THE CANADIAN MINERALOGIST

JOURNAL OF THE MINERALOGICAL ASSOCIATION OF CANADA

Volume 37

August 1999

Part 4

The Canadian Mineralogist Vol. 37, pp. 865-891 (1999)

THE CRYSTAL CHEMISTRY OF THE EUDIALYTE GROUP

OLE JOHNSEN[§]

Geological Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark

JOEL D. GRICE

Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada

Abstract

Seventeen crystals of eudialyte (sensu lato) differing in provenance and showing a wide range of chemical compositions were chosen for crystal-structure analysis and electron-microprobe analysis, supplemented with thermogravimetric analysis, infrared analysis, Mössbauer and optical absorption spectroscopy on selected samples. The structure consists of layers of six-membered rings of $[M(1)O_6]$ octahedra linked together by $[M(2)O_n]$ polyhedra sandwiched between two pseudocentrosymmetrically related layers of three-membered and nine-membered silicate rings forming a 2:1 composite layer. The 2:1 composite layers are crosslinked by Zr in octahedral coordination and are related to one another in accordance with the rhombohedral symmetry. This open structure is filled with $[Na\phi_n]$ polyhedra in which Na may have various coordinations. The silicate network is relatively uniform in composition. The Zr site usually has a small amount of Ti. M(1) is normally occupied mostly by Ca; the main substitutions are Mn, REE and Y. In one crystal, more than 50% Ca is replaced by Mn and REE, resulting in an ordering in two distinct sites, M(1a) (Mn) and M(1b) (Ca + REE), and the symmetry reduced to R3. M(2) is either a four-fold Fe- dominated site, or a five-fold site, usually Mn-dominated. M(3) and Si(7) are two central sites of the two crystallographically distinct nine-membered silicate rings, and related by the substitution ${}^{[6]}M(3) + {}^{[4]}Si(7) \Leftrightarrow 2{}^{[4]}Si(7)$. M(3) is dominated by Nb (or W), and Si(7), by (Si,Al). Na is present in five distinct sites (acentric eudialyte) of which the Na(4) site is particularly prone to incorporation of heavy elements such as REE and Sr. The O(19) site plays a key role in the structure, being the ligand shared by the M(3), M(2,5) and Na(4) sites. The degree of acentricity is strongly correlated with the chemical elements in specific atomic sites. Eudialyte sensu stricto represents the most centrosymmetric structure, $R\bar{3}m$. As substitutions such as Si \Rightarrow (Nb,W), Fe \Rightarrow Mn, (Ca,Na) \Rightarrow (*REE*,Sr) take place, the structures become more and more noncentrosymmetric, R3m. The R3 eudialyte has an incongruously low $|E^2 - 1|$ value as a result of merohedral twinning. A complete formula for eudialyte requires structural data. An acceptable empirical formula, $Na_{15}[M(1)]_6[M(2)]_3Zr_3[M(3)](Si_{25}O_{73})$ (O,OH,H₂O)₃ X₂, can be calculated on the basis of 29 (Si,Al,Zr,Ti,Hf,Nb,W,Ta) apfu (Z = 3).

Keywords: eudialyte, kentbrooksite, crystal chemistry, single-crystal X-ray diffraction, electron-microprobe data.

SOMMAIRE

Nous avons sélectionné dix-sept cristaux d'eudialyte (sensu lato) de provenances différentes et définissant un grand intervalle de compositions chimiques pour une étude de leur structure cristalline, leur composition étant établie par analyse avec une microsonde électronique, et avec apport de résultats d'analyses thermogravimétrique, dans l'infra-rouge, et spectroscopiques

[§] E-mail address: oj@savik.geomus.ku.dk

866

THE CANADIAN MINERALOGIST

(Mössbauer et absorption optique) sur certains de ces échantillons. La structure est faite de couches d'anneaux à six octaèdres $[M(1)O_6]$ liés l'un à l'autre par des polyèdres $[M(2)O_n]$; ces couches sont intercalées entre deux autres couches possédant une relation par pseudocentrosymétrie, faites d'anneaux à trois et à neuf tétraèdres de silicate, le tout formant une couche composée 2:1. Ces couches 2:1 sont liées transversalement par des octaèdres contenant le Zr et sont en relation l'une avec l'autre selon une symétrie rhomboédrique. Les interstices de cette structure ouverte sont occupés par des polyèdres [Na ϕ_n] dans lesquels le Na fait preuve d'une variété de coordinences. La trame silicatée est relativement uniforme en composition. Le site Zr contient une faible proportion de Ti, en général. Le site M(1) contient normalement le Ca; les substitutions principales impliquent le Mn, les terres rares et l'yttrium. Dans un cristal, plus de 50% du Ca est remplacé par Mn et les terres rares, avec comme résultat une mise en ordre de ces cations sur deux sites distincts, M(1a) (Mn) et M(1b) (\overline{Ca} + terres rares), et une réduction de la symétrie à celle du groupe spatial R3. Le site M(2) possède soit une coordinence quatre où le Fe est dominant, soit une coordinence cinq, en général où le Mn est dominant. Les sites M(3) et Si(7) sont situés au centre des deux anneaux à neuf tétraèdres, qui sont cristallographiquement distincts; l'occupation de ces sites est régie selon la substitution ${}^{[6]}M(3) + {}^{[4]}Si(7) \Leftrightarrow 2{}^{[4]}Si(7)$. Le site M(3)contient surtout le Nb (ou le W), et Si(7) contient (Si,Al). Le Na occupe cinq sites distincts (eudialyte acentrique), parmi lesquels le site Na(4) est particulièrement sujet à l'incorporation d'éléments lourds, tels les terres rares et le strontium. Le site O(19) joue un rôle-clé dans la structure, étant partagé par les sites M(3), M(2,5) et Na(4). Le degré d'acentricité dépend fortement des occupants des divers sites. L'eudialyte sensu stricto représente la structure centrosymétrique, R3m. A mesure que les substitutions telles Si \Rightarrow (Nb,W), Fe \Rightarrow Mn, (Ca,Na) \Rightarrow (terres rares, Sr) prennent de l'ampleur, la structure devient de plus en plus non centrosymétrique, R3m. L'eudialyte R3 fait preuve d'une valeur anormalement faible de $|E^2 - 1|$ à cause d'un maclage méroédrique. Pour écrire une formule complète d'un échantillon, il est nécessaire d'avoir des données sur la structure. En revanche, on peut calculer une formule acceptable, $Na_{15}[M(1)]_6[M(2)]_3Zr_3 [M(3)](Si_{25}O_{73})$ (O,OH,H₂O)₃ X₂, en supposant 29 atomes de (Si,Al,Zr,Ti,Hf,Nb,W,Ta) par unité formulaire (Z = 3).

(Traduit par la Rédaction)

Mots-clés: eudialyte, kentbrooksite, chimie cristalline, diffraction X, cristal unique, données de microsonde électronique.

INTRODUCTION

Minerals of the eudialyte group are Na-rich zirconosilicates with varying amounts of Ca, Fe, Mn, rare-earth elements (*REE*), Sr, Nb, K, Y and Ti. They occur characteristically in agpaitic nepheline syenites and their associated pegmatites; rarely, eudialyte is encountered in peralkaline granites.

Eudialyte was first described from Kangerdluarssuk, in the Ilímaussaq alkaline complex, South Greenland (Stromeyer 1819). Since then, a very large number of eudialyte samples have been analyzed from other localities. These display a wide variation that results from real compositional variations as well as from significant analytical errors inherent in some of the methods used.

Golyshev *et al.* (1971) and Giuseppetti *et al.* (1971) independently solved the basic structure of eudialyte and showed it to be a cyclosilicate with both nine- and threemembered rings of $[SiO_4]$ tetrahedra. The former authors solved the structure in space group *R3m*, the latter in *R3m*. Subsequent refinements of the structure, *e.g.*, those by Rastsvetaeva & Andrianov (1987), Rastsvetaeva & Borutskii (1988), Rastsvetaeva *et al.* (1988, 1990), provided additional structural information on eudialytegroup phases of different compositions, all in *R3m*. Still, until recently, some aspects of the crystal chemistry of the group remained obscure. For example, the nature of the principal substitutions, the number of anions and the number of Si atoms per formula unit (*apfu*) were still associated with considerable uncertainty.

Johnsen & Gault (1997) studied the chemical variation in the eudialyte group using results of electron-microprobe analyses performed under uniform conditions. They concluded that a solid-solution series exists between the classic type of eudialyte rich in Si, Ca, Fe and Cl, and compositions rich in Nb, *REE*, Mn and F, such as kentbrooksite (Johnsen *et al.* 1998). On the basis of electron- microprobe information alone, that study could only address certain problems concerning this complex group of minerals.

In the present work, we examine the crystal-chemical properties of eudialyte (*sensu lato*) samples specifically selected from the material of Johnsen & Gault (1997). The study is based on single-crystal structurerefinement data (SREF) and subsequent electron-microprobe analysis of the crystals used for SREF to ensure maximum compatibility within datasets. For selected samples, we had sufficient material for thermogravimetric analysis (TGA), infrared spectroscopy (IR), optical absorption spectroscopy (OAS) and Mössbauer spectroscopy.

EXPERIMENTAL METHODS AND PROCEDURES

Table 1 lists the provenance of the seventeen samples used in this study. All samples come from different specimens except for sample 11 and 12, which come from rim and core, respectively, of the same crystal. We attempted to cover the entire observed range of compositions of eudialyte-group minerals from samples analyzed by Johnsen & Gault (1997). In particular, we were interested in variations in Ca, Mn, *REE*, Si, Nb and Na contents. We kept the experimental method uniform for all samples in order to minimize systematic errors; we

_			
#	ps	specimen number	locality
1	М	CMNMC 36596	Mont Saint-Hilaire, Rouville County, Quebec, Canada
2	S	CMNMC 81563	Mont Saint-Hilaire, Rouville County, Quebec, Canada
3	s	CMNMC 81561	Mont Saint-Hilaire, Rouville County, Quebec, Canada
4	H	CMNMC 81562	Mont Saint-Hilaire, Rouville County, Quebec, Canada
5	h	CMNMC 81565	Mont Saint-Hilaire, Rouville County, Quebec, Canada
6	m	CMNMC 81557	Mont Saint-Hilaire, Rouville County, Quebec, Canada
7	w	CMNMC 81564	Kipawa alkaline complex, Villedieu Township,
8	W	CMNMC 31174	Temiscaminque County, Quebec, Canada
9	V	CMNMC 81560	Saint-Amable sill, Varennes, Vercheres County, Quebec, Canada
10	G	GM-1983.639	Gardiner complex, East Greenland
11	г	GM-1983.643r	Gardiner complex, East Greenland
12	с	GM-1983.643c	Gardiner complex, East Greenland
13	Α	GM-1971.461	Amdrup Fjord, Kangerdlugssuaq intrusion, East Greenland
14	N	GM-1907.170b	Narssârssuk pegmatite, South Greenland
15	I	GM-1998.100	Ilímaussaq complex, South Greenland
16	K	GM-1988.98	Khibina, Kola Peninsula, Russia
7	в	GM-1998.99	Burpala massif, Siberia, Russia

#: sample number; ps: plot symbol. CMNMC: Canadian Museum of Nature, Mineral Collection; GM: Geological Museum, University of Copenhagen. Sample 13 is kentbrooksite type material.

thus are able to make meaningful comparisons of the crystal chemistry of various members of this complex group of minerals.

Electron-microprobe analysis

Chemical analyses were done in wavelength-dispersion (WD) mode on a JEOL 733 electron microprobe using Tracor Northern 5500 and 5600 automation. Data were reduced with a conventional ZAF routine in the Tracor Northern TASK series of programs. Johnsen & Gault (1997) gave the experimental details. For each sample but one, the actual crystal used in the structure refinement was analyzed chemically. Only sample 7 was lost during transfer to a probe mount. Fortunately, this material from the Kipawa complex, is quite homogeneous, such that the composition of the remaining crystal fragment was used.

Standards used in the analyses were vlasovite (NaK α , SiK α , ZrL α , HfL α), rutile (TiK α), manganocolumbite (NbL α), NiTa₂O₆ (TaM α), CoWO₄ (WM α), almandine (FeK α , AlK α), yttrium iron garnet (YIG) $(YL\alpha)$, a set of synthetic REE phosphates (LaL α , CeL α , NdLa, GdLa, DyL β , ErLa, YbLa, PrL β , SmLa), tephroite (MnK α), diopside (CaK α , MgK α), celestine $(SrL\alpha)$, sanbornite (BaL α), sanidine (KK α), marialite $(ClK\alpha)$ and phlogopite $(FK\alpha)$. Sought but not detected in any of the samples were Eu, Tb, Tm and Lu. A beam 20 µm in diameter was used with all samples. Eudialyte itself seems quite stable in the electron beam with respect to all elements, but the vlasovite standard exhibited problems with Na migration. From a series of decomposition curves, correction factors of 0.859 and 1.006 were derived to apply to the wt.% Na₂O and SiO₂,

respectively. The relative error associated with this correction factor is 1.4%. With the vlasovite standard, it was found that the correction could be applied equally well to the wt.%, or as is more normal, to the counts before ZAF calculations. Still, a consistent disparity between Na content derived from the electron-microprobe analyses and structure refinements persists, as discussed later. The chemical compositions are given in Table 2.

Normalization of the formula unit

Formula calculation for eudialyte has always been problematic because of the wide variety of chemical substitutions, disorder within the crystal structure and site vacancies. On the basis of a large dataset of over 60 chemical analyses in Johnsen & Gault (1997) and the initial crystal-structure refinement of Johnsen *et al.* (1998), it became evident that unless specific structural information was available, normalization of the analytical data was best done on the basis of 78 anions (O, Cl, F), with Z = 3 for the unit cell. In the present study, we have calculated the number of atoms per formula unit (*apfu*) on an individual basis using the number of anions inferred from SREF data. The *apfu* and the number of anions are given in Table 2.

Collection of X-ray-diffraction data

Crystals were selected for crystallographic data on the basis of optical clarity. In all cases, crystals were ground to spheres ranging in diameter from 0.12 to 0.20mm. Each crystal was mounted on a Siemens fully automated four-circle diffractometer operated at 50 kV and

THE CANADIAN MINERALOGIST

TABLE 2. COMPOSITIONS AND ATOMS PER FORMULA UNIT (apfu) OF EUDIALYTE SAMPLES §

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 SiO2 48.53 46.32 45.12 46.91 43.46 43.70 48.95 48.43 50.30 49.00 45.34 50.23 48.33 43.37 43.90 ZAO2 11.48 11.22 10.00 0.16 0.13 0.01 0.16 0.13 0.01 0.16 0.03 0.17 0.83 0.44 0.04 0.05 0	<u> </u>										10		- 10					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	SiO ₂	48.53	46.32	45.12	46.91	43.46	43.70	48.95	48.43	50.30	49.67	47.23	49.00	45.34	50.23	48.33	43.87	43.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	0.07	0.83
$ Nb_{0}, 147 249 297 3.02 3.48 133 0.47 0.58 0.43 0.60 2.64 1.07 2.26 0.58 0.58 3.53 1.78 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.0$	-																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c} 1_{a} 0, 0 \\ CeSO \\ CE$																		
	2 2																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
Net-G0 0.00 0.62 0.70 0.54 1.45 0.00 <																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
	Sm_2O_3	0.00	0.18	0.00	0.00	0.00	0.00	0.00										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd ₂ O ₃	0.16	0.15	0.00	0.00	0.20	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c} FeO \\ Step \\ MnO \\ Step \\ MnO \\ Step \\ Step$														0.00	0.00	0.00	0.00	0.32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
SrO 0.39 0.43 0.19 0.42 0.09 8.45 0.00 0.18 0.34 2.30 4.13 2.73 0.49 0.20 0.13 2.02 1.71 BaO 0.00																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CI	0.77	0.83															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.88			0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.63	0.87	0.67	0.57	0.10	0.39	0.38	0.69	0.33	0.08	0.26	0.70	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						-0.17	-0.15	-0.24	-0.24	-0.11	-0.26	-0.21	-0.25	-0.07	-0.41	-0.29	-0.11	-0.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SUM	97.56	99.05	97.98	97.45	98.58	98.37	95.61	98.71	97.86	99.23	98.75	99.43	-98.39	99.13	97.32	97.18	94.79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Si	25 79	25.12	25 12	25 39	24 77	24 78	26.11	25 55	25.84	25 70	25.14	25 77	25.00	26.04	25 74	24.02	24.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf	0.02	0.02															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti	0.05	0.05	0.00	0.13	0.00												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb	0.35	0.61	0.75	0.74	0.90	0.34	0.11	0.14	0.10	0.14	0.64	0.25	0.57	0.14	0.20	0.91	0.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.04	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.05 0.07 0.04 0.00 0.00 0.03 0.04 K 0.29 0.30 0.23 0.23 0.20 0.38 0.21 0.41 0.34 0.37 0.30 0.28 0.30 0.29 0.30 0.29 0.30 0.28 Na 15.34 14.64 14.89 15.25 15.03 12.48 13.49 14.78 15.16 15.71 14.64 15.73 15.77 15.40 14.96 14.45 12.87 Cl 0.69 0.76 1.08 0.39 0.73 0.64 0.97 0.96 0.44 1.01 0.86 0.99 0.27 1.61 1.16 0.45 0.85 F 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.00 1.28 0.44 1.35 1.35 2.42 1.22 0.28 </td <td></td>																		
K 0.29 0.30 0.23 0.23 0.20 0.38 0.21 0.41 0.34 0.37 0.30 0.28 0.30 0.29 0.30 0.28 0.30 0.28 0.30 0.29 0.30 0.28 0.30 0.29 0.30 0.28 0.30 0.29 0.30 0.28 0.30 0.29 0.30 0.28 0.30 0.29 0.30 0.																		
Na 15.34 14.64 14.89 15.25 15.03 12.48 13.49 14.78 15.16 15.71 14.64 15.73 15.75 15.40 14.96 14.45 12.87 Cl 0.69 0.76 1.08 0.39 0.73 0.64 0.97 0.96 0.44 1.01 0.86 0.99 0.27 1.61 1.16 0.45 0.85 F 0.00 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.00 1.28 1.28 H 2.45 2.53 1.67 1.12 2.40 3.29 2.38 2.01 0.34 1.35 1.35 2.42 1.22 0.28 0.92 2.65 0.00																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
H 2.45 2.53 1.67 1.12 2.40 3.29 2.38 2.01 0.34 1.35 1.35 2.42 1.22 0.28 0.92 2.65 0.00	F	0.00	0.00															
Anions* 77.48 77.67 77.90 76.63 78.09 78.70 77.45 77.35 75.39 76.91 77.00 77.96 78.10 76.40 76.75 78.53 77.10						2.40	3.29	2.38	2.01	0.34	1.35	1.35	2.42	1.22	0.28	0.92	2.65	
	Anions*	77.48	77.67	77.90	76.63	78.09	78.70	77.45	77.35	75.39	76.91	77.00	77.96	78.10	76.40	76.75	78.53	77.10

[§]All analyses except of sample 7 are performed on the very same crystal used for SREF. * H_2O and total number of anions calculated from SREF data; for details see text. The calculation of *apfu*'s is based on number of anions.

	а	С	Space Group*	$ E^2-1 $	N _{coll} **	data/restraints/params	R1 / wR2 / Goof ***
1	14.2646(9)	30.186(1)	166	1.041	8216	1934 / 0 / 182	0.031 / 0.073 / 1.090
2	14.2277(6)	29.987(2)	160	0.871	3824	3824 / 0 / 292	0.042 / 0.083 / 1.017
3	14.2602(9)	29.980(3)	160	0.814	3838	3838/0/282	0.034 / 0.071 / 1.042
4	14.1854(9)	30.101(3)	160	0.916	4990	3503 / 0 / 279	0.044 / 0.086 / 1.052
5	14.2084(8)	29.959(3)	146	0.702	3815	3803 / 0 / 426	0.032 / 0.072 / 1.043
6	14.2959(8)	30.084(3)	160	0.790	3863	3863 / 0 / 282	0.050 / 0.082 / 1.020
7	14.256(1)	30.351(2)	166	0.972	3879	1945 / 0 / 177	0.035 / 0.076 / 1.041
8	14.225(2)	30.302(5)	166	0.967	3858	1934 / 0 / 164	0.033 / 0.070 / 1.006
9	14.1697(9)	30.142(3)	166	0.960	3807	1909/0/171	0.048 / 0.092 / 1.028
10	14.273(1)	30.131(3)	166	0.972	3860	1935 / 0 / 177	0.039 / 0.073 / 1.017
11	14.271(1)	30,160(3)	160	0.957	4977	3536/0/284	0.043 / 0.084 / 1.026
12	14.2691(8)	30.163(3)	166	0.965	3858	1935/0/181	0.033 / 0.071 / 1.023
13	14.199(2)	30.139(4)	160	0.847	2649	2024 / 0 / 283	0.041 / 0.084 / 1.171
14	14.2257(6)	30.006(2)	166	0.999	3835	1923 / 0 / 169	0.039 / 0.071 / 1.022
15	14.242(1)	30.004(6)	166	0.991	2983	1921/0/173	0.037 / 0.081 / 1.029
16	14.2784(8)	30.089(3)	160	0.802	3855	3855/0/276	0.043 / 0.078 / 1.040
17	14.220(2)	30.150(7)	160	0.878	2984	2119/0/281	0.052 / 0.095 / 1.099

TABLE 3. UNIT-CELL DIMENSIONS (Å) AND STRUCTURE-REFINEMENT DATA FOR EUDIALYTE SAMPLES

*166 = R3m; 160 = R3m; 146 = R3. ** Number of reflections collected. *** Goof = Goodness-of-fit on F^2

40 mA with graphite-monochromated MoK α radiation. A set of 25 to 30 reflections were used to center the crystal and refine the cell parameters. Assuming a noncentrosymmetric rhombohedral cell, one asymmetric unit of intensity data was collected (*i.e.*, $+h + k \pm l$) up to $2\theta = 60^{\circ}$ using a θ : 2θ scan-mode, with scan speeds inversely proportional to intensity, varying from 4 to 29.3°/minute. The data collection for each crystal consisted of approximately 3800 reflections with more than 85% observed (*i.e.*, $F_0 > 4\sigma F_0$). Information relevant to the data collection and structure determination is given in Table 3. For the ellipsoidal absorption correction. 10 to 14 intense diffraction-maxima in the range 12 to 60° 20 were chosen for Ψ diffraction-vector scans after the method of North *et al.* (1968). The merging Rfor the Ψ -scan dataset decreased from approximately 1.5% before the absorption correction to approximately 1.0% after the absorption correction. The excellent merging R-values attest to the near-spherical shape of the crystals. Reduction of the intensity data, and determination and initial refinement of the structure were done with the SHELXTL (Sheldrick 1990) package of computer programs. Structure-refinement data for all crystals are given in Table 3. A set of normalized structure-factors, E, were calculated, and the $|E^2 - 1|$ statistic is listed in Table 3. It should be noted that there is a distinct trimodal grouping; centrosymmetric eudialyte $(R\bar{3}m)$ has $|E^2 - 1|$ values in the range 0.96 to 1.04, the noncentrosymmetric eudialyte (R3m) has $|E^2 - 1|$ values in the range 0.75 to 0.96, and the noncentrosymmetric (R3) eudialyte has an $|E^2 - 1|$ of 0.70 (See below). The latter, an incongruously low value for $|E^2 - 1|$, is a result of merohedral twinning (HerbstIrmer & Sheldrick 1998). A discussion on these statistics is given later in the *Degree of acentricity* section.

Final strategy in the refinements

The final refinements were done with the SHELXL– 93 program (Sheldrick 1993). The strategy applied to all crystals during the final stages of the refinement was to keep all atomic coordinates except Zr(z) variable, and thus refinable, as well as all anisotropic-displacement factors for all sites (except a few disordered sites). For disordered sites with low occupancy, such as the X sites and the extra M(3) or Si(7a) sites, an isotropic displacement parameter was kept fixed. SHELXL–93 recommendations for the splitting of sites were followed in those cases where the refinements remained stable.

The site-occupancy factors (sof) were fixed to unity for Si(1)-Si(6) and O(1)-O(18), and generally refined for the other sites. Wherever initial refinements indicated a site accommodating essentially only one atomic species, this species was assigned to the site, and the sof refined without constraints. In cases where initial refinements showed that the site accommodates, to a significant degree, more than one atomic species, and that the site is fully occupied, the two dominant elements assigned to the site are refined by coupling the positional and anisotropic-displacement parameters allowing the proportion of each sof to vary. Where substantial amounts of two elements are present in one site and the site is not fully occupied [e.g., M(3) in sample 6], the two elements were assigned to the site in a ratio established by the electron-microprobe data, and the sof of one element was allowed to refine in the final stage.

TABLE 4. ATOMIC COORDINATES (x 10⁴) AND ISOTROPIC DISPLACEMENT PARAMETERS ($Å^2$ x 10³) FOR THREE EUDIALYTE SAMPLES IN SPACE GROUPS $R\bar{3}m$ (166), R3m (160) AND R3 (146)

Site	Ν	x	У	z	U(eq)	Site	Ν	x	у	z	U(eq)
#8: 166						O(17)	6	9607(6)	7038(6)	2108(2)	17(1)
M(1)	6	0	7384(1)	5000	10(1)	O(18)	3	8202(4)	1798(4)	2781(3)	14(2)
M(2,4)	3	0	5000	5000	64(5)	O(19)	3	7299(4)	2701(4)	1707(3)	21(3)
M(2,5)	6	-607(17)	4697(9)	4979(11)	20	O(20)	1	0	0	248(6)	22(5)
M(3)	2	0	0	1201(1)	39(1)	X(1a)	1	0	0	-2661(27)	30
Si(7)	2	0	0	782(2)	13(2)	X(1b)	3	501(23)	1002(47)	-2609(18)	30
Si(7a)	2	0	0	8309(9)	30	X(1c)	3	258(51)	517(102)		30
Na(1a)	6	2260(3)	-2260(3)	110(2)	44(2)	X(2a)	1	0	0	2385(24)	30
Na(1b)	6	2531(6)	-2531(6)	-45(4)	23(4)	X(2b)	1	0	0	2091(15)	30
Na(4)	6	5646(1)	-5646(1)	1177(1)	53(1)	X(2c)	3	197(17)	394(34)	2920(14)	30
Na(5) Zr	6 3	-732(4) 5000	732(4)	117(3)	107(4)	X(2d)	1	0	0	2615(23)	30
Si(1)	6		5000	0	11(1)	X(2e)	1	0	0	1728(20)	30
Si(3)	6	4035(1) 1252(1)	-4035(1) -1252(1)	847(1)	11(1)	#5: 146					
Si(3s)	6	1046(19)	-1046(19)	909(1) 1055(14)	14(1) 20	M(1a)	3	3937(1)	640(1)	8328(1)	12(1)
Si(5)	12	3410(1)	2778(1)	698(1)	12(1)	M(1a) M(1b)	3	4214(1)	3328(2)	8325(1)	12(1) 17(1)
O(1)	6	2717(1)	-2717(1)	884(1)	22(1)	M(10) M(2,5)	3	1741(2)	8108(2)	8323(1)	13(1)
0(2)	6	4459(1)	-4459(1)	1239(1)	24(1)	M(2,4)	3	1435(23)	8355(21)	8347(6)	23(6)
0(3)	6	4290(1)	-4290(1)	363(1)	27(1)	M(3)	1	0	0	1293(1)	12(1)
0(7)	12	2319(2)	2857(2)	602(1)	27(1)	M(3b)	1	ŏ	õ	777(25)	30
0(8)	6	1531(1)	-1531(1)	1380(1)	21(1)	Si(7)	î	ŏ	õ	9205(2)	10(1)
0(9)	6	602(2)	-602(2)	935(2)	55(1)	Si(7a)	1	õ	õ	8728(8)	26
O(13)	12	4364(2)	3631(2)	393(1)	28(1)	Na(1a)	3	7400(17)	2490(24)	10035(10)	46(11)
<i>O</i> (14)	12	3708(2)	2965(2)	1210(1)	23(1)	Na(1b)	3	7708(15)	2196(11)	9863(3)	30(3)
O(15)	6	8435(1)	-8435(1)	542(1)	21(1)	Na(2)	3	5544(8)	4323(7)	6760(2)	44(2)
O(19)	6	583(7)	-583(7)	8376(5)	61(6)	Na(3)	3	8984(7)	1038(7)	7880(2)	64(2)
<i>O</i> (20)	2	0	0	265(6)	24(6)	Na(4)	3	4405(1)	5696(1)	8800(1)	14(1)
X(1a)	2	0	0	7396(3)	69(3)	Na(5)	3	2738(7)	7515(8)	6852(2)	55(2)
X(1b)	6	488(11)	-488(11)	7452(8)	30	Zr	3	5119(1)	5052(1)	0	9(1)
X(1c)	6	500(15)	-500(15)	7937(11)	30	Si(1)	3	7487(3)	2748(3)	7514(1)	11(1)
X(1d)	2 2	0	0	8003(16)	30	Si(2)	3	6092(3)	4158(3)	9120(1)	13(1)
X(1e)	2	0	0	6908(22)	30	Si(3)	3	4619(4)	5412(4)	7554(1)	12(1)
#13: 160						Si(4)	3	8751(4)	1212(3)	9073(1)	13(1)
M(1)	6	5940(1)	0257(1)	1674(1)	17(1)	Si(5a)	3	611(3)	3258(3)	7370(2) 7370(2)	10(1)
M(1) M(2,5)	3	8179(2)	9257(1) 1821(2)	1674(1)	17(1)	Si(5b) Si(6a)	3	486(3) 2667(3)	7250(3) -673(3)	9299(2)	11(1)
M(2,3) M(2,4)	3	8430(21)	1570(21)	1693(1) 1643(11)	14(1) 30	Si(6b)	3	561(3)	7134(3)	9305(2)	11(1) 10(1)
M(3)	1	0	0	-1281(1)	14(1)	O(1)	3	5984(9)	3880(9)	7540(2)	21(1)
Si(7)	î	Ő	0	780(2)	11(2)	O(2)	3	7970(7)	2410(6)	7917(2)	21(1) 21(2)
Si(7a)	1	ŏ	Ő	1169(11)	30	O(3)	3	7794(9)	2483(9)	7028(2)	24(2)
Na(1a)	3	2221(7)	7779(7)	156(6)	33(4)	O(4)	3	7150(7)	2593(7)	9052(3)	20(2)
Na(1b)	3	2492(38)	7508(38)	-3(20)	77(26)	O(5)	3	5681(7)	4690(8)	8755(3)	29(2)
Na(2)	3	4442(3)	5558(3)	-6787(3)	23(2)	0(6)	3	9232(9)	1050(9)	6293(2)	22(2)
Na(3a)	3	889(20)	9111(20)	2049(11)	73(8)	O(7a)	3	3844(7)	-438(8)	7248(3)	17(2)
Na(3b)	3	1151(22)	8849(22)	2155(11)	33(10)	O(7b)	3	3970(7)	4274(7)	7269(4)	19(2)
Na(4)	3	5670(1)	4330(1)	1204(1)	15(1)	O(8)	3	4924(9)	5239(10)	8047(2)	21(2)
Na(5)	3	7386(4)	2614(4)	3139(3)	65(3)	<i>O</i> (9)	3	3927(9)	6008(10)	7507(2)	26(2)
Zr	3	4980(1)	5020(1)	0	9(1)	O(10a)	3	2592(7)	418(8)	9404(4)	26(2)
Si(1)	3	2628(1)	7372(1)	2489(1)	14(1)	O(10b)	3	-605(6)	7055(7)	9393(3)	14(2)
Si(2)	3	4036(2)	5964(2)	875(1)	17(1)	0(11)	3	8526(10)	1628(9)	8614(2)	19(2)
Si(3) Si(4)	3 3	5394(2)	4606(2)	2446(1)	11(1)	0(12)	3	9178(6)	359(6)	8986(3)	23(2)
Si(4) Si(5)	6	1248(2) 9460(2)	8752(2)	920(1)	10(1)	O(13a)	3	7111(9)	1081(9) -671(10)	6252(4)	23(2)
Si(5) Si(6)	6	7229(2)	6764(2) 626(2)	2632(1)	9(1)	O(13b) O(14a)	3	3592(8) 2862(8)		9599(5) 9774(4)	25(2)
O(1)	3	3951(4)	6049(4)	697(1) 2450(4)	10(1)	O(14a)	3	689(9)	9227(8) 6935(8)	8774(4) 8785(4)	14(2)
O(2)	3	2218(5)	7782(5)	2078(4)	24(2) 33(3)	O(140)	3	1526(9)	8341(9)	9475(2)	17(2) 19(1)
O(3)	3	2349(5)	7651(5)	2966(4)	34(3)	O(16a)	3	2559(8)	2251(8)	7046(4)	20(2)
0(4)	3	2712(4)	7288(4)	923(4)	29(2)	O(16b)	3	-211(8)	2236(8)	7074(4)	18(2)
0(5)	3	4473(5)	5527(5)	1252(4)	36(3)	O(17a)	3	448(9)	2980(9)	7891(4)	18(2)
0(6)	3	941(5)	9059(5)	3713(4)	30(3)	O(17b)	3	350(9)	7369(9)	7892(4)	19(2)
0(7)	6	6098(5)	380(6)	2742(2)	15(1)	O(18)	3	1734(8)	8133(8)	7218(2)	16(1)
0(8)	3	5159(4)	4841(4)	1959(3)	15(2)	O(19)	3	2652(9)	7276(10)	8308(2)	25(2)
0(9)	3	6044(4)	3956(4)	2484(3)	23(2)	0(20)	1	0	0	9733(4)	14(3)
2(10)	6	7159(7)	9452(6)	599(2)	25(2)	X(1a)	1	0	0	2660(4)	30
2(11)	3	1551(4)	8449(4)	1385(3)	17(2)	X(1b)	3	-508(22)	506(22)	2597(4)	30
2(12)	3	596(4)	9404(4)	1004(4)	36(3)	X(1c)	1	0	0	2153(35)	30
2(13)	6	3022(6)	8981(6)	-6267(2)	22(2)	X(2a)	1	0	0	7543(4)	30
2(14)	6	7036(6)	742(5)	1211(2)	16(1)	X(2b)	1	0	0	7897(20)	30
115)	3	8435(4)	1565(4)	530(3)	16(2)	X(2c)	1	0	0	7117(11)	30
2(15) 2(16)	6	7497(6)	7755(6)	2945(3)	16(2) 21(2)	X(2d)	î	ŏ	0	8219(22)	30

$R\overline{3}m$
ROUP
ACEG
LYTE SAMPLES IN SPACE GROUP $R\overline{3}$
MPLE
(TE SA
IA
OF EUD
(x 10 ⁴)
VATES
C COORDINAT
MIC CC
. ATO
TABLE 5

e.	Q	567	567	713	-1302	147		802		133	-21	184	247	0	490	413	067	632	890	225	346	603	669	388	384	411	223	519	691		278	7442	733				
#15	Ś				0 -1:			0													-4270											6 7					
#	x							0		•	•	•								-												0					
		59	83	806	0	1															4270												4				
	12	5000	5000	4966	-1270	7763	-1133	808		116	-27	1167	52	0	840	919	1048	700	890	1222	340	597	667	1382	67	413	1223	511	8381		278	7428					
#14	x	7399	5000	4723	0	0	-132	0		-2250	-2493	-5623	946	5000	4035	1241	-1007	2756	2717	-4475	-4267	2827	2257	-1537	-595	3669	2880	-8413	-469		0	0					
	x	0	0	-555	0	0	132	0													4267										0	0					
	17	667	667	967	1292	114		789		134	Ŷ	171	100	0	491	421	022	637	885	223	346	595	644	382	939	403	215	517	700	732	265	354	574	691	8001	879	926
#12	x							0																											-517 8		
#	ાસ	5		-				0							•	•				•																	
		593	833	-61	0	20				222	246	563	-78	500	263	542	102	942	271	447	427	231	208	152	59	436	367	842	728	774				46	517		
	12	1667	1667	4957	1282	1114		795	-1668	132	-	1168	LL	0	2493	2420	1053	2637	885	1224	345	594	663	1381	951	406	1215	517	1700	4957	277	7380	7611	7883	7873	6279	
#10	x	9270	1667	4676	0	105		0	0	2223	2465	5633	796	5000	2630	5425	1059	6727	2714	4474	4274	2843	2440	1527	-594	3654	2891	8425	7211	4326	0	0	0	-503	0	0	
	x	5937	8333	-647	0	209																													0		
	2	000	000	980	1195	179	835	784		141	-20	200	93	0	848	912	074	669	881	241	362	597	659	380	942	395	1216	530	3362		260	7545	7312	7011			
6#	x	-		4	0																-4294										0	0	0	0			
	x				0					•		•					•				1294 -4										0	0	0	0			
				ç		ŝ						~ /		41	4					4	7													10	~		
	2	5000	5000	4977	1230	1153		<i>611</i>	8345	109	-35	1180	124	0	845	910	1058	700	886	1232	357	603	699	1384	924	395	1211	537	8387				`		8093	·	
L#	v	7389	5000	4749	0	181		0	0	-2260	-2522	-5641	729	5000	-4036	-1250	-1046	2776	-2714	-4467	-4284	2886	2378	-1519	-603	3636	2964	-8433	-599						0		
	x	0	0	-503	0	362		0	0	2260	2522	5641	-729	5000	4036	1250	1046	3407	2714	4467	4284	2336	2072	1519	603	4362	3712	8433	599		0	0	483	518	0	0	0
	N	000	000	973	272	115		789		142	2	181	108	0	845	912	040	698	887	228	352	596	650	381	934	405	218	518	191	965	269	410	7003	1068	7890	877	7280
#1	v										1																								0 7		
	Y				0																														0		
																														-							
		M(1)	MC2.4	M(2.5	M(3)	M(3a)	M(3b)	Si(7)	Si(7a)	Na(la	Na(1b	Na(4)	Na(5)	Zr	Si(1)	Si(3)	Si(3s)	Si(5)	0(1)	0(2)	0(3)	0(1)	O(7s)	0(8)	(6)0	0(13)	0(14)	0(15)	0(19)	0(19:	0(20)	X(1a)	X(1b)	X(1c)	X(1d)	X(1e)	X71F

THE CRYSTAL CHEMISTRY OF THE EUDIALYTE GROUP

THE CANADIAN MINERALOGIST

TABLE 6. ATOMIC COORDINATES (x 104) OF EUDIALYTE SAMPLES IN SPACE GROUP R3m

	-	#2			#3			#4			#6			#11			#16			#17	
	\mathbf{x}	y	12	x		1 2	x	у	Z	X	y	- 12-	3	y	z	x	у	z	x	у	z
					8								40.00		0221	2051	9260	1676	5949	9263	1672
M(1)	5943	9259	1672	4056	745	8325	4071	743	8328	5946	9258	1675	4057	731 8207	8331 8314	5951 8169	9200	1696	8172	1828	1697
M(2,5)	8201	1799	1693	1829	8171	8295	1831	8169	8309	8180	1820	1702	1793		8366	8371	1629		8368	1632	-
<i>M</i> (2,4)	8411	1589	1647	1707	8293	8354	1459	8541	8345	8313	1687	1654 -1318	1502	8498 0	1302	0		-1295	0		-1290
M(3)	0		-1301	0	0	1297	0	0	1275	0		-1318	0	ő	1684	U	0	-1275	ŏ		-1670
M(3a)	0		-1175	0	0	1117	0	0	1676 776	0	v	-1310	0	0	768				v	•	1010
M(3b)	0	0	-799	0	0	1652	0	0	9220	0	0	773	Ő	Ő	9214	0	0	782	0	0	780
Si(7)	0	0	789 1198	0	0	9208 8798	0	0	8775	0	0	1233	0	0	8774	ő	ő		ŏ	Ő	
<i>Si</i> (7a) <i>Na</i> (1a)	2251	7749	128	7482	2518	34	7758	2242	9870	2187	7813	153	7833	2167	9834	2255	7745	135	2213	7787	128
Na(1b)	2251	7423	-63	7761	2239	9861	7378	2622	74	2385	7615	55	7584	2416	-25	2568	7432	-43	2543	7457	-26
Na(10)	4397		-6763	5618		16754	5551	4449	6796	4378	5622		5597	4403	6780	4391		-6755	4368	5632	-6750
Na(3a)	883	9117	2075	8962	1038	7861	8965	1035	7891	973	9027	2149	8961	1039	7839	859	9141		982	9018	2150
Na(3b)	1064	8936	2149	0902	1050	/001	0905	1055	/0/1	973	9027	2149				1116	8884				
Na(4)	5662	4338	1196	4344	5656	8809	4343	5657	8797	5670	4330	1173	4332	5668	8815	5664	4336	1188	5655	4345	1180
Na(5)	7399	2601	3168	2610	7390	6849	2614	7386	6839	7361	2639	3142	2586	7414	6821	7382	2618	3136	7311	2689	3221
Zr	4979	5021	0	5034		10000	5013	4987		4968	5032	0	5006	4994	10000	4967	5033	0	4975	5025	0
Si(1)	2630	7370	2493	7371	2629	7498	7372	2628	7516	2630	7370	2502	7371	2629	7507	2629	7371	2501	2629	7371	2493
Si(2)	4036	5964	865	5968		9132	5964	4036	9137	4033	5967	861	5966	4034	9154	4033	5967	868	4032	5968	868
SH(3)	5403	4597	2434	4599	5401		4601	5399	7561	5408	4592	2435	4580	5420	7568	5398	4602	2446	5393	4607	
Si(4)	1238	8762	926	8770	1230			1245	9089	1233	8767	923	8749	1251	9090	1232	8768	924	1239	8761	920
Si(5)	9441	6746	2630	559	3255	7368	551	3249	7366	9429	6736	2636	563	3264	7359	9443	6746	2634		6736	
Si(6)		10626	698	2759	-624	9304	2779	-624	9302	7247	10620	694	2762	-631	9304	7241	10622	693		10630	698
0(1)		6054	2458	6053	3947	7528	6050	3950	7556	3945	6055	2482	6049	3951	7539	3946	6054	2479	3946	6054	
0(2)	2210	7790	2097	7785	2215	7896	7776	2224	7921	2221	7779	2105	7802	2198	7895	2220	7780	2095	2232	7768	
0(3)	2367	7633	2986	7647	2353	7017	7644	2356	7043	2350	7650	2990	7639	2361	7019	2348	7652		2321	7679	
0(4)	2711	7289	927	7284	2716	9062	7286	2714	9102	2715	7285	923	7285	2715	9105	2723	7277		2711	7289	916
O(5)	4488	5512	1237	5497	4503	8767	5523	4477	8752	4496	5504	1224	5523	4477	8771	4493	5507		4481	5519	
0(6)	922	9078	3698	9098	902	6311	9052	948	6301		9087	3688	9069	931	6314	910			911		
0(7)	6116	10418	2736	3902	-377	7263	3882	-406	7257	6097	10388		3840	-530			10367			10423	
0(8)	5153	4847	1949	4836		8050	4855	5145	8036	5160	4840	1952	4843	5157	8049	5164			5134		
0(9)	6047	3953		3955			3950		7552	6055	3945		3948	6052	7553	6043	3957		6043	3957	
<i>O</i> (10)		9471	605	2767	507		2847	548	9402	7219	9486	599	2903	562		7227				9465 8443	
0(11)	1546	8454	1390	8452			8454	1546	8615	1542	8458	1387	8467		8622	1546			1557	9406	
<i>O</i> (12)	594	9406	1007	9406	594		9401	599	9045	591	9409	996	9414	586	9022	593	9407		594 3015	9013	
<i>O</i> (13)	3001	8988		7025		16257	6948		16271	2982	9005		6971		16269	2981	9008 752		7063	748	
<i>O</i> (14)	7076	774	1219	2935			2939	9243	8782	7084	765	1216	2910		8795	7053			8435	1565	
0(15)	8414		522	1598			1571		9467	8408	1592	503	1561	8439	9480	7493			7463	7739	
<i>O</i> (16)	7461	7736	2929	2516			2545		7065	7465	7731		2593	2275 2997	7070 7888	9571			9593	7007	
0(17)	9566	7010	2106	436			387		7884	9546	7006	2115 2805	412 1762	2997 8238		8195			8216	1784	
O(18)	8203	1797	2800	1802			1784			8189	1811		2684	7316		7305			7290	2710	
0(19)	7297		1694	2693	7307		2700	7300	8295	7306	2694	1695 254	2084	/310	9748	1505			0	0	
0(20)	0	0	260	0	0	9738	0	0	9751	0	0	254	0	0	264	U	v	4.54	ŏ	ŏ	
O(20a)		0	2620	0		2649	0	0	2688	0		-2677	0	0	2682	0	0	-2654	0	ŏ	
X(1a)	0	0	-2628 -2594	-	0		0	0	2088	-990		-2642	0	0	2368	501		-2622	474	-	-261
X(1b)	485 502		-2394	9486	8973	2613	9575	-	2536	-990		-2042	U	0	4300	0		-3082			-
X(1c)	241		-2283				73/3	7149	2330	0	0	-21.74				0	U	5562			
X(1d) X(2a)	241	462	2437	0	0	7511	0	0	8005	0	0	2811	0	0	7355	0	0	2804	0	0	251
X(2b)	0	0	1732	0			0	0		0	0		0	Ő	7001	Ő			Ő	Ő	
X(2c)	175	350	2931	U	v	1104	0	ő		0	ő		484	968			0		191		2921
X(20)	1/5	0					U	U	1056	-370	-		0		7877				0	0	
()	<u>v</u>		4041							-570		1701									

Corrections refined for secondary isotropic extinction were found to be insignificant and hence were omitted. For the noncentrosymmetric samples, incorporation of a twin fraction according to merohedral twinning in the refinements resulted in slight improvements of the agreement indices for some crystals and were kept. In the case of sample 5, belonging to space group R3, introduction of a twin operation corresponding to the lost mirror plane in R3m resulted in a significant improvement in the refinement, as the *R*-index dropped from 0.107 to 0.032.

Table 4 contains complete sets of the final positional and equivalent isotropic-displacement parameters for a representative example of each of the three space groups concerned. Tables 5 and 6 list the positional parameters of the remaining samples in R^3m and R^3m , respectively. Selected interatomic distances for one crystal in each space group are given in Table 7. Anisotropic-displacement factors and observed and calculated structure-factors for all samples have been submitted to the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario K1A 0S2, Canada.

Site-assignment procedure

Table 8 presents the site-scattering values of the refined cation sites expressed in terms of electrons per formula unit (epfu) and atoms per formula unit (apfu), along with bond-valence and valence sums. Table 9 TABLE 7. SELECTED INTERATOMIC DISTANCES (A) FOR THREE EUDIALYTE SAMPLES IN SPACE GROUPS R 3 m, R3m AND R3.

#8 (R3m)		Si(3)-O(8)	1.573(9)	$\langle Na(3b)-\phi\rangle$	2.75	Zr-O(13b)	2.06(1)
Si(1)-O(1)	1.638(1) x 2	Si(3)-O(9)	1.60(1)	<i>Na</i> (3a)- <i>Na</i> (3b)	0.72(2)	Zr-O(16a)	2.07(1)
Si(1)-O(2)	1.582(3)	Si(4)-O(10)	1.626(8) x 2	$\langle Na(4)-\phi\rangle$	2.65	Zr-O(16b)	2.06(1)
Si(1)-O(3)	1.595(3)	Si(4)-O(11)	1.584(9)	$\langle Na(5)-\phi\rangle$	2.75	M(1a)-O(2)	2.124(8)
Si(3)-O(7)	1.630(2) x 2	Si(4)-O(12)	1.62(1)	#5 (R3)		M(1a)-O(5)	2.174(9)
Si(3)-O(8)	1.585(3)	Si(5)-O(7)	1.641(7)	Si(1)-O(1)	1.59(1)	M(1a)-O(8)	2.35(1)
Si(3)-O(9)	1.602(4)	Si(5)-O(16)	1.597(7)	Si(1)-O(1)	1.68(1)	M(1a)-O(11)	2.23(1)
Si(3)-Si(3s)	0.67(5)	Si(5)-O(17)	1.612(7)	Si(1)-O(2)	1.579(7)	M(1a)-O(14a)	2.25(1)
Si(5)-O(7)	1.637(2)	Si(5)-O(18)	1.652(4)	Si(1)-O(3)	1.618(7)	M(1a)-O(17a)	2.24(1)
Si(5)-O(13)	1.589(2)	Si(6)-O(10)	1.643(7)	Si(2)-O(4)	1.622(9)	M(1b)-O(2)	2.364(8)
Si(5)-O(14)	1.594(2)	Si(6)-O(13)	1.579(8)	Si(2)-O(4)	1.672(9)	M(1b)-O(5)	2.391(9)
Si(5)-O(14)	1.636(1)	Si(6)-O(14)	1.592(7)	Si(2)-O(5)	1.596(8)	M(1b)-O(8)	2.52(1)
Zr-O(3)	2.067(3) x 2	Si(6)-O(15)	1.634(4)	Si(2) - O(6)	1.602(7)	M(1b)-O(11)	2.45(1)
Zr-O(13)	2.065(2) x 4	Zr-O(3)	2.05(1)	Si(3)-O(7a)	1.657(9)	M(1b)-O(14b)	2.43(1)
	$2.003(2) \times 4$ 2.311(2) x 2	Zr-0(6)	2.07(1)	Si(3)-O(7b)	1.64(1)	M(1b)-O(17b)	2.42(1)
M(1)-O(2)		Zr-O(13)	2.073(7) x 2	Si(3)-O(8)	1.592(6)	M(2,4)-O(14a)	2.18(2)
M(1)-O(14)	2.326(2) x 2	Zr-O(16)	2.071(8) x 2	Si(3)-O(9)	1.591(7)	M(2,4)-O(14b)	2.19(2)
M(1)-O(8)	2.387(2) x 2	M(1)-O(2)	2.239(6)	Si(4)-O(10a)	1.62(1)	M(2,4)-O(17a)	2.13(3)
M(2,4)-O(14)	2.151(2) x 4	M(1)-O(5)	2.283(7)	Si(4)-O(10a) Si(4)-O(10b)	1.652(9)	M(2,4)-O(17b)	
		M(1)-O(8)	2.426(6)	Si(4)-O(100) Si(4)-O(11)	1.592(7)	M(2,4)-M(2,5)	
M(2,5)-O(14)	2.16(2) x 2	M(1)-O(11)	2.338(6)	Si(4)-O(12)	1.626(8)	M(2,5)-O(14a)	
M(2,5)-O(14)	2.39(2) x 2	M(1)-O(14)	2.348(7)	Si(4)-O(12) Si(5a)-O(7a)	1.633(9)	M(2,5)-O(14b)	
M(2,5)-O(19)	1.92(3)	M(1) - O(17)	2.314(7)	Si(5a)-O(7a) Si(5a)-O(16b)	1.60(1)	M(2,5)-O(17a)	2.16(1)
<i>M</i> (3)- <i>O</i> (9)	1.689(5) x 3	M(1)=O(11) M(2,4)=O(14)	$2.16(2) \ge 2$		1.60(1)	M(2,5)-O(17b)	
M(3)-O(19)	1.92(2) x 3	M(2,4)-O(17)	$2.09(2) \times 2$	Si(5a)-O(17a)	1.66(1)	M(2,5)-O(19)	2.145(7)
<i>Si</i> (7)- <i>O</i> (9)	1.555(4) x 3	M(2,4)-M(2,5)		Si(5a)-O(18)		M(3)-O(9)	2.054(7)
<i>Si</i> (7)- <i>O</i> (20)	1.57(2)	M(2,5)-O(14)	$2.142(7) \ge 2$	<i>Si</i> (5b)- <i>O</i> (7b)	1.65(1)	M(3)-O(19)	1.901(7)
Si(7a)-X(1c)	1.67(4) x 3	M(2,5)-O(14) M(2,5)-O(17)	$2.142(7) \times 2$ $2.151(7) \times 2$	Si(5b)-O(16a)	1.61(1)	M(3b)-O(9)	1.55(1) x 3
$\langle Na(1a)-\phi\rangle$	2.68	M(2,5)-O(17) M(2,5)-O(19)	2.16(1)	<i>Ši</i> (5b)- <i>O</i> (17b)	1.60(1)	Si(7)-O(12)	1.629(7) x 3
$\langle Na(1b)-\phi\rangle$	2.61		2.10(1) $2.01(1) \ge 3$	Si(5b)-O(18)	1.64(1)	Si(7)-O(20)	1.58(1)
Na(1a)-Na(1b)	0.82(2)	M(3)-O(9) M(3)-O(19)	$1.87(1) \times 3$	<i>Si</i> (6a)- <i>O</i> (10a)	1.64(1)	Si(7a)-O(12)	1.68(1) x 3
$\langle Na(4)-\phi\rangle$	2.60			<i>Si</i> (6a)- <i>O</i> (13b)	1.59(1)	Si(7a)-U(12)	1.52(7)
$\langle Na(5)-\phi\rangle$	2.83	Si(7)-O(12)	1.61(1) x 3	<i>Si</i> (6a)- <i>O</i> (14a)	1.62(1)		2.55
#13 (R3m)		Si(7)-O(20)	1.60(2)	<i>Si</i> (6a)- <i>O</i> (15)	1.61(1)	$\langle Na(1a)-\phi\rangle$	2.55
Si(1)-O(1)	1.638(5) x 2	<i>Si</i> (7a)- <i>O</i> (12)	1.54(1) x 3	<i>Si</i> (6b)- <i>O</i> (10b)	1.625(9)	$\langle Na(1b)-\phi\rangle$	
Si(1)-O(2)	1.59(1)	Si(7a)-X(2e)	1.68(7)	<i>Si</i> (6b)- <i>O</i> (13a)	1.59(1)	Na(1a)-Na(1b)	0.90(3)
Si(1)-O(3)	1.59(1)	$\langle Na(1a)-\phi\rangle$	2.71	<i>Si</i> (6b)- <i>O</i> (14b)	1.61(1)	$\langle Na(2)-\phi\rangle$	2.36
Si(2)-O(4)	1.639(5) x 2	$\langle Na(1b)-\phi\rangle$	2.59	<i>Si</i> (6b)- <i>O</i> (15)	1.65(1)	$\langle Na(3a)-\phi\rangle$	2.69
Si(2)-O(5)	1.56(1)	Na(1a)-Na(1b)	0.82(9)	Zr-O(3)	2.059(8)	$\langle Na(4)-\phi\rangle$	2.67
Si(2)-O(6)	1.60(1)	$\langle Na(2)-\phi\rangle$	2.66	Zr-O(6)	2.105(7)	$\langle Na(5)-\phi\rangle$	2.57
Si(2)-O(0) Si(3)-O(7)	1.643(7) x 2	$\langle Na(3a)-\phi \rangle$	2.69	Zr-O(13a)	2.07(1)		

o: unspecified anion.

gives the *epfu* numbers for the refined anion sites. The site-assignment procedure applied includes the following steps:

(i) Calculation of the number of anions: Site-scattering values (*epfu*) of the refined anion-sites are converted to *apfu*. O(19) and O(20) are considered to contain oxygen only, whereas the X sites accommodate (Cl,F) derived from electron-microprobe data, and (OH) is added to total 2 *apfu*. The remaining *epfu* in X sites are considered to be (H₂O). The *apfu* from these sites are added to the 72 atoms of oxygen belonging to the silicate ring system, giving the total amount of anions that, together with the derived number of (H), form the basis of a recalculation of electron-microprobe data to give the *apfu* shown in Table 2.

(ii) Knowing the *epfu* of the cation-sites and the numbers of these sites in the structural formula (*N* in Table 4), and assuming full occupancy, an *apfu* population of each site can be assessed on the basis of electron-microprobe data and guided by calculations of bond-valence and valence sums (Table 8). This procedure is valid for fully ordered structures covering most of the acentric crystals, whereas it becomes problematic in cases with extensive disorder. In crystals where the pseudocentrosymmetrically related sites M(3) and Si(7) are disordered to such an extent that they are best refined in $R^{3}m$, the scattering overlap precludes the determination of which cation is bonded to which ligand. In such cases, bond-valence sums cannot be calculated, and an *apfu* population for M(3) and Si(7) together is

TABLE 8. SITE-SCATTERING VALUES (*epfu*), SITE POPULATIONS (*apfu*), BOND-VALENCE SUM AND VALENCE SUM FOR CATION SITES WITH REFINED OCCUPANCY IN EUDIALYTE SAMPLES

site	epfu**	apfu assignment	BVS*	VS	site	epfu**	apfu assignment	BVS*	VS
#1:					Zr	119.0(4)	Zr _{2.93} Nb _{0.05}	4.16	3.99
M(1)	131.4(5)	Ca5 32Mn0 40REE0 23Y0 05	2.06	2.05	Na(1)	30.8(6)	Na _{2,80}	0.81	0.93
M(2,5)	20(5)	Mn _{0.82}	0.53	0.55	Na(2)	33.2(6)	Na _{3 02}	0.86	1.01
M(2,4)	49(4)	$Fe_{1.77}Mn_{0.13}$	1.05	1.27	Na(3)	41.5(6)	Na _{2.82} REE _{0.18}	0.94	1.12
M(3)	17(1)	1			Na(4)	96.6(5)	Na1,44REE1,35K0,19	1.88	1.90
M(3a)	8(1)	Si _{1.67} Nb _{0.33}	ş		Na(5)	31.6(6)	Na _{2.87}	0.79	0.96
Si(7)	11.6(3)	J			#6:				
Zr	119.8(4)	Zr _{2.97} Ti _{0.03}	4.12	4.00	M(1)	121.7(6)	Ca _{6.08}	2.07	2.03
Na(1)	65.2(7)	Na _{5.92}	0.88	0.99	M(2,5)		Fe _{1,55} Mn _{0.80}	1.45	1.57
Na(4)	78.0(6)	Na5 26K0 29Ca0 24Sr0 12REE 0.09	1.14	1.09	M(2,4)	13(6)	Fe _{0.53}	0.28	0.35
Na(5)	32.8(7)	Na _{2.98}	0.75	1.00	M(3)	51.3(4)	W _{0.52} Nb _{0.31}	4.75	4.67
#2:		200			Si(7)	8.7(3)	Si _{0.62}	2.46	2.48
M(1)	134.7(5)	Ca4 46Mn1 23Y0 17REE 0.14	2.06	2.05	Si(7a)	5.9(4)	Si _{0.42}	1.58	1.68
M(2,5)	61(2)	Fe _{1.78} Mn _{0.60}	1.43	1.59	Zr	118.3(5)	Zr _{2.96}	4.11	3.95
M(2,4)		Fe0.52	0.27	0.35	Na(1)	31.7(6)	Na _{2,88}	0.80	0.96
M(3)	25(1)	> Nb0.62 Ti0.06 Ta0.04	3.58	3.54	Na(2)	36.1(6)	Na _{3.28}	0.89	1.09
M(3a)	4(1)				Na(3)	45.1(8)	Na2 03 Ca0 40 K0 37 Sr0 13 REE 0 07		1.22
M(3b)	1.7(3)	Si _{0 12}	0.45	0.48	Na(4)	103.0(6)	Sr2.60Na0.40	2.05	1.87
Si(7)	9.4(3)	Si _{0 67}	2.67	2.68	Na(5)	32.2(7)	Na _{2.93}	0.87	0.98
Si(7a)	4.6(4)	Si _{0.33}	1.25	1.32	#7:				
Zr	119.8(4)	_	4.15	4.00	M(1)	141.7(6)	Ca _{5 08} Y _{0.69} REE _{0.23}	2.21	2.15
Na(1)	30.5(4)	Zr _{3,00} Na _{2,77}	0.83	0.92	M(2,5)	10(1)	Mn _{0.40}	0.21	0.27
			0.86	0.92	M(2,4)	48(1)	Fe _{1.52} Mn _{0.30}	0.81	1.21
Na(2)	32.2(6)	Na _{2.93} Na _{2.87} REE _{0.13}	0.85	1.09	M(3)	21(1)]		
Na(3)	38.9(5)			1.57	M(3a)	6(1)	} Si _{1.71} Nb _{0 29}	ş	
Na(4)	71.9(5)	$Na_{1.66}REE_{0.67}K_{0.30}Ca_{0.24}Sr_{0.13}$			Si(7)	8.5(3)		3	
Na(5)	30.4(5)	Na _{2.76}	0.84	0.92	Zr	119.7(4)	Zr2.90 Tio 05Hf0.04	4.15	3.99
#3:	120 2(5)	Co Mr. V. BEE	2.06	2.05	Na(1)	64.8(7)	Na _{5 89}	0.81	0.98
M(1)	132.3(5)	$Ca_{4.84}Mn_{0.88}Y_{0.18}REE_{0.10}$	2.06	2.05	Na(4)	94.0(6)	Ca2 92Na2 87K0 21	1.49	1.49
M(2,5)		Mn _{1.45} Fe _{0.77}	1.41	1.48	Na(5)	33.4(8)	Na _{3.04}	0.65	1.02
M(2,4)		Fe0 68	0.36	0.45	#8:	33.4(0)	1443,04	0.05	1.02
<i>M</i> (3)	36.0(4)	Nb _{0.78} Ta _{0.07}	4.18	4.25	. M(1)	152.3(4)	Ca4 74Y0.79REE0.47	2.34	2.21
M(3a)	1.4(5)	J						0.15	0.26
Si(7)	11.8(2)	Si _{0.84}	3.35	3.36	M(2,5)		Fe _{0.25} Mg _{0.09} Fe _{1.32} Mn _{0.55}	0.85	1.25
Si(7a)	1.3(2)	Si _{0,09}	0.31	0.36	M(2,4))	0.05	1.40
Zr	119.5(3)	Zr _{2,99}	4.12	3.99	M(3)	24.6(3)		e	
Na(1)	30.3(4)	Na _{2,76}	0.85	0.92	Si(7)	8.1(3)	$Si_{1 63}Ti_{0 21}Nb_{0.16}$	ş	
Na(2)	32.9(5)	Na _{2.99}	0.88	1.00	<i>Si</i> (7a)	2.9(2)]	1.01	4.00
Na(3)	36.5(5)	$Na_{2.92}REE_{0.08}$	0.85	1.05	Zr	120.00	Zr ₃ (fixed)	4.24	4.00
Na(4)	91.9(4)	$Na_{1.50}REE_{1.20}K_{0.24}Sr_{0.06}$	1.65	1.82	Na(1)	64.3(6)	Na _{5.84}	0.81	0.97
Na(5)	32.1(5)	Na _{2.91}	0.84	0.97	Na(4)	89.6(5)	Na3 77Ca1 70K0 39Sr0 06REE 0 07		1.32
#4:					Na(5)	29.8(6)	Na _{2.71}	0.64	0.90
M(1)	142.2(4)	Ca3 70Mn1 88REE 0 29Y 0 12	2.09	2.06	#9:				
M(2,5)	53.3(6)	$Mn_{1.56}Fe_{0.55}$	1.26	1.41	M(1)	139.7(4)	$Ca_{3,79}Mn_{1,48}REE_{0,38}Zr_{0,18}Y_{0,17}$		2.15
M(2,4)	13.1(7)	Fe _{0.50}	0.21	0.33	M(2,5)		Fe0.57Mn0.79Ti0.25	0.86	1.24
M(3)	24.1(3))			M(2,4)	24(4)	Fe _{0.92}	0.46	0.61
M(3a)	1.9(2)				M(3)	15(4)			
M(3b)	2.1(3)	Si1 33Nb0.67	§		M(3a)	7(4)	Si ₁₈₉ Nb ₀₁₁	§	
Si(7)	6.9(3)		3		Si(7)	8.0(4)	J		
Si(7a)	11.2(6)				Zr	111.0(6)	Zr _{2 50} Ti _{0.50}	4.26	4.00
Zr	117.9(4)	Zr _{2.76} Ti _{0.13} Nb _{0.11}	4.16	4.05	Na(1)	60.0(6)	Na _{5,45}	0.80	0.91
			0.84	0.98	Na(4)	71.4(9)	Na5 56K0 34Sr0 10	0.92	1.02
Na(1)	32.4(4)	Na _{2.95}			Na(5)	27.5(9)	Na _{2,50}	0.61	0.84
Na(2)	30.7(5)	Na _{2,79}	0.86	0.93	#10:		1.002,50		
Na(3)	37.3(5)	$Na_{291}REE_{0.09}$	0.95	1.13	M(1)	122.8(5)	Ca5 89 Y 0 08 REE 0 03	2.05	2.02
Na(4)	53.6(4)	$Na_{231}REE_{0.34}K_{0.23}Sr_{0.12}$	1.19	1.27	M(1) M(2,5)		Mn _{0.47}	0.32	0.32
Na(5)	26.4(6)	Na _{2.40}	0.77	0.80	M(2,3) M(2,4)	. /	Fe _{1 90} Mn _{0.20}	1.13	1.40
#5:	70 //0	M. V	2.01	2.08	M(2,4) M(3)	9(1)	1 9011110/20		
M(1a)	79.6(6)	Mn _{2.75} Y _{0.25}	2.01	2.08			SimNh	8	
<i>M</i> (1b)	75.1(4)	Ca1.77REE0.57Na0.66	1.80	1.97	M(3a)	10(1)	Si _{1.84} Nb _{0.16}	ş	
M(2,5)		$Fe_{1,13}Mn_{0,95}Zr_{0,24}$	1.45	1.71	Si(7)	13.6(3)	J	4 1 4	4 00
<i>M</i> (2,4)		Fe _{0.28}	0.13	0.19	Zr	115.7(4)	Zr _{2 78} Ti _{0 22}	4.14	4.00
M(3)	35.7(3)	Nb _{0.87}	4.21	4.34	Na(1)	63.5(6)	Na5,77	0.82	0.96
	11.2(3)	Si _{0 80}	3.09	3.20	Na(4)	92.6(6)	Na4,29Ca0,71Sr0.65K0 35	1.23	1.23
Si(7) Si(7a)	2.9(2)	Si _{0 20}	0.65	0.80	Na(5)	33.2(6)	Na _{3.05}	0.73	1.02

TABLE 8 CONTINUED

site	epfu**	apfu assignment	BVS*	VS	site	epfu**	apfu assignment	BVS*	VS
#11					M(3b)	13(3)	Si1.88Nb0.12	ş	
M(1)	121.5(5)	Ca _{5 93} Y _{0.07}	2.07	2.01	Si(7)	12.5(3)	J		
M(2,5)	49(3)	$Mn_{143}Fe_{049}$	1.13	1.28	Zr	119.0(4)	Zr2 86 Tio 09 Nb0 03 Hf0 02	4.20	4.0
M(2,4)	15(3)	Fe _{0.58}	0.26	0.39	Na(1)	63.6(7)	Na _{5.78}	0.80	0.9
A(3)	14.4(4)				Na(4)	76.5(6)	Na _{5 48} K _{0 31} Ce _{0 13} Sr _{0.08}	0.87	1.0
M(3a)	1.9(2)	i			Na(5)	32.7(7)	Na _{2.97}	0.76	0.9
A(3b)	5.6(3)	Si137Nb063	§		#15	0=(.)			
Si(7)	7.3(4)	01,371,00,63	3		M(1)	133.6(6)	Ca _{5 15} Fe _{0 25} Mn _{0 24} REE _{0 22} Y _{0.14}	2.11	2.0
	16.1(6)	1			M(2,5)	. ,	Fe _{0.46}	0.24	0.3
Si(7a)) 7- ም: እቤ	1 10	4.02	M(2,4)		Fe _{2 52}	1.47	1.6
r	114.5(4)	Zr _{2.59} Ti _{0.34} Nb _{0.07}	4.10	4.02	M(3)	10(1)]		
Va(1)	40.5(6)	Na _{2 17} Ca _{0.83}	1.04		M(3a)	14(1)	Si1.85Nb0.15	§	
Va(2)	25.0(8)	Na _{2.27}	0.80	0.76		~ /	1 311,851400,15	8	
Va(3)	62(1)	Na1.85Sr0.68K0.30REE0.13Ba0.07	1.30	1.32	Si(7)	11.4(3)	J 7- NIL LIE	4.17	4.0
Va(4)	59.9(6)	Na _{2.38} Sr _{0.62}	0.95	1.21	Zr	119.6(4)	Zr _{2.93} Nb _{0.05} Hf _{0.02}	0.84	0.9
Va(5)	33.7(8)	Na _{3.06}	0.87	1.02	Na(1)	65.1(6)	Na _{5.92}	1.08	1.1
12					Na(4)	86.6(6)	Na4.91Ca0.44K0.31Ce0.27Sr0.06		
A(1)	122.2(5)	Ca _{5.91} Y _{0.06} REE _{0.03}	2.05	2.02	Na(5)	35.3(7)	Na _{3 20}	0.76	1.0
A(2,5)		Mn _{0,39}	0.42	0.26	#16			0.10	
4(2,4)		Fe _{1 77} Mn _{0.35}	1.15	1,41	M(1)	138.0(5)	Ca4.95Mn0.67REE0.38	2.12	2.0
<i>I</i> (3)	12.7(8)	1			M(2,5)		$Mn_{1.83}Fe_{0.79}$	1.63	1.7
4(3a)	10.3(6)	Si1 73Nb0 27	§		M(2,4)		Fe _{0.26}	0.13	0.1
Si(7)	12.4(3)	1			M(3)	38.9(3)	Nb _{0.95}	4.92	4.7
Zr	116.4(4)	Zr _{2.80} Ti _{0.20}	4.19	4.00	Si(7)	11.5(3)	Si _{0.82}	3.38	3.2
Va(1)	63.3(6)	Na5 75	0.81	0.96	<i>Si</i> (7a)	1.6(2)	Si _{0.11}	0.41	0.4
Va(4)	94.7(6)	Na426Sr076Ca072K026	1.25	1.25	Zr	118.4(4)	Zr _{2.96}	4.09	3.9
Va(5)	35.4(6)	Na _{3 22}	0.71	1.08	Na(1)	32.3(5)	Na _{2,94}	0.81	0.9
13					Na(2)	30.7(5)	Na _{2.79}	0.82	0.9
M(1)	152.5(5)	Ca3 37Mn 79Y 0 43 REE 0 41	2.17	2.14	Na(3)	34.6(5)	Na _{3,15}	0.90	1.0
1(2,5)	. ,	Mn199Fe045Al014	1.51	1.75	Na(4)	96.9(3)	Na0 96 REE 0 74 Sr 0 72 K 0 33 Y 0 25	1.64	1.7
M(2,4)		Fe _{0.29}	0.14	0.19	Na(5)	32.9(5)	Na _{2 99}	0.91	1.(
M(3)	29,6(4)	Nb _{0 55} Zr _{0 13} Ti _{0.08}	3.83	3.59	#17				
Si(7)	11.8(4)	Si _{0.85}	3.50	3.40	M(1)	155.2(6)	Ca _{3.50} Mn _{1.51} Y _{0.50} REE _{0.49}	2.20	2.1
Si(7a)	3.7(4)	Sio 26	1.04	1.04	M(2,5)	37(8)	Mn0.66Al0.42Fe0.37Ti0.24	0.94	1.4
Zr	119.3(6)	Zr _{2.82} Ti _{0.13} Hf _{0.05}	4.15	4.00	M(2,4)	30(8)	Fe _{1.14}	0.56	0.1
Va(1)	37.8(6)	Na _{2.90} REE _{0.10}	1.02	1.07	M(3)	25.1(6)]		
Va(2)	26.1(9)	Na _{2.37}	0.69	0.79	M(3a)	1.4(4)	Si0.93Nb045Al042Zr0.20	ş	
Va(3)	41.5(6)	Na _{2.82} REE _{0.18}	1.08	1.12	Si(7)	4.2(5)		-	
Va(4)	70.8(4)	$Na_{1.86}REE_{0.68}K_{0.30}Sr_{0.16}$	1.40	1.51	Si(7a)	14.3(7)	İ.		
Va(4) Va(5)	33.2(9)	Na1 860220 68 No 3051 0 16	0.96	1.01	Zr	118.0(7)	Zr _{2.89} Ti _{0.11}	4.17	4.0
	33.4(9)	1 1 43 02	0.70	1.01	Na(1)	35(1)	$Na_{2.90}REE_{0.05}$	1.08	1.0
#14	12(0/5)	C- Mr DEE V	2.12	2.08				0.66	0.8
M(1)	136.9(5)	$Ca_{520}Mn_{031}REE_{0,26}Y_{023}$			Na(2)	28(1)	Na _{2.51}	0.98	1.1
M(2,5)		Mn _{0,29} Fe _{0,21}	0.26	0.33	Na(3)	40(1)	Na _{2.84} REE _{0.16}		1.4
M(2,4)	· /	$Fe_{2 40}$	1.39	1.60	Na(4)	71.8(9)	Na1 69 Sr0 56 REE 0 43 K 0 28 Ba0 04	0.65	1.4
M(3)	5.6(7)	l .			Na(5)	33.00	Na ₃ (fixed)	0.05	1.0

* Parameters from Brese & O'Keeffe (1991). ** Standard deviations in parentheses estimated from s.d. of the site occupancy factors. § For disordered structures, bond-valence sum for these sites cannot be calculated; for detailed discussion, see text.

VS for Na(5) in $R\overline{3}m$ eudialytes are calculated with multiplicity as in R3m.

proposed based on the sum of *epfu* from both M(3) and Si(7) and their satellite sites and assuming N = 2. The overall excellent agreement between the *apfu* derived from electron-microprobe data (Table 2) and those derived from structure refinements (Table 8) clearly indicates that this procedure is valid.

(iii) Assessment of the site population for the partly vacant M(2) sites is generally done by first allocating Fe to M(2,4), and secondly to M(2,5), then the same

procedure with Mn. All remaining Mn is allocated to M(1).

Thermogravimetric analysis

The thermogravimetric analysis (TGA) of two eudialyte samples, 8 (10 mg) and 10 (16 mg), was done using a Stanton Redcroft TGA–DTA system; dry argon was used as purge gas. In both samples, weight loss was below the detection limits of the instrument.

	<i>O</i> (19)	<i>O</i> (20)	X(1)	X(2)
#1	11.9	6.8	29.3	
#2	18.2	5.8	18.0	11.6
#3	21.6	6.7	20.3	10.6
#4	20.1	4.8	11.4	7.2
#5	21.7	6.4	17.5	12.1
#6	24*	5.8	19.2	13.7
#7	16.0	6.0	32.7	
#8	16.3	4.6	32.2	
#9	17.0	3.8	10.6	
#10	8.4	7.9	27.9	
#11	15.2	3.0	25.9	
#12	11.2	7.4	33.0	
#13	20.9	7.6	9.1	16.3
#14	12.3	7.9	29.8	
#15	14.2	7.2	28.2	
#16	24*	7.6	20.4	7.0
#17	20.5	1.0	10.7	15.4

TABLE 9. SITE-SCATTERING VALUES (epfu) OF REFINED ANION SITES IN EUDIAL YTE SAMPLES

* not refined. *O*(19a) *epfu* for samples 1, 10 and 12 are 4.5, 5.6 and 7.5, respectively. *O*(20a) *epfu* for samples 11 and 17 are 4.9 and 2.1, respectively. e.s.d. for *epfu*'s are: *O*(19) 2-5%; *O*(19a) ~10%; *O*(20) 4-6%; *O*(20a) ~15%; *X*(1) and *X*(2) 3-8%.

Infrared analysis

Infrared spectra of selected samples of eudialyte (5, 8, 10 and 13) were obtained using a Bomem Michelson MB-120 Fourier-transform infrared spectrometer with a diamond-anvil cell microsampling-device (sample 13) or a Perkin Elmer 1000 Fourier-transform instrument (samples 5, 8 and 10). The dominant absorption bands (cm⁻¹) are: that of the [OH] stretching modes (broad 3440 and 3150); the [H₂O] bending mode (weak peak at 1655); the [SiO₄] symmetric stretching mode (major band with peaks at 1040, 980 and 940); the [SiO₄] bending modes (sharp peaks at 760, 710 and 660). A complete description of an IR spectrum for kentbrooksite (sample 13) is given in Johnsen et al. (1998). The primary purpose in obtaining several selected IR spectra was to evaluate the role of OH and H₂O in eudialyte. From these data, it is evident that both the OH and H₂O species exist in eudialyte, but the latter seems of minor importance, whereas the proportion of OH is significant in the samples tested.

Mössbauer and optical absorption spectroscopy

Mössbauer and optical absorption spectroscopy were performed on five samples of eudialyte (s.l.) given in Johnsen & Gault (1997), one of which is included in the present study as sample 10 (U. Hålenius, pers. commun.). The general results of the Mössbauer spectroscopy, performed at room temperature, are very similar to those of Pol'shin *et al.* (1991) with the exception that no evidence is found for ferric iron (Fe³⁺). Neither is there any evidence for Mn^{3+} or Fe³⁺ in the data obtained from the optical absorption spectra. These observations are in accordance with the findings of Mn^{2+} only in kentbrooksite (Johnsen *et al.* 1998).

TOPOLOGY OF THE STRUCTURE

The site nomenclature for the R3m type of eudialyte adopted here is based on that of kentbrooksite (Johnsen *et al.* 1998), with minor modifications. The *F* sites in kentbrooksite are relabeled as *X* sites, which is more appropriate for sites accommodating Cl, OH, H₂O and F, whereas *M*4 is relabeled *Si*(7) since Si has proven to be the predominant element at the site. *M*2 is changed to *M*(2,5), and *M*2a, to *M*(2,4), in order to incorporate the coordination number in the notation.

The center of symmetry in the $R\bar{3}m$ type of eudialyte reduces the number of distinct sites, and Si(2) becomes symmetry-equivalent to Si(1), Si(4) to Si(3), whereas O(4), O(5) and O(6) become equivalent to O(1), O(2)and O(3), and Na(2) and Na(3) become equivalent to Na(1) and Na(4). The reduction of symmetry from $R\bar{3}m$ to $R\bar{3}$ results in a doubling of every general site in $R\bar{3}m$, *i.e.*, M(1) degenerates into M(1a) and M(1b), etc. The full notation for members of all three space groups is given in Table 4.

Overview of the structure

The most characteristic property of the eudialyte structure is the unique combination of three- and ninemembered rings of $[SiO_4]$ tetrahedra (Golyshev *et al.* 1971, Giuseppetti *et al.* 1971). These $[Si_3O_9]^{6-}$ and $[Si_9O_{27}]^{18-}$ rings are arranged in layers perpendicular to [001], with the configuration shown in Figure 1. Two such layers, related by a center or a pseudocenter of symmetry, embrace a layer of discrete rings of six $[M(1)O_6]$ octahedra linked together by $[M(2)O_n]$ polyhedra forming a 2:1 composite layer. The 2:1 composite layers are cross-linked by Zr in octahedral coordination and related to one another in accordance with rhombohedral symmetry. This open structure is filled with $[Na\phi_n]$ polyhedra in which Na may have various coordinations.

In the stacking sequence of the 2:1 layers and the layers with $[ZrO_6]$ octahedra, twelve levels can be recognized within the repeat distance of the *c* cell dimension. Figures 2 and 3 give a simplified representation of these levels from one six-fold ring of $[M(1)O_6]$ octahedra to the next ring, for an acentric and a centric eudialyte, respectively. Oblong cages exist along the triad axes, reaching from one constriction made by a $[Si_3O_9]^{6-}$ ring up through the layer sequence to the next constriction by a $[Si_3O_9]^{6-}$ ring, including nine of the

FIG. 1. The nets of three-fold and nine-fold silicate rings in eudialyte-group minerals seen along [001].

twelve levels. In these cages, the central level comprises a region surrounded by six [ZrO₆] octahedra (only four of them are shown in the figures), and on either side followed by (i) an intra $[Si_9O_{27}]^{18-}$ ring level, (ii) a level with a region surrounded by $[M(1)O_6]$ and $[M(2)O_n]$ polyhedra, (iii) an inter [Si₉O₂₇]¹⁸⁻ ring level, and (iv) a level with a region surrounded by three [ZrO₆] octahedra. Na is the dominant cation in the cavities at the levels of [ZrO₆] octahedra and in other cavities in or at the border of other levels. Cl, F, OH and H₂O are accommodated in the inter [Si₉O₂₇]¹⁸⁻ ring levels, whereas the central parts of the $[Si_9O_{27}]^{18-}$ rings offer space for a cation in tetrahedral or octahedral coordination. Which is present depends on the incorporation or not of O(19)which, where present, is shared with the $[M(2)O_5]$ polyhedra. This important phenomenon will be discussed in detail below.

DESCRIPTION AND DISCUSSION OF THE ATOMIC SITES

The Si in three-membered rings

The $[Si_3O_9]^{6-}$ rings are uniform building blocks in all eudialyte crystals. In R3m, they are composed of Si(1) and Si(2) with their respective ligands, all atoms having point symmetry m. As seen in Figure 4, the $[Si_3O_9]^{6-}$ rings are linked to the six-membered rings of $[M(1)O_6]$ octahedra by sharing the three innermost atoms of oxygen on each side. Figure 5 illustrates the corresponding configuration in R3, where all positions are reduced to general positions and where the mutual angle of rotation between the two three-membered silicate rings is other than 180° . In $R\overline{3}m$, the Si(1) and Si(2)tetrahedra are related by a center of symmetry. The tilt of the Si(1) and Si(2) tetrahedra toward the Z-axis differs from each other in acentric examples of eudialyte, and the degree of tilt varies from sample to sample: the largest difference is seen in sample 5, the R3 eudialyte.

For all crystals, the Si– $O_{\text{non-bridging}}$ bond-lengths are 1.58–1.60 Å, whereas the Si– O_{bridging} bond-lengths are ~1.64 Å. These are the expected values for essentially Al-free tetrahedra. The bond-valence sum of Si(1) for all samples is 4.09(5). For the noncentrosymmetric samples, the bond-valence sum of Si(2) is 4.07(6).

The Si in nine-membered rings

When referring only to R3m and R3 types of eudialyte, the Si atoms involved in the $[Si_9O_{27}]^{18-}$ rings are labeled so that all Si atoms in one silicate layer are either odd-numbered or even-numbered. Thus in the layer including the three-membered Si(1) ring, the ninemembered ring is composed of a set of three Si(3) tetrahedra [Si(3) having point symmetry m in R3m] and a set of six Si(5) tetrahedra, with Si(5) in a general position. In the next silicate layer, the tetrahedra are correspondingly labeled Si(2), Si(4) and Si(6) except in $R\bar{3}m$, where these are generated by the center of symmetry.

The shape of the $[Si_9O_{27}]^{18-}$ rings varies by tilting and rotation of the individual tetrahedra. The most pronounced shifts are exemplified by rotation of the Si(5)and Si(6) tetrahedra about [001] (or a direction close to

FIG. 2. A simplified polyhedral model of noncentrosymmetric, R3m eudialyte (s.l.), viewed approximately along [210].

THE CRYSTAL CHEMISTRY OF THE EUDIALYTE GROUP

FIG. 3. A simplified polyhedral model of centrosymmetric, $R\bar{3}m$ eudialyte (s.s.), viewed approximately along [210].

FIG. 4. A six-fold ring of $[M(1)O_6]$ octahedra with attached [SiO₄] tetrahedra in a R3m type of eudialyte viewed along [001].

[001]) and tilting of the Si(3) and Si(4) tetrahedra equivalent to a rotation about [100]. Thus, owing to such adjustments, the distances between the three innermost atoms of oxygen of the rings can be made to fit the face of a tetrahedron or a face of an octahedron. For example, the distance between the O(9) atoms of oxygen belonging to the Si(3) tetrahedra is typically 2.65 Å, matching the edge of a [NbO₆] octahedron, whereas the similar distance O(12)-O(12) is on the order of 2.52 Å, matching the edge of a [SiO₄] tetrahedron.

The $[Si_9O_{27}]^{18}$ ring with a tenth Si tetrahedron in the center can also be described as a $[Si_{10}O_{28}]^{16}$ platform. We prefer to keep the ring terminology, which we consider more applicable in the discussion of the crystal-chemical characteristics of this group of minerals.

In R3m structures, small maxima labeled Si(3s) are observed in some cases. They are produced because Si(3) and Si(4), which ideally are related by the center of symmetry, are not completely superimposed in all parts of the crystal, indicating that the centricity is imperfect. This misalignment results in domains within the structure. Although of very minor significance in general, these maxima have been included in the refinement.

As in the case of the three-membered silicate rings, all crystals have Si–O_{non-bridging} bond-lengths in the range 1.58–1.60 Å, whereas Si–O_{bridging} bond-lengths are ~1.64 Å for the nine-membered silicate rings. Again, these are the expected values for essentially Al-free tetrahedra. The only sample in the present selection with appreciable amounts of Al is sample 17 from the Burpala massif, with 0.82 Al, all of which has been allocated to M(2,5) and M(3)/Si(7). The bond-valence sums of Si(3) and Si(5) for all samples are 4.07(5) and 4.05(5), respectively.

The Zr site

Zr is accommodated in a nearly regular octahedron interconnecting one three-membered and two ninemembered silicate rings in one layer with a correspond-

FIG. 5. A six-fold ring of alternating $[M(1a)O_6]$ and $[M(1b)O_6]$ octahedra with attached $[SiO_4]$ tetrahedra in a R3 type of eudialyte viewed along [001].

ing set of rings in the next layer. Consequently, all ligands in this octahedron are shared with Si atoms. The mean Zr-O bond-length for all samples is 2.068(7) Å, but an anomaly is noted. Within the dataset, sixteen samples have a mean Zr-O distance of 2.070(4) Å, and one sample (sample 9 from Varennes) is characterized by a significantly shorter Zr-O distance, 2.046 Å. This exception is in accordance with a substantial substitution of Ti for Zr in this sample, in which the site is occupied with 2.50 Zr + 0.50 Ti apfu (Table 8). Among the other samples, only those from the Gardiner complex (samples 10, 11 and 12) contain appreciable amounts of Ti (0.20-0.34 apfu) in this site. Niobium plays a subordinate role in the Zr site; the highest amount of Nb assigned is 0.11 apfu in sample 4. Hafnium never exceeds 0.05 apfu. As seen in Table 8, the bond-valence sum of the Zr site is consistently about 4% higher than the corresponding sum of valences, an indication that the bondvalence parameter for Zr (Brese & O'Keeffe 1991) is slightly too high for this type of structure.

Khomyakov *et al.* (1990) described alluaivite from the Lovozero complex as having a eudialyte structure in which Ti replaces Zr entirely in this site. Recently, another eudialyte-group mineral has been found in Lovozero in which Ti substitutes for approximately onehalf the Zr (A.P. Khomyakov, pers. commun.). In that case, the two ions order to occupy positions in every second layer, causing the c cell dimension to double. The only sample in the present dataset with appreciable amounts of Ti, sample 9 from Varennes, does not show any sign of ordering of the Zr and Ti at the Zr site.

The M(1) site

The M(1) site is octahedrally coordinated and shares all O ligands with Si atoms. It occupies a special position with point symmetry 2 in space group $R\overline{3}m$, but a general position in space group R3m (Fig. 4) and two general positions M(1a) and M(1b) in space group R3(Fig. 5). Edge-sharing $[M(1)O_6]$ octahedra form sixmembered rings that on both sides are connected to a central three-membered silicate ring and three ninemembered silicate rings.

Plotted in Figure 6a, for all samples, are the mean bond-lengths of the $[M(1)O_6]$ octahedra *versus* the ratio Ca/(Ca + Mn + *REE* + Y) in M(1), an expression that incorporates the most important elements of the site. In all samples, the $[M(1)O_6]$ octahedra are somewhat distorted. The degree of distortion is related to nature of occupant, as shown in Figure 6b, in which a distortion index, $\Delta = 1/6 \sum_{i=1}^{6} [(\mathbf{R}_i - \bar{R})/\bar{R}]^2$ (Brown & Shannon 1973), is plotted against the components described above. In this context, it should be noted that the correlation shown is relatively poor, owing to the fact that all elements involved, like most elements in eudialyte, occupy more than one site in the structure. In addition, the degree of distortion of the $[M(1)O_6]$ octahedra is not only dependent on the nature of the occupant, but also

FIG. 6. The ratio Ca / (Ca + *REE* + Mn + Y) in *M*(1) plotted against the mean bond-length of the [*M*(1)O₆] octahedron (a) and the distortion index of the [*M*(1)O₆] octahedron (b). The distortion index Δ is equal to $1/6 \sum_{i=1}^{6} [(R_i - \bar{R})/\bar{R}]^2$ (Brown & Shannon 1973). The symbols chosen are as in Table 1.

is influenced by the geometry of the surrounding structural blocks as well as by the different constraints on symmetry imposed in the three space groups concerned.

In most samples, Ca is the dominant element in M(1), and in centrosymmetric eudialyte, it is the only significant element. The average Ca content in M(1) is 4.69 apfu. Mn is next in importance with an average of 0.79 apfu, followed by REE and Y with ~0.24 apfu each. In sample 13 (labeled A in Fig. 6), almost half the Ca is substituted by Mn, Y and REE in M(1). This appears to be close to the limit where Ca and Mn order in two crystallographically distinct sites, as seen in sample 5. Ordering results in a distorted, Mn-dominant $[M(1a)O_6]$ octahedron, with a relatively small mean bond-length of 2.227 Å, and a less distorted, Ca- and REE-dominant $[M(1b)O_6]$ octahedron, with a relatively large mean bond-length of 2.431 Å. As illustrated in Figure 5, the result is a loss of the mirror planes in R3m, and the symmetry thus is reduced to R3.

The highest content of Y is found in samples 7 and 8 from the Kipawa complex, and all the Y is accommodated in M(1). A small part of Fe (0.25 apfu) in sample 15 from the Ilímaussaq complex is allocated to M(1), and 0.66 apfu Na is assigned to the large $[M(1b)O_6]$ octahedron in sample 5. The iterative process of assigning several elements to several sites resulted, in the case of sample 9 from Varennes, in a small amount of Zr (0.18 apfu) being assigned to M(1). In this particular case, the assignment appears insubstantial. It is maintained, however, because another crystal from the same locality, although excluded from the selection presented here owing to poor refinement results, shows an extremely high site-scattering value at the M(1) site, which could only be attributed to a population including some Zr.

The M(2) sites

The M(2) notation includes two sites, the four-foldcoordinated M(2,4) site and the five-fold-coordinated M(2,5) site. The distance between these sites is on the order of 0.7 Å. They are positioned on the mirror plane, except in R3, and bridge the six-membered rings of $[M(1)O_6]$ octahedra. The M(2,4) site is located on a center line between the six-membered rings on a position that in $R\bar{3}m$ has point symmetry 2/m, whereas the M(2,5)site is shifted toward the M(3) site (Figs. 2, 3).

The four-fold coordination of M(2,4) is an almost planar arrangement with mean bond-lengths of 2.11(6) and 2.09(4) for M(2,4)-O(14) and M(2,4)-O(17), respectively. Golyshev *et al.* (1971) and Giuseppetti *et al.* (1971) both assigned Fe to this site and made reference to gillespite (Pabst 1943), in which this unusual type of coordination was first observed. The Fe–O distances in gillespite are ~2.00 Å, *i.e.*, slightly smaller than in eudialyte. In the present samples, Fe is assigned to M(2,4) as well, and Mn subsequently, both elements as divalent ions in accordance with the results of the selected tests for valence mentioned in the Methods section.

As seen in Table 8, the bond-valence sums (BVS) for M(2,4) are consistently lower than the corresponding valence-sums (VS), on average ~25% (this discrepancy would be even larger if trivalent ions were assigned). This overall BVS-VS discrepancy indicates that Fe is relatively poorly bonded in M(2,4), which is also supported by very strong anisotropic displacement factors perpendicular to the plane of the oxygen atoms.

The five-fold coordination of M(2,5) constitutes a distorted square pyramid involving the two pairs of O(14) and O(17) plus the extra O(19); the mean bondlengths are as follows: M(2,5)-O(14) 2.12(3), M(2,5)-O(17) 2.20(9), and M(2,5)-O(19) 2.1(2) Å. The O(19) site has the same point symmetry as M(2,5), and it constitutes the shared ligand between the $[M(2,5)O_5]$ and $[M(3)O_6]$ polyhedra. Not considering the X sites, O(19) is thus the only atom of oxygen in the eudialyte structure not bonded to Si. The anisotropic displacement parameters for M(2,5) are relatively small compared with those of M(2,4).

Whereas Fe distinctly predominates in M(2,4), Mn is in general more abundant than Fe in M(2,5). On average, M(2,5) accommodates 0.85 Mn *apfu* and 0.55 Fe *apfu*. The highest content of Mn is 1.97 *apfu*, in sample 13. Note that in the assignment procedure, it is commonly impossible to distinguish between Fe and Mn where both are present in ample amounts unless specific spectroscopic information is available. Such information was sought on selected samples, but owing to serious overlap conditions, no conclusive results have been obtained so far (U. Hålenius, pers. commun.).

As seen in Table 8, the bond-valence sums (BVS) for M(2,5) are in general lower than the corresponding valence-sums (VS) by an average of ~15%, which is less than for M(2,4).

The site-occupancy factors (*sof*) for M(2,4) and M(2,5) are strongly correlated, such that during the refinement, great care was exercised in order to give realistic *sof* values. Figure 7 shows the distribution of the *epfu* in the two sites. It is obvious that the population is divided in two: some samples, in which the scattering power is concentrated in M(2,4), refine as the centric type, whereas samples of a second group, with most electrons concentrated in M(2,5), refine as the acentric type (an exception is sample 9). The role of the M(2) site in the question of the acentricity in eudialyte, as well as the relations to neighboring sites, is discussed in greater detail below.

The total number of atoms per formula unit occupying the two M(2) sites is 3; as shown in Figure 7, only two samples (14 and 15) reach about 77 *epfu*, corresponding to full occupancy with (Fe,Mn). We also note that among the present samples, none have less than 55.7 *epfu*, equivalent to ~2 *apfu* (Fe,Mn). The observation that other elements enter the Fe site, partly or entirely, as an integral part of the structure indicates that Fe itself

FIG. 7. The site-scattering power at site M(2,4) plotted against the site-scattering power at site M(2,5). The symbols chosen are as in Table 1.

is not essential for the stability of the eudialyte structure, as had been claimed by Christophe-Michel-Lévy (1961) on the basis of hydrothermal syntheses of eudialyte.

The M(2) site (or an equivalent site) in six-fold coordination as described by Rastsvetaeva *et al.* (1990) has not been observed in this selection of eudialyte samples. The samples that refined centrosymmetrically did indicate six-fold coordination because of doubling the multiplicity of the O(19) site, but subsequent refinement in the acentric space-group showed that all the scattering power originated from the "acentric" O(19)site with half the multiplicity.

The M(3) site in acentric crystals

In the nine ordered structures of eudialyte belonging to space groups R3m and R3, M(3) is a well-defined octahedral site with point symmetry 3m, and bonded to three O(19) atoms and the three innermost atoms of oxygen of the nine-membered silicate ring having oddnumbered Si atoms (Fig. 8). The mean bond-lengths are 2.00(6) and 1.88(2) Å for M(3)-O(9) and M(3)-O(19), respectively.

Nb is clearly the dominant element in M(3), except in sample 6, where W dominates. The highest Nb content, 0.95 *apfu*, occurs in sample 16, whereas the remaining samples show some degree of site vacancy. The average of the bond-valence sums and valence sums for the M(3) population in acentric crystals seen in Table 8 are 4.0(6) and 3.9(6) respectively, which gives an excellent overall agreement.

The Si(7) site in acentric crystals

Si(7) and M(3) are pseudocentrosymmetrically related. Si(7) is a tetrahedral site with point symmetry 3mbonded to O(20), which also has point symmetry 3m, and the three innermost atoms of oxygen of the ninemembered silicate ring with even-numbered Si atoms (Fig. 8). The mean bond-lengths are 1.60(2) and 1.60(3)for Si(7) - O(12) and Si(7) - O(20), respectively. In some crystals, there is an alternative position about 1.2 Å removed from Si(7), still on the three-fold axis and more distant from O(20) (Fig. 8). This site, labeled Si(7a), also is tetrahedrally coordinated, where one of the disordered X sites is incorporated as an apical ligand. It simply represents a reversed tetrahedron with the same mean bondlengths. In the most ordered crystals, these two sites together have a site-scattering value that roughly corresponds to one Si apfu. In other crystals, incipient disorder of the M(3) and Si(7) sites impede the interpretation of the stereochemistry along the triad axes, although these crystals still refine best in the acentric spacegroups. Accordingly, for these crystals, assignment of a certain scattering power to a certain site becomes dubious.

The M(3) and Si(7) sites in centric crystals

As the disorder on the triad axes becomes more extensive and the stereochemical substitution ${}^{[6]}M(3) + {}^{[4]}Si(7) \leftrightarrow 2{}^{[4]}Si(7)$ proceeds to the right, the data will give a superior refinement as a centrosymmetric structure. In such crystals, the scattering overlap precludes a reliable interpretation of the local stereochemistry except, of course, in the ideal situation of a full $2{}^{[4]}Si(7)$ substitution. Sample 9 is the closest we get to this situation among the present samples. It should be stressed, however, that other features elsewhere in the structure also exert an influence on the degree of acentricity.

The scattering overlap results in small additional maxima along or very close to the three-fold axes. These "sites" have been labeled M(3a) and M(3b), and their position is indicated in Figure 8. Their limited significance in relation to the important Si(7) and M(3) sites in the various crystals can be read from Table 8. In Table 8, the site-scattering value of all Si(7) and M(3) sites including the small additional maxima has been added up and converted to 2 *apfu*.

Johnsen & Gault (1997) showed that a strong negative correlation exists between the presence of Nb and Si. The present study documents that this correlation is the chemical expression of the stereochemical substitution: ${}^{[6]}M(3) + {}^{[4]}Si(7) \leftrightarrow 2{}^{[4]}Si(7)$. On the basis of the site assignment in Table 8, this correlation can be further refined as shown in Figure 9. In this plot, the abscissa

FIG. 8. A ball-and-stick model of Si(7) and M(3) sites surrounded by the three innermost $[SiO_4]$ tetrahedra in the nine-membered rings.

represents the chemical content of $2^{[4]}Si(7)$, which is the total amount of Si and Al minus the Si in the silicate ring system (24 *apfu*) and a correction for Al in M(2,5). The component represented along the ordinate axis is somewhat more elaborate. Although Nb is primarily accommodated in M(3), small amounts of this element are found in the Zr site. In addition, Ti may be present in both Zr and M(3), as well as in M(2,5) in some cases. In order to compensate for these complications, the

chemical content of M(3) is expressed as the sum of all elements assigned to M(3) and Zr minus 3 *apfu* contained in Zr site and a correction for (Ti,Zr) assigned in M(2,5) and M(1). The corrections made are indicated on the plot with dashed lines. The coefficient of correlation after the corrections is r = -0.96.

The plot in Figure 9 and the incorporated corrections confirm that the result of the site-assignment procedure seen in Table 8 is reasonable. It also shows that there is

FIG. 9. The correlation between the occupancy of M(3) and Si(7), both defined in text. The symbols chosen are as in Table 1. The dashed lines signify the following corrections made: sample h: -0.24 Zr in M(2,5); sample A: -0.14 Al in M(2,5); sample B: -(0.42 Al + 0.24 Ti) in M(2,5); sample V: -0.18 Zr in M(1) and -0.25 Ti in M(2,5).

an excellent agreement overall between the *apfu* derived from structural calculations and those from the electronmicroprobe data. Most important, however, is the conclusion drawn from Figure 9 that the ${}^{[6]}M(3) + {}^{[4]}Si(7)$ $\leftrightarrow 2^{[4]}Si(7)$ relation is substantiated, *i.e.*, Nb, and substitutions, in M(3) do not exceed 1 *apfu*. In other words, there is no indication in the present dataset that M(3) can be found in both crystallographically distinct ninemembered silicate rings, yet the structural explanation for this finding is not clear. Two ^[6]M(3) sites would require doubling of the multiplicity of O(19) and a change of the coordination of M(2) from five to six. The extra O(19) atoms of oxygen can be accommodated in the cages, and the six-fold coordination of M(2) has been observed (Rastsvetaeva *et al.* 1990). In addition, the rest of the eudialyte structure is already essentially centrosymmetric in nature. At present, we do not exclude the possible existence of two M(3) sites.

The Na sites

The structural framework hitherto described is saturated with Na; its locations are indicated in Figures 2 and 3. In R3m and R3, five distinct Na sites are recognized. In R3m, these five are reduced to three as Na(2)is included in Na(1), and Na(3) in Na(4), whereas Na(5)is unchanged except for the site-occupancy factor, which drops to one-half. Doubling the multiplicity of the Na(5)site results in Na atoms being positioned closer than 2 Å apart. Valence sums for R3m eudialyte samples in Table 8 are therefore calculated on the basis of the same multiplicity for the site as in R3m.

All five Na sites have point symmetry m (except in R3) and thus add up to 15 *apfu*. Some Na sites, mainly Na(1) and Na(3), have such large anisotropic displacement-parameters within the mirror planes that they are best described as split positions.

FIG. 10. A ball-and-stick model of the Na(4) site surrounded by selected polyhedra. Notice the strong disorder of the large X anions and the sharing of O(19) with the $[M(2,5)O_5]$ and $[M(3)O_6]$ polyhedra.

Selected mean bond-lengths for the $[Na\phi_n]$ polyhedra (ϕ : unspecified anion) are presented in Table 7. The coordination number of Na out to a distance of 3.10 Å ranges from 6 to 10, counting the disordered X sites as one ordered site only. The $[Na\phi_n]$ polyhedra are very irregular, and it is evident that Na simply must accept the space determined by the framework. In particular, Na is concentrated in the [110] channels running between silicate rings as well as between [ZrO₆] octahedra. It is probable that these channels constitute the paths through which Na may be leached out and exchanged for H₂O or H₃O⁺, as described by Rastsvetaeva et al. (1990). We also attempted to include a Na-poor eudialyte in this study, but we were unable to achieve an acceptable refinement of this particular crystal. Regardless of this, as mentioned in the section on microprobe analyses, Na volatilization or migration does not appear to be a major problem in eudialyte-group phases. indicating that Na generally bonds well within the structure. A different perspective on this matter might be extracted from the bond-valence sums and valence sums cited for the Na sites in Table 8. For Na(1), Na(2), Na(5) and in part Na(3), the VS values are 10-20% higher than the corresponding BVS values, indicating fairly weak bonding, whereas atoms in Na(4) and in part Na(3) seem more tightly bonded, judging from the better agreement between BVS and VS results.

With very few exceptions, Na is the only element in Na(1), Na(2) and Na(5). A small proportion of vacancies in Na(5) is encountered in some crystals. Sites Na(3) and Na(4), on the other hand, do carry substantial amounts of other elements; in Na(4) in particular, the site-scattering values may be high enough in some crystals that Na can no longer be the dominant element. For example, in sample 5, almost half of the site population in Na(4) consists of *REE*, and in sample 16. Na constitutes only a third of the site population, whereas the rest is a mixture of heavier elements. In sample 6, the crystal in which W exceeds Nb in M(3), Na is almost fully replaced by Sr. The reason for the capability of the Na(4)site to incorporate such elements as REE and Sr is found in the local stereochemistry around the Na(4) site (Fig. 10). Two of the nine ligands to Na(4) are O(19) ions that are shared with M(3) and M(2), the latter of which becomes five-fold-coordinated because of O(19). In the present selection of crystals, the site-occupancy factor for O(19) varies from about one third to unity (Table 9). It follows from the configuration around O(19) that its presence not only facilitates the accommodation of diand trivalent elements in Na(4), but also ensures the six-fold coordination of M(3) and favors the five-fold coordination of M(2) at the expense of four-fold coordination. As would be expected, there is a strong correlation between the site-occupancy factors of O(19) and the site-scattering values of Na(4), M(3) and M(2,5), respectively.

The X sites

The two X sites in the R3m type of eudialyte ideally have point symmetry 3m. However, both sites are strongly disordered along the triad axes and along the mirror planes; a typical situation is seen in Figure 10. The same situation occurs in the R3 and R3m type of eudialyte.

The X sites are bonded only to Na. Their site-scattering values are shown in Table 9. When converted to 2(Cl, F,OH) *apfu*, any of which may be dominant, there is usually a surplus of electron density that is calculated as H₂O.

DEGREE OF ACENTRICITY

In Figures 11a, b and c, the $|E^2 - 1|$ values listed in Table 3 are plotted against various chemical quantities that prove to be determining factors in the degree of acentricity of structures of eudialyte (s.l.). E-statistics are often not very useful in determining acentricity in mineral structures, as many of these statistics are strongly affected by heavy, centrosymmetrically related cations. In the eudialyte structure, a large number of atoms has an approximately uniform atomic number (228 atoms of oxygen, 9 transition metals, 75 atoms of Si, 63 atoms of alkaline-earth elements per unit cell). This uniform mass of scatterers effectively overcomes the problem of non-uniform statistics. The one anomalous value of $|E^2 - 1|$ noted earlier for sample 5 (labeled h in Fig. 11) is a consequence of merohedral twinning. The result of twin overlap of two diffracting lattices is an increase in all |E| values, thus lowering $|E^2-1|$ beyond the theoretical value of 0.736 for acentric structures.

The framework consisting of the silicate rings and [ZrO₆] octahedra is essentially centrosymmetric. The violation of centricity is due to minor adjustments in the rest of the structure. Likewise, the $[M(1)O_6]$ octahedron is not found to play a major role in this context; the substitutions taking place in M(1) are not well correlated with $|E^2 - 1|$. Only a few parameters related to M(1), such as the bond-length M(1)-O(8), show a good correlation, possibly because of the interaction with other polyhedra like Na(4) and the tilted Si(3) tetrahedron. The $[M(2)O_n]$ polyhedra, on the other hand, do show a correlation with acentricity, not by considering individual elements, but by considering the ratio of the sitescattering values of M(2,4) and M(2,5), *i.e.*, the quantity M(2,5) epfu / [M(2,5) epfu + M(2,4) epfu], which clearly is negatively correlated with $|E^2 - 1|$.

The elemental contents in the M(3) and Si(7) sites have the primary influence on acentricity. The correlation between these parameters is best illustrated as a M(3) / [M(3) + Si(7)] versus $|E^2 - 1|$ diagram. The M(3)and Si(7) elemental quantities are defined in Figure 9. In simplified terms, the Nb-rich samples of eudialyte are the most strongly acentric, whereas the Si-rich samples of eudialyte are the most strongly centric. As would be expected from this relationship, there is also a strong positive correlation between the site-occupancy factor for O(19) and the degree of acentricity.

It has been shown that \overline{REE} and Sr are the main elements substituting for Na, and that the substitution primarily involves Na(4), to a much lesser extent in the

FIG. 11. The correlation between the $|E^2 - 1|$ values from Table 3 and a) the ratio M(3) / [M(3) + Si(7)] (defined in text), b) the proportion of *REE* in *apfu*, and c) the calculated density. The symbols chosen are as in Table 1.

pseudocentrosymmetrically related Na(3), and only infrequently in other Na sites. Figure 11b shows how this heterogeneous distribution of *REE* in Na sites results in a significant impact on the acentricity. The pronounced outlier in the plot trend is the Sr-rich sample 6 (labeled m), which would have been compliant if Sr had been included in the ordinate component.

With a classic eudialyte rich in Na, Ca, Fe and Si as a starting point, we conclude that all major substitutions, except the Fe ⇔ Mn substitution, proceed from relatively light elements toward relatively heavier elements. Consequently, the correlations hitherto described in Figures 11a and 11b can be combined as shown in Figure 11c, where the calculated density is plotted against $|E^2 - 1|$. The correlation shown is almost perfect (r = -0.96), with only two samples slightly off the trend. Sample 9 (labeled V) is actually on a different slope because one sixth of the Zr is substituted by Ti, *i.e.*, it is on a trend toward alluaivite. The deviation of the other sample 7 (labeled w) may be because the microprobe data do not pertain to the crystal used in the structure analysis but is actually from another fragment of the same specimen.

SOLID-SOLUTION SERIES

The solid-solution series between the classic eudialyte (rich in Si, Ca, Fe and Cl) and kentbrooksite (rich in Nb, REE, Mn and F) suggested by Johnsen & Gault (1997) was based on a number of simple correlations between individual elements or small groups of elements. The present crystal-chemical study confirms this series, with minor modifications. A first modification is that the anion parts of the end members may not be significant in the definition of the solid-solution series. Another modification of limited impact is the replacement of Si with (Si,Al) in the expression for the eudialyte end-member. The most significant modification is the replacement of Nb in the expression for the kentbrooksite end-member with the component defined as the M(3) elements in accordance with Figure 9 and the discussion connected to it. These modifications result in the correlation diagram shown in Figure 12, where it is particularly notable that the series extends beyond kentbrooksite (sample 13, labeled A) and right up to crystal 5 (labeled h), the R3 eudialyte. Also, note that the degree of acentricity is an integral part of the description of the series, with the most centric samples of eudialyte being confined to the right part of the trend and an increasing degree of acentricity to the left. The coefficient of correlation in Figure 12 is r = -0.97.

THE DERIVATION OF A STRUCTURAL FORMULA

One of the primary objectives of this study was the derivation of a method for the calculation of a structural formula. Until now, there has been no clear means of determining an empirical formula for eudialyte from the results of a chemical analysis. Ambiguities in number, and types, of atomic sites have led to great confusion and significant errors in the formulae assigned to this mineral. Indeed, this study confirms the complexity of the structure, with almost all sites being able to accommodate more than one cation, and with a notable variation in the total number of anions. Therefore, an accurate formula can only be constructed from data based on structural information. An empirical formula acceptable in most cases may, however, be derived from results of a chemical analysis by use of two different points of reference: 1) total number of anions, or 2) the sum of cations in Si(1) to Si(7), M(3) and Zr sites.

The total number of anions (Z = 3) seen in Table 2 ranges from 75.39 to 78.70 *apfu*, with a mean of 77.38(83) *apfu* for all samples. This gives a standard deviation of 1.07% of the mean value, which is somewhat higher than desirable. More important, however, is the fact that unless a determination of the proportion of H₂O is available (usually it is not), the *apfu* values based on numbers of anions become systematically too high. As an example, in a typical sample of eudialyte, the proportion of Si (*apfu*) will decrease from 25.90 to 25.30 with the incorporation of 1 wt.% H₂O. The lack of determinations of other cations will, of course, give a similar effect. Therefore, additional corrections may be required if this method of formula calculation is adopted.

FIG. 12. The solid-solution series between eudialyte (Eud) and kentbrooksite (Ktb), with an extension to the R3 type of eudialyte. The proportions of the Eud and Ktb components are expressed in terms of the amounts of [(Si,Al) + Ca + Fe] and [(Nb, other M(3) elements) + REE + Mn], respectively, expressed in *apfu*. The symbols chosen are as in Table 1.

The second method is based on the number of cations accommodated in the framework composed of the silicate rings and the Zr octahedra, supplemented with the two sites [M(3) and Si(7)] in the centers of the ninemembered rings, *i.e.*, Si + Al + Zr + Ti + Hf + Nb + W + Ta, ideally adding to 29 apfu (Z = 3). In all the present samples, these elements add to 29.08(26) apfu with the standard deviation being 0.89%, i.e., slightly better than in the anion-based method of calculation. The real advantage of this second method is the fact that it is fully applicable without determinations of hydrogen or other cations, making the method very practical, as most chemical information is obtained by electron-microprobe analysis. One disadvantage is that some of the elements involved (Al, Ti and Zr) occasionally also occur in other parts of the structure. For instance in samples 9 and 17, quantities of Al, Ti and Zr are found in M(1) and M(2), although only in small amounts. If these two crystals were omitted from the average, the mean would be 29.01(18) apfu, i.e., a standard deviation of 0.62% only, demonstrating that this method of calculation works well for the majority of eudialytegroup samples. Another minor disadvantage of the method is that it does not account for any site vacancy in M(3), as has been observed in some crystals. Everything considered, though, we conclude that the second method is definitely superior to the first. Thus we recommend the following procedure to arrive at the empirical formula of a eudialyte-group mineral on the basis of chemical data only:

i) For the majority of the eudialyte (*s.l.*) samples, the empirical formula will be of the type: $Na_{15}[M(1)]_6$ [M(2)]₃Zr₃ [M(3)] (Si₂₅O₇₃) (O,OH,H₂O)₃ X₂

ii) Calculate the *apfu* based on 29 (sum of Si, Al, Zr, Ti, Hf, Nb, W and Ta), and constrain all Fe and Mn to be divalent.

iii) Assign all Si + Al to sum to 25 Si *apfu*. Any excess Si should be added to M(3).

iv) Assign all Zr to the Zr site, and if deficient make up a total to 3 atoms with Ti.

v) Assign all Nb and W to M(3).

vi) Assign all Fe and Mn to M(2). Any excess Mn should be assigned to M(1).

vii) Assign all Ca to M(1) and any remaining Mn then Y and *REE* to bring the total to 6 atoms. Any excess Ca should be assigned to the *Na* sites.

viii) Assign all Na, K, Sr and remaining Ca and *REE* to the *Na* sites.

ix) Assign 73 of the O atoms to the silicate rings, with the remaining anions partitioned into an O fraction and a halogen fraction.

x) The number of H atoms is based on charge balance.

Within the eudialyte group, the species eudialyte [*i.e.*, the type material of the original description of Stromeyer (1819)] would have the formula $Na_{15}Ca_6$ Fe₃Zr₃ Si (Si₂₅O₇₃) (O,OH,H₂O)₃ (Cl,OH)₂, and kentbrooksite (Johnsen *et al.* 1998), the formula

Na₁₅Ca₆Mn₃Zr₃ Nb(Si₂₅O₇₃) (O,OH,H₂O)₃ (F,Cl)₂.

In order to encompass all samples studied, the empirical formula must be expanded to: $Na_{12}[Na(4)]_3$ $[M(1a)]_3[M(1b)]_3[M(2)]_3Zr_3$ [M(3)] $(Si_{25}O_{73})$ (O,OH, $H_2O)_3X_2$. Rare cases where Ca *apfu* is below 50% of the M(1) site or Na is below 50% in the Na(4) site will become evident during the course of formula calculation. However, in such cases, we believe that a crystalstructure refinement is required in order to calculate a reliable formula.

CONCLUSIONS

Minerals of the eudialyte group have a complex structure with a wide variation in chemical substitutions. A complete formula requires crystal-structure data. An acceptable empirical formula, based on chemical analysis only, can be calculated from the relationships derived in this study, however. Relationships determined in this study that are of particular importance are summarized here:

1) A fundamental property of the eudialyte structure is a stable network of three-membered and ninemembered rings of $[SiO_4]$ tetrahedra. No chemical substitution is noted in these tetrahedra. Only small adjustments involving tilting or rotation of the $[SiO_4]$ tetrahedra are required to accommodate other modules.

2) The $[M(1)O_6]$ octahedron is more or less distorted. It is usually dominated by Ca, but variable amounts of Mn, *REE* and Y can be present. Both bond lengths and the degree of distortion of the octahedron are well correlated with chemistry. In one crystal, more than half the Ca is replaced by Mn and *REE*, resulting in an ordering of these cations in a Mn-dominated M(1a)site and a Ca- and *REE*-dominated M(1b) site.

3) The M(2) site has either four-fold coordination with an almost planar arrangement or five-fold coordination with a distorted square pyramid, O(19) being the fifth ligand. Iron definitely prefers the M(2,4) site, whereas Mn generally dominates in M(2,5). The occupancy of the two sites combined seldom reaches the maximum 3 *apfu*, but is invariably higher than ~2 *apfu*, indicating that the M(2) site is an integral part of the structure.

4) The M(3) and Si(7) sites, the two central sites of the two crystallographically distinct nine-membered silicate rings, are related by the substitution ${}^{[6]}M(3) +$ ${}^{[4]}Si(7) \leftrightarrow 2{}^{[4]}Si(7)$. The $[M(3)O_6]$ octahedron incorporating O(19) is predominantly occupied by Nb (seldom W), whereas the $[Si(7)O_4]$ tetrahedron pointing upward or downward accommodates (Si,AI).

5) Na occupies sites varying in coordination number from 6 to 10. The Na(4) site, with nine-fold coordination, is particularly suitable for incorporation of elements such as *REE*, Sr, Ca and K.

6) O(19) plays a key role in the eudialyte structure, being the ligand shared by the M(3), M(2,5) and Na(4)

sites. The site-occupancy factor of O(19) and the *epfu* values of these cations sites are strongly correlated.

7) Eudialyte *sensu lato* crystallizes in space groups $R\bar{3}m$, R3m or R3, depending on the degree of disorder and the chemical content of certain sites. Eudialyte *sensu stricto* is ideally centrosymmetric, and as substitutions of the type Si \rightarrow (Nb,W), Fe \rightarrow Mn, (Ca,Na) \rightarrow (*REE*,Sr) take place, the structure becomes progressively more noncentrosymmetric.

8) $|E^2 - 1|$ values prove useful in displaying the degree of acentricity in the eudialyte structure, as this parameter shows strong negative correlations with the chemical quantities such as M(3) / [(M(3) + Si(7)]] and the proportion of *REE* in *apfu*. Since the substituting elements are in general heavier than those replaced, an almost perfect negative correlation exists between $|E^2 - 1|$ and the calculated density.

9) The solid-solution series between the classic eudialyte and kentbrooksite is confirmed with minor modifications. The series extends beyond kentbrooksite to the R3 eudialyte. The degree of acentricity is an integral property of the series.

10) From results of a chemical analysis, the number of atoms in the formula may be calculated on the basis of the cation sum (Si + Al + Zr + Ti + Hf + Nb + W + Ta) = 29. As the number of anions varies, an approach based on anions is not a suitable basis for the calculation of a formula.

11) The generalized empirical formula is Na_{15} [M(1)]₆[M(2)]₃ Zr_3 [M(3)] ($Si_{25}O_{73}$) (O,OH,H₂O)₃ X_2 . Elements may be reliably assigned to each site with a series of prescribed steps.

12) To date, only two species have been formally described within the eudialyte group, but several more are imminent. The described species are eudialyte, $Na_{15}Ca_6Fe_3Zr_3Si(Si_{25}O_{73})$ (O,OH,H₂O)₃ (Cl,OH)₂, and kentbrooksite, $Na_{15}Ca_6Mn_3Zr_3$ Nb (Si₂₅O₇₃) (O,OH, H₂O)₃ F₂.

Even after this extensive study, eudialyte remains an enigmatic mineral, as a number of problems still exist. Several eudialyte crystals originally included in this study did not refine well, although the crystals look good physically, and the intensity data give sharp reflections, with good cell refinements. In spite of the experience we have gained with the eudialyte structure (*i.e.*, trying various models with differing space-groups, twin laws and order-disorder arrangements), we have no explanation for the poor refinements, which generally do not attain R indices below 0.07. Of particular interest for future investigation will be eudialyte crystals with extraordinary compositions, for example with exceptional enrichments in Zr, REE or Nb, or depletions in Na. These further studies are primarily of crystal-chemical interest, whereas the present paper establishes the chemical formula and major chemical substitutions within this group of minerals for those species of economic and petrological importance.

ACKNOWLEDGEMENTS

We are indebted to R.A. Gault, Canadian Museum of Nature, for his continued and stimulating interest in minerals of the eudialyte group and for his very careful electron-microprobe analyses of the crystals used in this study. We thank F.C. Hawthorne, University of Manitoba, for the use of the single-crystal diffractometer, and M.A. Cooper, also at that institution, for some of the data collections. R.W. Berg, the Technical University of Denmark, and E.A. Moffat, Canadian Conservation Institute, are thanked for providing the infrared spectra, and J.-E. Jørgensen, the University of Århus, for supplying the thermogravimetric analyses. U. Hålenius, the Swedish Museum of Natural History, is thanked for sharing his Mössbauer and optical absorption spectroscopy data with us. The manuscript was improved by the comments and suggestions of the referees A.R. Chakhmouradian and J. Swope, and of Associate Editor R.H. Mitchell and Editor R.F. Martin. The work at the University of Copenhagen was supported by the Danish Natural Science Research Council.

NOTE ADDED IN PROOF

Sample numbers 6 and 5 in the present study have subsequently gained status as new mineral species. They are named khomyakovite (Johnsen *et al.* 1999a) and oneillite (Johnsen *et al.* 1999b), respectively. The new mineral species and their names have been approved by the Commission on New Minerals and Mineral Names, IMA.

REFERENCES

- BRESE, N.E. & O'KEEFFE, M. (1991): Bond-valence parameters for solids. Acta Crystallogr. B47, 192-197.
- BROWN, I.D. & SHANNON, R.D. (1973): Empirical bondstrength – bond-length curves for oxides. Acta Crystallogr. A29, 266-282.
- CHRISTOPHE-MICHEL-LÉVY, M. (1961): Reproduction artificielle de quelques minéraux riches en zirconium (zircon, eudialyte, catapléite, elpidite); comparaison avec leurs conditions naturelles de formation. Bull. Soc. Fr. Minéral. Cristallogr. 84, 265-269.
- GIUSEPPETTI, G., MAZZI, F. & TADINI, C. (1971): The crystal structure of eudialyte. *Tschermaks Mineral*, *Petrogr. Mitt.* 16, 105-127.
- GOLYSHEV, V.M., SIMONOV, V.I. & BELOV, N.V. (1971): Crystal structure of eudialyte. Sov. Phys. Crystallogr. 16(1), 70-74.
- HERBST-IRMER, R. & SHELDRICK, G.M. (1998): Refinement of twinned structures with SHELXL97. Acta Crystallogr. B54, 443-449.
- JOHNSEN, O. & GAULT, R.A. (1997): Chemical variation in eudialyte. Neues Jahrb. Mineral., Abh. 171, 215-237.

, GRICE, J.D. ERCIT, T. S. (1999a): Khomyakovite and manganokhomyakovite, two new members of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. *Can. Mineral.* **37**, 893-899.

- , GRICE, J.D. & GAULT, R.A. (1998): Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end-member in a series within the eudialyte group: description and crystal structure. *Eur. J. Mineral.* **10**, 207-219.
- Ca-deficient and *REE*-rich member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. *Can. Mineral.* **37**, (in press).
- KHOMYAKOV, A.P., NECHELYUSTOV, G.N. & RASTSVETAEVA, R.K. (1990): Alluaivite, Na₁₉(Ca,Mn)₆(Ti,Nb)₃Si₂₆O₇₄ Cl.2H₂O, a new titanosilicate with a eudialyte-like structure. Zap. Vses. Mineral. Obshchest. **119**(1), 117-120 (in Russ.).
- NORTH, A.T.C., PHILLIPS, D.C. & MATHEWS, F.S. (1968): A semi-empirical method of absorption correction. Acta Crystallogr. A24, 351-359.
- PABST, A. (1943): Crystal structure of gillespite BaFeSi₄O₁₀. Am. Mineral. 28, 372-390.
- POL'SHIN, E.V., PLATONOV, A.N., BORUTSKY, B.E., TARAN, M.N. & RASTSVETAEVA, R.K. (1991): Optical and Mössbauer study of minerals of the eudialyte group. *Phys. Chem. Minerals* 18, 117-125.
- RASTSVETAEVA, R.K. & ANDRIANOV, V.I. (1987): New data on the crystal structure of eudialyte. *Dokl. Akad. Nauk SSSR* 293, 1122-1126 (in Russ.).
- & BORUTSKII, B.E. (1988): Crystal chemical peculiarities of eudialyte proceeding from new structural data. *Mineral. Zh.* 10, 48-57 (in Russ.).
- & GUSEV, A.I. (1988): Crystal structure of eucolite. Sov. Phys. Crystallogr. 33(2), 207-210.
- _____, SOKOLOVA, M.N. & BORUTSKII, B.E. (1990): Crystal structure of potassium oxonium eudialyte. Sov. Phys. Crystallogr. 35(6), 814-817.
- SHELDRICK, G.M. (1990): SHELXTL, a Crystallographic Computing Package, revision 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin.
 - (1993): SHELXL-93. Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen, Germany.
- STROMEYER, F. (1819): Summary of meeting 16 December 1819 [Fossilien....]. Göttingische gelehrte Anziegen 3, 1993-2003.
- Received December 26, 1998, revised manuscript accepted June 5, 1999.