentrated at the magmatic stage. An example of the latter situation has been described in spessartite at Laucane (Montagne Noire, southern France) by Béziat et al. (1993, 1996) and in lherzolite massifs at Serranía de Ronda (southern Spain) and Beni Bousera (northern Morocco), where two types of genetically related magmatic mineralization are known: 1) Chromite – Ni arsenide ores (Cr–Ni ores) are composed of chromite and nickel arsenides (mainly nickeline with some nickeliferous löllingite, maucherite and westerveldite), with orthopyroxene or cordierite or both (Oen 1973, Oen et al. 1979, Gervilla & Leblanc 1990). These ores show high gold contents (between 3 to 35 ppm) and up to 2 ppm PGE (Leblanc et al. 1990, Torres-Ruiz et al. 1991). 2) Sulfide – graphite ores (S–G ores) consist of pyrrhotite, pentlandite and chalcopyrite, with minor chromite, variable amounts of graphite, with plagioclase and phlogopite (Gervilla & Leblanc 1990). These ores are depleted in precious metals by a factor of ten with respect to the Cr–Ni ores (Leblanc et al. 1990).

Gervilla & Leblanc (1990) have proposed that these types of ore result from the early crystallization of chromite, followed by the segregation of an immiscible As-, S-rich melt. They also proposed that the segregation of an arsenide melt then led to the high-temperature crystallization of the Ni arsenides (Oen et al. 1971, Gervilla & Rönsbo 1992) among the chromite grains and the formation of a S-rich residual liquid. During this process, noble metals were proposed largely to collect in the arsenide melt and to concentrate in Cr–Ni ores, which led to the formation of an Au- and PGE-depleted sulfide melt.

The above metallogenic context provided us with a good opportunity to study the behavior of both arsenide and sulfide melts and their role in the segregation and fractionation of gold and PGE. For that purpose, we have studied selected samples collected from the Amasined occurrence in northern Morocco and from the Los Jarales mining district in southern Spain. In both localities, magmatic arsenides and sulfides coexist. In the present paper, we describe the textural relationships between arsenides and sulfides that are considered a consequence of immiscibility of a minor (Ni,As) melt in the host (Fe,Ni,Cu) sulfide melt. We stress the potential importance of this process for the concentration of noble metals in an As-bearing melt.

GEOLOGICAL SETTING AND OCCURRENCE

The Amasined occurrence and the Los Jarales mining district are located, respectively, in the Beni Bousera and Carratraca lherzolite massifs in northern Morocco and Serranía de Ronda, southern Spain, respectively. Both belong to a distinct set of Alpine-type peridotite massifs scattered in the westernmost part of the Betico-Rifean Alpine belt (Fig. 1). These massifs represent portions of lithospheric mantle emplaced at high temperature in the continental crust. From radiometric dating, the crustal emplacement of the massifs took place at around 21 m.y. (Priem et al. 1979, Zindler et al. 1983).

The Beni Bousera and Carratraca lherzolite massifs occur within high-grade metamorphic rocks (Loomis
IMMISCIBILITY BETWEEN ARSENIDE AND SULFIDE MELTS

Fig. 1. Location of the Betico-Rifean lherzolite massifs in the Western Mediterranean alpine belt. a: External Zones, b: Internal Zones, c: ultramafic massifs, 1: Carratraca massif, and 2: Beni Bousera massif. The distribution of ore occurrences related to the mineral-facies zonation of the Carratraca (from Soto & Gervilla 1991) and Beni Bousera (from Reuber et al. 1982) lherzolite massifs also are shown. Black stars: occurrences of Cr-Ni ore, black circles: occurrences of S-G ore. Zoning of the lherzolite massifs: 1: Seiland subfacies of the spinel lherzolite facies, 2: Ariegite subfacies of the spinel lherzolite facies, 3: garnet lherzolite facies. This zoning is based on the work of Obata (1980), who defined the garnet lherzolite facies in the Ronda peridotite from the equilibrium between forsterite and pyrope in lherzolite, and the spinel lherzolite facies from the equilibrium between forsterite and spinel in lherzolite. The two subfacies of the spinel lherzolite facies were differentiated by the paragenetic assemblage in the pyroxenite layers present within spinel lherzolite. In the Ariegite subfacies, pyrope + diopside + enstatite coexist, and in the Seiland subfacies, spinel + diopside + enstatite coexist.

1972, Torres-Roldán 1981, Tubía 1985), and are made up of lherzolite and harzburgite with various types of pyroxenite layers. They show an incomplete zoning of mineral facies from the garnet lherzolite facies to the Ariegite subfacies of the spinel lherzolite facies, and then to the Seiland subfacies of the spinel lherzolite facies (Kornprobst 1969, Reuber et al. 1982, Soto & Gervilla 1991, Targuisti 1994). The existence of true
garnet lherzolite facies rocks in Beni Bousera remains controversial, because Kornprobst (1969) ascribed the presence of garnet in the external zone of the peridotite body to an extreme boudinage of garnet pyroxenite layers, and Reuber et al. (1982) identified only small areas consisting of pyroxene-poor garnet lherzolite (garnet dunite) (Fig. 1).

The zonation of the Betico-Rifean lherzolite massifs was interpreted as the result of dynamic cooling of a portion of the mantle during its ascent from approximately 100 km to the base of the crust (Obata 1980, Kornprobst & Vielzeuf 1984). However, recent studies in the Ronda peridotite massif have shown that its present petrological and geochemical features are the consequence of the superimposition of a large-scale system of magma percolation onto an old, metamorphosed lithospheric protolith during the later stages of its mantle evolution in a suprasubduction environment (Remaldaí 1993, Gervilla & Remaldaí 1993, Garrido 1995, Van der Wal & Bodinier 1996), just before its tectonic emplacement in the crust. Samples of garnet lherzolite from the ancient lithosphere (not affected by the late percolation event) contains anomalously high levels of As [up to 4.8 ppm in sample OJ–223 of Torres-Ruiz et al. (1991), from the Ojén Massif], whereas some samples of non-percolated garnet pyroxenite contain graphitized diamond (Pearson et al. 1989, Davies et al. 1993) and primary nickel arsenides (Lorand 1987), and they show geochemical features compatible with an origin as high-pressure crystal segregation in magma conduits, the batches of magma being derived from a subducted oceanic lithosphere (Pearson et al. 1993, Garrido 1995). Pearson et al. (1993) also considered this oceanic lithosphere hydrothermally altered and sediment-bearing. During the late percolation of melt, the infiltrated melt reacted with the host rocks, giving rise to depleted peridotite (or pyroxenite equilibrated with the percolating melt: Garrido et al. 1993, Garrido 1995) and differentiated melts (Kelemen 1990). Incompatible elements (including S, As, C and noble metals), and other more compatible elements like Cr, were transported preferentially downstream, toward the percolation or reaction front (Navon & Stolper 1987, Godard et al. 1995), thus producing Cr-bearing, S- and As-enriched melts capable of forming the peculiar ores present in these massifs. Note that the most As-enriched ores in the Ronda peridotite all occur downstream from the percolation or reaction front defined by Van der Wal & Bodinier (1996).

The Amasined occurrence

This occurrence is located in the lowermost part of a cliff on the northern exposure of the Beni Bousera lherzolite massif (Fig. 1). It consists of a lens, 20–30 meters long and up to one meter thick, of massive sulfides oriented more or less parallel to the foliation of the enclosing spinel lherzolite, which trends NW–SE and dips SW. In detail, the sulfide lens is clearly discordant with the foliation of the peridotite. The mineralization occurs along a main fault-zone oriented NW–SE, then is cut by late faults that trend N160°E. Disseminated mineralization also occurs in the brecciated peridotite.

The ore association in the main sulfide lens consists of hexagonal pyrrhotite, pentlandite, violarite, chalcopyrite, talnakhite, nickelene, maucherite, westerveldite, cobaltite, chrome, graphite and minor molybdenite and melonite, with partly chloritized phlogopite as a silicate component. Secondary amphiboles, chlorite and magnetite are locally present along the N160°E faults.

Sulfides represent more than 80 vol.% of the ore minerals. This fraction consists of pyrrhotite crystals with scarce flame-like exsolution lamellae of pentlandite, and with intergranular violarite and aggregates of chalcopyrite – talnakhite. The other ore minerals are distributed through the sulfide lens with a remarkable upward transition: 1) arsenides are restricted to the lower 5 cm along the footwall of the orebody; above this arsenide-bearing zone, there are only minor sulfarsenides; 2) chrome crystals are scattered mainly in the lower and middle part, and 3) graphite, molybdenite and phlogopite are more abundant toward the top of the orebody.

Although arsenides are localized in a narrow basal zone, they display important textural and mineralogical variability. Along the lower contact, arsenides occur as round to lobate globules within the sulfide mass or along the border of the chromite crystals (Figs. 2A, B). These globules either show a core of nickelene rimmed by radically fractured maucherite, with westerveldite along the cracks (Figs. 2A, B, 3C), or consist of fractured maucherite only. Locally, these globules include scarce crystals of a PGE-free, Bi-rich Ni telluride, probably melonite. Above this lower zone, the arsenide globules tend to be more spheroidal, and they are composed of highly fractured maucherite (Fig. 2C). In the upper part of the arsenide zone, maucherite globules are surrounded by subidiomorphic crystals of nickeliferous cobaltite (Fig. 2D). These maucherite – cobaltite globules grade upward to aggregates of arsenides with an increasing ratio of cobaltite to maucherite.

Chromite occurs as disseminated grains or as chromite-rich sigmoidal lenses showing flow textures, essentially in the lower half part of the mineralized zone. The relatively large (>0.5 mm) crystals of chromite contain abundant polyphase inclusions (up to 50% of the grain) dominated by the association phlogopite – albite – quartz – (sulfides) (Leblanc & Gervilla 1994). The chemical composition of chromite (51–42 wt% Cr2O3, 23–15 wt% Al2O3, 5–2 wt% MgO, 31–25 wt% FeO, 1.5–0.9 wt% V2O3, 0.95–0.35 wt% ZnO and 0.71–0.23 wt% TiO2) is within the range of
values reported for chromite in the S–G ores by Gervilla & Leblanc (1990). The presence of some Zn in
the chromite rather than as Zn sulfides is consistent
with an orthomagmatic origin of the ore (Naldrett 1979).

Phlogopite (more or less transformed to chlorite),
and minor graphite and molybdenite are slightly more
abundant toward the hanging wall of the orebody,
although they are also found as tabular crystals (rarely
forming clusters of crystals) disseminated throughout
the sulfide lens.

Secondary hydrothermal alteration occurred along
the N160°E faults, resulting in: a) the corrosion of
chromite and the development of a magnetite rim and
of magnetite crystals around the chromite grains, b) the
leaching of sulfides, and c) the crystallization of a
complex association of amphibole and chlorite
(± berthierine).

Los Jarales mining district

Los Jarales is a small mining district located in the
southwestern part of the Carratraca massif. Several
deposits of chromite – Ni arsenide ore (San Juan, El
Inglés, and Pozo Moreno) and sulfide veins (Los
Pobres) occur there (Fig. 1). Although the mineral
association of Cr–Ni ores is well preserved, the S–G
ores are strongly weathered to graphite-rich ores.

Fig. 2. Morphology of different arsenide globules from Amasined. Abbreviations: Mch: maucherite; Nc: nickeline; Ws: wester-
veldite; Cob: cobaltite; Po: pyrrhotite and Chr: chromite.
Nickel arsenides occur as round to lobate globules (Fig. 3A). Their composition is very variable; the following types occur: 1) globules of maucherite, 2) globules of nickeline, and 3) composite globules including a nickeline core rimmed by maucherite, containing westerveldite along radial fractures or with a thin and discontinuous corona of Co- and Fe-rich gersdorffite (Figs. 3A, B). In the latter type of globules, nickeline shows exsolution lamellae of pyrrhotite; inclusions of gold may be present also, especially where the ratio nickeline:maucherite is very high. All these globules coexist with globules rich in nickeliferous löllingite and aggregates consisting of nickeliferous löllingite, maucherite, nickeline, pyrrhotite and native gold. In spite of textural variations, the presence of lamellar intergrowths of nickeliferous löllingite and maucherite, surrounded by late maucherite, is noteworthy (Fig. 3D). Abundant minute grains of gold are present along the contacts between the löllingite – maucherite intergrowths and the late maucherite (Fig. 3D); gold also occurs at the contacts between nickeline and löllingite, and within maucherite.
Analytical methods

Selected arsenides and sulfarsenides were analyzed with a CAMECA SX50 electron microprobe at the Technical Services of the University of Granada. The analyses were performed at 20 kV and with a beam current of 20 nA, using CuFeS₂, GaAs, NiS and Co metal as standards. Wavelengths employed were SKα, AsLβ, FeKα, NiKα and CoKα. Our analytical results are in good agreement with previous data reported from the same ores, performed with a different microprobe and different analytical conditions (Oen et al. 1971, Gervilla & Rønnsbo 1992).

Whole-rock ore samples were analyzed by X-Ray Assay Laboratories Ltd., Don Mills, Ontario. The procedure involves a fire-assay preconcentration, followed by neutron activation. The detection limits are 1 ppb for Au, Pd, Pt, Ru, Rh and Ir, and 3 ppb for Os. The latter is the most volatile PGE and was probably partly lost during preconcentration processes, resulting in lower values. Detection limits increase for samples with high arsenic contents, which require a more elaborate procedure, including a second nickel sulfide fire assay after dissolution of the first NiS button, and then concentration in resin. Precision and accuracy are strongly dependent on the “nugget effect” and on the small size of some samples.

Modal proportion of the different globules were calculated using an image analyzer from scanned photographs because the fineness of the maucherite – westerveldite and maucherite – jöllingite intergrowths did not allow for mineral separation.

| TABLE 1. CHEMICAL COMPOSITION OF THE VARIOUS PHASES IN GLOBULES FROM AMASINED (AM) AND SAMPLE Re-6180 (RE) |
|---|---|---|---|---|---|---|---|---|
| Sample | mineral | n | S | As | Fe | Ni | Co | Total |
| AM-1 | Nc | 3 | 0.19 | 54.66 | 0.07 | 43.98 | 0.50 | 99.99 |
| Mch | 2 | 0.19 | 47.04 | 0.54 | 51.47 | 0.41 | 99.85 |
| Ws | 1 | 0.42 | 54.61 | 34.11 | 8.34 | 0.54 | 98.02 |
| AM-2 | Mch | 8 | 0.33 | 48.85 | 0.48 | 51.20 | 0.37 | 99.22 |
| Cob | 8 | 19.21 | 44.50 | 3.43 | 10.55 | 21.13 | 99.73 |
| AM-3 | Nc | 3 | 0.27 | 54.76 | 0.09 | 43.95 | 0.51 | 99.59 |
| Mch | 4 | 0.24 | 47.60 | 0.15 | 51.67 | 0.44 | 100.09 |
| AM-4 | Mch | 9 | 0.32 | 46.94 | 0.28 | 51.89 | 0.37 | 99.80 |
| Cob | 3 | 19.25 | 44.54 | 4.70 | 10.86 | 20.35 | 99.70 |
| AM-5 | Nc | 5 | 0.21 | 54.59 | 0.08 | 43.97 | 0.50 | 99.95 |
| Mch | 3 | 0.17 | 47.08 | 0.17 | 51.29 | 0.43 | 99.15 |
| Ws | 3 | 0.73 | 53.92 | 34.14 | 8.86 | 0.55 | 98.21 |
| RE-1.1 | Mch | 4 | 0.04 | 47.64 | 0.55 | 52.07 | 0.51 | 100.81 |
| Ws | 2 | 0.09 | 55.93 | 28.99 | 15.29 | 0.92 | 101.22 |
| Gd | 7 | 18.37 | 46.18 | 9.50 | 17.97 | 8.38 | 100.40 |
| RE-1.2 | Mch | 6 | 0.35 | 47.17 | 1.68 | 48.99 | 2.47 | 100.84 |
| Po | 1 | 3.94 | 60.00 | 19.09 | 0.27 | 0.20 | 99.25 |
| Lo | 6 | 0.48 | 70.02 | 15.23 | 8.89 | 4.40 | 99.62 |
| RE-2.2 | Nc | 3 | 0.10 | 55.17 | 0.57 | 44.35 | 0.40 | 100.59 |
| Mch1 | 1 | 0.10 | 47.63 | 1.14 | 51.71 | 0.40 | 100.98 |
| Mch2 | 6 | 0.33 | 47.36 | 1.82 | 48.56 | 2.63 | 100.49 |
| Po | 1 | 39.56 | 0.00 | 59.11 | 0.84 | 0.16 | 99.66 |
| Lo | 8 | 0.47 | 70.24 | 14.76 | 9.11 | 5.23 | 99.80 |
| RE-3.1 | Nc | 2 | 0.06 | 55.27 | 0.46 | 44.17 | 0.41 | 100.36 |
| Mch | 2 | 0.03 | 47.72 | 0.44 | 52.23 | 0.42 | 100.85 |
| Gd | 2 | 17.25 | 46.48 | 8.75 | 19.11 | 7.75 | 99.94 |
| RE-3.3 | Nc | 2 | 0.06 | 55.22 | 0.56 | 43.87 | 0.54 | 100.25 |
| Mch | 2 | 0.06 | 47.55 | 0.82 | 51.56 | 0.39 | 100.37 |

Symbols: Nc nickeline, Mch maucherite, Ws westerveldite, Cob cobaltite, Gd gersdorffite, Po pyrrhotite, Lo löllingite. The compositions quoted are the result of n analyses. The entries listed in the Sample column are all globules.
The arsenide globules

The chemical composition of arsenides and sulfarsenides in different globules from Amasined and sample Re-6190 (Los Jarales) are listed in Table 1. Nickeline displays distinct compositions: S-bearing and Fe-free in that from Amasined, and S-free and Fe-bearing in that from Los Jarales, where the nickeline contains small lamellar inclusions of pyrrhotite [probably exsolution lamellae along the (0001) planes of the host nickeline] and shows a slightly high ratio of metal to non-metal.

Maucherite associated with nickeline, westerveldite, cobaltite and gersdorffite shows a nearly homogeneous chemical composition, with minor amounts of sulfur, iron and cobalt, ranging between 0.03 and 0.33 wt% S, 0.15 and 0.82 wt% Fe, and 0.37 and 0.51 wt% Co. In löllingite-bearing globules and aggregates, the two texturally different varieties of maucherite also show distinct chemical compositions in terms of Fe and Co contents. The thin lamellae intergrown with the nickeleriferous löllingite correspond to (Ni_{10.82}Fe_{0.25}Co_{0.08})_{21.15}As_{8.78}S_{0.04}, whereas maucherite enveloping the nickeleriferous löllingite – maucherite intergrowths contain more Fe (up to 2.16 wt%) and Co (up to 3.12 wt%). The average formulae of the two aggregates of this type analyzed are (Ni_{10.25}Fe_{0.37}Co_{0.51})_{21.13}As_{7.73}S_{0.13} and (Ni_{10.15}Fe_{0.36}Co_{0.55})_{21.10}As_{7.78}S_{0.13}.

Fig. 4. Plot of the analyzed sulfarsenides with reference to the solvus in the condensed system CoAsS–NiAsS–FeAsS at 300°, 400°, 500°, 600°, and 650°C (Klemm 1965). Black circles: gersdorffite from sample Re-6190, black stars: cobaltite from the lower arsenide-rich zone at Amasined, black triangles: cobaltite from a maucherite – cobaltite aggregate above the lower arsenide-rich zone at Amasined. For comparison, we have also shaded the compositional fields of Ni–Co–Fe sulfarsenides in Cr–Ni ores (A) (Gervilla & Rømsbo 1992) and S–G ores (B) (Gervilla, unpubl. data).
Westerveldite from sample Re-6190 is much richer in Ni and poorer in Fe \([(\text{Fe}_{0.67}\text{Ni}_{0.34}\text{Co}_{0.02})_{21.03}\text{As}_{0.97}]\) than that from Amasined \([(\text{Fe}_{0.81}\text{Ni}_{0.20}\text{Co}_{0.01})_{21.02}\text{As}_{0.96}\text{S}_{0.02}]\); it resembles the composition of westerveldite from La Gallega (Cr–Ni ores), for which Oen et al. (1972) gave the average formula \((\text{Fe}_{0.63}\text{Ni}_{0.40}\text{Co}_{0.15})_{21.05}\text{As}_{1.00}\). The composition of westerveldite from Amasined is much closer to that described by Sizgoric & Duesing (1973), from a locality near the Birchtree mine, Thompson, Manitoba. These authors gave as its average formula \((\text{Fe}_{0.73}\text{Ni}_{0.32}\text{Co}_{0.01})_{21.06}\text{As}_{1.00}\).

The chemical composition of sulfarsenides plots in two clearly distinctive fields within the 500°C region of immiscibility in the system \(\text{CoAs}_2 – \text{NiAs}_2 – \text{FeAs}_2\) (Fig. 4). Gersdorffite from sample Re-6190 is rich in Fe and Co, with a composition ranging between 41 and 58 mol.% NiAsS, 23 and 30 mol.% FeAsS, and 17 and 30 mol.% CoAsS. This composition falls within the compositional field of sulfarsenides from Cr–Ni ores (Oen et al. 1971, Gervilla & Rønsbo 1992). Cobaltite from Amasined is mainly rich in Ni with some Fe, having a composition between 50 and 72 mol.% CoAsS, 20 and 36 mol.% NiAsS, and 11 and 18 mol.% FeAsS. This compositional range overlaps the field of sulfarsenides from S-G ores. In both localities, sulfarsenides are zoned, with their ratio \(\text{Co}/(\text{Co} + \text{Ni} + \text{Fe})\) increasing toward the contact with

Fig. 5. Chemical composition of the analyzed diarsenides in the system \(\text{CoAs}_2 – \text{NiAs}_2 – \text{FeAs}_2\). We have also represented the estimated solvus at 200°–300°C (Radcliffe & Berry 1968), at 625°C (Gervilla & Rønsbo 1992), and the experimentally determined extent of the immiscibility region at 800°C (Roseboom 1963). The shaded area shows the extent of the compositional field of Ni–Co–Fe diarsenides in Cr–Ni ores from the Betico-Rifean ultramafic massifs (Gervilla & Rønsbo 1992).
TABLE 2. BULK CHEMICAL COMPOSITION OF THE SULFARSENIDE-FREE GLOBULES LISTED IN TABLE 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>S</th>
<th>As</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-1</td>
<td>0.24</td>
<td>49.07</td>
<td>7.67</td>
<td>41.47</td>
<td>0.44</td>
<td>98.89</td>
</tr>
<tr>
<td>AM-3</td>
<td>0.29</td>
<td>50.14</td>
<td>9.29</td>
<td>39.33</td>
<td>0.48</td>
<td>99.53</td>
</tr>
<tr>
<td>AM-5</td>
<td>0.16</td>
<td>48.58</td>
<td>4.05</td>
<td>46.13</td>
<td>0.60</td>
<td>99.42</td>
</tr>
<tr>
<td>AM-6</td>
<td>0.28</td>
<td>47.02</td>
<td>0.30</td>
<td>51.90</td>
<td>0.57</td>
<td>99.87</td>
</tr>
<tr>
<td>Re-1.2</td>
<td>1.02</td>
<td>48.02</td>
<td>4.86</td>
<td>43.19</td>
<td>2.61</td>
<td>100.50</td>
</tr>
<tr>
<td>Re-2.2</td>
<td>1.49</td>
<td>59.77</td>
<td>10.39</td>
<td>24.84</td>
<td>3.73</td>
<td>100.22</td>
</tr>
<tr>
<td>Re-3.1</td>
<td>0.14</td>
<td>51.28</td>
<td>3.87</td>
<td>44.63</td>
<td>0.51</td>
<td>100.43</td>
</tr>
<tr>
<td>Re-3.3</td>
<td>0.14</td>
<td>50.86</td>
<td>6.41</td>
<td>42.58</td>
<td>0.53</td>
<td>100.52</td>
</tr>
<tr>
<td>Re-4.1</td>
<td>0.09</td>
<td>55.11</td>
<td>0.64</td>
<td>44.15</td>
<td>0.43</td>
<td>100.42</td>
</tr>
</tbody>
</table>

In this table, we have included the globules AM-5 and Re-4.1, which contain, respectively, only maucherite and nickelite, and the globule Re-3.1, which shows only a small crystal of gersdorffite attached to its boundary. Data are quoted in wt%.

TABLE 3. CONCENTRATION OF NOBLE METALS AND ARSENIC IN WHOLE-ROCK SAMPLES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pt</th>
<th>Pd</th>
</tr>
</thead>
<tbody>
<tr>
<td>K5 (*)</td>
<td>400</td>
<td>620</td>
<td>1000</td>
<td>240</td>
<td>1500</td>
<td>1400</td>
</tr>
<tr>
<td>O8811 (*)</td>
<td>16</td>
<td>150</td>
<td>490</td>
<td>65</td>
<td>460</td>
<td>610</td>
</tr>
<tr>
<td>O8813 (*)</td>
<td>18</td>
<td>190</td>
<td>420</td>
<td>82</td>
<td>430</td>
<td>550</td>
</tr>
<tr>
<td>O8643 (*)</td>
<td>88</td>
<td>210</td>
<td>380</td>
<td>91</td>
<td>410</td>
<td>540</td>
</tr>
<tr>
<td>RO9 (*)</td>
<td>110</td>
<td>170</td>
<td>270</td>
<td>48</td>
<td>310</td>
<td>390</td>
</tr>
<tr>
<td>LG02 (*)</td>
<td>51</td>
<td>133</td>
<td>432</td>
<td>59</td>
<td>320</td>
<td>370</td>
</tr>
<tr>
<td>LG03 (*)</td>
<td>36</td>
<td>118</td>
<td>300</td>
<td>36</td>
<td>270</td>
<td>310</td>
</tr>
<tr>
<td>RO14 (*)</td>
<td>56</td>
<td>120</td>
<td>210</td>
<td>35</td>
<td>250</td>
<td>280</td>
</tr>
<tr>
<td>RO25</td>
<td>82</td>
<td>130</td>
<td>140</td>
<td>38</td>
<td>190</td>
<td>220</td>
</tr>
<tr>
<td>RO26</td>
<td>95</td>
<td>110</td>
<td>290</td>
<td>29</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>AM2b</td>
<td>50</td>
<td>135</td>
<td>147</td>
<td>44</td>
<td>183</td>
<td>512</td>
</tr>
<tr>
<td>AM2c</td>
<td>32</td>
<td>62</td>
<td>140</td>
<td>45</td>
<td>182</td>
<td>437</td>
</tr>
<tr>
<td>EG2 (#)</td>
<td>9</td>
<td>13</td>
<td>23</td>
<td>10</td>
<td>25</td>
<td>116</td>
</tr>
<tr>
<td>EG6 (#)</td>
<td>11</td>
<td>18</td>
<td>30</td>
<td>12</td>
<td>62</td>
<td>54</td>
</tr>
<tr>
<td>I4 (#)</td>
<td>11</td>
<td>20</td>
<td>36</td>
<td>16</td>
<td>77</td>
<td>267</td>
</tr>
<tr>
<td>I5 (#)</td>
<td>8</td>
<td>16</td>
<td>26</td>
<td>8</td>
<td>3</td>
<td>140</td>
</tr>
</tbody>
</table>

Two samples listed are from Amasined (AM2b, AM2c), and two samples are from Los Pobres, Los Janales (RO25, RO26). Eight samples from Cr-Ni ores (*) and from S-G ores (#) (Leblanc et al. 1990, Torres-Ruiz et al. 1991) have been listed for comparison. The samples are listed in order of decreasing As content (quoted in wt%). The concentrations of the noble metals are quoted in ppb.

Whole-globule compositions have been calculated for ten different globules by taking into account the modal proportions of the different arsenides and their mineral chemistry. The results are listed in Table 2. There are no important compositional variations among the investigated globules. The composition of most of the arsenide globules is in the interval between 48 and 52 wt% As, and between 39 and 46 wt% Ni, with minor Fe (between 3 and 6 wt%). The lüllingite-composition is relatively homogeneous: 51-55 mol.% FeAs₂, 27-31 mol.% NiAs₂, and 14-21 mol.% CoAs₂. This composition overlaps the field of the diarsenides from Cr-Ni ores in the system CoAs₂-NiAs₂-FeAs₂; the field of diarsenides may represent, according to Gervilla & Rønnsbo (1992), the approximate position of the solvus at around 625°C (Fig. 5).
Fig. 7. Plot of concentrations of Au and PGE (total) versus As from Cr–Ni ores and S–G ores (Leblanc et al. 1990, Torres-Ruiz et al. 1991) from Los Pobres (Los Jarales) and Amasined (Table 3).
containing aggregates show higher As and Fe contents. In Figure 6, we have plotted the calculated compositions in the system Ni–As–Fe. This diagram shows that where the ratio As/Ni of the arsenide globules is high, these tend to contain more iron. Arsenic also is correlated with sulfur, which varies from 0 to 1.5 wt %.

Whole-rock noble-metal contents

The noble metal and As contents of two arsenide-bearing samples from Amasined and two samples from Los Pobres (an altered arsenide-bearing S–G mineralized sample from Los Jarales), together with

Fig. 8. Chondrite-normalized patterns of platinum-group elements for the analyzed samples from Amasined (Am2b and Am2c) and Los Pobres (Los Jarales) (samples Ro25 and Ro-26). The shaded areas represent: 1) Cr–Ni ores and 2) S–G ores from the Betico-Rifean Ihezolite massifs. At the right side of the figure, we have also represented the As content (wt%) of the samples and the minimum and maximum As contents of the analyzed Cr–Ni and S–G ores (data from Leblanc et al. 1990 and Torres-Ruiz et al. 1991, Table 3).
eight samples from Cr–Ni ores and four from S–G ores (Leblanc et al., 1990, Torres-Ruiz et al., 1991) are listed in Table 3. Samples from Amasined and Los Pobres have noble-metal contents between those of the Cr–Ni ores (0.9–5 ppm PGE, 3–18 ppm Au) and S–G ores (0.18–0.42 ppm PGE, 0.03–0.07 ppm Au, on average) from the various Betico-Rifean lherzolite massifs (Fig. 7). This figure also shows a striking positive correlation between concentrations of noble metals and of As in the different types of ores. It is interesting to note that grains of gold are present only in the arsenic-rich globules.

The chondrite-normalized patterns of the two samples from Amasined (Am2b and Am2c in Fig. 8) partly overlap the lower part of the field of Cr–Ni ores and show a positive slope from Os to Pd, with two slight negative anomalies in Pt and Au, resembling the shape of the field of S–G ores. The sample RO–25 (containing small amount of maucherite) shows the same pattern, but with a positive anomaly in Au similar to that in the patterns of Cr–Ni ores. The pattern of sample RO–26 (more altered than RO–25) shows a slight positive anomaly in Ru and negative anomalies in Pd and Pt; it contains more Au and less As than RO–25. This variation may result from alteration.

INTERPRETATION OF ORE TEXTURES AS THE CONSEQUENCE OF IMMISCIBILITY BETWEEN ARSENIDE AND SULFIDE MELTS

The mineral association and chemistry of the ores described above confirm the genetic link between Cr–Ni ores and S–G ores. The magmatic origin of these ores was discussed in detail in a previous contribution (Gervilla & Leblanc 1990); consequently, the peculiar textures reported here should be interpreted in the context of the magmatic evolution of arsenide and sulfide melts. However, a similar association of Ni arsenides, Ni sulfarsenides and Ni sulfides has been described recently in the Thompson mine (Thompson Nickel Belt, Manitoba) by Chen et al. (1993), who considered this association formed from hydrothermal reworking of previous Ni sulfide ores. In their model, the noble metal- and As-rich ores were attributed to a late event of low-temperature (250°C–300°C) hydrothermal alteration. The authors stressed the role of Cl-rich fluids in the concentration of the noble metals.

Comparing the mineralogical and chemical data reported in this paper with those for the Thompson mine, many differences can be observed, pointing to an orthomagmatic rather than a hydrothermal origin of the arsenide-bearing sulfide ores at Amasined and Los Jarales:

1. The sulfide lens at Amasined is hosted by relatively fresh peridotite, which shows extensive alteration only along late faults, whereas at the Thompson mine, the ores occur in metapelite and granitic pegmatite associated with alteration assemblages. At Los Jarales, the host peridotite is more serpentinized than at Amasined, although this alteration event corresponds to late regional serpentinization.

2. The morphology of most arsenide globules described in this paper can be compared with that of the sulfide globules reported in basaltic (cf. Czamanske & Moore 1977), which was considered a case of immiscibility of a sulfide melt in a basaltic melt. On the contrary, Ni arsenides and sulfarsenides from Thompson mine occur as late, cross-cutting veins.

3. Cobaltite and gersdorffite reported here exhibit chemical compositions that fall within the 500°C immiscibility region in the system CoAsS–NiAsS–FeAsS, showing that these sulfarsenides crystallized at higher temperatures and equilibrated on cooling broadly between 600°C and 500°C. This is in agreement with the composition of nickeliferous löllingite from sample Re–6190 and in contrast to the composition of gersdorffite from the Thompson mine. The latter is consistent with a lower temperature (250°C–300°C) estimated by Chen et al. (1993) for the formation of the As-rich ores.

4. If the extreme fractionation of Pd from Pt at Thompson mine ores is considered as evidence for fluid involvement in the concentration of PGE (Chen et al., 1993), then the low Pd/Pt ratio of the samples analyzed in this study (ranging between 0.84 and 2.80) further corroborates the orthomagmatic concentration of the PGE. It is also interesting to note that processes of low-temperature alteration at Los Jarales (samples from Los Pobres) produce impoverishment of both Pt and Pd.

In addition to the above lines of evidence, preliminary sulfur isotope data, obtained by means of an ion microprobe at Nancy (France), show that two samples from the central part of the Amasined orebody exhibit δ34S values of 1.4 and 0.7‰, and exsolution lamellae of sulfides in nickel from Los Jarales show δ34S values of −1.0‰. These isotopic compositions clearly indicate a magmatic origin of sulfur from a mantle source, in both deposits.

The observed ore textures at Amasined and in sample Re–6190 can therefore be interpreted by referring to the model of segregation of droplets of immiscible sulfide liquids from silicate melts. At Amasined, the mineralogical and textural variations of the ore could be explained by considering a dynamic model based on several influxes of chromite-bearing sulfide magma, the first one being rich in As. The following influxes of sulfide melt were progressively impoverished in As. Thus, the segregation of an immiscible arsenide melt from the sulfide melt took place only in the earlier batches of magma, whereas in the later batches, As remains dissolved in the sulfide melt (Fleet et al., 1993), then forming sulfarsenides on cooling. According to Fleet et al. (1993), small amounts of As, Te and Bi lower the freezing point of the sulfide melt. Hence, high As contents may prevent
the crystallization of a monosulfide solid-solution, promoting liquid immiscibility at relatively low temperatures (tentatively, around 1000°C). The flow texture of the chromite-rich sigmoidal lenses present within the sulfide ore is consistent with such a dynamic model. In sample Re-6190, As concentration was high enough to the formation of diarsenide-bearing globules, and the abundant arsenide melt collected most of the nickel, inhibiting the formation of a Ni-rich monosulfide solid-solution. This model explains the absence of pentlandite in the ore association.

Arsenide droplets behave as close systems, crystallizing according to the phase relations in the system Ni–As (Yund 1961) (Fig. 9). Thus from the composition of the arsenide melt (Fig. 6), the Ni–As phase diagram predicts that nickeline would crystallize at around 900°C, associated with liquid and vapor. Below 830°C, a peritectic reaction takes place, and maucherite replaces nickeline. Iron and the corresponding portion of arsenic should be used to form westerveldite during this peritectic reaction. The starting composition of the arsenide droplets determines the presence or absence of nickeline and westerveldite in the mineral association of the globules. Arsenide globules with As contents slightly lower than that of stoichiometric maucherite crystallize below 850°C to form nickeline + liquid + vapor, then transform below 830°C to maucherite + liquid + vapor, or they directly yield this association, which is transformed below 818°C to Ni$_{5-x}$As$_2$ + maucherite + vapor (Fig. 9). After the crystallization of maucherite at 830–818°C, the residual Co-rich As-depleted liquid concentrated at the borders of the globule, dissolving important amounts of sulfur, thus forming a corona of cobaltite (gersdorffite in sample Re-6190).

The mineralogy and texture of the löllingite-bearing globules do not correspond to what would be expected from the phase relations in the system Ni–As (Yund 1961) and in the system Ni–Fe–As at 800°C (Maes & de Strycker 1967, Buseck 1963). In our globules, nickeliferous löllingite is in equilibrium with maucherite (forming lamellar intergrowths) instead of with nickeline, suggesting later re-equilibration at lower temperatures. In fact, Oen et al. (1977) described
westerveldite (formed by replacement of nickeline) including fine exsolution blades of löllingite. These authors explained the löllingite – westerveldite – maucherite association from its crystallization at 450°C under partial pressures of arsenic, below that necessary to stabilize nickeline. On the other hand, the presence of a Co- and Fe-rich maucherite rim around the löllingite – westerveldite – maucherite aggregates further supports the idea that after the crystallization of the more stable arsenide phases at high temperature, a Co- and Fe-rich residual Ni–As melt is concentrated along the border of the globules, crystallizing either as maucherite or forming sulfsenarides. This residual arsenide melt also concentrates gold, which crystallizes as minute grains within the Co- and Fe-rich maucherite (Fig. 3D). Note that the melt of maucherite composition does not dissolve sulfur (and does not form sulfsenarides), as does the residual arsenide melt of Ni$_5$As$_2$ composition obtained after the formation of maucherite globules, from which the cobaltite – gersdorffite corona formed. These observations suggest that liquid immiscibility in the system Ni–Fe–As–S can take place in Ni arsenide melts of a restricted composition, near that of maucherite and nickeline (in the range 48–58 wt% As, Fig. 9).

Although this is the first description of a possible immiscibility relationship between arsenide and sulfide melts in nature, there exist Ni arsenide ores rich in noble metals that are associated with magmatic Ni sulfides with the same texture as that described here. They have been recognized in the offset of the quartz diorite “sublayer” at the Frood–Stobie mine at Sudbury, Ontario (W.V Peredery, pers. comm., 1994) and at the base of the olivine-rich Kabanga intrusion in Tanzania (D.M. Evans, pers. comm., 1994). The latter shows a basal zone enriched in Ni arsenides consisting of nickeline globules included in pyrrhotite – pentlandite ores.

In addition to the above lines of evidence, experimental data suggest that most arsenide and sulfide melts are essentially immiscible at high temperatures. Thus, in the system Pt–Pd–As–S at 850°C, Makovicky et al. (1991) found three different melts: 1) a barren As–S melt; 2) a Pt–Pd–As melt interconnected with a Pd–As melt that dissolved, respectively, 0.3 to 6.7 at.% sulfur and 1.5 to 9 at.% sulfur, and 3) a quaternary Pd–Pt–As–S melt with 20 to 40 at.% sulfur and up to 19 at.% arsenic. Similarly, in the system Pt–Fe–As–S at 850°C, Makovicky et al. (1992) also found three different melts: 1) a barren As–S melt; 2) a platinum-bearing Fe–As melt that can dissolve only 2.6 at.% sulfur, and 3) a sulfur-free Pt–As melt. The latter shows very limited solubility of sulfur, 3.5 at.% S as a maximum, even at 1,000°C (Skinner et al. 1976). These results indicate a limited capacity of arsenide melts to dissolve sulfur and show the restricted composition of the only arsenic-bearing sulfide melt found.

ROLE OF ARSENIDE AND SULFIDE MELTS AS COLLECTORS OF NOBLE METALS

The existence of droplets of an immiscible Ni–As melt in the sulfide melt during the formation of the Amasined and Los Jarales ores further supports the genetic relationship between chromite – Ni arsenide ores and sulfide – graphite ores in the Betic–Rifian Iherzolite massifs. In particular, these examples show how an immiscible Ni–As melt could be segregated from the former As–S-rich melt. However, an important question arises if the geochemical behavior of platinum-group elements is considered: Why are the S–G ores depleted in PGE by a factor of ten with respect to the Cr–Ni ores (Table 3, Fig. 7)? If the earlier immiscible Ni–As melt segregated from the former As–S-rich ore-magma was able to collect most Rh, Pt, Pd and Au (Os, Ir and Ru were previously concentrated in the chromite as sulfide, arsenide and sulfsenaridie inclusions: Leblanc & Gervilla 1988, Torres-Ruiz et al. 1996, Garuti et al. 1995), then we must assume that these noble metals have a higher affinity for arsenide melts than for sulfide melts. Nevertheless, this assumption must be considered as a general tendency for the platinum-group elements as a whole. Discrepancies could arise for individual PGE if we take into account their own partition coefficients between arsenide and sulfide melts (new experimental data are needed). For example, although the As-rich ores show the higher Pd values and a good correlation between both elements exists within the Cr–Ni ores (Table 3), consistent with the high capacity of Ni arsenides to dissolve Pd at different temperatures (Gervilla et al. 1994), for low As concentrations in S–G ores, Pd does not follow As, in agreement with the experimental results of Fleet et al. (1993).

Similar magmatic associations of PGE-rich arsenides and PGE-poor sulfides described in the literature further corroborate this conclusion: (1) in the Lewis Hills massif, Bay of Island Ophiolite Complex, Newfoundland, Edwards (1990) showed that during the fractional crystallization of probable boninitic-type melts, Os, Ru and, possibly, Ir sulfides were removed from the silicate melt and concentrated in chromite, then As saturation led to the crystallization of Pt and Pd arsenides (occurring as inclusions in both pyroxenes), and finally, barren base-melt sulfides crystallized; (2) the PGE in the offset of the quartz diorite “sublayer” at the Frood–Stobie mine, Sudbury, Ontario, display a similar distribution, with PGE-rich Ni arsenide ores (ranging between 10–150 ppm PGE), associated with massive sulfides relatively poor in PGE (ranging between 0.1–2 ppm) and with still further impoverished brecciated Ni sulfides (ranging between 0.5–1 ppm PGE) (W.V. Peredery, pers. comm., 1994). Furthermore Merkle (1992) explained the distribution of platinum-group minerals in a section of the Middle Group in the Bushveld Complex by the crystallization...
of immiscible sulfide melt, followed by resorption of these As-rich phases into the sulfide melt.

The above evidence suggests that arsenide melts can be formed by the As saturation in the silicate melt (prior to its saturation in S; Merkle 1992) or as immiscible droplets segregated from a sulfide melt. In either case, this arsenide melt could act as an efficient collector of PGE, giving rise to mineral associations containing PGE arsenides and PGE-bearing arsenides.

The good correlation between As and Au shown in Figure 7 indicates the capacity of arsenide melts to collect this noble metal. However, the textural relations that we described in the arsenide globules suggest that although gold can be collected by an arsenide melt, it tends to be concentrated in late associations in the rim of Co- and Fe-rich maucherite present around löllingite-bearing globules. Preliminary data in the system Ni–As–Au at 950°C (Gervilla & Makovicky, work in progress) support this conclusion.

Conclusions

Textural relationships between arsenides and sulfides in the Amas sine and Los Jarales mineralized occurrences, as well as their mineral and bulk chemistry, allow us to conclude that:

1) These ores were formed by the segregation of an immiscible Ni-arsenide melt with a composition close to that of maucherite and nickeline, from a sulfide melt. This is the first description of an immiscibility relationship between arsenide and sulfide melts in nature, although it is in agreement with experimental results of Makovicky et al. (1991, 1992) and Skinner et al. (1976) in different As- and S-containing systems. These authors have demonstrated the limited capacity of an arsenide melt to dissolve sulfur at temperatures as high as 1000°C.

2) The distribution of PGE and gold in the mineralized samples and in other arsenide and sulfide ores from the Bético-Rifian lherzolite massifs is consistent with the higher affinity of these noble metals for an arsenide melt rather than a sulfide melt. In other words, arsenic likely plays an important role in the distribution of platinum-group elements and gold in many magmatic Ni-Cu sulfide deposits. If, as suggested by Merkle (1992), the solubility of arsenic in mafic melts is more restricted than that of sulfur, the earlier formation of an immiscible arsenide melt could collect most noble metals; if any immiscible sulfide melt is formed later, it should be, therefore, depleted in these elements. The effectiveness of this process will depend on the As/S ratio of the parental magma.

Acknowledgements

This research has been financially supported by the Dirección General de Investigación Científica y Técnica (Projects No. PB92–0922 & AMB95–0512) and by the Junta de Andalucía (Research Group No. 4028). The authors greatly acknowledge E. Makovicky for his critical review of an earlier version of this paper, and L. Fontboté for his kindnes in providing us with excellent polished sections from old collections. We also acknowledge W.V. Peredery and D.M. Evans, who allowed us to reference their unpublished data, and to D. Béziat, for sending us a preprint of his paper on new evidence of the magmatic origin of As in lamprophyric dike-rocks (this issue). The comments of M.E. Fleet and S.-J. Barnes have greatly improved the final version of this paper.

References

IMMISCIBILITY BETWEEN ARSENIDE AND SULFIDE MELTS

KELEMEN, P.B. (1990): Reaction between ultramafic rock and fractionating basaltic magma. I. Phase relations, the formation of caI-alkaline magma series, and formation of discordant dunite. J. Petrol. 31, 51-98.

NADRETT, A.J. (1979): Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits – a reply and further discussion. Econ. Geol. 74, 1520-1528.

Received May 25, 1995, revised manuscript accepted December 7, 1995.