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ABSTRACT

Measured amounts of the compositional ranges of solid solutions in zoned crystals compared to predicted volumes can be
used to test the validity of thermodynamic models. Problems associated with estimating modes of zoned crystals include
automating the collection of analytical values on zoned crystals and evaluating the error in the estimation of the modal value.
The electron microprobe can be programmed to provide precise, simultaneous estimates of the compositions of zoned minerals
and the areas of compositional zones exposed on the surface of a thin section. With 10-second counting times on spots
automatically located on a grid, typical precisions (1 &, mol %) are: 0.32% Fa, 0.34% Fo, 0.24% An, and 0.63% Ab, Predicted
and measured volumes are compared using relative cumulative frequency curves. The shapes of these curves depend on
conditions of crystallization such as pressure, H,O content, and oxygen fugacity. The relative cumulative frequency curves for
spots collected on three olivine phenocrysts and four feldspar phenocrysts from the Nisga’a flow of northern British Columbia
show marked differences from those predicted from fractional crystallization models. An analysis of the effects of concentric
zoning on the estimation of fractional volumes from fractional areas in central sections through crystals shows that: 1) the areas
of outer shells will underestimate the volumes of the shells, 2) the fractional areas of inner shells overestimate the fractional
volumes of the shells, 3) the maximum error of estimation, as a percentage of the total volume of the crystal, is approximately
15% as a worst case, and the error can reach the maximum possible only if the shell has both a particular location and thickness,
4) the systematic errors that arise from estimating fractional volumes from fractional areas in section decrease with decreasing
thickness of shells, and 5) shells that have widths centered approximately two-thirds of the distance from the center to edge of
the crystal will have minimal (~0%) systematic error in their estimated volumes.

Keywords: point counting, systematic errors, mineral analysis, basalt, Nisga’a flow, British Columbia, electron-microprobe
analysis, thermodynamic modeling, compositional zoning.

SOMMAIRE

Les intervalles de composition mesurés dans les cristaux zonés d’espéces montrant une solution solide sont comparés avec
les volumes prédits afin d’évaluer la validité de modeles thermodynamiques. Il y a des problémes associés 2 1’évaluation de la
proportion modale de cristaux zonés, dont la collection automatisée de données analytiques pour caractériser les cristaux zonés
et I"évaluation de I’erreur associée avec I’analyse modale ¢’une roche. On peut programmer une microsonde électronique pour
produire des estimés précis, de fagon simultanée, de la composition de minéraux zonés et de 1'aire des zones compositionnelles
affleurant & la surface d’une lame mince. Avec des durées de comptage de dix secondes aux endroits automatiquement repérés
selon une grille, les précisions typiques (1o, pourcentages molaires) seraient: 0.32% Fa, 0.34% Fo, 0.24% An, et 0.63% Ab. Les
volumes prédits et mesurés sont comparés au moyen de courbes de fréquence cumulative. La forme de ces courbes dépend de
conditions de cristallisation, par exemple pression, teneur en H,0, et fugacité d’oxygene. Les courbes de fréquence cumulative
relative pour les résultats d’analyses ponctuelles prélevées sur trois cristaux d’olivine et quatre cristaux de feldspath de la coulée
de Nisga’a, dans le nord de la Colombie-Britannique, montrent des écarts importants des courbes prédites selon les modles de
cristallisation fractionnée. Selon notre analyse des conséquences de la cristallisation fractionnée sur I’évaluation des volumes
fractionnels de couches de croissance, dérivés des aires fractionnelles mesurées sur des coupes passant par le centre des cristaux,
il semble que: 1) I'aire des couches externes sous-estime le volume de ces couches, 2) I’aire fractionnelle des couches internes
surestime le volume fractionnel de ces couches, 3) I’erreur maximale de I’estimé, exprimé comme pourcentage du volume total
d’un cristal, serait d’environ 15% dans le pire des cas, I3 ol la couche posséde 2 la fois une location et une épaisseur
particulires, 4) les erreurs systématiques associées & I’estimation de volumes fractionnels 2 partir des aires fractionnelles dans
une section diminue 2 mesure que diminue I’épaisseur d’une couche, 5) les couches dont la largeur est centrée environ
deux-tiers de la distance du centre vers la périphérie devraient avoir une erreur systématique minime (~0%) dans le volume
estimé.

(Traduit par la Rédaction)

Mots-clés: analyse modale, erreurs systématiques, analyse de minéraux, basalte, coulée de Nisga’a, Colombie-Britannique,
analyse 2 la microsonde électronique, modele thermodynamique, zonation en composition.

* LITHOPROBE contribution number 858.
! E-mail address: nicholls @geo.ucalgary.ca



1312

INTRODUCTION

Thermodynamic modeling of magmatic processes
can predict possible paths of magmatic crystallization.
A central issue is a comparison of features in the rock
with features predicted by the model, to determine
whether the rock actually formed by following the
predicted path of crystallization. Features that can be
compared include the phases that crystallize, their order
of crystallization, and their compositions. These calcu-
lations build a continuing chain of process-dependent
predictions, and these predictions can be used to test
the validity of the models. If the predicted values match
the measured values, then the model is consistent with
nature. In addition to predicting phases and their
compositions, thermodynamic modeling also predicts
the modal amounts of compositional ranges of solid
solutions that should crystallize during each particular
stage of differentiation. Measured modal amounts
of compositional ranges of solid solutions in zoned
crystals can be compared with predicted values to
further test the validity of thermodynamic models.

Problems associated with estimating modes of
zoned crystals include automating the collection
of analytical values on zoned crystals and evaluating
the error in the estimation of the modal value. In this
paper, we address these problems.

AUTOMATION OF DATA COLLECTION

Electron-microprobe analyses provide mineral
compositions. The electron microprobe can also be
programmed to provide precise, simultaneous estimates
of the compositions of zoned minerals and the areas of
compositional zones exposed on the surface of a thin
section. We have combined an automated program of
analytical data collection with a program that processes
the analytical data and retains the spatial coordinates
for each analytical spot collected on the crystal.

Automated analyses of phenocrysts or micropheno-
crysts can be done on a grid with a step size chosen to
reflect the width of compositional zones in the crystal
to be analyzed. The program provides for the selection
of step-size and counting time per spot. We commonly
use steps in the 10-20 pum range and count for 10
seconds per spot on an ARL, 9-channel, wavelength-
dispersion SEMQ electron microprobe to analyze and
point-count zoned crystals. The quality of the analyses
and of the resulting mode depends on the quality of
the polished surface, the grid spacing compared to the
width of the composition zones, and the flaws, cracks
and inclusions in the crystals analyzed.

Method

Analytical data on background and standards are
collected using the same operating procedures as used
for regular quantitative analyses (Nicholls & Stout
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1986). The operator can collect as many spots on the
crystal as is prudent before restandardizing,
generally not leaving more than an hour between
standardizations. This number of spots (~325) is
communicated through the program as the number
of spots-taken between standardizations, thereby
bracketing each group of analyses with appropriate
standards. Data reduction, with Bence—Albee corrections,
results in a final analysis for each spot. Our off-line
data-reduction program also calculates detection limits
and precision [see Nicholls & Stout (1986) for
equations used]. The precision associated with
10-second counts is obviously less than that for the
20-second counting times normally used. However,
the precision on 10-second counting times is sufficient
to detect compositional changes in zoned crystals
where small step-sizes are used on large phenocrysts.
Typical precisions (1o, in wt%) with 20-second
counting times on spots selected by the operator are:
Si0, 0.35%, Al,0, 0.30%, FeO 0.11%, MgO 0.17%,
Ca0O 0.05%, Na,0 0.4%, and K,O 0.01%. With
10-second counting times on spots automatically
located on a grid, typical precisions (16, wt%) for
oxides in olivine are: SiO, 0.515%, FeO 0.225%,
and MgO 0.196%. The last two are equivalent to
0.32 mol% Fa and 0.34% Fo. For oxides in feldspars
the precisions are: SiO, 0.630%, Al,0, 0.438%,
Ca0 0.049%, Na,0 0.075%, and K,0O 0.019%. The
equivalent precision on the feldspar end-members is:
0.24% An, 0.63% Ab, and 0.10% Or. A typical thermo-
dynamic model for a basaltic bulk-composition
calculates a path of crystallization involving
compositional changes in mineral and melt in steps
of 5°C. Temperature steps of this size correspond to
changes of approximately 0.65% Fo and 1.25% An.
The program makes an initial pass through the
refined data to eliminate spots collected at grid
locations underlain by holes, cracks, or intergrowths of
phases with sectional diameters smaller than the
diameter of the electron beam, that have oxide totals
less than a critical value, e.g. <95 wt%. Next, each spot
in the set of data is identified as the site of an analysis
of a particular mineral. The criteria used to identify
minerals are critical values for the range of oxide
concentrations. For example, feldspars in a basalt can
be uniquely identified if Al,O; concentrations are
between 15 and 33 wt% and Na,O concentrations are
between 2 and 13 wt%. The data are further examined
for unacceptable analyses by checking the stoichiometry
of each composition. If the mineral composition can be
expressed as the sum of simple end-members, the sums
of the weight percentages of the end members are
checked for acceptable totals. Examples are feldspar,
olivine and garnet. If the composition cannot be
expressed as a set of simple end-members, for example
pyroxenes and amphiboles, sums of cations in
structural formulas are used in place of end-member
totals. Totals outside a chosen range (e.g., a minimum
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of 98 to a maximum of 102 wt% end-member totals)
indicate a poor analysis, and the analytical data for
that spot are eliminated from the data set.

Results of all spot analyses are plotted on a
grid using their spatial locations recorded during the
microprobe session. Results of each spot analysis,
including end-member totals and mineral formula,
and its spatial coordinates, are accessible on the
computer screen. Analytical data-sets are grouped
into compositional ranges based on the amounts of the
oxide selected for display (e.g., CaO for feldspar), and
the number of spots in each group is tallied (Fig. 1).

Because the analytical mode must be collected on a
grid, and most crystals are randomly oriented within
the thin section, i.e., are not oriented parallel to the grid
and do not have perfectly rectangular or square shapes,
most crystals cannot be enclosed exactly within the
grid. The outlying spots at which data were collected
during the microprobe session must be eliminated. For
example, analyzed groundmass feldspar must be
excluded from the data file for the chosen target crystal
if this crystal is a feldspar. This operation can be done
by using the spatial coordinates and comparing the
computer image with the microscope image to locate
irregular edges. Figure 1A shows a plot of the raw,
untrimmed data collected on a plagioclase crystal;
Figure 1B, a plot of the trimmed data, shows only data
collected on the crystal itself.

The unshaded spots inside the crystal margins
correspond to spots at which analyses were made on
inclusions in the crystal, e.g., inclusions of magnetite—
ulvdspinel solid solution. These compositions will fall
outside the acceptable ranges of oxides given for the
identification of spots on the target mineral, because
those oxide values are specifically chosen to exclude
anything but the target mineral, i.e., feldspar in this
case. They are, however, accessible, and can be plotied
separately. For example, plotting FeO would clearly
show the magnetite—ulvispinel present in or around the
feldspar crystal. When locating and isolating the target
crystal from groundmass and other crystals, the operator
can look at all spots, including unidentified spots.

Each spot marked with an X on Figure 1 indicates
the site of an analysis that is definitely a feldspar
but falls outside the acceptable analytical range for
total wt% oxides or total wt% end members for olivine,
feldspar, or garnet; it is not a good quantitative analysis.
Only those final values that are acceptable are then
included in the numbers of spots of each composition
in the crystal.

The program initially divides the total
compositional range into bins of equal size on the basis
of the complete range in wt% of the selected oxide.
However, the operator can adjust the scaling factors
used to delineate the bins, and the oxide values can be
any equal size when set by the operator after the results
are viewed. For example, a 36 precision value can
be used to reflect the compositions that can be
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differentiated with 99% certainty. The differences in
shading correspond to the measured compositional
ranges shown in the legend for the crystal.

EXAMPLE

The Nisga’a (formerly Aiyansh) lava flow north of
Terrace, British Columbia, is approximately 22 km
long, has a volume close to 0.5 km3, and contains
approximately 14% total iron as FeO. The rocks are
almost wholly crystalline, with groundmass crystals
ranging in size from 1-2 pm to 25 um in various
samples. A few phenocrysts of olivine (Fog,) and
plagioclase (Ans,) are as large as 1 mm. Scattered
pyroxene and plagioclase megacrysts up to 10 mm
occur throughout the flow. The Nisga’a lava flow
formed from one of the last volcanic eruptions in the
Canadian Cordillera, according to accounts by native
peoples, radiocarbon dates (1700 AD: Sutherland
Brown 1969; 1700 and 1325 AD: Wuorinen 1978), and
paleomagnetic dates (1650 AD: Symons 1975).
Wuorinen (1978) postulated at least two eruptions,
separated by 375 years, in view of the radiocarbon
dates.

A thermodynamic model of a crystallization path
for a melt with the composition of a sample from
the Nisga’a flow was constructed with the MELTS
database (Ghiorso & Sack 1995). At 0.3 GPa, the
model predicts saturation with olivine (Fo; ) at 1155°C.
If a fractional crystallization path was followed, olivine
should be joined by plagioclase (Ans,s) at 1135°C.
Olivine and plagioclase fractionate together and change
composition as temperature falls. The compositions of
the minerals and melt were calculated for each 5° drop
in temperature. The mineral compositions in the rock,
determined by routine electron-microprobe analyses,
are similar to the predicted mineral compositions
(Table 1). Table 1 shows a comparison between
predicted and measured compositions of the minerals.
In general, the compositions of cores and the interiors
of the phenocrysts match compositions predicted to
crystallize at higher temperatures. The compositions of
the rims of the phenocrysts and groundmass grains
match compositions predicted to crystallize at lower
temperatures. This is the pattern expected if the Nisga’a
magma crystallized along a path of simple crystal-
fractionation. Consequently, the simple fractionation
model might be a viable hypothesis. If the model
correctly represents the path of crystallization, then we
can jnfer magmatic temperatures from mineral
compositions. However, if the model is incorrect, such
inferences are unwarranted. To further test the thermo-
dynamic model, measured amounts of compositional
ranges in the phenocrysts can be compared with
amounts predicted by the model.

A reasonably straightforward mechanism is to
compare relative-cumulative-frequency curves of the
measured and predicted compositions. The shapes of
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CaO
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FIG. 1. Maps of results of electron-microprobe analyses for oxides in feldspar, olivine, and garnet. The left columns of numbers
in the Jegends show the number of spots in each compositional range for the oxide. The compositional ranges for the oxides
are the column of numbers to the right of the color strip. A: All acceptable feldspar compositions, including groundmass.
Shading is related to concentration of Ca. The “X” symbol indicates an analysis that failed to meet the criteria for acceptance
(see p.1312). B. Same crystal as A, but with compositions of groundmass feldspars removed. Shading represents
different CaO contents. Equivalent An concentrations shown on separate scale. C. Map of MgO concentrations in olivine.
Fo concentrations shown with separate scale. D. Map of MnO zoning in garnet. E. Map of MgO zoning in garnet. Same

crystal illustrated in D.
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TABLE 1. CHEMICAL COMPOSITION (wt%) OF NISGA’A FLOW (NR4)
AND COMPARISON BETWEEN PREDICTED MODEL COMPOSITIONS
AND MEASURED OLIVINE AND PLAGIOCLASE COMPOSITIONS (mol%)

T°C Predicted N d E { d
Analysis Fo Fo An An
Si0;  46.80 1155 683 - - -
TiO, 371 1150 676 - -
ALO; 1453 1145 670 - - -
Fe:0: 152 1135 657 - 525 52.5()
FeO 13.52 1130 644 639 () 514  512(m)
MnO 023 1125 629 63.0 (m) 498 , 498(r)
MgO 458 1120 614 613 (m) 482  482(1)
ca0 758 1115 599 60.1(1) 467  46.7()
NaO  4.49 1110 583 58.4 (m) 452 454(g)
KO 167 1105 56.7 56.7 (m) 437 442(0)
P0s 118 1100 55. 55.2(1) 422  423(g)
H0" 0.8 1095 533 532 (1) 404 397(g)

1090 514 513 (g) 386  389()

1085 495 49.5 (1) 367  367(2)

(c) = core of crystal; (m) = middle; (r) = riny; (g) = groundmass

8

Closed to O,

SRR TENURETI EUTE FENINENE ANR1 AUNE ERNE EUT)

Relative Cumulative Frequency

50 55 60 65 70
Mole % Fo

Fig. 2. Relative-cumulative-frequency curves for two
thermodynamic models for the fractionation of a
Nisga’a basalt at 0.3 GPa. QFM — 1 is the fractionation
path for olivine compositions and amounts, with fugacity
of oxygen constrained to one log unit below the
Quartz — Fayalite — Magnetite buffer. The path that
the same melt would follow if fugacity of oxygen was
constrained by the ferrous—ferric ratio of the rock is
labeled Closed to O,.

these curves are model-dependent, i.e., the curves are
different for different conditions of crystallization such
as pressure, H,O content, and oxygen fugacity; this
feature is indispensable, because models could not
be differentiated if every model produced the same
relative-cumulative-frequency curve. Figure 2 illustrates
the curves displaying the olivine compositions that
should crystallize from the Nisga’a melt under different
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FiG. 3. Relative-cumulative-frequency curves for compositions
measured on grids on near-central sections through three
phenocrysts of olivine from a basalt. The model curves
were derived from the volumes of olivine compositions
predicted to crystallize from fractionating melts with the
initial composition of basalt. Model 1 represents an isobaric
path at 0.3 GPa. Model 2 represents a fractionation path at
0.3 GPa, followed by eruption to the surface at the stage
of saturation with K-rich feldspar. Open circles, diamonds,
and crosses represent data points from three different
crystals. Dashed curves are exaggerated, schematic illus-
trations of the changes to the relative cumulative curves
if corrected for systematic error in the area-to-volume
conversions. The real corrections are too small to show at
the scale of the diagram.

conditions of oxygen fugacity. One thermodynamic
model was run with the oxygen fugacity set to one
log unit beneath the Quartz — Fayalite — Magnetite
(QFM - 1) buffer and the other mode] was closed to O»;
the oxygen fugacity was buffered by the Fe?+:Fe* ratio
of the rock. The relative-cumulative-frequency curves
are clearly distinct (Fig. 2).

The relative-cumulative-frequency curves for
spots collected on three olivine phenocrysts from the
Nisga’a flow are shown on Figure 3. The crystals were
selected because the highest Fo contents measured
were found at their cores. Plotted, for comparison,
are the relative-cumulative-frequency curves for two
thermodynamic models, both at QFM — 1. One model
is a fractionation model at constant pressure. The second
model describes a two-stage path of crystallization with
eruption at the surface as a second stage. Figure 4 is a
similar plot for four feldspar phenocrysts. There are
marked differences between the curves generated from
model predictions and the curves derived from the data
for both olivine and feldspar.
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Fic. 4. Relative-cumulative-frequency curves for compositions
measured on grids on near-central sections through four
phenocrysts of plagioclase from the same basalt that
crystallized the olivine whose data is displayed in Figure
3. The model curves were derived from the volumes of
plagioclase compositions predicted to crystallize from
fractionating melts with the initial composition of the
basalt. Model 1 represents an isobaric path at 0.3 GPa.
Model 2 represents a fractionation path at 0.3 GPa,
followed by eruption to the surface at the stage of K-rich
feldspar saturation. Open circles, diamonds, stars, and
crosses represent data points from the four different
crystals.
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These techniques for collecting the data and the
methods of displaying them provide an efficient way to
compare the patterns of zoning of different elements in
the same crystal. Figure 5 shows marked differences
in the cumulative frequency distributions for MnO
and MgO in a garnet from the granulite facies, Pitka
Complex, Alaska (E.D. Ghent, pers. comm.). The
differences in slope of the frequency distributions
show that Mn decreases in concentration rapidly from
center to edge of the crystal. Magnesium, in contrast,
increases in concentration more evenly from center to edge.

DiscussioNn

Two aspects of the mechanism for comparing
model-derived and measured relative-cumulative-frequency
curves require discussion before the differences can be
used as evidence that the model provides an inadequate
hypothesis for the path of crystallization for the rock.
The first concerns a method or procedure for deciding
whether or not two cumulative curves are sufficiently
different to be significant. The second aspect focusses
on whether or not the frequencies with which spots
within a compositional range are measured on a surface
cut through a crystal reflect the relative volumes of the
compositional ranges in that crystal.

The Kolmogorov—Smirnov test (K—S test) has been
used to determine whether two relative-cumulative-
frequency distributions are significantly different
(Press et al. 1992). The test determines whether or
not the largest difference in frequency between two

o 100 LANLIE L  [L VTQ; Edge
:.; % fMnO 7/ e
380 =
B o E
% MgO .
> 60 ]
g E
= .
g 40 g
(] 30 _:
> 3
‘o 2 =
o Garnet 1
&J 10 —:
0 ot ler sl Center
0 2 4 6 8 10

Wit% Oxide

Fie. 5. Mn and Mg zoning profiles in a garnet porphyroblast in a granulite-facies gneiss
from Alaska. Circles represent Mg concentrations (expressed as MgQ), whereas
diamonds represent Mn concentrations (expressed as MnQ).
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distributions is likely to happen by chance. The test,
however, is so strongly dependent on the number of
data points used to construct the curves that any
difference between the curves, no matter how small,
will return a result that indicates the existence of a
significant difference if the number of data points is
large. If the number of data points is even a few
hundred, two cumulative curves derived from two
modes measured on the same crystal would be
considered significantly different. Other tests are
modifications of the K-S test and use the same
parameters. Consequently, there does not appear to
be a satisfactory statistical test for distinguishing
different cumulative curves. We are left with making a
judgement based on experience.

The ability to reject false hypotheses because the
volume-composition relationships in a rock or crystal
do not fit a model that predicts such relationships
depends, in part, on the accuracy of the volume estimates
of the constituents in the rock or crystal. Any section
through a rock or crystal can provide estimates of the
volumes of the phases or compositions that make up
the rock or crystal. These estimates are derived from
measured areas exposed on the surface of the section.
The fractional areas of the constituents exposed on a
section through a composite solid are equivalent, in
a statistical sense, to the fractional volumes of the
consituents. However, areas in sections through
composite solids can, at best, be only estimators of the
volumes. The central problem is to evaluate the quality
of the estimate. The only statement in the literature
that addresses this problem is Chayes’s (1956) demon-
stration that the fractional areas underlain by the
constituents in any section are consistent estimators of
the volumes of the constituents in the rock or crystal.
Chayes (1956) also discussed the effects of regular
arrangements of the constituents in banded rocks
on volume estimates, where he demonstrated the
consistent nature of the fractional areas in section as
estimators of the fractional volumes of the constituents.
Oriented constituents and regular arrangements do
not invalidate the consistent property of sectional areas
as estimators of fractional volumes, but oriented and
regular arrangements do create sampling problems.

A detailed discussion of the effects of concentric
zoning on the estimation of fractional volumes from
fractional areas in sections through crystals is provided
in the Appendix. The principal conclusions follow.

Central sections (sections cut through the center of
the crystal)

1. The areas of outer shells will underestimate the
volumes of the shells, i.e. the fractional areas exposed
on central sections are smaller than the fractional
volumes of the shells (Fig. 6).

2. The fractional areas of inner shells overestimate the
fractional volumes of the shells (Fig. 6).
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3. The maximum error of estimation, as a percentage of
the total volume of the crystal, is approximately 15%.
If the outer shell has a thickness equal to one-third the
dimension of the crystal, or if the inner core has a thick-
ness equal to two-thirds the dimension of the crystal,
then the estimated volume will be in error by 15%. It is
important to realize that this error is systematic and not
random. The volume cannot be in error by £15%;
rather the volume of the outer shell will be underesti-
mated by 15%, and the volume of the core will be
overestimated by 15%. Also, if the shells are thinner or
thicker, the error will be less (Fig. 6).

4, The systematic errors that arise from estimating
fractional volumes from fractional areas in section
decrease with decreasing thickness of the shells.

5. Shells that have a width centered approximately
two-thirds the distance from the center to edge of the
crystal will have minimal (~0%) systematic error in
their estimated volumes.

Non-central sections

6. For any given shell, there is at least one section
in which the fractional area of the shell equals the
fractional volume of the shell (Fig. 7).

7. One section cannot provide fractional areas that are
perfect estimators of volumes for all shells.

8. In theory, a large number of sections through a
crystal could be cut, and fractional volumes could be
estimated from the fractional areas. The average of
those estimates would approximate the volume,
because there are sections that provide both positive
and negative errors, a reflection of the consistent nature
of the process of estimating volumes from areas.

Consequences

Points 1 and 2 above have particular consequences
in a comparison of model-derived and measured cumu-
lative curves for centrally sectioned crystals. If the
relationships shown in Figure 3 are appropriate for
normally zoned crystals of olivine, then the systematic
errors can only cause the differences between the
curves to be smaller at the high end and larger at the
low end. The true volumes of Fo-rich cores and inner
shells are underestimated; consequently, the volume of
compositions between Fog, and Foy, say, must be
larger. Because the data are normalized to 100%, the
data points near Fog must be at a smaller cumulative
percentage. Concurrently, the true volumes of the Fo-poor
zones are smaller than the estimates. Consequently, the
Fo-poor compositions must plot at smaller values on
the cumulative axis so that the volumes of the Fo-poor
zones are smaller. If the model-measured relations
shown on Figure 4 characterize a mineral, then the
systematic errors can only weaken the agreement if
the crystal is normally zoned. In addition, the curves can
shift by a maximum of 15%; usually the shift will be
much less because shells and cores generally are thin.
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Fic. 6. A) Sketch of a concentric shell in a central section through a spherical crystal. B) Plots of fractional volumes, V(x), of
concentric shells and fractional areas, A(x), underlain by shells in central sections against thickness of the shell (x). Volumes
are shown with solid lines, areas with dotted lines. Errors arising from estimating volumes from areas are shown with
dash—dot lines. The curve with solid dots marks sections where the estimated volumes equal the areas.

The compositional zones in the crystals that supplied
the data for Figures 3 and 4 are thin, approximately
one-tenth of the crystal’s thickness or less, and
the curves would shift by much less than 15%. The
directions of the shifts are shown schematically on
Figure 3 (dashed curves).

The differences between relative-cumulative-frequency
curves for models and crystals shown on Figures 3 and
4 are too large to ascribe to systematic errors in the
estimates of the fractional volumes of the compositional
zones. Consequently, the crystallization models postu-
lated for the rock are incorrect. The remarkable
similarities between the relative-cumulative-frequency
curves for several crystals of olivine and of feldspar in
the rock indicate that all the crystals in each set of
minerals coprecipitated and recorded similar, albeit
unknown, conditions. The similarities amongst these
crystals justify the use of relative volumes estimated
from the cumulative frequency curves to test hypotheses.

CONCLUSIONS

Although concentrically zoned crystals have no
sections that provide exact estimates of fractional
volumes from fractional areas for all shells, the
direction and amount of the systematic error introduced
can be estimated. For crystals with thin compositional
shells, the systematic error is small enough to eliminate
most, if not all, incorrect models of crystal growth
in rocks. The easiest sections to interpret are central
sections through crystals. Although the methods outlined
in this paper were developed for the determination of
analytical modes with the electron microprobe, the
geometric constraints on the relationship between
fractional volume and fractional area are independent
of the method of measuring the modes.

The compositions and amounts of the measured
areas in sections through concentrically zoned crystals
can be compared to the thermodynamically predicted
compositions and amounts. If the match is good, it
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FIG. 7. A) Sketch of a concentric shell in non-central sections through a spherical crystal. The sections are cut normal to the
plane of the paper, and two traces are shown, I and II. B) Plots of fractional volumes, V(x), of concentric shells, and of
Fractional areas, A(x), underlain by shells in non-central sections against fractional distance of the shell (x) from the center
of the crystal. Upper diagram is for a thin shell with a thickness one-tenth that of the crystal. Lower diagram is for a thicker
shell with a thickness one-quarter that of the crystal. The volumes for an outer shell [p = (2 - x)/2], one half way between
center and edge [p = % ], and an inner core [p = %/2] are shown with solid horizontal lines.

provides permissive evidence that the postulated path
of crystallization could be the real path. In cases of
disagreement between the model and measured values,
the measured values may suggest a different scenario,
e.g., perhaps the process is two-staged, and the magma
resided for some time part way to the surface, allowing
the crystals more time for growth at an approximately
constant composition of the melt, rather than moving
directly up and out. The physical conditions influencing
the processes of formation should be reflected in the
amounts of early compositions in phenocrysts in
the rock. This is illustrated by the similarity of three
olivine and four feldspar crystals in the Nisga’a flow.
This method of collecting analytical modes could
be used for additional discretionary testing in any
problem relating one rock to other rocks (melts) or to a
postulated source-composition. It should be applicable
in most research that uses mass balances based on
mineral compositions and the modal amounts of each

composition. If one postulated a reaction relationship in
a study of compositional zoning, this method, which
gives both mass and compositional data, will provide
more than just an accurate picture of the compositional
zones. For example, a sample from the Bonnington
Pluton in British Columbia contains orthopyroxene,
clinopyroxene and amphibole in a reaction relationship.
Knowledge of the relative amounts of the compositions,
as well as of the amounts of the phases, would place
constraints on the reaction path that was frozen into the
rock. In process-oriented studies, a significantly greater
amount of a particular composition may suggest more
time for growth at that particular set of physical
conditions. Using a known or theoretically estimated
growth-rate, a calculation of residence time could be
made. This method of precise analysis of compositional
zoning could also provide information useful to any
study of zoning processes. As an example, Figure 5
illustrates Mg and Mn zoning in a garnet from a gneiss
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in the Pitka Complex, Alaska. This crystal of garnet is
from a high-pressure granulite-facies rock and records
pressures in excess of 1.0 GPa (E.D. Ghent, pers.
comm.). The pattern of zoning, if related to changes in
pressure, indicates increasing pressure with growth.
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The fractional volume of the shell outside the core
is given by:

V(%) = (aybyc, — a1b101)/(a2hsC5) €]

Substitution of the relations given in Equations (1) —
(3) into Equation (4) produces the result:

V(x) = x* — 3x2 + 3x 5)

where V(x) is the fractional volume of the outer shell
as a function of the thickness of the outer shell, x,
expressed as a fraction of the total length of the crystal
edges.

Central sections

The fractional area, A(x), of an outer shell in a cen-
tral section (a section cut through the center of the
crystal) as a function of the thickness of the outer shell
expressed as a fraction of the total length of the crystal
edges, x, is:

A(x) =x(2 - x) Q)

Equations (5) and (6) are valid for spheres and cubes
as well as rectangular parallelepipeds that maintain
the same aspect-ratio during growth. The appropriate
dimension for spherical shapes is the radius. Cube-shaped
crystals and rectangular parallelepipeds must also be
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cut parallel to one side of the crystal for Equation (6) to
hold. The applicability of the same equation to several
solids with different shapes means that treating the
crystal as a sphere will provide general information
about the effects expected for sections through concen-
trically zoned crystals. Equations (5) and (6) are plotted
on Figure 6 and carry the label p = (2 - x)/2, where p is
the fractional distance of the shell from the center of
the crystal. Equation (5) is represented by a solid line,
and Equation (6) is shown with a dashed line.

The difference between the fractional volume of an
outer shell and the fractional area of that shell in a
central section [Equation (5) minus Equation (6)] is the
error that results from using areas as an estimator of
volumes. An equation explicitly expressing the error
(A) is given by:

A=x(2-2x+1) N

Equation (7) is also plotted on Figure 6 as a dash—dot
line labeled p = (2 — x)/2.

The fractional volume, V(x), of an internal shell in a
crystal is a function of the thickness of the shell,
expressed as a fraction of the total thickness of the
crystal, and the position of the shell between the center
and outer edge of the crystal, p (Fig. 6):

V(x) = x(2 + 12p2)/4 ®)

The fractional area in a central section, A(x), of an
internal shell in a crystal is also a function of the
thickness of the shell, expressed as a fraction of
the total thickness of the crystal, and the position
of the shell between the center and outer edge of the
crystal, p:

A(x) =2px 9

The maximum and minimum values that p can take
arise because the shell must have a finite thickness and
lie within the crystal. These limits are:

Maximum = (2 — x)/2
Minimum = x/2

Curves representing Equations (8) and (9) for maximum
and minimum values of p, as well as the intermediate
value of one-half, are plotted on Figure 6. Solid lines
represent the volumes; dashed lines represent the areas.

The values of p, as a function of x, that make A(x)
equal to V(x) are given by:

p=IV (4-3x2)+2)/6 (10)

The values of the fractional volume that are the same
as the values of the fractional area in central sections
through a crystal are obtained by substituting the
expression for p in Equation (10) into Equation (8).
The result is:

V(x) = [x(N (4 - 3x2) + 2)1/3 (11)

Equation (11) is plotted on Figure 6, where the resulting
curve is marked with large solid circles. This curve
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relates the volumes of the shells, which can be exactly
obtained from measurements of the area of the shell
exposed in the central section. Only shells with particular
thicknesses and locations can have their volumes
exactly estimated from the exposed areas. All other
shells will have estimated volumes in error.

The difference (A) between the fractional volume of
a shell and the fractional area of a shell in a central sec-
tion depends on the thickness of the shell, x, and its
position in the crystal, p:

A= x(x2 + 12p2 - 8p)/4 (12)

At the maximum and minimum values of p, Equation
(12) reduces to:

A=x(x—1)?and
A=x2(x-1)

Equations (12) and (13), with p = % in Equation (12),
are plotted on Figure 6 with dash—dot lines. These
curves describe the errors associated with estimating
volumes from areas in central sections through
concentrically zoned crystals. Volumes of inner shells
will be overestimated by measured areas, whereas the
volumes of outer shells will be underestimated. If
the shells are thin, the cut-off position between under-
and overestimation is approximately p = 2/3 [i.e., set
x equal to zero in Equation (10)]. The largest error is
approximately 15% of the total volume of the crystal
and occurs in the estimate for an outer shell that has a
thickness equal to one-third the thickness of the crystal
or occurs in the estimate of an inner core with a
thickness equal to two-thirds the thickness of the
crystal (Fig. 6).

(13)

Generalization to rectangular crystals

Equations (8) and (9) can easily be generalized to a
rectangular crystal. Suppose the crystal has edges a;,,
bs, ¢; and a shell with widths given by:

0y, —a,=Xas

b2 - bl =X b3

C—Ci=XcCy
Define the fractional distances of the center of the shell
from the crystal’s center in the three orthogonal direc-
tions parallel to the crystal edges by:

p1 =Y (a, + ay)la;

P2= Y (b + b,)/b;

ps= Y2 (c; + c)lc3

Then the analogues for Equations (8) and (9) are:
V(x) = 2> + 4(p\p, + pips + paps)l/A
A(x) = x(p1 + p2)

The only restriction is that the section on which the
area corresponding to the last equation is measured
must be cut parallel to two of the edges of the crystal.
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Non-central sections

The fractional area displayed by a concentric shell
depends on whether the thin section is inside, within or
outside the shell. If the thin section cuts the crystal
between the center of the crystal and the inner edge of
the shell (Fig. 7A, Section I), the fractional area of the
shell exposed on the thin section is given by:

A(x) =2px/(1 - u?) (14

where the fractional distance of the section from the
center of the crystal is represented by u. The limits on
u and p, in this case, are:

O<u<(@2p-x12

x2<p<(2-x)2
If the section is cut within the shell (Fig. 7A, Section

II), then the equation describing the fractional area ex-
posed is:

A(x) = [x2 + 4px + 4(p? — uD))4(1 — u?)] 15
The limits on u, in this case, are:
Cp-x)2<u<(2p+x)/2

If the section is cut outside the shell, the fractional area
is obviously zero:

AX)=0,u>(2p+x)2 (16)
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Two examples of Equations (14) — (16) are plotted on
Figure 7B. Values of A(x) are plotted as functions of u
for fixed values of x and p. The general shapes of the
curves are the same for all values of x; they attain
different values, depending on x. The curves have
different shapes that depend on p. If the shell is an
outer shell [p = (2 — x)/2], then any section will sample
the shell. If the section is within the outer shell, then
only the outer shell will be exposed on the surface of
the section, and the fractional area will be 1. If the
section cuts inside the shell, then the fractional area
will be given by the u-shaped part of the curve. Two
sections will expose fractional areas equal to the
fractional volume. The values of u that characterize
these two sections are given by the intersection of the
horizontal line labeled V(x) with the u-shaped curve.
For the case of a shell at an intermediate location
between the center and edge of the crystal (p = 1),
there is a discontinuity in slope between locations of
sections that cut the crystal inside the shell and those
that cut through the shell (Section II, Fig. 7A). Again,
there are two sections that will expose fractional areas
numerically equal to the fractional volume of the shell.
If the subvolume of interest is the core of the crystal,
then only a section that cuts the core will expose
its area at the surface of the section. Also, there are two
sections that expose areas numerically equal to
the fractional volume of the core. In the case where
x = 1/10, the line representing the fractional volume
plots too close to the x axis to be visible.



