# INSIGHTS INTO ASTROPHYLLITE-GROUP MINERALS. II. CRYSTAL CHEMISTRY

# PAULA C. PIILONEN<sup>§</sup>

Ottawa–Carleton Geoscience Centre, Department of Earth Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

# ANDREW M. McDONALD

Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

### ANDRÉ E. LALONDE

Ottawa–Carleton Geoscience Centre, Department of Earth Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

# Abstract

The crystal chemistry of 20 specimens of astrophyllite-group minerals from seven localities has been studied using a combination of single-crystal X-ray analysis of the structure and electron-microprobe analyses. Members of the astrophyllite group are triclinic ( $P\overline{1}$ ) and monoclinic (C2/c or A2) heterophyllosilicates with the general formula  $A_2BC_7D_2T_8O_{26}(OH)_4X_{0-1}$ , where A = 1 $^{[10]-[13]}$ K, Rb, Cs, Na, H<sub>3</sub>O<sup>+</sup>, H<sub>2</sub>O, or  $\Box$ ;  $B = ^{[10]}$ Na or Ca;  $C = ^{[6]}$ Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg, or Zn;  $D = ^{[6]}$ Ti, Nb, or Zr; T =Si and Al, and X = F, OH, O, or  $\Box$ . The structure consists of two composite sheets, a heterogeneous (H) sheet and a sheet of octahedra (O), stacked along [001] in a 2:1 ratio. These 2:1 composite layers are bonded via a shared apical  $D\phi_6$  anion through an interlayer containing an ordered array of K and Na, resulting in a layered HOH structure reminiscent of the TOT structure in 2:1 phyllosilicates. There are four crystallographically distinct  $MO_6$  octahedra in the O sheet; they host Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg and Zn. The M(1) octahedron, the largest and least distorted within the O sheet, is host predominantly to Mn and Fe<sup>2+</sup>, with significant Na (up to 0.274 *apfu*). The M(2) octahedron is highly distorted and contains predominantly Mn and Fe<sup>2+</sup>, whereas the M(3) and M(4) octahedra are the smallest and are occupied by Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Mg and Zn. The H sheet consists of open-branched *zweier* [100] single  $[Si_4O_{12}]^{8-}$  chains cross-linked by corner-sharing  $D\phi_6$  octahedra in triclinic species and kupletskite-Ma2b2c, and DO<sub>5</sub> polyhedra in magnesium astrophyllite. Distortion of the  $D\phi_6$  octahedron is minimized by (Nb,Zr)  $\Leftrightarrow$  Ti substitution, resulting in displacement of the cation toward the center of the octahedron. The composition of the [Si<sub>4</sub>O<sub>12</sub>]<sup>8-</sup> chains does not vary; there is essentially no Al, and Mössbauer spectroscopy did not indicate the presence of  $^{[4]}\text{Fe}^{3+}$ . Lateral fit of the O and H sheets is accomplished primarily by: (1) flattening of O-sheet octahedra, (2) tilting of the H-sheet tetrahedra out of the (001) plane, and (3) elongation or thickening of the tetrahedra along [001].

Keywords: astrophyllite-group minerals, crystal structure, crystal chemistry, heterophyllosilicates.

### Sommaire

Nous avons étudié la cristallochimie de vingt échantillons de minéraux du groupe de l'astrophyllite provenant de sept endroits en utilisant une combinaison d'analyse structurale par diffraction X portant sur monocristal et analyse chimique avec une microsonde électronique. Les minéraux de ce groupe sont des hétérophyllosilicates tricliniques ( $P\overline{1}$ ) ou monocliniques (C2/c ou A2) répondant à la formule générale  $A_2BC_7D_2T_8O_{26}(OH)_4X_{0-1}$ , dans laquelle  $A = {}^{[10]-(13]}K$ , Rb, Cs, Na, H<sub>3</sub>O<sup>+</sup>, H<sub>2</sub>O, ou  $\square$ ; B = ${}^{[10]}Na$  ou Ca;  $C = {}^{[6]}Mn$ , Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg, ou Zn;  $D = {}^{[6]}Ti$ , Nb, ou Zr; T = Si et Al, et X = F, OH, O, ou  $\square$ . La structure conprend deux feuillets composites, un feuillet hétérogène (H) et un feuillet d'octaèdres (O), empilés le long de [001] dans un rapport 2:1. Ces feuillets composites 2:1 sont interliés grâce au partage d'un anion apical  $D\varphi_6$  dans un interfeuillet contenant une distribution ordonnée de K et de Na, avec comme résultat une structure HOH en couches ressemblant à la structure TOT dans les phyllosilicates. Il y a quatre octaèdres  $MO_6$  cristallographiquement distincts dans le feuillet O; ils renferment Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg et Zn. L'octaèdre M(1), le plus volumineux et le moins difforme, renferme surtout Mn et Fe<sup>2+</sup>, avec une fraction importante de Na (jusqu'à 0.274 atomes par unité formulaire. L'octaèdre M(2) est fortement difforme et contient surtout Mn et Fe<sup>2+</sup>, tandis que

<sup>§</sup> Current address: Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada. E-mail address: ppiilonen@mus-nature.ca

M(3) et M(4) sont les plus petits et renferment Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Mg et Zn. Le feuillet H est fait d'un embranchement ouvert *zweier* [100] de chaînes simples [Si<sub>4</sub>O<sub>12</sub>]<sup>8-</sup> interliées par partage de coins d'un octaèdre  $D\varphi_6$  dans les espèces tricliniques et la kupletskite-Ma2b2c, ou d'un polyèdre  $DO_5$  dans la magnésium astrophyllite. La distortion de l'octaèdre  $D\varphi_6$  est minimisée par une substitution (Nb,Zr)  $\Leftrightarrow$  Ti, et un déplacement du cation vers le centre de l'octaèdre. La composition des chaînes [Si<sub>4</sub>O<sub>12</sub>]<sup>8-</sup> ne varie pas; il n'y a presque pas d'aluminium, et les spectres de Mössbauer excluent la présence de [<sup>4]</sup>Fe<sup>3+</sup>. La concordance des dimensions latérales des feuillets O et H se fait principalement par: (1) applatissement des octaèdres du feuillet O, (2) inclinaison des tétraèdres du feuillet H par rapport au plan (001), et (3) allongement ou épaississement des tétraèdres le long de [001].

(Traduit par la Rédaction)

Mots-clés: minéraux du groupe de l'astrophyllite, structure cristalline, cristallochimie, hétérophyllosilicates.

### INTRODUCTION

Astrophyllite-group minerals are alkali titano-, niobo- and zirconosilicates that crystallize in peralkaline nepheline syenites, their associated pegmatites, alkali granites, and their metamorphic equivalents. Piilonen *et al.* (2003) described the extensive variability in chemical composition observed in such minerals from silica oversaturated and undersaturated intrusions, a reflection of a crystal structure that contains numerous sites at which isomorphous substitutions may occur. Piilonen *et al.* (2003) developed a standardized nomenclature and procedure for the calculation of the chemical formulae for minerals of the astrophyllite group. The general structural formula is:

$$A_2 B C_7 D_2 T_8 O_{26} (OH)_4 X_{0-1} \tag{1}$$

where  $A = {}^{[10]-[13]}$ K, Rb, Cs, Na, H<sub>3</sub>O<sup>+</sup>, H<sub>2</sub>O, or  $\Box$ ;  $B = {}^{[10]}$ Na or Ca;  $C = {}^{[6]}$ Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg, or Zn;  $D = {}^{[6]}$ Ti, Nb, or Zr; T = Si and Al, and X = F, OH, O, or  $\Box$ .

In this, the second part of an extensive study into the crystal chemistry of the astrophyllite group, we describe the structural, geometrical and stereochemical variations that result from chemical substitutions within the structure. This study is based on single-crystal X-ray refinements of the structure of 20 crystals of astrophyllite-group minerals from a variety of localities (Table 1), coupled with additional compositional data obtained by electron-microprobe analysis (EMPA), Fourier-transform infrared spectroscopy, and Mössbauer spectroscopy.

# OVERVIEW OF THE HETEROPHYLLOSILICATE STRUCTURE

The crystal structure of magnesium astrophyllite was first determined by Peng & Ma (1963), and the structure of astrophyllite was determined by Woodrow (1967). Since then, structural studies of members of the astrophyllite group have been carried out on astrophyllite (Yamnova & Egorov-Tismenko 2000, Ma *et al.* 2000), magnesium astrophyllite (Shi *et al.* 1998), kupletskite (Christiansen *et al.* 1998, Piilonen *et al.* 2001), and niobokupletskite (Piilonen *et al.* 2000).

Ferraris et al. (1996), Ferraris (1997) and Christiansen et al. (1999) have described astrophyllite-group minerals and other modular titanosilicates, such as bafertisite (Pen & Sheng 1963), perraultite (Yamnova et al. 1998), nafertisite (Ferraris et al. 1996), lamprophyllite (Saf'yanov et al. 1983, Johnsen 1996), voshimuraite (McDonald et al. 2000) and delindeite (Ferraris et al. 2001), as heterophyllosilicates. Such minerals have an HOH structure, reminiscent of the TOT structure in 2:1 phyllosilicates, where TiO<sub>5</sub> or TiO<sub>6</sub> polyhedra in the heterogeneous sheet (H sheet) proxy for the usual (Si,Al) $O_4$  tetrahedra in phyllosilicate Tsheets. Astrophyllite-group minerals can be considered as intermediate members in a polysomatic (Ferraris et al. 1996) or homologous (Christiansen et al. 1999) series that includes perraultite [KBaNa<sub>2</sub>(Mn,Fe<sup>2+</sup>)<sub>8</sub> (Ti,Nb)<sub>4</sub>Si<sub>8</sub>O<sub>32</sub>(OH,F,H<sub>2</sub>O)<sub>7</sub>] and trioctahedral micas as the end-member structures. A comparison of these minerals shows that they all have: (1) an HOH structure, (2) an a axial length of approximately 5.4 Å, corresponding to the *a* value in micas, and (3)  $d_{001} \approx 10.9$  Å. Members of the homologous series can be classified by the number of diorthosilicate groups (n) separating rows of D octahedra: n = 1 in perraultite and bafertisite, n = 2 in astrophyllite-group minerals, n = 3 in nafertisite, and n $= \infty$  in micas (Ferraris *et al.* 1996, Christiansen *et al.* 1999).

In bafertisite, lamprophyllite and yoshimuraite, the *H* sheet is composed of  $[Si_2O_7]^{6-}$  dimers linked *via* corner-sharing TiO<sub>6</sub> octahedra or TiO<sub>5</sub> tetragonal pyramids, resulting in a Si:Ti ratio of 2:1. The offset between successive *HOH* layers is such that the TiO<sub>n</sub> polyhedra are not linked across the interlayer, as observed in astrophyllite-group minerals and nafertisite. In nafertisite, the *H*-layer consists of open-branched *zweier* [100] double chains of composition  $[Si_{12}O_{34}]^{20-}$  (Liebau 1985) cross-linked by TiO<sub>6</sub> octahedra, which bridge across the interlayer, resulting in a Si:Ti ratio of 6:1 (Ferraris *et al.* 1996). The astrophyllite structure may be considered an intermediate member of the polysomatic series (n = 2).

In a general sense, the astrophyllite structure can be subdivided into two main composite sheets stacked along [001] in a 2:1 ratio. The first is a sheet of closestpacked  $MO_6$  octahedra sandwiched between two H sheets that are related by an inversion center in the triclinic species and by a two-fold axis parallel to b in kupletskite-Ma2b2c. The H sheet has the ideal composition [DSi<sub>4</sub>O<sub>12</sub>]<sup>4-</sup> and consists of open-branched zweier [100] single chains of composition  $[Si_4O_{12}]^{8-}$  (Liebau 1985), which are cross-linked by corner-sharing  $D\phi_6$ octahedra in triclinic species and kupletskite-Ma2b2c. and DO<sub>5</sub> polyhedra in magnesium astrophyllite (Shi et al. 1998). The resultant Si:D ratio is 4:1. Individual  $D\phi_6$ octahedra are linked across the interlayer via a common apical anion,  $\phi(16)$  ( $\phi$ : unspecified ligand). The  $\phi(16)$ anion is located at an inversion center in triclinic species, at the special position 4e in kupletskite-Ma2b2c, and is absent in magnesium astrophyllite (Shi et al. 1998). There is a misfit between the O and H sheets. similar to that observed in micas, which is compensated for by tilting and rotation of SiO<sub>4</sub> tetrahedra and distortion or corrugation of the O sheet. The degree to which this misfit occurs is dependent on the composition of the O sheet, decreasing with increasing size of the Osheet cations (Woodrow 1967, Christiansen et al. 1998, Shi et al. 1998). The steric details of this misfit are discussed further below.

The interlayer of triclinic samples contains two crystallographically distinct and highly ordered sites: a 10coordinated site (*B*) hosts Na and Ca, and a larger, [11]to [13]-coordinated site (*A*) is dominated by K but commonly contains Rb, Cs, Ba, Na, and vacancies ( $\Box$ ). In monoclinic kupletskite-*Ma2b2c*, there are three distinct interlayer sites: *A*(1), *A*(2) and *B*. The stacking of *HOH* layers along [001] results in an excellent (001) cleavage, yet a slightly more brittle character than observed in other phyllosilicates owing to the existence of the bridging  $\phi(16)$  anion within the interlayer. The crystal structures of triclinic astrophyllite-group minerals, monoclinic kupletskite and magnesium astrophyllite are shown in Figures 1A to C.

# ANALYTICAL METHODS

Table 1 lists the provenance of each of the 20 samples studied. In all cases (except NOR17, the crystal for which was lost during transfer), chemical data were collected on the same crystal as that used for the single-crystal X-ray refinement. An attempt was made to cover the entire possible range in chemical variations observed in astrophyllite-group of minerals, with particular interest paid to variations in the proportions of alkalis (Na, K), [6]-coordinated cations [Mn, Fe, Mg, Zn in the *O* sheet and high-field-strength elements (Ti,

TABLE 1. LOCALITY INFORMATION FOR SINGLE CRYSTALS OF THE ASTROPHYLLITE GROUP

| Code | Sample (Collection) # | Species          | Locality and rock type                            |
|------|-----------------------|------------------|---------------------------------------------------|
| GJER |                       |                  | Gjerdingen intrusion, Norway                      |
|      | NOR17 (LHN-5)         | kupletskite      | - alkali granite                                  |
| KHIB |                       | -                | Khibina massif, Kola Peninsula, Russia            |
|      | RUS4 (CMNMI-53187)    | astrophyllite    | - nepheline syenite pegmatite                     |
|      | RUS8 (FMM-1)          | astrophyllite    | - nepheline syenite pegmatite                     |
| LAB  |                       |                  | Seal Lake, Labrador, Canada                       |
|      | LAB3 (GSC-M26148-B)   | astrophyllite    | - peralkaline nepheline gneiss                    |
| LANG |                       |                  | Langesundsfjord area, Oslo Rift Valley, Norway    |
|      | NOR1 (RW-1)           | astrophyllite    | - nepheline syenite pegmatite (Vesle Arøya)       |
| LOV  | . ,                   |                  | Lovozero massif, Kola Peninsula, Russia           |
|      | RUS9 (HC-1048)        | kupletskite      | - nepheline syenite pegmatite (Lephke-Nelm)       |
|      | RUS12 (FMM-56274)     | kupletskite      | - nepheline syenite pegmatite (Kukisvumchorr Mt.) |
| MSH  | . ,                   | •                | Mont Saint-Hilaire, Québec, Canada                |
|      | MSH2 (NMNS-4)         | kupletskite      | - nepheline syenite pegmatite                     |
|      | MSH3 (NMNS-5)         | kupletskite      | - nepheline syenite pegmatite                     |
|      | MSH8 (NMNS-12)        | kupletskite      | - altered nepheline syenite pegmatite             |
|      | MSH9 (NMNS-13)        | kupletskite      | - nepheline syenite pegmatite                     |
|      | MSH15 (NMNS-22)       | kupletskite      | - nepheline syenite pegmatite                     |
|      | MSH19A (NMNS-26)      | kupletskite      | - altered nepheline syenite pegmatite             |
|      | MSH20 (NMNS-27)       | kupletskite      | - nepheline syenite pegmatite                     |
|      | MSH33A (CMNMC)        | astrophyllite    | - aplite/pegmatite                                |
|      | MSH34A (CMNMC)        | astrophyllite    | - nepheline syenite pegmatite                     |
|      | MSH38A (CMNMC)        | kupletskite      | - altered nepheline syenite pegmatite             |
|      | MSH42 <sup>*</sup>    | niobokupletskite | - nepheline syenite pegmatite                     |
| PP   |                       | 1                | Mount Rosa, Pikes Peak, Colorado, USA             |
|      | US5 (CMNMC)           | astrophyllite    | - granitic pegmatite                              |

CMNMC/CMNMI/NMNS = Canadian Museum of Nature collection, GSC = Geological Survey of Canada collection, FMM = Fersman Mineralogical Museum collection, RW = R. Werner collection, HC/LHN = L. Horváth collection, \* Holotype niobokupletskite





FIG. 1C. Crystal structure of magnesium astrophyllite (monoclinic, A2), projected down [001] (unit cell outlined). *O* sheet: yellow, *D*: blue, *T*: red, K: purple, Na: green. The four *T* sites are indicated to show symmetry across the interlayer. [Note: The atom coordinate given by Shi *et al.* (1998) for *z* of Si(2) is incorrect. The correct atom coordinate is z = -0.0797].

Zr, Nb) in *D*], and F. For a detailed explanation of the methods used for Fourier-transform infrared spectroscopy and Mössbauer spectroscopy, see Piilonen *et al.* (2003).

# Electron-microprobe analyses

Electron-microprobe analyses (EMPA) were done with a JEOL 733 electron microprobe, operating in wavelength-dispersion mode, using Tracor Northern 5500 and 5600 automation. Details concerning operating conditions and selection of standards are given in Piilonen *et al.* (2003). Table 2 contains average results for each single crystal, with chemical formulae calculated based on a total of 31 anions and 4(OH) + 1(F,O,OH) (Piilonen *et al.* 2003).

# X-ray crystallography

Intensity data were collected on three different single-crystal X-ray diffractometers. All samples were hand-picked under the binocular microscope to ensure that they are free of macroscopic inclusions, and then observed under the polarizing microscope to check for optical continuity. Selected grains were also analyzed by the precession method to test for the presence of intergrowths and twinning.

Intensity data for six samples were collected using the Siemens SMART system at the University of Ottawa consisting of a three-circle goniometer and a 1 K (diameter: 9 cm, 512 × 512 pixel) CCD area-detector. Data were collected at room temperature using monochromatic MoK $\alpha$  X-radiation (40 kV, 30 mA) and a fixed detector-to-crystal distance of 12.6 cm. Frame widths of 0.3°  $\omega$  and count exposure-times of 30 s/frame were used. Data collection included unit-cell determi-

TABLE 2. ELECTRON-MICROPROBE DATA FOR SINGLE CRYSTALS OF ASTROPHYLLITE-GROUP MINERALS

| Oxide                                              | LAB<br>3      | NOR<br>1      | RUS<br>4      | RUS<br>8      | RUS<br>9      | RUS<br>12     | US<br>5       | MSH<br>2      | MSH<br>3     | Oxide                                      | MSH<br>8      | MSH<br>9      | MSH<br>15     | MSH<br>15A    | MSH<br>19A    | MSH<br>20     | MSH<br>33A    | MSH<br>34     | MSH<br>38A    | MSH<br>42   |
|----------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|
| Na <sub>2</sub> O wt                               | % 2 58        | 2.68          | 2.07          | 2.40          | 2.07          | 2.61          | 2,95          | 2.98          | 3.66         | Na <sub>2</sub> O                          | 3.04          | 2.62          | 3.12          | 3.38          | 2.65          | 2.82          | 2.37          | 2.33          | 2.44          | 2.62        |
| $K_2O$                                             | 5.81          | 5.21          | 6.02          | 6.21          | 6.21          | 5.91          | 5.45          | 5.61          | 5.46         | K <sub>2</sub> O                           | 6.30          | 5.49          | 5.52          | 5.59          | 5.86          | 5.60          | 6.04          | 6.04          | 5.64          | 5.97        |
| $\tilde{Rb_2O}$                                    | 0.38          | 1.05          | 0.40          | 0.29          | 0.50          | 0.50          | 1.26          | 0.37          | 0.58         | Rb <sub>2</sub> O                          | 0.51          | 0.46          | 0.58          | 0.58          | 0.38          | 0.74          | 0.40          | 0.35          | 0.44          | 0.82        |
| Cs <sub>2</sub> O                                  | 0.06          | 1.35          | 0.03          | 0.00          | 0.03          | 0.00          | 0.09          | 0.00          | 0.00         | Cs <sub>2</sub> O                          | 0.00          | 0.00          | 0.00          | 0.06          | 0.00          | 0.06          | 0.06          | 0.07          | 0.00          | 0.12        |
| CaO                                                | 0.64          | 1.00          | 1.59          | 1.60          | 1.27          | 1.38          | 0.08          | 0.75<br>0.05  | 0.03<br>0.10 | CaO                                        | 0.44          | 0.78          | 0.20          | 0.13<br>0.05  | 0.22<br>0.03  | 1.12<br>0.06  | 0.56<br>0.20  | 0.93<br>0.26  | 0.81<br>0.03  | 0.00        |
| SrO<br>BaO                                         | 0.20<br>0.00  | 0.10<br>0.00  | 0.39<br>0.20  | 0.25<br>0.23  | 0.27<br>0.52  | 0.23<br>0.07  | 0.01<br>0.19  | 0.03          | 0.10         | SrO<br>BaO                                 | 0.00<br>0.00  | 0.09<br>0.18  | 0.28<br>0.09  | 0.00          | 0.03          | 0.00          | 0.20          | 0.20          | 0.00          | 0.00        |
| MgO                                                | 0.65          | 1.11          | 1.66          | 1.71          | 1.42          | 1.94          | 0.00          | 0.44          | 0.00         | MgO                                        | 0.51          | 0.43          | 1.05          | 0.98          | 0.53          | 0.53          | 0.56          | 0.50          | 0.47          | 0.15        |
| MnO                                                | 14.19         | 13.99         | 11.04         | 12.30         | 21.46         | 27.53         | 4.80          | 30.81         | 26.26        | MnO                                        | 23.54         | 29.99         | 26.71         | 21.64         | 19.34         | 28.65         | 14.56         | 8.95          | 17.98         | 26.37       |
| FeO                                                | 19.49         | 18.45         | 21.80         | 20.00         | 10.98         | 4.13          | 27.59         | 2.00          | 0.13         | FeO                                        | 9.66          | 1.91          | 6.19          | 10.00         | 13.39         | 1.02          | 18.95         | 24.96         | 14.85         | 2.64        |
| ZnO                                                | 0.00          | 0.49          | 0.47          | 0.31          | 0.00          | 0.00          | 2.67          | 0.75          | 6.78         | ZnO                                        | 0.64          | 0.67          | 0.00          | 0.26          | 0.28          | 4.45          | 0.00          | 0.00          | 0.22          | 4.08        |
| Al <sub>2</sub> O <sub>3</sub>                     | 0.77          | 1.01          | 1.22          | 1.06          | 1.04          | 0.24          | 0.16          | 0.74<br>0.00  | 0.26<br>0.00 | $Al_2O_3$                                  | 0.96          | 0.86          | 0.40          | 0.63          | 0.43<br>0.00  | 0.70<br>0.00  | 1.29<br>0.00  | 1.32<br>0.00  | 0.58<br>0.00  | 1.14        |
| $Y_2O_3$                                           | 0.00          | 0.00          | 0.00          | 0.00<br>0.00  | 0.00<br>0.29  | 0.00<br>0.07  | 0.00<br>0.17  | 0.00          | 0.00         | $Y_2O_3$<br>Ce <sub>2</sub> O <sub>3</sub> | 0.00<br>0.00  | 0.00<br>0.58  | 0.00<br>0.08  | 0.00<br>0.00  | 0.00          | 0.00          | 0.00          | 0.00          | 0.15          | 0.00        |
| Ce <sub>2</sub> O <sub>3</sub><br>TiO <sub>2</sub> | 0.17<br>6.59  | 0.31<br>9.20  | 0.11<br>11.41 | 11.20         | 10.52         | 11.40         | 9.28          | 10.80         | 7.05         | TiO <sub>2</sub>                           | 6.20          | 10.28         | 8.29          | 6.84          | 6.89          | 11.25         | 5.43          | 7,31          | 9.01          | 1.34        |
| SnO <sub>2</sub>                                   | 0.00          | 0.23          | 0.00          | 0.00          | 0.00          | 0.00          | 0.60          | 0.00          | 0.00         | SnO <sub>2</sub>                           | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00        |
| ZrO,                                               | 6.25          | 1.69          | 0.57          | 0.61          | 0.00          | 0.00          | 0.76          | 0.00          | 0.00         | $ZrO_2$                                    | 0.38          | 0.00          | 0.10          | 0.50          | 1.92          | 0.00          | 6.30          | 4.36          | 0.49          | 3.43        |
| HfO <sub>2</sub>                                   | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | $HfO_2$                                    | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.08          | 0.00          | 0.00          | 0.00        |
| Nb <sub>2</sub> O <sub>5</sub>                     | 1.60          | 2.81          | 0.89          | 0.59          | 2.38          | 0.77          | 3.07          | 1.91          | 7.81<br>0.00 | Nb <sub>2</sub> O <sub>5</sub>             | 8.59          | 1.93          | 6.06          | 7.51          | 5.05          | 0.96          | 3.46<br>0.00  | 2.80<br>0.16  | 3.52<br>0.00  | 12.13       |
| Ta <sub>2</sub> O <sub>5</sub>                     | 0.00          | 0.00          | 0.15<br>34.85 | 0.00<br>34.55 | 0.00<br>34.64 | 0.00<br>36.35 | 0.18<br>34.45 | 0.00<br>34.29 | 34.60        | Ta <sub>2</sub> O <sub>5</sub>             | 0.00          | 0.00<br>35.35 | 0.00<br>35.31 | 0.00<br>34.24 | 0.00<br>34.79 | 0.00<br>34.46 | 32.63         | 33.09         | 35.00         | 31.8        |
| SiO2<br>F                                          | 33.63<br>1.15 | 33.98<br>1.38 | 1.05          | 0.94          | 1.10          | 1.16          | 1.24          | 1.31          | 0.70         | SiO <sub>2</sub><br>F                      | 34.62<br>0.87 | 1.09          | 0.91          | 1.00          | 1.01          | 1.19          | 1.08          | 1.20          | 0.91          | 0.14        |
| н,0                                                | 2.69          | 2.65          | 2.90          | 2.90          | 2.83          | 2.85          | 2.68          | 2.67          | 2.60         | H <sub>2</sub> O                           | 2.93          | 2.63          | 2.67          | 2.80          | 2.77          | 2.73          | 2.70          | 2.68          | 2.61          | 2.48        |
| O=F                                                | -0.48         | -0.58         | -0.44         | -0.40         | -0.46         | -0.49         | -0.52         | -0.55         | -0.29        | O=F                                        | -0.37         | -0.46         | -0.38         | -0.42         | -0.43         | -0.50         | -0.45         | -0.51         | -0.38         | -0.00       |
| Total                                              | 96.35         | 98.12         | 98.34         | 96.77         | 97.02         | 96.68         | 97.14         | 95.67         | 96.11        | Total                                      | 98.83         | 94,88         |               |               | 95.12         |               |               | 96.81         | 94.76         | 95.8        |
|                                                    |               |               | Formu         | la based      | on 31 a       | nions         |               |               |              |                                            |               |               |               |               | ased on       |               |               |               |               |             |
| K apfu                                             | 1.72          | 1.51          | 1.70          | 1.77          | 1.77          | 1.67          | 1.60          | 1.63          | 1.61         | K apfu                                     |               | 1.60          | 1.59          | 1.63          | 1.73          | 1.62          | 1.80          | 1.78          | 1.66<br>0.07  | 1.84        |
| Rb                                                 | 0.06          | 0.15          | 0.06          | 0.04          | 0.07          | 0.07          | 0.19          | 0.05          | 0.09         | Rb                                         | 0.07<br>0.00  | 0.07<br>0.00  | 0.08<br>0.00  | 0.09<br>0.01  | 0.06<br>0.00  | 0.11<br>0.01  | 0.06          | 0.05<br>0.01  | 0.07          | 0.0         |
| Cs                                                 | 0.01          | 0.13          | 0.00          | 0.00          | 0.00          | 0.00          | 0.01          | 0.00          | 0.00         | Cs<br>Sr                                   | 0.00          | 0.00          | 0.00          | 0.01          | 0.00          | 0.01          | 0.01          | 0.01          | 0.00          | 0.00        |
| Sr<br>Ba                                           | 0.03          | 0.01<br>0.00  | 0.05<br>0.02  | 0.03<br>0.02  | 0.03<br>0.05  | 0.03<br>0.01  | 0.00<br>0.02  | 0.01 0.02     | 0.01<br>0.00 | Ba                                         | 0.00          | 0.02          | 0.01          | 0.00          | 0.00          | 0.02          | 0.00          | 0.00          | 0.00          | 0.0         |
| Na                                                 | 0.00          | 0.00          | 0.02          | 0.12          | 0.00          | 0.02          | 0.02          | 0.15          | 0.12         | Na                                         | 0.01          | 0.00          | 0.03          | 0.03          | 0.00          | 0.18          | 0.02          | 0.00          | 0.00          | 0.00        |
| $\Sigma A$                                         | 1.81          | 1.80          | 1.82          | 1.87          | 1.93          | 1.79          | 1.81          | 1.71          | 1.71         | $\Sigma A$                                 | 1.87          | 1.69          | 1.71          | 1.73          | 1.79          | 1.77          | 1.89          | 1.87          | 1.72          | 1.9         |
| Na                                                 | 0.84          | 0.76          | 0.61          | 0.62          | 0.52          | 0.65          | 0.98          | 0.82          | 0.99         | Na                                         | 0.87          | 0.62          | 0.95          | 0.97          | 0.78          | 0.73          | 0.86          | 0.77<br>0.23  | 0.66<br>0.20  | 0.9:        |
| $\sum B$                                           | 0.16<br>1.00  | 0.24<br>1.00  | 0.38<br>0.99  | 0.38<br>1.00  | 0.31<br>0.82  | 0.33<br>0.97  | 0.02<br>1.00  | 0.18<br>1.00  | 0.01<br>1.00 | $\sum B$                                   | 0.11<br>0.98  | 0.19<br>0.81  | 0.05<br>1.00  | 0.03<br>1.00  | 0.05<br>0.83  | 0.27<br>1.00  | 0.14<br>1.00  | 1.00          | 0.20          | 0.0         |
| Na                                                 | 0.20          | 0.33          | 0.28          | 0.30          | 0.38          | 0.44          | 0.30          | 0.35          | 0.53         | Na                                         | 0.45          | 0.54          | 0.38          | 0.51          | 0.41          | 0.34          | 0.20          | 0.27          | 0.43          | 0.2         |
| Mg                                                 | 0.22          | 0.38          | 0.55          | 0.57          | 0.47          | 0.64          | 0.00          | 0.15          | 0.15         | Mg                                         | 0.17          | 0.15          | 0.35          | 0.34          | 0.18<br>3.78  | 0.18<br>5.51  | 0.20<br>2.88  | 0.17<br>1.75  | 0.16<br>3.50  | 0.0:<br>5.4 |
| Mn                                                 | 2.79          | 2.69          | 2.07          | 2.33          | 4.07          | 5.15          | 0.93          | 5.95          | 5.14         | Mn<br>Fe²⁺                                 | 4.47<br>1.81  | 5.79<br>0.36  | 5.10<br>1.17  | 4.20<br>1.92  | 2.58          | 0.19          | 3.70          | 4.81          | 2.86          | 0.5         |
| Fe <sup>2+</sup>                                   | 3.78<br>0.00  | 3.50<br>0.08  | 4.02<br>0.08  | 3.74<br>0.05  | 2.06<br>0.00  | 0.77<br>0.00  | 5.30<br>0.45  | 0.38<br>0.13  | 0.02<br>1.16 | Zn                                         | 0.11          | 0.11          | 0.00          | 0.04          | 0.05          | 0.75          | 0.00          | 0.00          | 0.04          | 0.7         |
| Zn<br>Y                                            | 0.00          | 0.08          | 0.08          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00         | Y                                          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.0         |
| Ce                                                 | 0.01          | 0.03          | 0.01          | 0.00          | 0.02          | 0.01          | 0.02          | 0.05          | 0.00         | $\frac{Ce}{\Sigma C}$                      | 0.00<br>7.00  | 0.05<br>7.00  | 0.01<br>7.00  | 0.00<br>7.00  | 0.00<br>7.00  | 0.03<br>7.00  | 0.02<br>7.00  | 0.00<br>7.00  | 0.01<br>7.00  | 0.0<br>7.0  |
| $\Sigma C$                                         | 7.00          | 7.00          | 7.00          | 7.00          | 7.00          | 7.00          | 7.00          | 7.00          | 7.00         |                                            |               | 1.76          | 1.40          | 1.18          | 1.20          | 1.92          | 0.95          | 1.27          | 1.56          | 0.2         |
| Ti                                                 | 1.15          | 1.57          | 1.89          | 1.89          | 1.78          | 1.90          | 1.60          | 1.85          | 1.23<br>0.00 | Ti<br>Sn                                   | 1.05<br>0.00  | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.0         |
| Sn<br>Zr                                           | 0.00<br>0.71  | 0.02          | 0.00<br>0.06  | 0.00<br>0.07  | 0.00          | 0.00<br>0.00  | 0.06<br>0.09  | 0.00          | 0.00         | Zr                                         | 0.00          | 0.00          | 0.00          | 0.06          | 0.22          | 0.00          | 0.72          | 0.49          | 0.06          | 0.4         |
| Zr<br>Hf                                           | 0.71          | 0.19          | 0.00          | 0.07          | 0.00          | 0.00          | 0.09          | 0.00          | 0.00         | Hf                                         | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.01          | 0.00          | 0.00          | 0.0         |
| Nb                                                 | 0.17          | 0.29          | 0.09          | 0.06          | 0.24          | 0.08          | 0.32          | 0.20          | 0.82         | Nb                                         | 0.87          | 0.20          | 0.62          | 0.78          | 0.53          | 0.10          | 0.37          | 0.29          | 0.37          | 1.3         |
| Та                                                 | 0.00          | 0.00          | 0.01          | 0.00          | 0.00          | 0.00          | 0.01          | 0.00          | 0.00         | Ta                                         | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.00          | 0.01          | 0.00          | 0.0         |
| $\Sigma D$                                         | 2.02          | 2.06          | 2.05          | 2.01          | 2.02          | 1.97          | 2.07          | 2.05          | 2.04         | $\Sigma D$                                 | 1.96          | 1.96          | 2.03          | 2.01          | 1.94          | 2.02          | 2.04          | 2.06          | 1.98          |             |
| Si                                                 | 7.80          | 7.70          | 7.69          | 7.73          | 7.76          | 8.03          | 7.91          | 7.81          | 8.00         | Si                                         | 7.76          | 8.06          | 7.96          | 7.84          | 8.03          | 7.83          | 7.62          | 7.63          | 8.05          |             |
| Al $\Sigma T$                                      | 0.21<br>8.01  | 0.27<br>7.97  | 0.32<br>8.01  | 0.28<br>8.01  | 0.28<br>8.04  | 0.06<br>8.09  | 0.04<br>7.96  | 0.20<br>8.01  | 0.07<br>8.07 | $\frac{A1}{\Sigma T}$                      | 0.25<br>8.01  | 0.23<br>8.29  | 0.10<br>8.06  | 0.17<br>8.01  | 0.12<br>8.14  | 0.19<br>8.02  | 0.36<br>7.98  | 0.36<br>7.99  | 0.16<br>8.21  | 0.3<br>8.0  |
| F                                                  | 0.84          | 0.99          | 0.73          | 0.67          | 0.78          | 0.81          | 0.90          | 0.94          | 0.51         | F                                          | 0.62          | 0.79          | 0.64          | 0.73          | 0.74          | 0.86          | 0.80          | 0.88          | 0.66          |             |
| OH                                                 | 4.16          | 4.01          | 4.27          | 4.33          | 4.23          | 4.20          | 4.10          | 4.06          | 4.00         | ОН                                         | 4.38          | 4.00          | 4.00          | 4.28          | 4.26          | 4.15<br>30.15 | 4.20<br>30.20 | 4.13<br>30.13 | 4.00<br>30.34 |             |
| 0                                                  | 30.16         | 30.01         | 30.27         | 30.33         | 26.00         | 26.00         | 30.10         | 30.06         | 30.49        | 0                                          | 30.38         | 30.21         | 30.36         | 30.28         | 30.26         |               |               |               |               |             |
|                                                    |               |               |               |               |               |               |               |               |              | $\Sigma_{cat.}$                            |               | 19.76         |               |               |               |               | 10.02         |               | 10 77         | 10.0        |

nation (~18 minutes) and collection of all data frames (17.5 hours). The data were reduced, filtered, integrated, and corrected for Lorentz, polarization and background effects using the Siemens software SAINT. Psi-scan absorption corrections were performed using the Siemens program XPREP (Bruker 1997), during which the crystals were modeled as {001} plates. A range of plate-glancing angles was tested for each crystal (generally 2–9°), with the angle yielding the best transmission factors chosen for the absorption correction.

Intensity data for 11 samples were collected using the Siemens SMART system at the University of Manitoba, consisting of a four-circle goniometer and a 1 K (diameter: 9 cm,  $512 \times 512$  pixel) CCD area-detector. Data were collected at room temperature using monochromatic Mo $K\alpha$  X-radiation (50 kV and 40 mA) and a fixed detector-to-crystal distance of 4 cm. Frame widths of  $0.2^{\circ} \omega$  and count exposure-times of 45 s were used. Data collection consisted of 4349 frames, to 60°  $2\theta$ , which provided 100% coverage of the diffraction sphere, with a mean redundancy of 3.6. Approximately 1000 reflections with spot sizes of 2.4° (within the plane) and 2.0° (normal to the plane) were used in the determination of each orientation matrix, and a preliminary unit-cell prior to integration of all data frames. Data integration was done using the Siemens software SAINT. Absorption corrections were done using SADABS, and crystals were modeled as ellipses. All reflection data were then merged using the program XPREP (Bruker 1997).

X-ray intensity data for two samples were collected on a Siemens *P3* four-circle diffractometer at the University of Manitoba, operating at 50 kV and 40 mA, equipped with a standard serial detector. Each orientation matrix was obtained by collecting intensity data for 50 random reflections within the range 12 to 35° 20. Following determination of the orientation matrix, half a sphere of intensity data was collected in the range of 4 to 60° 20 using scan speeds inversely proportional to peak intensity (range: 3 to 29.3° 20/min) and scan range of  $\pm 1.3^{\circ}$  20 about the peak centroid. In order to monitor experimental conditions over time, the intensity of one standard reflection ( $\overline{130}$ ) was collected every 50 reflections; no significant variations were observed.

The structure of 19 triclinic samples was refined in space group  $P\bar{1}$  by least-squares methods using the SHELXL–93 set of programs (Sheldrick 1993), whereas the structure of monoclinic kupletskite was solved and refined in space group C2/c. All atom coordinates and temperature factors were kept as refineable parameters during the refinement process. Except for cases in which the interlayer site A was split owing to positional disorder, all displacement parameters were refined on an anisotropic basis. Site-occupancy factors (SOF) for all anions were fixed at unity. During the initial refinement, cation assignments to the A, B, M(1) through M(4), and D sites were made on the basis of the compositional data obtained from EMPA. Scattering curves for neutral at-

oms were those of Cromer & Liberman (1970). In cases where the site-scattering refinements (SREF) indicated the presence of a second scattering species, the two predominant elements (on the basis of EMPA), were assigned to that site, and the SOF was constrained to be unity. Secondary isotropic-extinction corrections applied to all datasets did not improve the results.

Unit-cell parameters and information pertinent to the data collection and crystal-structure refinement are shown in Table 3. Final positional and anisotropic displacement parameters and complete bond-valence tables can be obtained from the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario K1A 0S2, Canada. Selected bond-lengths are given in Table 4.

The description of the structure of a crystal would not be complete without the detailed analysis of the geometry of individual polyhedra and its variation in response to cation and anion substitutions. Although determination of the coordination number, bond lengths and bond angles of polyhedra within the astrophyllite group is straightforward, the majority of polyhedra within the H and O sheets display marked departures from regularity and an ideal geometry. In order to describe these irregularities, we must compare refined parameters to those predicted for ideal or model polyhedra. Parameters commonly used to quantify distortions in coordination polyhedra include quadratic elongation (Robinson et al. 1971), normalized bondlength variations (Brown & Shannon 1973, Shannon 1975, 1976), octahedron flattening (Weiss et al. 1985), and centroid and sphericity determination (Balić-Žunić & Makovicky 1996, Makovicky & Balić-Žunić 1998).

The normalized bond-length variation or distortion ( $\Delta$ ) of the polyhedra in the *H* and *O* sheets was calculated using the equation:

$$\Delta = \left\{ \sum_{i=1}^{n} \left[ \left( 1_{i} - 1_{m} \right)^{2} / n \right]^{2} / n \right\} \cdot 10^{4}$$
(2)

(Brown & Shannon 1973, Shannon 1975, 1976) where  $l_i = bond length$ ,  $l_m = mean bond-length$ , and n = coordination number. The tetrahedral- and octahedral-angle variance (TAV and OAV, respectively), an alternative measure of polyhedron distortion, can be calculated using the equations developed by Robinson *et al.* (1971):

TAV = 
$$\sigma_T^2 = \sum_{i=1}^{6} \left[ (O - T - O) - 109.47 \right]^2 / 5$$
 (3)

OAV = 
$$\sigma_M^2 = \sum_{i=1}^{12} \left[ (O - T - O) - 90 \right]^2 / 11$$
 (4).

TABLE 3. UNIT-CELL DIMENSIONS AND STRUCTURE-REFINEMENT DATA FOR ASTROPHYLLITE-GROUP MINERALS

| Sample | S.G.              | а         | b          | с          | V         | α           | β            | γ             | E <sup>2</sup> -1 | CFOM     | N/N <sub>u</sub> | NI | <b>R</b> 1 | wR2   | GooF  |
|--------|-------------------|-----------|------------|------------|-----------|-------------|--------------|---------------|-------------------|----------|------------------|----|------------|-------|-------|
| LAB3   | $P\overline{1}$   | 5.4049(3) | 11.9175(6) | 11.7488(6) | 666.5(1)  | 112.93(1)   | 94.627(1)    | 103.139(1)    | 1.038             | 1.46 6   | 942/3870         | 7  | 6.21       | 8.97  | 0.928 |
| NOR1   | $P\overline{1}$   | 5.3857(3) | 11.9072(7) | 11.7105(7) | 660.9(1)  | 113.062(1)  | 94.614(1)    | 103.098(1)    | 1.053             | 2.08 6   | 883/3836         | 3  | 9.12       | 11.71 | 0.916 |
| NOR17  | $P\overline{1}$   | 5.3784(2) | 11.9085(5) | 11.7236(4) | 661.09(7) | 112.964(1)  | 94.697(1)    | 103.112(1)    | 1.075             | 1.9 6    | 855/3835         | 8  | 6.05       | 12.69 | 1.044 |
| RUS4   | $P\overline{1}$   | 5.3776(6) | 11.899(1)  | 11.662(1)  | 656.2(2)  | 113.114(2)  | 94.630(2)    | 103.090(2)    | 1.113             | 2.73 3   | 377/2532         | 25 | 6.12       | 14.66 | 1.183 |
| RUS8   | $P\overline{1}$   | 5.3754(3) | 11.8970(6) | 11.6634(6) | 655.99(6) | 113.133(4)  | 94.638(4)    | 103.081(4)    | 1.123             | 2.89 3   | 571/3421         | 0  | 3.38       | 7.76  | 1.053 |
| RUS9   | C2/c              | 5.4022(2) | 23.226(1)  | 21.1782(9) | 2646.2(3) | 90          | 95.246(1)    | 90            | 1.294             | 11.02 13 | 834/3865         | 2  | 8.42       | 14.04 | 0.945 |
| RUS12  | $P\overline{1}$   | 5.3925(2) | 11.9283(4) | 11.7256(4) | 663.39(7) | 113.044(1)  | 94.840(1)    | 103.064(1)    | 1.081             | 1.94 6   | 813/3834         | 17 | 5.51       | 11.25 | 1.082 |
| US5    | $P\overline{1}$   | 5.3627(8) | 11.851(2)  | 11.668(2)  | 652.9(3)  | 113.040(3)  | 94.523(2)    | 103.093(2)    | 1.138             | 3.85 3   | 715/2669         | 12 | 7.21       | 15.23 | 1.056 |
| MSH2   | $P\overline{1}$   | 5.3982(2) | 11.9534(4) | 11.7433(4) | 666.79(6) | 112.9903(8) | 94.8413(7)   | 103.0664(8)   | 1.081             | 1.73 6   | 877/3853         | 49 | 4.69       | 11.75 | 1.084 |
| MSH3   | $P\overline{1}$   | 5.3887(8) | 11.913(2)  | 11.751(2)  | 664.0(3)  | 112.961(4)  | 94.746(3)    | 103.117(3)    | 1.028             | 1.32 3   | 917/2831         | 25 | 7.06       | 11.51 | 1.107 |
| MSH8   | $P\overline{1}$   | 5.4203(2) | 11.9392(4) | 11.7229(4) | 667.42(7) | 113.0010(7) | ) 94.7348(9) | 103.1598(9)   | 1.027             | 1.09 6   | 910/3860         | 15 | 4.90       | 9.01  | 0.974 |
| MSH9   | $P\overline{1}$   | 5.3989(3) | 11.9528(7) | 11.7458(7) | 667.0(1)  | 112.983(1)  | 94.854(1)    | 103.062(1)    | 1.076             | 2.46 6   | 940/3863         | 1  | 8.30       | 9.89  | 0.916 |
| MSH15  | $P\overline{1}$   | 5.4033(6) | 11.920(1)  | 11.741(1)  | 665.7(2)  | 112.933(3)  | 94.793(2)    | 103.108(2)    | 1.031             | 1.01 3   | 641/2669         | 22 | 5.57       | 16.58 | 1.091 |
| MSH15A | $A P\overline{1}$ | 5.4039(2) | 11.9243(4) | 11.7394(4) | 665.94(7) | 112.942(1)  | 94.732(1)    | 103.135(1)    | 1.015             | 0.76 6   | 892/3860         | 23 | 4.56       | 10.52 | 1.07  |
| MSH19/ | $A P\overline{1}$ | 5.4206(2) | 11.9283(5) | 11.7294(5) | 667.46(8) | 112.942(1)  | 94.645(1)    | 103.246(1)    | 1.066             | 1.75 6   | 949/3869         | 21 | 5.93       | 10.71 | 0.998 |
| MSH20  | $P\overline{1}$   | 5.3879(3) | 11.9263(7) | 11.7136(6) | 661.98(6) | 113.049(4)  | 94.832(4)    | 103.077(4)    | 1.112             | 2.67 3   | 584/3443         | 0  | 3.97       | 8.34  | 1.078 |
| MSH33/ | A <i>P</i> 1      | 5.418(1)  | 11.933(2)  | 11.742(2)  | 668.5(4)  | 112.962(3)  | 94.620(3)    | 103.123(4)    | 1.062             | 1.72 3   | 945/2871         | 26 | 6.25       | 13.61 | 1.13  |
| MSH34/ | A $P\overline{1}$ | 5.3996(2) | 11.9152(4) | 11.7077(4) | 663.00(6) | 113.0413(7) | ) 94.5707(7) | ) 103.1239(8) | 1.086             | 1.98 6   | 895/3842         | 28 | 4.59       | 10.10 | 1.025 |
| MSH38/ | A <i>P</i> 1      | 5.4028(2) | 11.9178(4) | 11.7000(4) | 662.73(7) | 113.036(1)  | 94.671(1)    | 103.163(1)    | 1.061             | 1.45 6   | 8543826          | 27 | 4.43       | 9.61  | 1.054 |
| MSH42  | $P\overline{1}$   | 5.4303(9) | 11.924(2)  | 11.747(2)  | 669.5(3)  | 112.927(3)  | 94.750(3)    | 103.175(3)    | 0.985             | 1.08 5   | 219/3023         | 77 | 5.97       | 10.23 | 1.085 |

S.G.: space group, N: total number of reflections collected,  $N_u$ : number of unique reflections,  $N_i$ : inconsistent reflections, GooF: goodness-of-fit,  $E^2-1$ : normalized structure-factor, CFOM: combined figure of merit. The unit-cell dimensions *a*, *b* and *c* are expressed in Å, the volume, in Å<sup>3</sup>, and the interaxial angles, in degrees. The residuals *R*1 and *wR*2 are expressed as percentages.

The octahedron flattening angle ( $\Psi$ ) is defined as the angle between the normal to the upper or lower trigonal faces and the average diagonal length. Values of  $\Psi$  were calculated using the program OCTAHEDRON (Evans 2000). Given the coordinates of the points of an  $MO_6$  octahedron ( $\mathbf{r}_i = r_i, \theta_i, \phi_i$ ), the M-O bond length, angle of flattening, ( $\Psi$ ), and the counter-rotation angle ( $\delta$ ) can easily be found. A least-squares method is used to fit the coordinates to an octahedron where flattening and counter-rotation are the only distortions from octahedral symmetry. If { $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ } form the top face and { $\mathbf{r}_4$ ,  $\mathbf{r}_5$ ,  $\mathbf{r}_6$ } form the bottom face, this procedure gives:

$$\Psi = \frac{1}{6} \sum_{i=1}^{3} \phi_{i} - \frac{1}{6} \sum_{i=4}^{6} \phi_{i} + \frac{\pi}{2} \text{ and}$$
  
$$\delta = -\frac{1}{6} \sum_{i=1}^{3} \theta_{i} + \frac{1}{6} \sum_{i=4}^{6} \theta_{i} + \frac{\pi}{6}$$
(5).

The thickening angle of a tetrahedron  $(\tau)$ , ideally 109.47° for an undistorted tetrahedron, was calculated as:

$$\tau_T = \sum_{i=1}^{3} \left( O_{\text{basal}} - T - O_{\text{apical}} \right) / 3$$
 (6).

Polyhedron volumes and tilt angles of tetrahedra [with respect to the (001) plane] were calculated using the program IVTON (Balić-Žunić & Vicković 1996). The rotation angle of the tetrahedra ( $\alpha$ ) was calculated using the following formula assuming an ideal O<sub>br</sub>–O<sub>br</sub>–O<sub>br</sub> angle (O<sub>br</sub>: bridging oxygen) of 120°:

$$\alpha = \frac{1}{2} |120 - \langle O_{br} - O_{br} - O_{br} \rangle|$$
(7).

Geometrical parameters for each of the polyhedra in the structures can be found in Table 5.

# SITE-ASSIGNMENT PROCEDURE

Table 6 lists bond-valence sums (BVS; calculated using parameters taken from Brese & O'Keeffe 1991) and site-occupancy factors (SOF) for the refined cation sites. Unambiguous assignment of cations to the multiple sites in the astrophyllite structure requires a singlecrystal X-ray refinement and detailed EMPA. Correct site-assignments are further complicated by the presence of vacancies and H<sub>2</sub>O, by varying degrees of order within the *O* sheet, and by the presence of cations such as Na occupying sites within both the *O* sheet and the interlayer. Details of the site-assignment procedure followed during structure analysis are presented below.

The dominant interlayer cation at A in all astrophyllite-group minerals from this study was found to be K. In a number of triclinic structures, refinement of A = K alone resulted in exceptionally large  $U_{11}$  anisotropic displacement factors, coupled with a large positive residual in the difference Fourier map (>2.5  $e^{-1}$ ). In samples where refinement of the SOF indicated the presence of a lighter X-ray scatterer, Na was assigned to A. Similarly, where SOF refinement indicated the presence of a heavier X-ray scatterer. Rb was assigned to A at the EMPA-established value, and the SOF was refined. In samples where the shape of the anisotropic displacement ellipsoid (of the site to which K was assigned) suggested positional disorder, refinement of the site occupancies failed to improve the displacement factors. The scattering was therefore modeled as two split sites, K(1a) and K(1b). In these cases, displacement factors for K(1a)and K(1b) were constrained to be equal and refined isotropically.

Sodium was assigned to *B* in all samples. Calcium was later included in the refinement where the SOF for *B* indicated the presence of a heavier X-ray scatterer than Na alone. Refined occupancies of Ca correlate well with values obtained from electron-microprobe data (Fig. 2).

Manganese and Fe were initially assigned to M(1) through M(4), depending on which cation was indicated to be dominant at *C*. The site-scattering refinement (SREF) for M(1) consistently yielded occupancies less than unity (20–30 standard deviations low), indicating the presence of a weaker X-ray scatterer. Electron-microprobe data indicate an excess of Na in the majority of samples if compared to results obtained from SREF of only *A* and *B*. The occupancy of M(1) was therefore

refined on the basis of (Mn + Fe + Na). A plot of the total SREF content of Na versus total Na as determined by EMPA (Fig. 3) indicates good agreement between the two methods. The presence of up to 0.274 apfu Na at M(1) site is not uncommon in astrophyllite-group minerals. For example, magnesium astrophyllite (Shi et al. 1998) exhibits a dominance of Na within a single octahedrally coordinated site equivalent to M(1) in triclinic samples and kupletskite-Ma2b2c. Substitution of Na for Mn in octahedral coordination, although generally uncommon owing to the 23% difference in ionic radii between the two cations, has also been noted in other minerals, including samuelsonite (Moore & Araki 1977), barytolamprophyllite (Rastsvetaeva & Dorfman 1995), vuonnemite (Ercit et al. 1998), delindeite (Ferraris et al. 2001), alkali clinoamphiboles from Mont Saint-Hilaire (MSH; Taylor 1999), and eudialyte-group minerals from MSH (Johnsen & Grice 1999). It is interesting to note that all these minerals crystallize in peralkaline environments where the activity of Na is high.

Site-scattering refinements for M(2), M(3) and M(4)generally yield occupancies close to unity, with slight departures from ideal being attributed to Mn  $\Leftrightarrow$  Fe substitution. In samples where site-scattering refinements indicated significant departures from the ideal (Fe,Mn) occupancies (*i.e.*, >10%) and the presence of a lighter or heavier X-ray scatterer, Mg or Zn were assigned to the site, with the total SOF constrained to be unity.

With the exception of niobokupletskite, all samples were found to be Ti-dominant in *D*. In samples where



FIG. 2. Comparison of site refinement and electron-microprobe data: Ca SREF *versus* Ca EMPA (*apfu*). The 1:1 substitution line is indicated (dashed). The solid line represents the best-fit linear regression, with y = 0.6596x,  $R^2 = 0.688$ . Analytical errors are indicated.



FIG. 3. Comparison of site refinement and electron-microprobe data: Natot SREF *versus* Natot EMPA (*apfu*). The 1:1 substitution line is indicated as a dashed line. Analytical errors are indicated.

| (off) occlahedron<br>(a) 2146(3) 2173(3) 2186(3) 2186(3) 2187(3) 2191(3) 2191(3) 2193(2) 2<br>(b) 2190(2) 2190(3) 2173(3) 2185(3) 2193(2) 2191(3) 2191(3) 2193(2) 2<br>(c) 2132(3) 2190(3) 2196(3) 2195(3) 2193(4) 2191(2) 2173(3) 2193(2) 2<br>(c) 2123(3) 2291(4) 2195(3) 2195(3) 2199(4) 2211(2) 2173(3) 2206(2) 2<br>(c) 2232(3) 2291(4) 2195(3) 2193(2) 2199(4) 2211(2) 2173(3) 2206(2) 2<br>(c) 2232(3) 2219(4) 2195(3) 2193(2) 2191(4) 2214(3) 2193(2) 2207(2) 2<br>(c) 2113(3) 2106(3) 2111(3) 2085(5) 2095(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2<br>(c) 2113(3) 2106(3) 2111(3) 2085(5) 2095(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2) 2193(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE             | LAB3         | NOR1      | NOR17    | RUS4     | RUS8     | RUS9     | RUS12      | USS      | MSH2       | MSH3     | MSH8       | 6HSM     | MSH15 1  | MSH15A MSH19A   | MSH19A   | MSH20    | MSH33A   | MSH34    | MSH38A   | MSH42    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-----------|----------|----------|----------|----------|------------|----------|------------|----------|------------|----------|----------|-----------------|----------|----------|----------|----------|----------|----------|
| <ul> <li>Z1460, 12170, 21750, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 21870, 218</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(1)0s(0H)         | octahedron   | _         |          |          |          |          |            |          |            |          |            |          |          |                 |          |          |          |          |          |          |
| 21770; 11740; 11850; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870; 21870;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(1)-O(2)          | 2.146(3)     | 2.170(3)  | 2.172(3) | 2.163(5) |          |          |            |          |            |          |            | • •      |          |                 | 2.169(3) | 2.187(2) | 2.139(5) | 2.142(2) | 2.169(2) | 2.179(8) |
| 21949 21090 21090 21950 21960 21960 21960 21960 21960 21960 21960 21660 21860 2000 22650 2000 22650 2000 22650 22660 21960 21860 21970 2000 22650 22660 21970 22650 22660 21970 22650 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 22660 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(1)-O(5)          | 2.177(3)     | 2.174(4)  | 2.185(3) | 2.175(5) |          |          |            |          |            |          |            |          |          |                 | 2.185(3) | 2.191(2) | 2.188(4) | 2.166(2) | 2.184(2) | 2.194(8  |
| 21000 21000 21000 22000 22000 21000 21000 21000 21000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 2100 2000 2100 2000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(1)-O(6)          | 2.154(3)     | 2.162(3)  | 2.182(3) | 2.158(5) |          |          |            |          |            |          |            |          |          |                 | 2.175(3) | 2.180(2) | 2.142(4) | 2.143(2) | 2.172(2) | 2.190(7  |
| 2.2382 23840 21343 2185 21840 2174 2145 2174 2208 2164 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 22402 2140 2140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M(1)-O(3)          | 2.190(2)     | 2.190(4)  | 2.202(3) | 2.185(5) |          |          |            | • •      |            |          |            |          |          |                 | 2.197(2) | 2.206(2) | 2.189(4) | 2.177(2) | 2.199(2) | 2.209(7  |
| 1333         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136         2136 <th< td=""><td>M(1)-O(7)</td><td>2.208(2)</td><td>2.204(4)</td><td>2.195(3)</td><td>2.206(5)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.216(3)</td><td>2.209(2)</td><td>2.225(4)</td><td>2.202(2)</td><td>2.207(2)</td><td>2.221(7</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M(1)-O(7)          | 2.208(2)     | 2.204(4)  | 2.195(3) | 2.206(5) |          |          |            |          |            |          |            |          |          |                 | 2.216(3) | 2.209(2) | 2.225(4) | 2.202(2) | 2.207(2) | 2.221(7  |
| 2185 2189 2194 2185 2180 2180 2187 2186 2197 2209 2187 2190 2110; 2134 2140 2180; 2180; 21190 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21130; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 2110; 21190; 2110; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 21190; 2110; 21190; 2110; 21190; 2110; 21190; 2110; 21190; 2110; 21190; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 2110; 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M(1)-O(1)          | 2.232(3)     | 2.231(4)  | 2.225(3) | 2.223(4) |          |          |            |          |            |          |            |          |          |                 | 2.237(3) | 2.231(2) | 2.236(4) | 2.226(2) | 2.229(2) | 2.247(7) |
| DB, eetheren         DB, eetheren           0.111(3)         2110(3)         2118(3)         2118(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)         2119(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0-(1)/V>          | 2.185        | 2.189     | 2.194    | 2.185    |          |          |            |          |            |          |            |          |          |                 | 2.196    | 2.201    | 2.187    | 2.176    | 2.193    | 2.207    |
| 2111(9) 2116(9) 2116(9) 2116(9) 2118(9) 2118(9) 2118(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 2116(9) 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(2)04(0H)         | , octahedro  | Ē         |          |          |          |          |            |          |            |          |            |          |          |                 |          |          |          |          |          |          |
| $ \begin{array}{c} 1110 \\ 1110 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M(2)-0(7)          | 2.111(3)     | 2.105(3)  | 2.113(3) | 2.085(5) | 2.095(2) | 2.118(3) | 2.128(2) 2 |          |            |          |            | : 130(3) | 2.113(4) | 2.122(2)        | 2.119(3) | 2.123(2) | 2.121(4) | 2.103(2) | 2.110(2) | 2.133(8  |
| <ul> <li>7 11303 2136(5 2140) 2139(5 2140) 2166 2150(5 2196) 2140(7 2146) 2146(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(7 2146) 2140(</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(2)-O(5)          | 2.111(3)     | 2.106(4)  | 2.111(3) | 2.093(5) | 2.097(2) | 2.112(3) | 2.130(2)   |          | (4         |          |            | . 139(3) | 2.118(5) | 2.119(2)        | 2.112(3) | 2.131(2) | 2.107(5) | 2.096(2) | 2.111(2) | 2.124(7  |
| 0         2.206(9)         2.107(9)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.217(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.117(2)         2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M(2)-O(5)          | 2.132(3)     | 2.135(4)  | 2.141(3) | 2.128(5) | 2.131(2) | 2.149(4) | 2.144(2)   |          |            |          |            | : 149(3) | 2.157(5) | 2.146(2)        | 2.140(3) | 2.142(2) | 2.149(5) | 2.130(2) | 2.142(2) | 2.152(8) |
| 0         2.130(5)         2.214(5)         2.234(5)         2.234(6)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.234(7)         2.134(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2.144(7)         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M(2)-O(6)          | 2.205(3)     | 2.195(4)  | 2.211(3) | 2.192(5) | 2.192(2) | 2.207(4) | 2.222(2)   |          |            |          |            | : 223(3) | 2.217(5) | 2.213(2)        | 2.218(2) | 2.216(2) | 2.210(4) | 2.192(2) | 2.212(2) | 2.211(7  |
| 2.230(3)         2.230(3)         2.233(3)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.233(4)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.11(7)         2.112(7)         2.111(7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M(2)-O(7)          | 2.216(3)     | 2.216(3)  | 2.219(3) | 2.210(5) | 2.210(2) | 2.224(4) | 2.231(2)   |          |            |          |            | 236(3)   | 2.228(4) | 2.224(2)        | 2.231(3) | 2.229(2) | 2.220(4) | 2.213(2) | 2.222(2) | 2.254(   |
| 2.168 2.168 2.153 2.159 2.102 2.177 2.185 2.154 2.199 2.187 2.191 2.190 2.187 2.190 2.177 2.184 2.173 2.193 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1959 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(2)-O(2)          | 2.230(3)     | 2.248(4)  | 2.253(3) | 2.247(5) | 2.247(2) | 2.252(4) | 2.254(3)   | . 4      | (41        |          |            | 261(3)   | 2.258(4) | <u>2.255(2)</u> | 2.244(3) | 2.263(2) | 2.230(4) | 2.238(2) | 2.246(2) | 2.252(3  |
| III, octahedron         III, octahedron           10, ortahedron         2117(3) 2136(3) 2113(3) 2115(3) 2108(5) 2137(3) 2107(5) 2114(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 2113(3) 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <m(2)-0></m(2)-0>  | 2.168        | 2.168     | 2.175    | 2.159    | 2.162    | 2.177    | 2.185      |          |            |          |            | 2.190    | 2.182    | 2.180           | 2.177    | 2.184    | 2.173    | 2.162    | 2.174    | 2.188    |
| 2138(2)       2113(2)       2136(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)       2137(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M(3)04(0H)         | 2 octahedro  | e         |          |          |          |          |            |          |            |          |            |          |          |                 |          |          |          |          |          |          |
| 2117(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)       2113(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M(3)-O(1)          | 2.128(2)     | 2.112(3)  | 2.126(3) | 2.112(5) | 2.108(2) | 2.127(3) | 2.135(2)   | : 098(5) | 2.138(2) 2 | .127(4)  | .138(2) 2  | 0.139(3) | 2.130(4) | 2.136(2)        | 2.135(3) | 2.135(2) | 2.129(4) | 2.119(2) | 2.125(2) | 2.143(   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M(3)-0(4)          | 2.117(3)     | 2.129(4)  | 2.125(3) | 2.110(5) | 2.113(2) | 2.124(4) | 2.137(3)   | 107(5)   | 2.143(2) 2 | 0.134(4) | . 133(2) 2 | 0.146(3) | 2.132(4) | 2.130(2)        | 2.122(3) | 2.137(2) | 2.117(5) | 2.112(2) | 2.122(2) | 2.145(   |
| (7)       2152(3)       2149(4)       2157(3)       2141(4)       2137(2)       2147(4)       2177(3)       2147(4)       2177(3)       2147(4)       2177(3)       2147(4)       2177(3)       2147(4)       2132(2)       2230(2)       2200(3)       2138(2)       2138(2)       2138(2)       2147(4)       2147(3)       2147(4)       2147(3)       2147(4)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)       2147(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M(3)-O(3)          | 2.138(3)     | 2.133(3)  | 2.137(3) | 2.109(5) | 2.120(2) | 2.140(3) | 2.153(2)   | : 115(5) | 2.156(2) 2 | 0.148(4) | .149(2) 2  | 2.158(3) | 2.159(4) | 2.147(2)        | 2.149(3) | 2.152(2) | 2.133(4) | 2.125(2) | 2.140(2) | 2.151(7) |
| 7         21843         21864         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2198(6)         2117(2)         2117(2)         2117(2)         2117(2)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)         2118(7)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M(3)-O(6)          | 2 152(3)     | 2, 149(4) | 2 157(3) | 2 141(4) | 2.137(2) | 2.158(4) | 2.170(2)   | 137(5)   | 2.179(2) 2 | 0.163(4) | .164(2)    | 0.174(3) | 2.176(4) | 2.166(2)        | 2.172(2) | 2.171(2) | 2.143(4) | 2.144(2) | 2.163(2) | 2.169(   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M(3)-O(4)          | 2.184(3)     | 2.186(4)  | 2.199(3) | 2.168(6) | 2.180(2) | 2.198(4) | 2.204(2)   | 175(5)   | 2.206(2) 2 | 201(4)   | 206(2)     | 2.211(3) | 2.196(5) | 2.202(2)        | 2.200(3) | 2.198(2) | 2.174(4) | 2.181(2) | 2.195(2) | 2.2100   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M(3)-0(2)          | 2.209(3)     | 2.225(4)  | 2.225(3) | 2.232(5) | 2.232(2) | 2.238(4) | 2.237(2)   | 210(5)   | 2.245(2) 2 | 244(4)   | 237(2)     | 2.246(3) | 2.232(5) | 2.232(2)        | 2.218(3) | 2.242(2) | 2.217(4) | 2.214(2) | 2.227(2) | 2.232(   |
| $ \begin{array}{c} \textbf{JII}_{\textbf{0}} \textbf{octahedron} \\ \textbf{(1)} \textbf{ octahedron} \\ \textbf{(2)} \textbf{ 2088(3)} \textbf{ 2097(3)} \textbf{ 2083(2)} \textbf{ 2093(3)} \textbf{ 2087(2)} \textbf{ 2094(3)} \textbf{ 2087(2)} \textbf{ 2087(3)} \textbf{ 2088(4)} \textbf{ 2095(2)} \textbf{ 2088(5)} \textbf{ 2094(3)} \textbf{ 2085(2)} \textbf{ 2088(5)}  2088(5$ | <0-(E) W>          | 2.155        | 2.156     | 2.162    | 2.145    | 2.148    | 2.164    | 2.173      | 2.140    | 2.178      | 2.170    | 2.171      | 2.179    | 2.171    | 2.169           | 2.166    | 2.173    | 2.152    | 2.149    | 2.162    | 2.175    |
| 1         2.088(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.087(3)         2.148(5)         2.113(2)         2.146(4)         2.157(2)         2.146(4)         2.157(2)         2.146(4)         2.157(2)         2.146(4)         2.157(2)         2.146(4)         2.157(2)         2.148(5)         2.132(4)         2.146(7)         2.146(7)         2.148(3)         2.146(4)         2.137(2)         2.148(4)         2.146(7)         2.157(2)         2.148(4)         2.148(7)         2.138(4)         2.148(7)         2.138(4)         2.148(7)         2.138(4)         2.148(7)         2.138(4)         2.148(7)         2.138(4)         2.148(7)         2.138(4)         2.138(4)         2.138(4)         2.138(4)         2.138(4)         2.138(4)         2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M(4)04(0H)         | octahedro، ب | ş         |          |          |          |          |            |          |            |          |            |          |          |                 |          |          |          |          |          |          |
| <ul> <li>2.088(3) 2.080(4) 2.092(3) 2.077(5) 2.083(2) 2.087(2) 2.074(5) 2.114(2) 2.114(2) 2.165(2) 2.168(5) 2.089(2) 2.094(3) 2.085(5) 2.088(5) 2.114(2) 2.144(5) 2.114(2) 2.155(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.155(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 2.155(2) 2.170(2) 2.185(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(4)-O(4)          | 2.088(3)     | 2.080(4)  | 2.092(3) | 2.077(5) | 2.083(2) | 2.093(3) | 2.087(2)   |          | 2.112(2)   | 2.081(4) | 095(2)     | 2.118(3) | 2.086(5) | 2.089(2)        | 2.094(3) | 2.085(2) | 2.088(5) | 2.085(2) | 2.091(2) | 2.097(   |
| <ul> <li>2.151(2) 2.142(3) 2.148(3) 2.137(2) 2.146(4) 2.1155(2) 2.145(5) 2.165(2) 2.152(4) 2.165(3) 2.146(4) 2.147(2) 2.155(2) 2.145(2) 2.158(4) 2.145(2) 2.158(4) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.155(2) 2.145(2) 2.156(4) 2.171(2) 2.157(2) 2.155(2) 2.145(2) 2.158(4) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.171(2) 2.157(2) 2.155(2) 2.156(4) 2.170(2) 2.155(2) 2.170(4) 2.157(2) 2.155(2) 2.156(4) 2.170(2) 2.155(2) 2.157(2) 2.155(2) 2.170(4) 2.157(2) 2.155(2) 2.156(4) 2.157(2) 2.155(2) 2.156(4) 2.170(2) 2.155(2) 2.170(2) 2.157(4) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.170(2) 2.157(2) 2.170(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 2.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.155(2) 1.155(2) 1.155(2) 1.155(2) 1.155(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2) 1.157(2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(4)-O(4)          | 2.088(3)     |           | 2.092(3) | 2.077(5) | 2.083(2) | 2.093(3) | 2.087(2)   |          | 2.112(2)   | 2.081(4) | 0.095(2)   | 2.118(3) | 2.086(5) | 2.089(2)        | 2.094(3) | 2.085(2) | 2.088(5) | 2.085(2) | 2.091(2) | 2.097(   |
| <ul> <li>2.151(2) 2.142(3) 2.146(3) 2.137(2) 2.146(4) 2.1157(2) 2.145(5) 2.163(2) 2.163(2) 2.163(3) 2.165(4) 2.142(2) 2.155(2) 2.145(2) 2.155(4) 2.165(4) 2.171(2) 2.170(4) 2.155(2) 2.145(2) 2.155(4) 2.165(4) 2.155(2) 2.155(2) 2.145(2) 2.155(4) 2.155(2) 2.155(4) 2.171(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.165(4) 2.171(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.165(4) 2.171(2) 2.170(4) 2.155(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.171(2) 2.170(4) 2.155(2) 2.170(4) 2.155(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.170(2) 2.170(4) 2.155(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.170(2) 2.170(4) 2.155(2) 2.170(4) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 2.155(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2) 1.955(2</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M(4)-O(1)          | 2.151(2)     |           | 2.146(3) | 2.148(5) | 2.137(2) | 2.146(4) | 2.135(2)   |          | 2.163(2)   | 2.132(4) | 2.149(2)   | 2.165(3) | 2.146(4) | 2.141(2)        | 2.155(2) | 2.145(2) | 2.158(4) | 2.154(2) | 2.154(2) | 2.149(   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M(4)-O(1)          | 2.151(2)     |           | 2.146(3) | 2.148(5) | 2.137(2) | 2.146(4) | 2.135(2)   |          | 2.163(2)   | 2.132(4) | 2.149(2)   | 2.165(3) | 2.146(4) | 2.141(2)        | 2.155(2) | 2.145(2) | 2.158(4) | 2.154(2) | 2.154(2) | 2.149(   |
| () 2.1713) 2.16573 2.17150 2.15732 2.17043 2.15673 2.16353 2.16353 2.16343 2.18352 2.15343 2.18273 2.18273 2.134 2.134 2.139 2.137 2.137 2.135 2.134 2.134 2.139 2.137 2.137 2.135 2.134 2.134 2.139 2.137 2.137 2.135 2.143 2.134 2.134 2.134 2.139 2.147 2.134 2.134 2.134 2.139 2.147 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.134 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M(4)-O(3)          | 2.171(3)     |           | 2.171(3) | 2.157(5) | 2.159(2) | 2.170(4) | 2.156(2)   |          | 2.183(2)   | 2.163(4) | 2.184(2)   | 2.182(3) | 2.169(4) | 2.170(2)        | 2.182(2) | 2.171(2) | 2.170(4) | 2.171(2) | 2.181(2) | 2.181(   |
| <b>bedron bedron 137</b> 2.129 2.136 2.127 2.126 2.136 2.126 2.126 2.127 2.133 2.125 2.143 2.155 2.134 2.133 2.144 2.134 2.139 <b>bedron 1877</b> (3) 1835(4) 1831(5) 1.808(5) 1.797(2) 1823(3) 1.808(2) 1.868(2) 1.863(4) 1.887(2) 1.809(3) 1.865(4) 1.885(3) 1.794(2) 1.894(5) 1.994(6) 1.977(3) 1.956(2) 1.956(2) 1.956(2) 1.964(5) 1.964(5) 1.956(2) 1.967(3) 1.956(2) 1.994(6) 1.976(3) 1.956(2) 1.994(6) 1.956(3) 1.956(2) 1.956(2) 1.967(3) 1.956(2) 1.994(6) 1.956(2) 1.966(5) 1.956(2) 1.967(3) 1.956(2) 1.994(6) 1.956(3) 1.956(2) 1.956(3) 1.956(2) 1.956(3) 1.956(2) 1.956(2) 1.994(6) 1.956(2) 1.956(2) 1.956(2) 1.956(2) 1.956(2) 1.956(2) 1.967(3) 1.956(2) 1.996(5) 1.967(3) 1.956(2) 1.994(6) 1.956(3) 1.956(2) 1.956(2) 1.956(2) 1.964(6) 1.956(2) 1.956(2) 1.956(2) 1.956(2) 1.966(2) 1.956(2) 1.966(2) 1.956(2) 1.996(2) 1.996(5) 1.967(3) 1.956(2) 1.996(5) 1.966(2) 1.956(2) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.966(2) 1.956(2) 1.996(2) 1.996(5) 1.966(2) 1.956(2) 1.996(2) 1.996(5) 1.966(2) 1.956(2) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.966(2) 1.966(2) 1.966(2) 1.966(2) 1.966(2) 1.966(2) 1.966(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(5) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M(\Delta) = O(3)$ | 2 171(3)     |           | 2 171(3) | 2 157(5) | 2,159(2) | 2.170(4) | 2.156(2)   |          | 2.183(2)   | 2.163(4) | 2.184(2)   | 2.182(3) | 2.169(4) | 2.170(2)        | 2.182(2) | 2.171(2) | 2.170(4) | 2.171(2) | 2.181(2) | 2.181(   |
| Indrem         1877(3)         1.835(4)         1.871(2)         1.823(3)         1.797(2)         1.823(3)         1.794(2)         1.834(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.894(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.794(2)         1.894(5)         1.995(2)         1.994(5)         1.995(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2)         1.997(2) <t< td=""><td>&lt;0-(f) W&gt;</td><td>2.137</td><td>2.129</td><td>2.136</td><td>2.127</td><td>2.126</td><td>2.136</td><td>2.126</td><td></td><td>2.153</td><td>2.125</td><td>2.143</td><td>2.155</td><td>2.134</td><td>2.133</td><td>2.144</td><td>2.134</td><td>2.139</td><td>2.137</td><td>2.142</td><td>2.142</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0-(f) W>          | 2.137        | 2.129     | 2.136    | 2.127    | 2.126    | 2.136    | 2.126      |          | 2.153      | 2.125    | 2.143      | 2.155    | 2.134    | 2.133           | 2.144    | 2.134    | 2.139    | 2.137    | 2.142    | 2.142    |
| 1877(3) 1835(4) 1811(3) 1808(5) 1797(2) 1823(3) 1807(3) 1848(5) 1808(2) 1863(4) 1887(2) 1809(3) 1866(4) 1876(2) 1885(3) 1794(2) 1884(5) 1896(4) 1876(2) 1985(3) 1794(2) 1884(5) 1986(3) 1958(4) 1956(2) 1956(2) 1956(2) 1956(2) 1986(4) 1956(2) 1956(2) 1956(2) 1986(4) 1956(2) 1956(2) 1956(2) 1956(2) 1986(4) 1956(2) 1956(2) 1956(2) 1956(2) 1986(5) 1956(2) 1956(2) 1956(2) 1986(3) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1996(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D \$6 octahedi     | Lon          |           |          |          |          |          |            |          |            |          |            |          |          |                 |          |          |          |          |          |          |
| 19793 1958(4) 1958(5) 1956(5) 1957(2) 1957(3) 1959(5) 1956(6) 1962(2) 1950(4) 1968(2) 1958(2) 1956(2) 1956(2) 1956(2) 1956(2) 1956(2) 1988(6) 1958(3) 1956(2) 1956(3) 1978(3) 1958(2) 1988(5) 1968(5) 1956(4) 1955(3) 1978(3) 1978(3) 1956(2) 1998(5) 1988(5) 1956(4) 1955(4) 1955(4) 1956(2) 1956(2) 1998(5) 1998(5) 1988(5) 1956(4) 1955(4) 1956(3) 1978(2) 1956(2) 1998(5) 1988(5) 1956(4) 1955(4) 1956(3) 1978(7) 1956(2) 1998(5) 1998(5) 1988(7) 1956(2) 1998(5) 1956(2) 1998(5) 1978(7) 1970(2) 1998(5) 1998(5) 1988(7) 1956(4) 1956(1) 1956(2) 1956(2) 1998(2) 1998(2) 1998(5) 1998(5) 1956(2) 1997(2) 1978(7) 1970(2) 1956(2) 1996(5) 1956(1) 1956(1) 1976(2) 1998(2) 1996(5) 1966(1) 1978(1) 1970(2) 1996(2) 1996(5) 1966(1) 1978(1) 1970(2) 1996(5) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(2) 1996(5) 1966(1) 1978(1) 1996(5) 1966(2) 1996(5) 1966(1) 1978(1) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1996(5) 1966(1) 1978(1) 1996(5) 1996(5) 1966(1) 1966(1) 1978(1) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1996(5) 1966(1) 1978(1) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1966(5) 1966(1) 1978(1) 1996(5) 1996(5) 1966(1) 1996(5) 1996(5) 1966(1) 1966(1) 1966(1) 1966(1) 1996(5) 1966(1) 1996(5) 1966(1) 1966(1) 1996(5) 1966(1) 1966(1) 1966(1) 1966(1) 1996(5) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1) 1966(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-0(2)             | 1.877(3)     |           | 1.811(3) | 1.808(5) | 1.797(2) | 1.823(3) | 1.807(3)   | 1.844(5) | 1.808(2)   | 1.863(4) |            | 1.809(3) | 1.866(4) | 1.876(2)        | 1.885(3) | 1.794(2) | 1.894(5) | 1.866(2) | 1.854(2) | 1.929(   |
| 1.986(3) 1.962(4) 1.965(3) 1.965(3) 1.965(3) 1.967(3) 1.960(3) 1.945(6) 1.965(2) 1.950(3) 1.974(3) 1.964(3) 1.966(3) 1.967(3) 1.978(3) 1.958(2) 1.998(5) 1.988(3) 1.956(4) 1.953(3) 1.947(6) 1.955(2) 1.956(2) 1.945(6) 1.949(4) 1.965(2) 1.945(4) 1.955(2) 1.990(3) 1.990(3) 1.990(3) 1.988(3) 1.956(4) 1.953(3) 1.950(3) 1.957(2) 1.970(3) 1.956(2) 1.990(3) 1.988(3) 1.966(4) 1.957(3) 1.957(2) 1.970(3) 1.956(2) 1.990(3) 1.988(3) 1.966(4) 1.957(3) 1.957(3) 1.956(2) 1.990(3) 1.986(3) 1.966(4) 1.977(2) 1.970(3) 1.956(2) 1.990(3) 1.988(3) 1.966(4) 1.973(3) 1.956(2) 1.990(3) 1.986(3) 1.966(4) 1.973(3) 1.956(2) 1.996(3) 1.966(4) 1.973(2) 1.990(2) 1.996(3) 1.966(3) 1.966(3) 1.966(3) 1.966(2) 1.990(3) 1.990(3) 1.990(4) 1.970(4) 1.977(2) 1.960(2) 1.990(2) 1.990(3) 1.966(5) 1.966(2) 1.990(2) 1.990(3) 1.966(5) 1.966(2) 1.974(2) 1.977(2) 1.966(2) 1.990(3) 1.966(5) 1.966(5) 1.966(2) 1.990(2) 1.990(3) 1.966(5) 1.966(2) 1.990(2) 1.990(3) 1.966(5) 1.966(2) 1.990(2) 1.990(3) 1.966(5) 1.966(5) 1.966(2) 1.990(3) 1.966(5) 1.966(5) 1.966(2) 1.990(2) 1.990(1) 2.084(1) 2.091(1) 2.094(1) 2.091(1) 2.094(1) 2.091(1) 2.094(1) 2.092(1) 2.092(1) 2.094(1) 2.092(1) 2.094(1) 2.091(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.094(1) 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-0(12)            | 1.979(3)     |           |          | 1.956(5) | 1.957(2) | 1.957(3) | 1.959(3)   | 1.936(6) | 1.962(2)   | 1.950(4) |            | 1.958(3) | 1.960(5) | 1.956(2)        | 1.967(3) | 1.956(2) | 1.984(6) | 1.970(3) | 1.960(2) | 1.998(   |
| 1.981(3) 1.956(4) 1.953(3) 1.947(6) 1.958(2) 1.956(2) 1.945(5) 1.961(2) 1.949(4) 1.955(2) 1.955(2) 1.957(2) 1.977(2) 1.976(2) 1.956(2) 1.990(5) 1.889(3) 1.956(4) 1.971(2) 1.957(2) 1.956(2) 1.996(5) 1.966(2) 1.996(5) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.996(5) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.996(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.971(2) 1.966(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.996(2) 1.971(2) 1.966(2) 1.971(2) 1.971(2) 1.971(2) 1.966(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.971(2) 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-0(11)            | 1.986(3)     |           |          | 1.965(5) | 1.958(2) | 1.967(3) | 1.960(3)   | 1.945(6) | 1.965(2)   | 1.950(5) |            | 1.964(3) | 1.966(5) | 1.967(3)        | 1.978(3) | 1.959(2) | 1.998(5) | 1.983(3) | 1.967(2) | 2.001(   |
| 1.989(3) 1.966(4) 1.957(3) 1.957(3) 1.962(2) 1.969(3) 1.959(3) 1.968(2) 1.963(4) 1.973(2) 1.963(3) 1.966(5) 1.964(2) 1.973(3) 1.966(2) 1.996(5) 1.921(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.201(2) 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-0(9)             | 1.981(3)     |           |          | 1.947(6) | 1.958(2) | 1.951(3) | 1.956(2)   | 1.945(5) | 1.961(2)   | 1.949(4) |            | 1.956(3) | 1.965(5) | 1.957(2)        | 1.970(3) | 1.956(2) | 1.990(5) | 1.970(2) | 1.964(2) | 1.987(8) |
| 2104(0) 2086(1) 2.095(1) 2.094(1) 2.097(0) 2.068(1) 2.096(1) 2.09(1) 2.081(0) 2.037(1) 2.014(0) 2.034(1) 2.035(0) 2.047(1) 2.086(1) 2.095(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(1) 2.040(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-0(15)            | 1.989(3)     |           |          | 1.957(5) | 1.962(2) | 1.969(3) | 1.959(3)   | 1.950(5) | 1.968(2)   | 1.963(4) |            | 1.963(3) | 1.966(5) | 1.964(2)        | 1.973(3) | 1.966(2) | 1.996(5) | 1.980(2) | 1.969(2) | 1.994(   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $D - \phi(16)$     | 2.104(0)     |           |          | 2.094(1) | 2.097(0) | 2.068(1) | 2.084(1)   | 2.090(1) | 2.081(0)   | 2.037(1) |            | 2.082(1) | 2.034(1) | 2.033(0)        | 2.047(1) | 2.086(1) | 2.095(1) | 2.096(0) | 2.056(0) | 1.981(   |
| 1.700 1.701 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.700 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1 986        |           | 1.953    | 1.955    | 1.955    | 1.956    | 1.954      | 1.952    | 1.958      | 1.952    |            | 1.955    | 1.960    | 1.959           | 1.970    | 1.953    | 1.993    | 1.978    | 1.962    | 1.982    |

| MSH42                             | L.595(9)<br>L.585(9)<br>L.628(8)<br>L.631(9)<br>1.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.614(9)<br>1.620(7)<br>1.638(8)<br>1.634(8)<br>1.632                                                                                      | L.630(9)<br>L.629(7)<br>L.630(9)<br>L.645(8)<br>1.634                                                                                                                          | 1.591(9)<br>1.591(9)<br>1.613(8)<br>1.607(9)<br>1.601               | 2.642(15)<br>2.641(13)<br>2.662(13)<br>2.665(14)<br>2.715(0)<br>2.665                                    | 3.121                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.613(2) 1.6<br>1.614(2) 1.6<br>1.642(2) 1.6<br>1.643(2) 1.6<br>1.628 1.                                                                   | L616(2) 1.6<br>L621(2) 1.6<br>L642(2) 1.6<br>L643(2) 1.6<br>L643(2) 1.6<br>L631 1.                                                                                             | L601(2) 1.5<br>L601(2) 1.5<br>L632(2) 1.6<br>L632(2) 1.6<br>L617 1. | 2.612(3) 2.6<br>2.595(3) 2.6<br>2.637(3) 2.6<br>2.601(3) 2.6<br>2.701(0) 2.1<br>2.629 2.1                | 3.268 3               |
| 4 MSH38A                          | ) 1.600(2)<br>) 1.600(2)<br>) 1.605(2)<br>) 1.625(2)<br>) 1.6125(2)<br>1.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            |                                                                                                                                                                                | REEQ                                                                |                                                                                                          |                       |
| MSH34                             | 1.595(2)<br>1.594(3)<br>1.625(2)<br><u>1.628(2)</u><br>1.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.618(3)<br>1.620(2)<br>1.636(2)<br><u>1.636(2)</u><br>1.636(2)                                                                            | 1.619(2)<br>1.631(2)<br>1.645(2)<br>1.645(2)<br>1.645(2)<br>1.635                                                                                                              | 1.601(3)<br>1.602(3)<br>1.622(3)<br>1.624(3)<br>1.624(3)<br>1.614   | 2.613(4)<br>2.615(3)<br>2.615(3)<br>2.639(4)<br>2.618(4)<br>2.637                                        | 3.281                 |
| MSH33A                            | 1.597(5)<br>1.592(6)<br>1.626(4)<br>1.632(5)<br>1.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.614(5)<br>1.626(5)<br>1.628(5)<br>1.637(5)<br>1.627                                                                                      | 1.618(5)<br>1.644(5)<br>1.643(5)<br>1.643(5)<br>1.640                                                                                                                          | 1.595(5)<br>1.595(5)<br>1.625(5)<br><u>1.624(5)</u><br>1.610        | $\begin{array}{c} 2.626(7)\\ 2.617(7)\\ 2.638(7)\\ 2.623(7)\\ 2.623(7)\\ 2.709(0)\\ 2.643\\ \end{array}$ | 3.291                 |
| MSH20 MSH3A                       | 1.603(2)<br>1.607(2)<br>1.621(2)<br>1.641(2)<br>1.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.617(2)<br>1.612(2)<br>1.642(2)<br><u>1.637(2)</u><br>1.627                                                                               | 1.617(2)<br>1.617(2)<br>1.646(2)<br><u>1.643(2)</u><br>1.631                                                                                                                   | 1.608(2)<br>1.609(2)<br>1.626(2)<br>1.637(2)<br>1.620               | 2.610(3)<br>2.585(3)<br>2.614(3)<br>2.601(3)<br>2.694(0)<br>2.621                                        | 3.260                 |
| MSH19A                            | 1.603(3)<br>1.603(3)<br>1.627(3)<br>1.641(3)<br>1.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.613(3)<br>1.621(3)<br>1.645(3)<br>1.642(3)<br>1.642(3)<br>1.630                                                                          | 1.614(3)<br>1.624(3)<br>1.645(3)<br><u>1.640(3)</u><br>1.631                                                                                                                   | 1.607(3)<br>1.604(3)<br>1.628(3)<br>1.634(3)<br>1.618               | 2.645(4)<br>2.605(4)<br>2.607(4)<br>2.604(4)<br>2.6446<br>2.646                                          | 3.279                 |
| MSH15A MSH19A                     | 1.602(2)<br>1.603(3)<br>1.622(2)<br><u>1.638(2)</u><br>1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.615(2)<br>1.616(2)<br>1.644(2)<br>1.636(2)<br>1.628                                                                                      | 1.619(2)<br>1.618(2)<br>1.648(2)<br>1.643(2)<br>1.643(2)<br>1.632                                                                                                              | 1.606(3)<br>1.604(3)<br>1.626(2)<br><u>1.633(2)</u><br>1.617        | 2.627(3)<br>2.626(3)<br>2.651(3)<br>2.651(3)<br>2.630(3)<br>2.647<br>2.647                               | 3.277                 |
| MSH15                             | 1.603(6)<br>1.603(5)<br>1.628(5)<br><u>1.646(5)</u><br>1.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.609(5)<br>1.612(5)<br>1.630(5)<br><u>1.643(5)</u><br>1.624                                                                               | 1.615(5)<br>1.611(5)<br>1.647(5)<br><u>1.650(5)</u><br>1.631                                                                                                                   | 1.598(5)<br>1.607(5)<br>1.625(5)<br><u>1.639(5)</u><br>1.617        | 2.645(7)<br>2.627(6)<br>2.636(6)<br>2.635(6)<br>2.635(6)<br>2.649<br>2.649                               | 3.272                 |
| 6HSM                              | 1.611(3)<br>1.612(3)<br>1.625(3)<br><u>1.640(3)</u><br>1.622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.619(3)<br>1.620(3)<br>1.637(3)<br><u>1.638(3)</u><br>1.629                                                                               | 1.618(3)<br>1.622(3)<br>1.648(3)<br><u>1.653(3)</u><br>1.633                                                                                                                   | 1.613(3)<br>1.615(3)<br>1.629(3)<br><u>1.637(3)</u><br>1.624        | 2.620(3)<br>2.600(4)<br>2.611(3)<br>2.615(3)<br>2.629(0)<br>2.629                                        | 3.229                 |
| 8HSM                              | 1.604(2)<br>1.606(3)<br>1.627(2)<br><u>1.636(2)</u><br>1.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.617(2)<br>1.618(2)<br>1.638(3)<br>1.635(3)<br>1.627                                                                                      | 1.621(3)<br>1.631(2)<br>1.652(3)<br>1.652(3)<br>1.650(2)<br>1.639                                                                                                              | 1.606(3)<br>1.606(2)<br>1.625(2)<br>1.629(2)<br>1.617               | 2.632(3)<br>2.614(3)<br>2.640(3)<br>2.642(3)<br>2.644<br>2.644                                           | 3.275                 |
| <b>EHSM</b>                       | 1.601(5)<br>1.605(5)<br>1.624(5)<br>1.644(5)<br>1.619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.617(5)<br>1.607(5)<br>1.634(4)<br>1.642(4)<br>1.625                                                                                      | 1.608(5)<br>1.615(5)<br>1.647(4)<br><u>1.643(4)</u><br>1.628                                                                                                                   | 1.607(4)<br>1.614(5)<br>1.619(5)<br>1.640(4)<br>1.620               | 2.628(6)<br>2.628(6)<br>2.640(6)<br>2.634(6)<br>2.645<br>2.645                                           | 3.272                 |
| MSH2                              | 1.611(2)<br>1.610(2)<br>1.626(2)<br>1.645(2)<br>1.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.618(2)<br>1.615(2)<br>1.641(2)<br>1.642(2)<br>1.629                                                                                      | 1.615(2)<br>1.625(2)<br>1.642(2)<br><u>1.644(2)</u><br>1.632                                                                                                                   | 1.607(2)<br>1.607(2)<br>1.608(2)<br>1.627(2)<br>1.642(2)<br>1.621   | 2.613(3)<br>2.593(3)<br>2.614(3)<br>2.614(3)<br>2.629(0)<br>2.627                                        | 3.270                 |
| US5                               | 1.590(6)<br>1.598(6)<br>1.626(5)<br>1.632(5)<br>1.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.605(5)<br>1.609(5)<br>1.638(5)<br><u>1.635(5)</u><br>1.622                                                                               | 1.598(5)<br>1.603(5)<br>1.629(5)<br><u>1.633(5)</u><br>1.616                                                                                                                   | 1.585(5)<br>1.597(6)<br>1.623(5)<br>1.641(6)<br>1.612               | 2.618(7)<br>2.626(7)<br>2.642(8)<br>2.642(8)<br>2.6381(0)<br>2.639                                       | 3.225                 |
| RUS12                             | 1.612(3)<br>1.611(3)<br>1.622(3)<br><u>1.649(3)</u><br>1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.613(2)<br>1.614(3)<br>1.642(3)<br><u>1.642(3)</u><br>1.628                                                                               | 1.611(3)<br>1.614(3)<br>1.639(3)<br>1.642(2)<br>1.627                                                                                                                          | 1.610(3)<br>1.613(3)<br>1.613(3)<br>1.626(3)<br>1.640(3)<br>1.622   | 2.599(3)<br>2.596(3)<br>2.604(3)<br>2.610(3)<br>2.621<br>2.621                                           | 3.265                 |
| RUS9                              | 1.602(3)<br>1.603(3)<br>1.630(3)<br>1.648(3)<br>1.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.614(3)<br>1.623(3)<br>1.639(4)<br><u>1.639(4)</u><br>1.629                                                                               | 1.613(3)<br>1.633(3)<br>1.652(4)<br>1.652(4)<br>1.637                                                                                                                          | 1.608(3)<br>1.610(3)<br>1.634(3)<br>1.632(3)<br>1.621               | 2.596(4)<br>2.606(4)<br>2.600(4)<br>2.590(4)<br>2.590(4)<br>2.619                                        | 3.135                 |
| RUS8                              | 1.604(2)<br>1.601(2)<br>1.626(2)<br>1.632(2)<br>1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.616(2)<br>1.616(2)<br>1.633(2)<br>1.635(2)<br>1.625                                                                                      | 1.614(2)<br>1.628(2)<br>1.642(2)<br>1.641(2)<br>1.631                                                                                                                          | 1.601(2)<br>1.601(2)<br>1.628(2)<br>1.632(2)<br>1.616               | 2.592(3)<br>2.592(3)<br>2.613(3)<br>2.586(3)<br>2.588(0)<br>2.614                                        | 3.258                 |
| RUS4                              | 1.610(6)<br>1.596(5)<br>1.612(5)<br><u>1.648(5)</u><br>1.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.607(5)<br>1.627(6)<br>1.634(5)<br><u>1.633(5)</u><br>1.625                                                                               | 1.616(5)<br>1.620(5)<br>1.640(5)<br><u>1.644(6)</u><br>1.630                                                                                                                   | 1.604(6)<br>1.606(5)<br>1.628(6)<br><u>1.632(6)</u><br>1.618        | 2.589(7)<br>2.592(7)<br>2.609(7)<br>2.589(7)<br>2.689(0)<br>2.614                                        | 3.268                 |
| NOR17                             | 1.605(3)<br>1.601(3)<br>1.623(3)<br>1.644(3)<br>1.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.613(3)<br>1.609(3)<br>1.635(3)<br>1.637(3)<br>1.624                                                                                      | 1.605(3)<br>1.612(3)<br>1.612(3)<br>1.640(3)<br>1.624                                                                                                                          | 1.598(3)<br>1.603(3)<br>1.628(3)<br>1.643(3)<br>1.643(3)            | 2.620(4)<br>2.602(4)<br>2.634(4)<br>2.609(4)<br>2.631                                                    | 3.179                 |
| NOR1                              | 1.601(4)<br>1.602(4)<br>1.624(4)<br><u>1.636(4)</u><br>1.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.617(4)<br>1.613(4)<br>1.642(4)<br><u>1.637(4)</u><br>1.627                                                                               | 1.620(4)<br>1.624(4)<br>1.639(4)<br><u>1.639(4)</u><br>1.631                                                                                                                   | 1.598(4)<br>1.601(4)<br>1.625(4)<br><u>1.629(4)</u><br>1.613        | 2.607(5)<br>2.612(5)<br>2.630(5)<br>2.6310)<br>2.6310<br>2.631                                           | 3.278                 |
| NTINUED<br>LAB3                   | оп<br>1.595(3)<br>1.630(3)<br>1.630(3)<br>1.613(3)<br>1.613(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on<br>1.605(3)<br>1.617(3)<br>1.633(3)<br>1.633(3)<br>1.622                                                                                | юн<br>1.613(3)<br>1.628(3)<br>1.642(3)<br><u>1.643(3)</u><br>1.6315(3)                                                                                                         | ron<br>1.594(3)<br>1.595(3)<br>1.634(3)<br>1.632(3)<br>1.614(3)     | 2.624(4)<br>2.627(4)<br>2.648(4)<br>2.618(4)<br>2.644                                                    | 3.288                 |
| TABLE 4. CONTINUEI<br>SAMPLE LAB3 | T(1)  (thrathedron T(1)  (thrathedron T(1)-0(15) 1 1 T(1)-0(11) 1 T(1)-0(1) 1 T(1)-0(13) 1 T(1)-0(13) 1 T(1)-0(13) 1 C(1)-0(13) 1 C(13) 1 C( | T (2) tetrahedron $T(2)-O(13)$ 1. $T(2)-O(3)$ 1. | T (3) tetrahedron           T(3)- $0(14)$ 1.           T(3)- $0(6)$ 1.           T(3)- $0(6)$ 1.           T(3)- $0(8)$ 1.           T(3)- $0(8)$ 1.           T(3)- $0(8)$ 1. | $\begin{array}{llllllllllllllllllllllllllllllllllll$                | B-O(12)x2<br>B-O(9)x2<br>B-O(11)x2<br>B-O(15)x2<br>B-Q(16)x2<br>B-Q(16)x2<br>CB-φ>                       | <k(1a)-\$></k(1a)-\$> |

# TABLE 5. MISCELLANEOUS PARAMETERS FOR POLYHEDRA IN ASTROPHYLLITE-GROUP MINERALS

| Sample |       |           |          |        |         |         |      | Sample | MSH<br>8 |   |           |          |         |         |         | MSH<br>38A |  |
|--------|-------|-----------|----------|--------|---------|---------|------|--------|----------|---|-----------|----------|---------|---------|---------|------------|--|
|        | <br>Ľ | oistortio | ons (qua | dratic | elongat | ion, Δ) | <br> |        |          | D | oistortic | ons (qua | adratic | elongat | ion, Δ) | <br>       |  |

 $\Delta M(1)$  1.854 1.150 0.600 1.116 0.895 0.937 0.732 1.038 0.528 0.737  $\Delta M(2)$  5.431 6.504 6.489 7.946 7.168 6.057 5.657 8.171 6.204 6.136  $\Delta M(3)$  2.236 3.193 3.086 4.245 4.265 3.634 2.897 3 4 9 7 3.016 3.581  $\Delta M(4)$  2.740 2.843 2.381 2.829 2.255 2.268 1.845 3.262 1.928 2.530  $\Delta D$  10 939 13 685 17 642 17 931 19 713 13 130 16 846 13 593 16 442 6.685  $\Delta T(1)$  1.839 0.847 1.106 1.411 0.694 1.423 0.893 1.227 0.765 1.116  $\Delta T(2)$  0.573 0.586 0.602 0.447 0.309 0.434 0.767 0.839 0.594 0.718  $\Delta T(3)$  0.561 0.279 0.881 0.557 0.487 0.945 0.749 0.910 0.546 1.089  $\Delta T(4)$  1.425 0.738 1.289 0.607 0.813 0.552 0.536 1.844 0.801 0.577

#### Octahedron flattening (Y, °)

 $\Psi_{_{M(1)}}$  59.392 59.311 58.976 59.488 59.430 59.136 58.919 59.392 58.712 58.865  $\Psi_{M(2)}^{N(1)}$  59.400 59.189 58.866 59.321 59.277 58.957 58.686 59.518 58.729 58.463 Ψ<sub>M(3)</sub> 59.296 59.011 58.673 59.174 59.040 58.889 58.578 59.200 58.465 58.558  $\Psi_{M(4)}^{(4)}$  59.292 59.102 58.882 59.445 59.243 58.993 58.430 59.514 58.677 58.472 Ψ<sub>average</sub> 59.345 59.153 58.849 59.357 59.248 58.993 58.653 59.406 58.646 58.590

#### Octahedron angle variance (O)

 $\sigma_{\!\scriptscriptstyle M\!(1)} \hspace{0.1in} 61.09 \hspace{0.1in} 60.06 \hspace{0.1in} 57.81 \hspace{0.1in} 61.97 \hspace{0.1in} 62.60 \hspace{0.1in} 56.47 \hspace{0.1in} 57.43 \hspace{0.1in} 60.46 \hspace{0.1in} 52.50 \hspace{0.1in} 56.54$ 52.77 49.59 45.53 51.47 50.79 45.48 43.37 54.52 43.52 38.53  $\sigma_{M(2)}$ 49.91 44.56 40.81 47.49 44.88 42.34 39.30 47.47 37.81 38.27  $\sigma_{M(3)}$ 48.56 44.85 42.02 51.61 47.80 43.03 33.04 53.75 38.51 33.10  $\sigma_{M(4)}$  $\sigma D$ 50.428 50.126 52.818 61.601 63.327 53.454 57.420 46.866 54.718 30.996

#### Tetrahedron tilting [°, with respect to (001)]

| TT(1) | 7.19 | 6.85 | 6.75 | 6.62 | 6.94 | 6.64 | 6.49 | 6.91 | 7.27 | 6.00 |
|-------|------|------|------|------|------|------|------|------|------|------|
| TT(2) | 2.12 | 2.00 | 2.32 | 2.17 | 1.95 | 1.82 | 2.60 | 1.57 | 2.15 | 2.65 |
| TT(3) | 0.93 | 0.78 | 1.17 | 0.81 | 0.78 | 0.80 | 1.02 | 0.39 | 0.83 | 1.18 |
| TT(4) | 7.34 | 7.14 | 7.04 | 7.24 | 7.25 | 6.92 | 7.35 | 7.23 | 7.53 | 6.82 |

#### Tetrahedron rotation (α, °)

1.07 1.06 1.11 0.86 1.03 1.37 1.42 0.93 1.56 1.26  $\alpha_{T(ave)}$ 

### Tetrahedron thickening angle ( $\tau,\,^{\circ})$

 $\tau_{\pi_{11}}$  111.45 111.58 111.16 111.76 111.63 111.35 111.44 111.07 111.28 111.39  $\tau_{\tau_{(2)}} \hspace{0.1 cm} 110.82 \hspace{0.1 cm} 110.95 \hspace{0.1 cm} 111.06 \hspace{0.1 cm} 111.03 \hspace{0.1 cm} 110.91 \hspace{0.1 cm} 110.99 \hspace{0.1 cm} 111.09 \hspace{0.1 cm} 110.81 \hspace{0.1 cm} 110.76 \hspace{0.1 cm} 111.34$  $\tau_{\tau_{(3)}}^{--} 111.09 \ 111.34 \ 111.32 \ 111.35 \ 111.27 \ 111.31 \ 111.33 \ 111.35 \ 111.18 \ 111.65$  $\tau_{T(4)}$  111.57 111.60 111.37 111.72 111.79 111.46 111.59 111.31 111.50 111.53

#### Distortions (quadratic elongation, $\Delta$ )

 $\Delta M(1)$  0.956 0.488 0.650 0.782 0.526 0.594 2.851 1.944 0.910 1.041  $\Delta M(2)$  6.275 5.606 6.512 5.925 6.343 6.144 5.106 6.467 6.356 6.059  $\Delta M(3)$  3.057 3.043 2.729 2.892 2.516 3.026 2.485 2.930 3 1 2 6 2 4 7 0 ΔM(4) 2.919 1.578 2.689 2.467 2.948 2.849 2.859 3.029 3.099 2.611 3 729 16 390 6 254 5 415 5 684 18 877 8 531 11 347  $\Delta D$ 8.914 1.526  $\Delta T(1) = 0.711 = 0.526$ 1.256 0.847 1 011 0 844 1 175 0 992 1 023 1 558  $\Delta T(2)$  0.346 0.306 0.726 0.597 0.695 0.614 0.254 0.275 0.794 0.961 1.196 0.696 0.578 0.715 0.630 0.441 0.554 0.166  $\Delta T(3)$  0.630 0.889  $\Delta T(4)$  0.430 0.375 0.964 0.599 0.642 0.562 0.840 0.642 1.014 0.370

#### Octahedron flattening (\U), °)

Ψ<sub>M(1)</sub> 59.058 58.690 58.902 59.015 59.140 58.797 59.438 59.567 59.111 58.913  $\Psi_{_{\mathcal{M}(2)}}^{_{\mathcal{M}(2)}}$  58.937 58.685 58.659 58.831 59.123 58.750 59.358 59.678 59.070 58.788  $\Psi_{\mathcal{M}(3)}^{(6)}$  58.779 58.396 58.736 58.760 58.982 58.599 59.523 59.402 58.892 58.726  $\Psi_{M(4)}^{(6)}$  58.891 58.614 58.799 58.799 59.076 58.566 59.510 59.520 59.077 58.786 Ψ<sub>average</sub> 58.916 58.596 58.774 58.851 59.080 58.678 59.457 59.542 59.037 58.803

#### Octahedron angle variance (0)

 $\sigma_{\!\mathcal{M}\!(1)} \hspace{0.2cm} 56.35 \hspace{0.2cm} 53.19 \hspace{0.2cm} 55.88 \hspace{0.2cm} 57.90 \hspace{0.2cm} 56.82 \hspace{0.2cm} 54.77 \hspace{0.2cm} 60.09 \hspace{0.2cm} 62.31 \hspace{0.2cm} 56.73 \hspace{0.2cm} 53.24$ 45.70 43.32 41.69 44.53 48.46 43.65 51.24 57.14 47.36 41.00  $\sigma_{M(2)}$ 41 34 36 73 41 72 41 57 44 93 39 02 53 50 50 73 43 34 40 41  $\sigma_{M(3)}$ 40 56 37 97 39 21 39 30 44 49 35 91 52 49 53 49 44 70 38 70  $\sigma_{M(4)}$  $\sigma D$ 27.831 54.264 30.505 29.557 35.630 58.574 49.224 51.897 43.279 15.513

#### Tetrahedron tilting [°, with respect to (001)]

| TT(1) | 6.64 | 7.40 | 6.52 | 6.47 | 6.95 | 6.79 | 7.44 | 7.14 | 6.81 | 6.31 |
|-------|------|------|------|------|------|------|------|------|------|------|
|       |      | 1.81 |      |      |      |      |      |      |      |      |
| TT(3) | 0.81 | 0.80 | 1.20 | 1.06 | 0.88 | 0.86 | 0.82 | 0.58 | 0.80 | 0.87 |
| TT(4) | 6.74 | 7.33 | 6.65 | 6.69 | 6.90 | 7.25 | 7.25 | 7.33 | 6.90 | 6.87 |

#### Tetrahedron rotation (α, °)

1.39 1.81 1 27 1 25 1 33 1 58 1 18 0 93 1 21 1 49  $\alpha_{T(ave)}$ 

#### Tetrahedron thickening angle $(\tau, \circ)$

 $\tau_{\tau(1)}$  111.38 111.17 111.23 111.31 111.19 111.34 111.73 111.59 111.42 111.44  $\tau_{T(2)}$  110.87 110.80 111.10 110.99 111.13 110.96 110.76 110.87 110.89 110.76  $\tau_{\tau(3)}$  111.22 111.25 111.56 111.41 111.35 111.37 110.96 111.15 111.40 111.09  $\tau_{\tau_{(4)}}$  111.54 111.35 111.48 111.55 111.49 111.59 111.56 111.75 111.62 111.79

SREF indicated departures from unity and the presence of a heavier X-ray scatterer, either Nb or Zr, in accordance with electron-microprobe data, was refined at D, with the total site-occupancy constrained to be unity. There is no evidence from Mössbauer spectroscopy for  $\mathrm{Fe}^{3+}$  at D.

As EMPA results indicate only minor Al (maximum 0.36 apfu) to be present, and Mössbauer spectra did not indicate [4]Fe<sup>3+</sup>, all four *T* sites were modeled assuming only Si to be present. Site-scattering refinements of the four T sites in all samples did not indicate significant departures from unity.

Bond-valence sums (BVS) indicate the presence of 13 general positions occupied by divalent anions, two general positions for monovalent anions in the O sheet [O(4) and O(5)], and a mixed-valence anion site,  $\phi(16)$ . Bond-valence sums for all anions [except O(4), O(5) and  $\phi(16)$ ] range from 1.842 to 2.140 valence units (vu),

confirming their identity as O<sup>2-</sup>. The O(2) anion, bonded to M(1), M(2), M(3) and D, has a consistently low BVS (1.842 to 1.973 vu, average: 1.903 vu) owing to the presence of Na in M(1) and high field-strength elements (HFSE) at D, which contribute less than the required 1 vu (Ti<sup>4+</sup>: 4/6 vu, Nb<sup>5+</sup>: 5/6 vu); all other divalent anions in the O sheet are coordinated by three M cations (3  $\times$ 2/6 = 1 vu) and one T cation ( $1 \times 4/4 = 1.00 vu$ ). Consequently, to compensate for this bond-valence deficiency, the M(1)–O(2) bond is shortened by, on average, 0.03 Å compared to the average  $\langle M(1) - O \rangle$ . Bond-valence sums to O(4) and O(5) range from 0.985 to 1.177 vu (average: 1.089 vu), indicating the presence of a monovalent anion. Piilonen et al. (2003) discussed the pattern of order of OH and F at the O(4). O(5) and  $\phi(16)$ sites, and concluded, on the basis of results from EMPA, Mössbauer spectroscopy and thermodynamic calculations, that the sites present in the O sheet [O(4) and O(5)]

TABLE 6. SELECTED BOND-VALENCE SUMS AND SITE OCCUPANCIES IN ASTROPHYLLITE-GROUP MINERALS

| Site                | BVS            | SOF                                     | BVS            | SOF                                     | BVS            | SOF                                                                                                       |
|---------------------|----------------|-----------------------------------------|----------------|-----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------|
|                     |                | LAB3                                    |                | US5                                     | Ν              | 1SH19A                                                                                                    |
| B                   | 1.114          | Na <sub>0.758</sub> Ca <sub>0.242</sub> | 0.950          | Na <sub>0.958</sub>                     | 1.068          | Na <sub>0.834</sub> Ca <sub>0.166</sub>                                                                   |
| M(1)                | 1.826          | Fe <sub>0.876</sub> Na <sub>0.124</sub> | 1.915          | Fe <sub>0.891</sub> Na <sub>0.109</sub> | 2.040          | Mn <sub>0.912</sub> Na <sub>0.088</sub>                                                                   |
| M(2)                | 1.877          | Fe <sub>0.956</sub>                     | 1.958          | Fe <sub>1.00</sub>                      | 2.101          | Mn <sub>0.986</sub>                                                                                       |
| M(3)                | 1.932          | Fe <sub>0.944</sub>                     | 2.012          | Fe <sub>1.00</sub>                      | 2.118          | Mn <sub>0.974</sub>                                                                                       |
| <i>M</i> (4)        | 2.004          | Fe <sub>0.872</sub> Mg <sub>0.128</sub> | 2.084          | Fe <sub>1.00</sub>                      | 1.962          | Fe <sub>0.854</sub> Mg <sub>0.146</sub>                                                                   |
| D                   | 4.439          | Ti <sub>0.575</sub> Zr <sub>0.425</sub> | 4.461          | Ti <sub>0.769</sub> Nb <sub>0.231</sub> | 4.063          | Ti <sub>0.646</sub> Nb <sub>0.354</sub>                                                                   |
| OH(4)               | 1.029          | O <sub>1.00</sub>                       | 1.068          | O <sub>1.00</sub>                       | 1.090          | O <sub>1.00</sub>                                                                                         |
| OH(5)               | 1.012          | O <sub>1.00</sub>                       | 1.077          | O <sub>1.00</sub>                       | 1.141          | O <sub>1.00</sub>                                                                                         |
| <b>φ</b> (16)       | 1.272          | F <sub>1.00</sub>                       | 1.202          | F <sub>1.00</sub>                       | 1.340          | F <sub>1.00</sub>                                                                                         |
|                     |                | NOR1                                    | N              | ASH2                                    | ]              | MSH20                                                                                                     |
| В                   | 1.222          | Na <sub>0.642</sub> Ca <sub>0.358</sub> | 1.248          | Na <sub>0.618</sub> Ca <sub>0.382</sub> | 1.268          | Na <sub>0.590</sub> Ca <sub>0.410</sub>                                                                   |
| <i>M</i> (1)        | 2.054          | Mn <sub>0.887</sub> Na <sub>0.113</sub> | 1.984          | Mn <sub>0.891</sub> Na <sub>0.109</sub> | 1.987          | Mn <sub>0.873</sub> Na <sub>0.12</sub>                                                                    |
| M(2)                | 1.842          | Fe <sub>0.955</sub>                     | 2.049          | Mn <sub>0.994</sub>                     | 2.090          | Mn <sub>0.999</sub>                                                                                       |
| M(3)                | 1.802          | Fe <sub>0.936</sub>                     | 2.081          | Mn <sub>0.985</sub>                     | 2.128          | Mn <sub>0.992</sub>                                                                                       |
| M(4)                | 2.004          | Fe <sub>0.850</sub> Mg <sub>0.150</sub> | 2.236          | Mn <sub>0.954</sub> Mg <sub>0.046</sub> | 1.872          | Zn <sub>0.696</sub> Mg <sub>0.304</sub>                                                                   |
| D                   | 4.290          | Ti <sub>0.822</sub> Nb <sub>0.178</sub> | 4.226          | Ti <sub>0.910</sub> Nb <sub>0.090</sub> | 4.181          | Ti <sub>0.646</sub> Nb <sub>0.354</sub>                                                                   |
| OH(4)               | 0.985          | O <sub>1.00</sub>                       | 1.114          | O <sub>1.00</sub>                       | 1.070          | O <sub>1.00</sub>                                                                                         |
| OH(5)               | 1.074          | O <sub>1.00</sub>                       | 1.108          | O <sub>1.00</sub>                       | 1.123          | O <sub>1.00</sub>                                                                                         |
| <b>φ</b> (16)       | 1.166          | F <sub>1.00</sub>                       | 1.162          | F <sub>1.00</sub>                       | 1.122          | F <sub>1.00</sub>                                                                                         |
|                     |                | NOR17                                   | N              | ASH3                                    | N              | ISH33A                                                                                                    |
| В                   | 1.078          | Na <sub>0.882</sub> Ca <sub>0.118</sub> | 0.934          | Na <sub>0.964</sub>                     | 1.140          | Na <sub>0.72</sub> Ca <sub>0.28</sub>                                                                     |
| M(1)                | 2.024          | Mn <sub>0.898</sub> Na <sub>0.102</sub> | 1.932          | Mn <sub>0.741</sub> Na <sub>0.109</sub> | 1.065          | Mn <sub>1.001</sub>                                                                                       |
| M(2)                | 2.114          | Mn <sub>0.985</sub>                     | 2.122          | $Mn_{1.011}$                            | 1.775          | Fensen                                                                                                    |
| M(3)                | 2.209          | $Mn_{1.000}$                            | 2.155          | Mn <sub>0.996</sub>                     | 1.856          | Fe <sub>0.954</sub><br>Fe <sub>0.876</sub> Mg <sub>0.124</sub><br>Ti <sub>0.457</sub> Cr <sub>0.576</sub> |
| <i>M</i> (4)        | 2.362          | $Mn_{1.000}$                            | 1.918          | Zn <sub>0.766</sub> Mg <sub>0.234</sub> | 1.994          | Fe <sub>0.876</sub> Mg <sub>0.124</sub>                                                                   |
| D                   | 4.308          | Ti <sub>0.900</sub> Nb <sub>0.100</sub> | 4.621          | Ti <sub>0.624</sub> Nb <sub>0.376</sub> | 4.515          | - 10.462 U.538                                                                                            |
| OH(4)               | 1.177          | O <sub>1.00</sub>                       | 1.081          | O <sub>1.00</sub>                       | 1.008          | O <sub>1.00</sub>                                                                                         |
| OH(5)               | 1.140<br>1.216 | O <sub>1.00</sub>                       | 1.117<br>1.522 | O <sub>1.00</sub><br>F <sub>1.00</sub>  | 1.004<br>1.328 | O <sub>1.00</sub><br>F <sub>1.00</sub>                                                                    |
| ф(16)               | 1.210          | F <sub>1.00</sub>                       | 1.522          | 1 1.00                                  |                |                                                                                                           |
|                     |                | RUS4                                    | · N            | MSH8                                    | M              | 4SH34A                                                                                                    |
| В                   | 1.330          | Na <sub>0.56</sub> Ca <sub>0.44</sub>   | 1.036          | Na <sub>0.898</sub> Ca <sub>0.102</sub> | 1.140          | Na <sub>0.748</sub> Ca <sub>0.252</sub>                                                                   |
| M(1)                | 2.073          | $Mn_{0.91}Na_{0.09}$                    | 1.972          | Mn <sub>0.863</sub> Na <sub>0.137</sub> | 2.114          | Mn <sub>0.997</sub>                                                                                       |
| M(2)                | 1.863          | Fe <sub>0.958</sub>                     | 2.074          | Mn <sub>0.985</sub>                     | 1.851          | Fe <sub>0.970</sub>                                                                                       |
| <i>M</i> (3)        | 1.958          | Fe <sub>0.86</sub> Mg <sub>0.14</sub>   | 2.098          | Mn <sub>0.974</sub>                     | 1.889          | Fe <sub>0.962</sub>                                                                                       |
| <i>M</i> (4)        | 2.034          | Fe <sub>0.784</sub> Mg <sub>0.216</sub> | 2.242          | Mn <sub>0.964</sub>                     | 2.012          | Fe <sub>0.922</sub> Mg <sub>0.078</sub>                                                                   |
| D                   | 4.200          | Ti <sub>0.965</sub> Nb <sub>0.035</sub> | 4.528          | Ti <sub>0.553</sub> Nb <sub>0.447</sub> | 4.472<br>1.018 | Ti <sub>0.462</sub> Zr <sub>0.538</sub>                                                                   |
| OH(4)               | 1.047          | O <sub>1.00</sub>                       | 1.126          | O <sub>1.00</sub>                       |                | O <sub>1.00</sub>                                                                                         |
| OH(5)<br>φ(16)      | 1.065<br>1.114 | O <sub>1.00</sub><br>F <sub>1.00</sub>  | 1.126<br>1.480 | O <sub>1.00</sub><br>F <sub>1.00</sub>  | 1.059<br>1.256 | O <sub>1.00</sub><br>F <sub>1.00</sub>                                                                    |
|                     |                | RUS8                                    | N              | 1SH15                                   | N              | ISH38A                                                                                                    |
|                     |                |                                         |                |                                         |                |                                                                                                           |
| B                   | 1.320          | Na <sub>0.582</sub> Ca <sub>0.418</sub> | 1.028          | Na <sub>0.88</sub> Ca <sub>0.12</sub>   | 1.152          | Na <sub>0.772</sub> Ca <sub>0.228</sub>                                                                   |
| M(1)                | 2.067          | Mn <sub>0.900</sub> Na <sub>0.100</sub> | 1.956          | Mn <sub>0.863</sub> Na <sub>0.137</sub> | 2.025          | Mn <sub>0.897</sub> Na <sub>0.10</sub>                                                                    |
| M(2)                | 1.809          | Fe <sub>0.946</sub>                     | 2.133          | Mn <sub>0.985</sub>                     | 2.139          | Mn <sub>0.995</sub>                                                                                       |
| M(3)                | 2.031          | Fe <sub>0.847</sub> Mg <sub>0.153</sub> | 2.095          | Mn <sub>0.974</sub>                     | 2.174<br>2.278 | Mn <sub>0.985</sub>                                                                                       |
| M(4)                | 2.034<br>4.234 | Fe <sub>0.770</sub> Mg <sub>0.230</sub> | 2.288<br>4.511 | Mn <sub>0.964</sub><br>Ti Nh            | 4.291          | Mn <sub>0.978</sub><br>Ti <sub>0.787</sub> Nb <sub>0.213</sub>                                            |
|                     | 4.434          | Ti <sub>0.958</sub> Zr <sub>0.042</sub> |                | Ti <sub>0.553</sub> Nb <sub>0.447</sub> |                | 1 10.787 <sup>1</sup> NO <sub>0.213</sub>                                                                 |
|                     | 1.050          | 0                                       | 1 1 4 3        | 0                                       | 1 165          | 0                                                                                                         |
| D<br>OH(4)<br>OH(5) | 1.059<br>1.029 | O <sub>1.00</sub><br>O <sub>1.00</sub>  | 1.143<br>1.128 | O <sub>1.00</sub><br>O <sub>1.00</sub>  | 1.165<br>1.147 | O <sub>1.00</sub><br>O <sub>1.00</sub>                                                                    |

BVS: bond-valence sum, expressed in valence units; SOF: refined site-occupancy factor. Bond-valence sums for RUS9 and RUS12 can be found in Piilonen *et al.* (2001), and for MSH42, in Piilonen *et al.* (2000). The bond-valence sums were calculated using parameters taken from Brese & O'Keeffe (1991).

are occupied solely by OH, whereas  $\phi(16)$  hosts both F and O. Bond-valence sums to  $\phi(16)$  are variable, ranging from 1.105 to 1.86 vu (average: 1.293 vu), consistent with the proposed F  $\Leftrightarrow$  O substitution at this site. An attempt was made to refine the site occupancy of  $\phi(16)$  with both F and O, but results did not prove to be valid owing to low total F contents (<1.00 *apfu*). Bondvalence sums confirm the anionic scheme O<sub>26</sub>(OH)<sub>4</sub> (F,O, $\Box$ ) proposed by Piilonen *et al.* (2003).

# THE INTERLAYER SITE

The *A* cations are located in large, [13]-coordinated cavities between adjacent *H*-sheet (Fig. 4) that are occupied predominantly by K and, to a lesser extent, Cs, Rb, Na and  $\Box$ . Large anisotropic-displacement factors along  $U_{11}$ , coupled with a large positive residual in the difference-Fourier map (>2.5  $e^{-1}$ ) in the majority of the triclinic samples, suggest that this site is positionally disordered within (001). As such, the position was refined as two non-equivalent sites with coordinates taken from the difference-Fourier map. The magnitude of the splitting in the samples analyzed is between 0.360(19) to 0.917(18) Å in (001). A decrease in displacement factors is observed if the site is modeled as positionally disordered, similar to what is observed in amphiboles with high *A*-site occupancies (Hawthorne 1981).

One of the main differences between the structures of monoclinic and triclinic kupletskite, aside from the *HOH* stacking sequence, is the degree of disorder at the *A* site (Piilonen *et al.* 2001). In triclinic kupletskite from the Lovozero massif (Russia), the *A* site shows positional disorder comparable to that observed in other triclinic samples [A(1a)-A(1b) = 0.917 Å]. However, in kupletskite-*Ma2b2c*, the *A* cation lies on two special positions, both of which have well-constrained anisotropic-displacement factors ( $U_{eq} = 0.0451 \text{ Å}$ ).

Bond lengths to A range from 2.826(4) to 3.721(3) Å. The A(1a) site in disordered triclinic samples is generally [11]-coordinated, with longer average bond-lengths (range: 3.179 to 3.291 Å) than those observed at the [5]- to [7]-coordinated A(1b) satellite position (range: 2.353 to 3.082 Å). The overall coordination of the A site in both triclinic and monoclinic samples is [13].

The *B* site is located at a special position in [10]coordinated cages along *a* between  $D\phi_6$  pairs ( $BO_8\phi_2$ , Fig. 5) and is occupied predominantly by Na and, to a lesser extent, Ca (up to 0.40 *apfu*). There is no evidence for other cations or vacancies at *B*. The *B*– $\phi$  distances range from 2.585(3) to 2.715 Å, with an average of 2.635 Å.

### The (O) Sheet of Octahedra

There are four crystallographically distinct O-sheet octahedra, designated M(1) through M(4), which occur in a 2:2:2:1 ratio, respectively. The O sheet can be di-

vided into three main units: (1) a strip of M(2) octahedra, linked via common edges, which form continuous zigzag single chains parallel to [100], (2) a composite chain parallel to [100] comprised of alternating M(3)



FIG. 4. The configuration of the *H*-sheet chains around the *A* site in (001). Upper chain shown. Lower chain (clockwise): T(4), T(3), T(2), T(3) and T(4). Distances range from 2.825(4) to 3.721(3) Å. Splitting of the *A* site results in displacement of the *A* cation along  $b\sin(\gamma)$  of 0.360(19) to 0.917(18) Å.



FIG. 5. The  $BO_8\phi_2$  polyhedron. Distances range from 2.585(3) to 2.715 Å.

and M(4) octahedra in a 2:1 ratio, and (3) isolated M(1) octahedra that cross-link the two chains of octahedra (Fig. 6). The combination of chain-like structural elements within the O sheet and open-branched, *zweier*, single [100] chains in the H sheet has a pronounced effect on the morphology of astrophyllite-group minerals: a preferential elongation of crystals in the [100] direction (resulting in the formation of acicular to tabular crystals), and the development of a secondary, moderate parting along {010}. The O sheet is joined to the H sheet *via* apical atoms of oxygen from the H-sheet tetrahedra [O(1), O(3), O(6) and O(7)] and *via* the  $D\varphi_6$  apical oxygen, O(2) (Fig. 7).

The steric details of the O sheet must be examined in order to characterize the control it exerts on cation ordering and its subsequent impact on the adjacent Hsheets. As a general parameter, the grand mean bondlength, <</M–O>>, allows for comparison of the relative dimensions of the O sheet among species. The variation in  $\langle M - O \rangle$  as a function of grand mean ionic radius, <<rM>>>, is shown in Figure 8. The high degree of correlation ( $R^2 = 0.938$ ) is described by the linear-regression equation  $\langle M - O \rangle = 1.752 + 1.183$  rM. The scatter observed in the trend may be due to the slight differences between refined site-occupancies and EMPA data from which <<rM>> was calculated. Whereas it is important to examine the relation between <</M-O>> and <<r>M>> in the O sheet, the ligancy and local environment of each of the four individual octahedra vary from sample to sample. Unfortunately, owing to the presence of multiple cations at all four M sites, coupled with difficulties in refining the SOF of sites containing both Mn and Fe, only poor correlations are observed between the calculated average ionic radii at each M site and < M-O> (*i.e.*, 0.341  $\le R^2 \le 0.710$ ).

The distortion index, calculated for each individual octahedron, is a direct reflection of the local environment of the cation and therefore sensitive to variations in site chemistry, bond lengths and bond angles. Table 6 lists values for two distortion parameters,  $\Delta$ , the bondlength distortion, and  $\sigma$ , the octahedron angle variance (OAV), for each octahedron. Calculation of  $\Delta$  takes into consideration the average cation radius by normalizing the parameter to the average bond-length, and also corrects for the coordination number. Consequently,  $\Delta$  is a measure of distortions within the polyhedra resulting from stretching or compression of M-O bonds (commonly referred to as rectangular distortions), which violate the ideal trigonal symmetry of the octahedron. Conversely, the OAV takes into consideration only the angular variance within the octahedra. In astrophyllitegroup minerals, a discrepancy is noted between the two parameters such that  $\Delta$  indicates the relative degree of distortion, represented by the sequence M(2) > M(3,4)> M(1), whereas the OAV indicates the sequence M(1)> M(2) > M(3) > M(4), which also corresponds to the order of decreasing size of each of the M octahedra. In the O sheet, the OAV is not an adequate measure of the



FIG. 6. The three main units of the *O* sheet. The M(2) octahedra form chains parallel to [100]. M(3) and M(4) alternate along [100] in a 2:1 ratio. M(1), the largest and least distorted of the octahedra, links the two composite strips together to form infinite sheets in (001).



FIG. 7. The attachment of the H sheet to the O sheet. T sites: orange as indicated, D: blue, M sites shown outlined. The OH groups are indicated as solid circles.

total distortion of each octahedron, as it does not take into account rectangular distortions (*i.e.*, stretching or compression of bond lengths within the octahedron); the OAV can only be considered as a reflection of trigonal distortions (i.e., compression or extension of the octahedron, resulting in a flattened octahedron whose M-O distances remain equal in length; Robinson et al. 1971). In particular, the OAV exhibits a strong, positive correlation with the octahedron flattening angle,  $\Psi$ , and the two terms may be used interchangeably. Figure 9 shows the relation between OAV and  $\Psi$  for each of the four O-sheet octahedra. The less-than-ideal correlation for the M(1) octahedron will be discussed in further sections. Ideally, in octahedra that have undergone both rectangular and isometric or trigonal distortions, both the  $\Delta$  and OAV/ $\Psi$  distortion parameters should be taken into account in describing the geometry of a given octahedron.

The M(1) site is coordinated by five O<sup>2-</sup> and one OH(5), and is host to Mn, Fe<sup>2+</sup> and up to 0.27 *apfu* Na. The resultant octahedron is the largest in the *O* sheet and occurs as isolated octahedra, which bridge composite chains of M(2) and M(3,4). Figure 10 shows the regular distribution of bond lengths in M(1), which range from 2.137(5) to 2.247(7) Å, with an average of 2.195 Å, close to the ideal for a <sup>[6]</sup>Mn<sup>2+</sup>–O bond (2.21 Å; Ondik & Smith 1962). This regular distribution of bond lengths is consistent with M(1) being the least distorted of the four octahedra;  $\Delta$  values range from 0.488 to 2.851.

In an ideal octahedron, the flattening angle,  $\Psi$ , measured at the point between the *M*–O bond and a line perpendicular to the upper and lower trigonal faces through the central cation, is 54.74°. Flattening of the



FIG. 8. Variation in grand mean *M*–O bond length, <</d>O>>, with mean ionic radius, <<rd>M>>, for the O sheet.Linear regression,  $R^2 = 0.938$ .

octahedron in the (001) plane, in order to facilitate lateral fit with the larger *H* sheets, results in values of  $\Psi$ greater than the ideal. Typical values for  $\Psi$  in sheet silicates range from 58 to 60° (Bailey 1984). In general, average  $\Psi$  angles are negatively correlated with the average ionic radius, *rM*, or the size of the octahedra (Fig. 11). Although *M*(1) is the largest of the four *O*sheet octahedra, it displays the greatest degree of flattening, with  $\Psi$  values ranging from 58.7 to 59.6° (average: 59.1°). This finding is opposite to that predicted, possibly because flattening must occur within the (001) plane to permit bridging with the adjacent chains of *M*(2) and *M*(3,4) octahedra (Fig. 6).

The M(2) and M(3) sites, host to Mn, Fe, Mg and Zn, are both coordinated by four O<sup>2-</sup> and two OH<sup>-</sup>, with a *cis* configuration of the OH<sup>-</sup> groups  $[M(2): OH(5) \times$ 2, M(3): OH(4)  $\times$  2]. The M(2) site is unique in the structure as it forms continuous, zigzag chains of edgesharing octahedra parallel to [100]; all other M sites share, at most, one common edge with crystallographically equivalent octahedra. Bond lengths in M(2) range from 2.079(5) to 2.267(2) Å. The M(2) octahedron is elongate across the O(2)-M(2)-O(7) linkage, and shortened along M-OH(5) bonds along the shared edges, resulting in a bimodal distribution of bond lengths (Fig. 10). The irregular distribution of bond lengths results in a strong rectangular distortion of M(2);  $\Delta$  values range from 5.106 to 8.171 (average: 6.319) with flattening angles that are similar to those observed for M(1), ranging from 58.5 to 59.7° (average: 59.0°).

The M(3) octahedron is part of a composite chain parallel to a, and consists of alternating M(3) and M(4)octahedra in a 2:1 ratio. Both octahedra are only slightly distorted relative to M(2) [ $\Delta_{ave}$ : 3.104 and 2.600 for M(3)and M(4), respectively]. Bond lengths to M(3) range from 2.098(5) to 2.246(3) Å, with an average of 2.163 Å. Unlike bond lengths in the  $M(2)O_6$  octahedron,  $M(3)O_6$  bond lengths are regularly distributed, with only a slight skew toward values close to 2.135 Å (*i.e.*, the ideal Fe<sup>2+</sup>–O bond length of 2.14 Å: Ondik & Smith 1962). This observation is consistent with the hypothesis that Fe<sup>2+</sup> preferentially orders at M(2), M(3) and M(4) over M(1).

The M(4) site occupies special position 1g in triclinic astrophyllite-group minerals and 4c in kupletskite-Ma2b2c. The M(4) octahedron, the smallest in the O sheet (volume range: 12.551 to 13.111 Å<sup>3</sup>), is coordinated by four O<sup>2–</sup> and two OH<sup>–</sup>, with a *trans* configuration of the OH groups [2 × OH(4)]. Bond lengths to M(4) range from 2.074(5) to 2.184(2) Å (average: 2.136 Å). A bimodal distribution of bond lengths is observed (Fig. 10), as distances to the two OH(4) anions are short [range: 2.074(5) to 2.118(3) Å] and those to the four O<sup>2–</sup> are longer [range: 2.132(4) to 2.184(2) Å]. Site-occupancy refinement indicates ordering of small divalent cations (Mg and Zn) extensively at both M(3) and M(4)relative to M(2).



FIG. 9. Degree of flattening of the octahedra ( $\Psi$ ) *versus* the octahedron angle variance (OAV) for each of the *M* sites in the *O* sheet.

# The Heterogeneous (H) Sheet

### *The* $D\phi_6$ *octahedron*

The *D* site in triclinic astrophyllite-group minerals and kupletskite-*Ma2b2c* is coordinated by five O and by  $\phi(16)$ , a mixed-anion site containing F and O. Apical anions include O(2), which is also bonded to *M*(1), *M*(2) and *M*(3) in the *O* sheet, and  $\phi(16)$ . Basal anions include O(9) and O(12), which are bonded to *T*(4), and O(11) and O(15), which are bonded to *T*(1). In magnesium astrophyllite, the  $\phi(16)$  site is vacant, resulting in a *D*O<sub>5</sub> tetragonal pyramid (Shi *et al.* 1998). All structures in this study were found to contain octahedrally coordinated *D* cations, with Ti contents ranging from 0.24 to 1.92 *apfu*, Nb contents from 0.06 to 1.33 *apfu*, and Zr contents from below detection up to 0.72 *apfu* (Table 2). The *D* site was modeled as hosting Ti and one of either Nb or Zr. As both Nb and Zr are heavier X-ray scatterers than Ti, the difference between unity and the refined Ti content is considered to be equivalent to the sum of Nb + Zr. Bond-valence sums to *D* range from 4.064 *vu* in Zr- and Nb-free astrophyllite to 4.800 *vu* in niobokupletskite.

A wide range of bond lengths is observed in the  $D\phi_6$  octahedron [range: 1.794(2) to 2.104 Å], a combined result of the octahedron being highly distorted and elongate along the pseudo-tetrad axis and the presence of variable proportions of Ti, Nb and Zr. The average  $D-\phi$  bond length,  $\langle D-\phi \rangle$ , is a function of the average ionic

radius of the cations at the *D* site, as shown in Figure 12. As the radii of Ti and Nb are similar ( $r^{[6]}Ti^{4+}$ : 0.61 Å,  $r^{[6]}Nb^{5+}$ : 0.64 Å, Shannon 1976), variations in the size of the  $D\phi_6$  octahedron can only be attributed to the presence of Zr ( $r^{[6]}Zr^{4+}$ : 0.72 Å, Shannon 1976). Although substitution of Nb for Ti does not affect the overall size of the  $D\phi_6$  octahedron significantly, it does have a pronounced control on the bond-length variations, in particular the distribution of apical bond-lengths, as will be discussed in further sections. In other titano-, nioboor zirconosilicates, such as rosenbuschite, seidozerite and vuonnemite, the extent of isomorphous substitution of both Zr and Nb for Ti is limited and, in the majority



FIG. 10. Frequency histograms of *M*–O bond distances in the *O* sheet of astrophyllite-group minerals. *M*(1): 2.137(5) to 2.247(7) Å, *M*(2): 2.079(5) to 2.267(2) Å, *M*(3): 2.098(5) to 2.246(3) Å, and *M*(4): 2.074(5) to 2.184(2) Å.

of minerals, there is a high degree of order among species. The presence of (Ti + Nb + Zr) at a single site in minerals of this group gives us the unique opportunity to examine the local geometry and bond-valence requirements imposed on the structure by all three elements.

The average distance to the four equatorial oxygen atoms is 1.966 Å, close to the ideal length of 1.98 Å for a Ti-O bond (Ondik & Smith 1962) and slightly less than observed in other alkali titanosilicates with [6]coordinated Ti [e.g., seidozerite: Simonov & Belov (1960), lomonosovite: Khalilov (1990), tienshanite: Cooper et al. (1998), vuonnemite: Ercit et al. (1998)]. Bond lengths to O(9) and O(12) are, on average, slightly shorter than bond lengths to the opposite O(11) and O(15) (average: 1.962 and 1.969 Å, respectively). Angles between equatorial oxygen atoms range from 87.2(3) to 90.6(6)° (average: 88.9°), close to the ideal 90°. Apical bond-lengths display the greatest range in values, from 1.794(2) to 2.104 Å, and have a strong bimodal distribution (Fig. 13), a result of positional displacement of the cation within the octahedron. In general, D-O(2) bonds are the shortest (average: 1.845 Å), ranging from 1.794(2) Å in Nb- and Zr-free kupletskite, to 1.929(8) Å in niobokupletskite. However,  $D-\phi(16)$  bond lengths are relatively long (average: 2.069 Å), ranging from 1.981(1) Å in MSH42 (niobokupletskite), to 2.104 Å in LAB3 (Zr-bearing astrophyllite, Fig. 14). A bimodal distribution of apical bond-lengths in  $TiO_6$  octahedra is a common feature in other titanosilicates (Table 7). Megaw (1968a, b) suggested that off-center displacement of small, highly



FIG. 11. Average flattening of the octahedra,  $\langle\langle\Psi\rangle\rangle$ , versus the average ionic radius,  $\langle\langle rM\rangle\rangle$  in the O sheet. Linear regression,  $R^2 = 0.753$ .





FIG. 13. Bimodal distribution of  $D-\phi_{apical}$  bond lengths observed in the  $D\phi_6$  octahedra in astrophyllite-group minerals. D-O(2): 1.794(2) to 1.929(8) Å,  $D-\phi(16)$ : 1.981(1) to 2.104 Å.

FIG. 12. The variation in mean  $D-\phi$  bond length with average ionic radius of the *D* cations. Linear regression,  $R^2 = 0.899$ .



FIG. 14. Distribution of apical bond-lengths in the  $D\phi_6$  octahedron and cation position in astrophyllite-group minerals and other titanosilicates. A. Positional displacement of <sup>[6]</sup>Ti in this group and in other titanosilicates. B. Lengthening of D–O(2) and shortening of D– $\phi$ (16) due to Nb-for-Ti substitution in niobokupletskite and tienshanite. C. Positional displacement of <sup>[5]</sup>Ti in titanosilicates such as magnesium astrophyllite, fresnoite, lamprophyllite and yoshimuraite. charged [6]-coordinated cations (*e.g.*, Ti) occurs where the effective radius of the cation is such that the unstressed *M*–O bond length is  $<1/\sqrt{2}$  times the diameter of the oxygen ion. In these cases, the mutual attraction and repulsion effects within the octahedron result in "stressed" bonds, to the point where the anion–anion repulsion has caused the cation–anion bond to be extended beyond its unstressed value. The resultant tension in the O–*M*–O bond length is relaxed by off-center displacement of the cation and relaxation of the O–O edges. The presence of larger cations (*e.g.*, Zr) leads to smaller displacements and longer overall bond-lengths, with a more regular distribution.

In titanosilicates, removal of the long apical anion [*i.e.*,  $\phi(16)$  in triclinic astrophyllite-group minerals] results in the formation of [5]-coordinated TiO<sub>5</sub> tetragonal pyramidal units with a shorter titanyl (Ti=O<sub>apical</sub>) bond (1.63 to 1.78 Å), the result of displacement of the Ti atom away from the square plane toward the apex. This shift has been observed in magnesium astrophyllite (monoclinic) [Ti–O<sub>apical</sub> = 1.755 Å, Shi *et al.* 1998), as well as in other titanosilicates with [5]-coordinated Ti, such as fresnoite (Ti–O<sub>apical</sub> = 1.6342 Å, Moore & Louisnathan 1969, Markgraf *et al.* 1985), lamprophyllite (Ti–O<sub>apical</sub> = 1.68 Å, Saf'yanov *et al.* 1983) and yoshimuraite (Ti–O<sub>apical</sub> = 1.773 Å, McDonald *et al.* 2000), as well as in titanosilicate glasses and melts (*e.g.*, Farges *et al.* 1996a, b).

In astrophyllite-group minerals, the highly asymmetrical nature of the bonding in the  $D\phi_6$  octahedra can

| TABLE 7. COMPARISON OF (Ti,Nb)-\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | HS IN |
|---------------------------------------------------------------------------------------------------------|-------|
| ASTROPHYLLITE-GROUP MINERALS AND OTHER                                                                  |       |
| TITANOSILICATES AND NIOBOSILICATES                                                                      |       |

| Mineral                                                                                                                                                                                                                   | <sup>[CN]</sup> D                                                                                                                                                                                                                                                | $D\!\!-\!\!\mathbf{O}_{apical}$                                                       | $D - \varphi_{apical}$                                                                | Ti SOF                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| As                                                                                                                                                                                                                        | strophyllite-group                                                                                                                                                                                                                                               | p minerals                                                                            |                                                                                       |                                                                                                         |
| <ol> <li><sup>1</sup> Niobokupletskite<br/>Nb-bearing kupletskite<br/>Nb-bearing kupletskite<br/>Kupletskite</li> <li><sup>2</sup> Magnesium astrophyllite</li> </ol>                                                     | <sup>161</sup> (Nb,Ti)<br><sup>161</sup> (Ti,Nb)<br><sup>161</sup> (Ti,Nb)<br><sup>161</sup> Ti<br><sup>151</sup> Ti                                                                                                                                             | 1.929<br>1.887<br>1.866<br>1.794<br>1.755                                             | 1.981<br>2.014<br>2.034<br>2.086                                                      | 0.11<br>0.553<br>0.624<br>1.00<br>1.00                                                                  |
| Other t                                                                                                                                                                                                                   | itanosilicates and                                                                                                                                                                                                                                               | d niobosilicate:                                                                      | 8                                                                                     |                                                                                                         |
| <ul> <li><sup>3</sup> Bafertisite</li> <li><sup>4</sup> Innelite</li> <li><sup>5</sup> Janhaugite</li> <li><sup>6</sup> Normandite (AF)</li> <li><sup>7</sup> Tienshanite</li> <li><sup>8</sup> Vuonnemite (K)</li> </ul> | <sup>[6]</sup> Ti<br><sup>[6]</sup> Ti<br><sup>[6]</sup> (Ti,Zr)<br><sup>[6]</sup> (Ti,Zr)<br><sup>[6]</sup> (Ti,Zr)<br><sup>[6]</sup> Ti<br><sup>[6]</sup> Ti,Nb)<br><sup>[6]</sup> Ti<br><sup>[6]</sup> (Ti,Nb)<br><sup>[6]</sup> Ti<br><sup>[6]</sup> (Nb,Ti) | 1.823<br>1.90<br>1.849<br>1.830<br>1.863<br>1.781<br>1.763<br>1.824<br>1.734<br>1.758 | 2.062<br>2.09<br>2.221<br>2.268<br>2.064<br>2.303<br>2.200<br>2.138<br>2.129<br>2.238 | $\begin{array}{c} 1.00\\ 1.00\\ 0.67\\ 0.73\\ 0.612\\ 0.876\\ 1.00\\ 0.64\\ 1.00\\ 0.165\\ \end{array}$ |
| <ul> <li><sup>9</sup> Barytolamprophyllite</li> <li><sup>4</sup> Innelite</li> <li><sup>10</sup> Lamprophyllite</li> <li><sup>11</sup> Yoshimuraite</li> </ul>                                                            | <sup>(5)</sup> Ti<br><sup>(5)</sup> Ti<br><sup>(5)</sup> Ti<br><sup>(5)</sup> Ti<br><sup>(5)</sup> Ti                                                                                                                                                            | 1.660<br>1.62<br>1.71<br>1.68<br>1.773                                                | <br><br><br>                                                                          | $0.70 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0.69$                                                                  |

CN: coordination number, D: [5] or [6] Ti, Zr or Nb, SOF: site-occupancy factor. <sup>1</sup> Piilonen et al. (2000), <sup>2</sup> Shi et al. (1998), <sup>3</sup> Pen & Sheng (1963), <sup>4</sup> Chernov et al. (1971), <sup>3</sup> Annehed et al. (1985), <sup>6</sup> Perchiazzi et al. (2000, AF: Amdrup Fjord, MSH: Mont Saint-Hilaire), <sup>7</sup> Cooper et al. (1998), <sup>8</sup> Ercit et al. (1998, K: Kola Peninsula), <sup>9</sup> Rastsvetaeva & Dorfman (1995), <sup>10</sup> Saf yanov et al. (1983), <sup>11</sup> McDonald et al. (2000). be shown to be dependent on the composition of both the D and  $\phi(16)$  sites. Assuming electronegativities for Ti, Nb and Zr of 1.5, 1.6 and 1.4, respectively, the covalent character of the D-O(2) and D- $\phi(16)$  bonds in these minerals can be calculated knowing the composition of the  $\phi(16)$  site for each composition (Table 8). Calculated characters of the bonds show that the Ti-O(2) bond is 8% more covalent than the Ti– $\phi(16)$  bond, resulting in stronger bonding of the Ti to the O(2) apical oxygen, and thus shorter D-O(2) bond lengths relative to D- $\phi(16)$ . Substitution of Nb for Ti and O for F results in a symmetrical O(2)-Nb-O(16) bond, which is more covalent overall than the asymmetrical O(2)-Ti-F(16) bond observed in Ti-dominant samples. Substitution of Nb for Ti results in a shortening of the  $D-\phi(16)$  bond and a subsequent lengthening of the D-O(2) bond. As such. Nb becomes more centrally located in the octahedron, rather than being displaced along Z toward the Osheet, as is the case in Ti-dominant minerals of the astrophyllite group (Fig. 14). This is most evident where variations in  $\langle \phi(16) - D - O_{equatorial} \rangle$  and  $\langle O(2) - D - D - O_{equatorial} \rangle$ O<sub>equatorial</sub>> bond angles are examined (Fig. 15). Incorporation of Nb at D results in an increase of the  $\langle \phi(16) D-O_{equatorial}$  angle [range: 80.65(7) to 85.45(31)°] and a concomitant decrease of the  $<O(2)-D-O_{equatorial} >$  bond angle [range: 90.04(40) to 99.18(14)°]. This displacement can be estimated by determining the difference in lengths between the D-O(2) and D- $\phi(16)$  bonds. In Tidominant samples, this difference is at a maximum (0.292 Å in MSH20), whereas in Nb-dominant samples, the bond lengths are closer to being equal, and the difference is small (0.052 Å in MSH42, niobokupletskite). The net result of these modifications is a significant decrease in the distortion of the D octahedron with increasing Nb-for-Ti substitution (Fig. 16).

A plot of D-O(2) versus D- $\phi$ (16) reveals two distinct trends: (1) increasing D-O(2) with decreasing D- $\phi$ (16), and (2) increasing D-O(2) at constant D- $\phi$ (16) (Fig. 17). Plotting the contents of Zr and Nb on this graph shows the first trend to be the result of increasing Nb-for-Ti substitution, and the second the result of Tifor-Zr substitution. These data confirm the observation that substitution of Nb for Ti decreases the D- $\phi$ (16) bond length, whereas lengthening of the D-O(2) bond length is due to displacement of the cation within the

TABLE 8. CALCULATED IONIC CHARACTER\* OF THE APICAL BOND-LENGTHS IN THE  $D\phi_6$  OCTAHEDRA

| D<br>cation | O(2)            | φ(16)<br>anion  | Ionic<br>character<br>D-O(2) | Ionic character $D-\phi(16)$ |
|-------------|-----------------|-----------------|------------------------------|------------------------------|
| Ti          | 0 <sup>2-</sup> | F-              | 0.393                        | 0.465                        |
| Nb          | 0 <sup>2-</sup> | O <sup>2-</sup> | 0.378                        | 0.378                        |
| Zr          | 0 <sup>2-</sup> | F-              | 0.408                        | 0.478                        |

\* Ionic character =  $1 - e^{-14(XA - XB)}$ , where XA is the electronegativity of the anion and XB is the electronegativity of the cation.  $X(F^{\circ}) = 4.0$ ,  $X(O^{\circ}) = 3.5$ ,  $X(Ti^{4*}) = 1.5$ ,  $X(Nb^{4*}) = 1.6$ ,  $X(Zr^{4*}) = 1.4$ .

octahedron. Although the two bonds change in length relative to each other, the total  $O(2)-D-\phi(16)$  bond length along the [001] axis remains unchanged, a reflection of the similar size of the <sup>[6]</sup>Nb and <sup>[6]</sup>Ti cations. Samples in which Ti-for-Zr substitution is dominant (indicated by the open diamonds in Fig. 17) display constant  $D-\phi(16)$  bond lengths, which are similar to the maximum observed in Nb-free structures. The increase in D-O(2) is due to substitution of the larger Zr cation and expansion of all the bonds in the octahedron (Fig. 12). As a result, the Zr cation is more centrally located within the octahedron, resulting in a more regular distribution of bond lengths, a feature also observed in other zirconium minerals with minimal (Ti,Nb)-for-Zr substitution, such as vlasovite (Voronkov & Pyatenko 1962), wadeite (Tikhonenkov 1964), låvenite (Mellini 1981), sabinaite (McDonald 1996) and eudialyte-group minerals (Johnsen & Grice 1999).

Among the selection of samples studied, the maximum observed Zr content is 1.02 apfu, implying that the maximum amount of Zr-for-Ti substitution is ~50%. This limited substitution does not seem to be a function of geochemical factors, such as a lack of Zr in the system; Zr-bearing astrophyllite-group minerals are commonly associated with other Zr-bearing minerals such as catapleiite, elpidite and eudialyte. Instead, the limited substitution of Zr for Ti may be a function of crystal-chemical constraints. For instance, the apical O(2)oxygen of the D octahedron is bonded to M(1), M(2)and M(3) within the O sheet. A lengthening of the D-O(2) bond results in a concomitant shortening of M(1,2,3)–O(2) bonds in the O sheet. This shortening results in increased flattening of the M octahedra and an increase in the O-sheet dimensions that cannot be accommodated by structural change in the H sheet. Incorporation of more than 1.00 apfu Zr into the astrophyllite structure may require (1) extensive ordering of Ti and Zr, or (2) modifications (*i.e.*, expansion) of the H sheet



FIG. 15. Distribution of  $O(2)-D-O_{equatorial}$  and  $\phi(16)-D-O_{equatorial}$  bond angles in the  $D\phi_6$  octahedra.

not be possible in the  $P\overline{1}$ , C2/c or A2 configurations recognized in the astrophyllite group to date.

With the exception of seidozerite, zircophyllite and the Fe-dominant analogue zircophyllite, Zr in zirconosilicates occurs in isolated [6]- to [8]-coordinated polyhedra, forming a three-dimensional network with SiO<sub>4</sub> tetrahedra. Zirconium-bearing polyhedra display a nega-



FIG. 16. The effects of Nb-for-Ti substitution on the distortion index ( $\Delta$ ) of the *D* octahedron.  $y = -0.4976 \ln(x) + 1.5318$ ,  $R^2 = 0.9314$ .



FIG. 17. Control by content of high field-strength elements on apical bond-lengths in the  $D\phi_6$  octahedra. Open diamonds represent Zr contents (*apfu*). Closed diamonds represent Nb contents (*apfu*).

tive tendency toward polymerization (Pyatenko & Voronkov 1978). On the other hand, Ti polyhedra in titanosilicates tend to polymerize, most commonly via apices and even via common edges. In fact, natural examples of crystal structures with discrete, isolated Ti octahedra are rare, which may suggest that these structures are metastable (Pyatenko & Voronkov 1978). In cases where there is substantial Ti and Zr in a mineral, the two cations tend to partially or completely order (Pyatenko & Voronkov 1978; e.g., rosenbuschite: Shibaeva et al. 1964, sabinaite: McDonald 1996). Complete solid-solution series between minerals with Ti- and Zr-dominant end-members have not been found. In minerals of the astrophyllite group, owing to the presence of substantial concentrations of Nb, it was not possible to effectively evaluate the degree of order of Ti and Zr.

# The T sites

There are four crystallographically unique tetrahedral sites in the structure, labeled T(1) through T(4). The T(1) and T(4) sites are each coordinated by one bridging (br) [O(13) and O(14), respectively] and three nonbridging (*nb*) oxygen atoms [T(1): O(1), O(11) and O(15), T(4): O(7), O(9) and O(12)]. The T(1) and T(4)tetrahedra share corners with the  $D\phi_6$  octahedra via non-



Distribution of T-O bond distances in the H sheet. Fig. 18. A: Non-bridging Si-O bonds (Å). B: Bridging Si-O bonds (Å).

bridging O, forming T(1,4)-O<sub>nb</sub>-D linkages perpendicular to [100]. The T(2) and T(3) tetrahedra are each coordinated by three bridging and one non-bridging oxygen atoms [T(2): bridging O(8), O(10) and O(13), non-bridging: O(3); T(3): bridging: O(8), O(10), and O(14), nonbridging: O(6)]. The T(2) and T(3) tetrahedra alternate along the length of the chain, forming O(8)-T(2)-O(10)-T(3) linkages parallel to [100]. T(1) and T(4), the branches of the chain, are linked via bridging oxygen atoms to the main chain by O(13) and O(14). Bondvalence sums to the four T sites range from 3.838 to 4.260 vu.

Bond lengths in all four tetrahedra range from 1.588(3) to 1.654(8) Å, consistent with values expected for essentially Al-free tetrahedra. The distribution of T-O bond lengths in the samples studied is shown in Figure 18. In general, the length of  $T-O_{br}$  bonds exceeds that of T-O<sub>nb</sub> bonds (averages: 1.598 and 1.585 Å respectively), a feature observed in all silicates because of the presence of a second Si atom linked to the O<sup>2-</sup> of the Si-O bond, which results in repulsion of the two Si<sup>4+</sup> cations, weakening, and therefore elongating, the Si-O<sub>br</sub> bond (Brown & Gibbs 1969, Liebau 1985). Similarly, O-Si-O bond angles should decrease in magnitude such that Onb-Si-Onb exceeds Obr-Si-Onb (Liebau 1985). In astrophyllite-group minerals, O-Si-O bond angles range from 104.83(62) to 112.74(53)°, yet the trend deviates slightly from that expected because the  $D\phi_6$  octahedron has characteristics more similar to those of a SiO<sub>4</sub> tetrahedron (*i.e.*, part of the anionic framework) rather than those belonging to the O sheet; Onb-Si–O<sub>br</sub> bond angles that include anions of the  $D\phi_6$ octahedron are similar in magnitude to O<sub>br</sub>-Si-O<sub>br</sub> bonds angles. Five distinct populations of O-Si-O bond angles are observed, decreasing in magnitude in the order I > II > III > IV > VI (Table 9):

O<sub>nb</sub>-Si-O<sub>nb</sub>, where O<sub>nb</sub> are from the O sheet and I.  $D\phi_6$  only [e.g., O(1)–Si(1)–O(15)],

II.  $O_{nb}$ -Si- $O_{br}$ , where  $O_{nb}$  is from the O sheet only [e.g., O(1)-Si(1)-O(13)],

III.  $O_{nb}$ -Si- $O_{nb}$ , where  $O_{nb}$  are from the  $D\phi_6$  octahedron [e.g., O(11)-Si(1)-O(15)],

IV.  $O_{hr}$ -Si- $O_{hr}$  [e.g. O(8)-Si(3)-O(10)],

TABLE 9. O-T-O BOND ANGLES (°) IN ASTROPHYLLITE-GROUP MINERALS

| Туре                                                                                                                                                                                             | Average | Median | Mode  | Range       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|-------------|
| $\begin{array}{ll} I & O_{nb} {-} Si {-} O_{nb} \\ II & O_{nb} {-} Si {-} O_{br} \\ III & O_{nb} {-} Si {-} O_{nb} \\ IV & O_{br} {-} Si {-} O_{br} \\ V & O_{br} {-} Si {-} O_{nb} \end{array}$ | 111.4   | 111.4  | 111.2 | 110.8–111.8 |
|                                                                                                                                                                                                  | 111.3   | 111.3  | 111.6 | 110.1–113.1 |
|                                                                                                                                                                                                  | 110.5   | 110.5  | 110.5 | 109.5–112.3 |
|                                                                                                                                                                                                  | 107.8   | 106.6  | 106.4 | 104.9–112.0 |
|                                                                                                                                                                                                  | 105.8   | 105.9  | 106.2 | 104.8–106.9 |

 $\begin{array}{l} O_{ub} \mbox{ are from the $O$-sheet and $D $\Phi_e$ only [e.g., O(1)-Si(1)-O(15)]$ \\ O_{ub} \mbox{ are from the $O$-sheet only [e.g., O(1)-Si(1)-O(13)]$ \\ O_{ub} \mbox{ are from the $D $\Phi_e$ octahedron [e.g., O(1)-Si(1)-O(15)]$ \\ O_{uc} \mbox{ are from the $T$ tetrahedra only [e.g., O(8)-Si(3)-O(10)]$ \\ O_{ub} \mbox{ is from the $T$ tetrahedra only [e.g., O(8)-Si(3)-O(10)]$ \\ O_{ub} \mbox{ is from the $D $\Phi_e$ octahedron [e.g., O(1)-Si(1)-O(11)]$ \\ \end{array}$ Ш

IV V

V.  $O_{br}$ -Si- $O_{nb}$ , where  $O_{nb}$  is from the  $D\phi_6$  octahedron [*e.g.*, O(13)-Si(1)-O(11)].

A similar trend is observed with T-O-(T,D,M) bond angles. T-O-M angles are characteristically smaller than Si-O-Si angles, a result once again of the greater repulsion of Si atoms compared to that encountered by larger, lower-valence M cations such as  $Mn^{2+}$  or  $Fe^{2+}$  (Liebau 1985). T-O-M angles in minerals of this group range from 117.36(23) to 124.28(24)° (average: 121.1°), significantly smaller than the T-O-T angles, which range from 138.14(30) to  $144.35(43)^\circ$ , with an average, 141.1°, close to the ideal angle of 139° for a strain-free Si-O-Si bond (Liebau 1985; Fig. 19). Two populations of T-O-T bond angles are observed: (1) those of the main chain of tetrahedra, T(2)–O–T(3), with an average value of  $\sim 139^\circ$ , and (2) those of tetrahedra on the branches of the chain, T(1)–O–T(2) and T(3)–O–T(4), with a slightly higher average value of 143° (Fig. 19), suggesting slightly increased strain on the T(1) and T(4)tetrahedra. T–O–D linkages show a range of bond angles between 140.04(16) and 145.92(72)° (average: 142.3°), comparable to T-O-T linkages between tetrahedra of the main chain [T(2) and T(3)] and the outer branches [T(1) and T(4)]. Again, we show that the  $D\phi_6$  octahedron shares close affinities with SiO4 tetrahedra and not with octahedra normally considered to be part of the cationic structure (i.e., the O sheet).

Large differences in basal bond-lengths are observed in the T(1) and T(4) tetrahedra owing to (1) displacement of the T cation toward the  $D\phi_6$  octahedron, and (2) tilting of the tetrahedra out of the (001) plane. As a result, T(1)–O(13) and T(4)–O(14) are the longest T–O bonds observed in the structure [range: 1.607(9) to 1.649(3) Å, average: 1.640 and 1.633 Å, respectively). In order to maintain a mean T-O bond valence of ~1.5 vu in the tetrahedron and a BVS for the Si of  $\sim 4.00$  vu, an increase in a particular bond-length in the tetrahedron must be accompanied by a decrease in length of the remaining bonds (Robinson 1963). Consequently, T(1)-O(11,15) and T(4)-O(9,12) are unusually short, ranging from 1.585(9) to 1.615(3) Å, with an average of 1.603 Å, 0.017 Å shorter than the ideal Si-O bond length of 1.62 Å (Liebau 1985). T(1) and T(4) are, on average, the most distorted tetrahedra in the structure  $[\Delta T(1)_{ave}: 1.045, \Delta T(4)_{ave}: 0.773]$ . Shortening of these bonds may also be the result of a displacement of the Si cation due to tilting of the T(1) and T(4) tetrahedra toward the  $D\phi_6$  octahedron. Similarly, T(2)–O(13) and T(3)–O(14) bonds also are short (average: 1.614 and 1.615 Å, respectively) to maintain a BVS of 2.00 vu at the bridging oxygen atoms O(13) and O(14).

### LATERAL FIT OF THE H and O Sheets

In astrophyllite-group minerals, there is a mismatch in size between the O and H sheets, similar to that observed between the sheets of tetrahedra (T) and octahedra (O) in micas (Bailey 1984). In true micas, the lateral dimensions of the *T* sheet are larger than those of the adjacent *O* sheets. The mismatch between the *T* and *O* sheets is generally compensated for by the rotation, tilting and elongation of the tetrahedra, along with flattening and rotation of the octahedra. In minerals of the astrophyllite group, a similar response is observed. However, the composition of the *O* sheet here is quite different from that of a mica; specifically, it is dominated by relatively large Mn<sup>2+</sup> cations ( $r^{[6]}$ Mn<sup>2+</sup>: 0.83 Å) rather than smaller cations such as Fe<sup>2+</sup> (0.78 Å), Mg (0.72 Å) and Al (0.54 Å; ionic radii from Shannon 1976). Similarly, the presence of the  $D\phi_6$  octahedron in the *H* sheet results in a larger *H* sheet than in *T* sheets in a mica. As a result, the methods by which the structure



FIG. 19. Distribution of *M*–O–Si bond angles; A. *M*–O–*T*, B. *D*–O–*T*, *C*. *T*–O–*T*.

adapts to the mismatch are somewhat different than those encountered in micas. The dominant mechanisms by which lateral fit of H and O sheets occurs are: (1) trigonal distortion of the O-sheet octahedra, namely isometric flattening and counter-rotation, and (2) rotation, tilting and elongation of tetrahedra in the H and T sheets.

Isometric flattening of the octahedra is one of the primary ways by which the lateral dimensions of the O sheet increase. Flattening angles in the O-sheet octahedra range from 58.4 to 59.7°, similar to other 2:1 phyllosilicates, which commonly have  $\Psi$  values in the range 58 to 61° (Bailey 1984). Flattening angles in astrophyllite-group minerals are most similar to those in Fe<sup>2+</sup>-bearing samples of the biotite series (58 to 59°), a result of their greater similarity in O-sheet composition, in contrast to Al- and Mg-bearing species such as muscovite and phlogopite ( $\Psi = 60$  to  $61^\circ$ ; Bailey 1984). Flattening of octahedra in the O sheet is dependent on the size of the M cation, such that increased rM results in decreased flattening of the octahedra (Fig. 20). The increase in rM is due to increased Mn-for-Fe<sup>2+</sup> substitution (Fig. 19), whereas in members of the biotite series, the dominant substitution is  $Fe^{2+} \Leftrightarrow Mg$  (Fig. 20; Shabani 1999). The larger  $\Psi$  angles in minerals of the astrophyllite group, compared to those of the biotite series, which have substantially smaller values for rM, are due to the larger dimensions of the H sheet to which the O sheet must attach. The flattening of octahedra is further complicated by the presence of the  $D\phi_6$  octahedron within the H sheet. The apical O(2) oxygen of the  $D\phi_6$  octahedron is bonded to three octahedra within the



FIG. 20. Average flattening of octahedra ( $\Psi_{average}$ ) of the *O* sheet *versus* the average ionic radius (*rM*) in astrophyllitegroup minerals (closed diamonds; linear regression:  $R^2 = 0.753$ ) and members of the biotite series [open circles; Shabani (1999); linear regression:  $R^2 = 0.869$ ].

*O* sheet, M(1), M(2) and M(3). Bond lengths to O(2) from M(2) and M(3) are the longest observed in the *O* sheet, a response to the presence of Nb or Zr at *D* in order to satisfy bond-valence requirements at the O(2) oxygen [M(2)–O(2): 2.230 to 2.267 Å, M(3)–O(2): 2.209 to 2.246 Å). Conversely, M(1)–O(2) bond lengths are short (range: 2.137 to 2.189 Å). This lengthening and shortening of M–O(2) bonds result in a corrugated appearance of the *O* sheet around O(2) and the  $D\phi_6$  octahedron.

Reduction in the lateral dimensions of the H sheet occurs by rotation of adjacent tetrahedra in opposite directions in the (001) plane. In an ideal six-membered ring of SiO<sub>4</sub> tetrahedra, the angle O<sub>br</sub>-O<sub>br</sub>-O<sub>br</sub> of the basal oxygen atoms is 120°; deviation from this value is the result of rotation of the tetrahedra ( $\alpha$ ). Angles of rotation in true micas range from 1.4 to 11.0° in trioctahedral species, and from 6.0 to 19.1° in dioctahedral species (Bailey 1984). In minerals of the astrophyllite group, Obr-Obr-Obr angles range from 114.76(16) to 125.64(16)°, with an average of 119.6°, close to the ideal 120°, and rotation angles of the tetrahedra ( $\alpha$ ) range from 0 to 2.82° (average: 1.24°). Figure 21 shows the relative rotation of the tetrahedra in the H sheet. As with micas, rotation of adjacent tetrahedra in minerals of the astrophyllite group occurs in opposite directions. The  $\alpha$  values in these minerals are insignificant in terms of altering the lateral dimensions of the H sheet in order to compensate for the misfit with the O sheet, and another mechanism must be considered.

Isometric flattening and counter-rotation of the Osheet octahedra, for example, result in elongation of the edges of the octahedra in an attempt to compensate for the mismatch between the O and H sheets. In order for the lateral dimensions of the H sheet to match these elongate edges, the tetrahedra are thickened along [001] by elongation of Si-Oapical bond lengths and widening of Oapical-Si-Obasal bond angles, and are tilted out of the (001) plane. The ideal tetrahedral angle,  $\tau = O_{apical} - Si - Si$ Obasal, of 109.47° can be increased by elongation and decreased by shortening of Si-Oapical bonds (Bailey 1984). In astrophyllite-group minerals,  $\tau$  angles range from 110.8 to 111.8°, indicating ~2% thickening of the tetrahedra in the [001] direction, comparable to that observed in true micas ( $\tau$  angles range from 108 to 114°, Bailey 1984). The T(1) and T(4) tetrahedra show increased thickening (average: 111.76 and 111.79°, respectively) compared to T(2) and T(3) (average: 111.34 and 111.65°, respectively), the result of increased tilting out of the (001) plane of the T(1) and T(4) tetrahedra.

The principal mechanism by which lateral misfit of the sheets may be reduced is by tilting of the tetrahedra out of the (001) plane such as to reduce the *a* and *b* dimensions of the *H* sheet. Tilting of the T(1) and T(4)tetrahedra brings the apices of the tetrahedra toward the O(2) apex of the  $D\phi_6$  octahedron, whereas T(2) and T(3) are tilted in opposite directions, toward each other and the main SiO<sub>4</sub> chain of the *H* sheet. The presence of the larger  $D\phi_6$  octahedra results in increased thickening of the *T*(1) and *T*(4) tetrahedra (as discussed above) and increased tilting; *T*(1) and *T*(4) are tilted a substantial amount more out of the (001) plane (average: 6.80 and 7.09°, respectively) than *T*(2) and *T*(3) (average: 2.06 and 0.87°, respectively), adding to the strongly corrugated appearance of the *HOH* layers.

### CONCLUSIONS

The complex chemical compositions exhibited by astrophyllite-group minerals result in a wide range of structural variations. The relations between composition and crystal structure are summarized here:

1) Members of the astrophyllite group are heterophyllosilicates and are intermediate members of a polysomatic (or homologous) series with perraultite and mica as the end-member structures. The structure consists of two composite sheets stacked along [001] in a 2:1 ratio, resulting in a layered *HOH* structure.

2) The interlayer in triclinic members of the group consists of two crystallographically distinct cation sites, *A* and *B*, whereas three distinct sites occur in kupletskite-*Ma2b2c*, A(1), A(2) and *B*. The <sup>[13]</sup>A site(s) predominantly contains K, with minor incorporation of Rb, Cs and Na, and up to 15% vacancies. In many cases, the *A* site is positionally disordered, and there is smearing of electron density in the (001) plane. The <sup>[10]</sup>B site is host to predominantly Na, with up to 40% occupancy by Ca.

3) The sheet of octahedra consists of four crystallographically distinct  $MO_6$  octahedra, designated M(1)through M(4), in a 2:2:2:1 ratio, respectively, and contains Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Na, Mg and Zn as the principal cations. The M(1) octahedron is the largest and least distorted within the *O* sheet and contains significant Na. The M(2) octahedron is highly distorted and forms zigzag chains parallel to *a*. The M(3) and M(4) sites form a composite chain parallel to *a* and are occupied by Mn, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Mg and Zn.

4) The *H* sheet (heterogeneous sheet) has the ideal composition  $[(Ti,Nb,Zr)Si_4O_{12}]^{4-}$  and consists of openbranched *zweier* [100] single chains of  $[Si_4O_{12}]^{8-}$ , which are cross-linked by corner-sharing  $D\phi_6$  octahedra in triclinic species and kupletskite-*Ma2b2c*, and *DO*<sub>5</sub> polyhedra in magnesium astrophyllite, where D = Nb, Ti, Zr. Substitution of Nb for Ti at *D* results in lengthening of the *D*–O(2) bond, shortening of the *D*– $\phi$ (16) bond, and positional displacement of the *D* cation toward the center of the octahedron, with an overall decrease in the distortion index,  $\Delta$ . Substitution of Zr for Ti at *D* results in an increase in all *D*– $\phi$  bond lengths and a simultaneous decrease in  $\Delta$ . Crystallographic restrictions limit the maximum Zr content to approximately 1 *apfu* (50% occupancy of *D*).

5) There are four tetrahedrally coordinated sites in the structure, designated T(1) through T(4). All four sites

contain dominantly Si, with only minor incorporation of Al. T(1) and T(4) are located on the branches of the *zweier* single chains and share oxygen atoms with the  $D\phi_6$  octahedron, whereas T(2) and T(3) are located in the central portion of the chain and share only apical oxygen atoms with the O sheet.

6) There is a lateral misfit between the H and O sheets, similar to that observed in 2:1 phyllosilicates. Lateral misfit increases with increasing Mn-for-Fe and Zr-for-(Ti,Nb) substitution. Lateral fit of the H and O sheets in the structure is accomplished by tilting of the tetrahedra out of the (001) plane, thickening or elongation of the tetrahedra along [001], and flattening of the O-sheet octahedra.

#### ACKNOWLEDGEMENTS

The authors thank Mr. M.A. Cooper and Dr. F.C. Hawthorne (Department of Geological Sciences, University of Manitoba) and Dr. G. Yap (Department of Chemistry, University of Ottawa) for use of the CCD diffractometer. Thanks are also extended to Mr. R.A. Gault of the Canadian Museum of Nature for helping with the collection of the electron-microprobe data and to Drs. T.S. Ercit and J.D. Grice and Mr. M. Cooper for their help and fruitful discussions. We acknowledge the help of Jim Evans of the Department of Physics, University of Ottawa, for writing the program OCTA-HEDRON. The comments and suggestions by two reviewers, Drs. G. Ferraris and N.V. Chukanov, Associate Editor O. Johnsen and R.F. Martin greatly improved the quality of the manuscript. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada in the form of a scholarship to PCP and research grants to AEL and AMM, and by the University of Ottawa and Laurentian University.

### REFERENCES

- ANNEHED, H., FÄLTH, L. & RAADE, G. (1985): The crystal structure of janhaugite, a sorosilicate of the cuspidine family. *Neues Jahrb. Mineral.*, *Monatsh*, 7-18.
- BAILEY, S.W. (1984): Crystal chemistry of the true micas. In Micas (S.W. Bailey, ed.). Rev. Mineral. 13, 13-60.
- BALIĆ-ŻUNIĆ, T. & MAKOVICKY, E. (1996): Determination of the centroid or 'the best centre' of a coordination polyhedron. Acta Crystallogr. B52, 78-81.
  - & VICKOVIĆ, K. (1996): IVTON. A program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. *J. Appl. Crystallogr.* 29, 305-306.
- BRESE, N.E. & O'KEEFFE, M. (1991): Bond-valence parameters for solids. Acta Crystallogr. B47, 192-197.
- BROWN, G.E. & GIBBS, G.V. (1969): Oxygen coordination and the Si–O bond. Am. Mineral. 54, 1528-1539.



FIG. 21. Rotation of tetrahedra (arrows) in the *H* sheet. The ideal  $O_{br}-O_{br}-O_{br}$  angle is 120° (exaggerated in order to show  $\alpha$  angles). Rotation angles of tetrahedra ( $\alpha$ ) range from 0 to 2.82° (average: 1.24°). SiO<sub>4</sub> tetrahedra: orange;  $D\phi_6$  octahedra: blue.

- BROWN, I.D. & SHANNON, R.D. (1973): Empirical bondstrength – bond-length curves for oxides. Acta Crystallogr. A29, 266-282.
- BRUKER ANALYTICAL X-RAY SYSTEMS (1997): XPREP Data preparation and Reciprocal Space Exploration.
- CHERNOV, A.N., ILYUKHIN, V.V., MAKSIMOV, B.A. & BELOV, N.V. (1971): Crystal structure of innelite, Na<sub>2</sub>Ba<sub>3</sub> (Ba,K,Mn)(Ca,Na)Ti(TiO<sub>2</sub>)<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>. Sov. Phys. Crystallogr. **16**(1), 65-69.
- CHRISTIANSEN, C.C., JOHNSEN, O. & STÅHL, K. (1998): Crystal structure of kupletskite from the Kangerdlugssuaq intrusion, East Greenland. *Neues Jahrb. Mineral.*, *Monatsh.*, 253-264.
  - \_\_\_\_\_, MAKOVICKY, E. & JOHNSEN, O. (1999): Homology and typism in heterophyllosilicates: an alternative approach. *Neues Jahrb. Mineral.*, *Abh.* **175**, 153-189.
- COOPER, M.A., HAWTHORNE, F.C. & GREW, E.S. (1998): Refinement of the crystal structure of tienshanite: short-rangeorder constraints on chemical composition. *Can. Mineral.* 36, 1305-1310.
- CROMER, D.T. & LIBERMAN, D. (1970): Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys. 53, 1891-1898.
- ERCIT, T.S., COOPER, M.A. & HAWTHORNE, F.C. (1998): The crystal structure of vuonnemite, Na<sub>11</sub>Ti<sup>4+</sup>Nb<sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub> (PO<sub>4</sub>)<sub>2</sub>O<sub>3</sub>(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. *Can. Mineral.* **36**, 1311-1320.

- EVANS, R.J. (2000): OCTAHEDRON. A program for calculation of octahedral flattening angles and counter rotations. Dept. of Phyics, Univ. Ottawa, Ottawa, Canada.
- FARGES, F., BROWN, G.E., JR., NAVROTSKY, A., GAN, HAO & REHR, J.J. (1996b): Coordination chemistry of Ti(IV) in silicate glasses and melts. II. Glasses at ambient temperature and pressure. *Geochim. Cosmochim. Acta* 60, 3039-3053.
- \_\_\_\_\_\_, \_\_\_\_\_ & REHR, J.J. (1996a): Coordination chemistry of Ti(IV) in silicate glasses and melts. I. XAFS study of titanium coordination in oxide model compounds. *Geochim. Cosmochim. Acta* **60**, 3023-3038.
- FERRARIS, G. (1997): Polysomatism as a tool for correlating properties and structure. *In* Modular Aspects of Minerals. *Eur. Mineral. Union, Notes in Mineralogy* 1, 275-295.
- \_\_\_\_\_, IVALDI, G., KHOMYAKOV, A.P., SOBOLEVA, S.V., BELLUSO, E. & PAVESE, A. (1996): Nafertisite, a layer titanosilicate member of a polysomatic series including mica. *Eur. J. Mineral.* 8, 241-249.
- \_\_\_\_\_, PUSHCHAROVSKY, D.YU., ZUBKOVA, N.V. & PEKOV, I.V. (2001): The crystal structure of delindeite, Ba<sub>2</sub>{(Na,K,□)<sub>3</sub>(Ti,Fe)[Ti<sub>2</sub>(O,OH)<sub>4</sub>Si<sub>4</sub>O<sub>14</sub>] (H<sub>2</sub>O,OH)<sub>12</sub>}, a member of the mero-plesiotype bafertisite series. *Can. Mineral.* **39**, 1306-1316.
- HAWTHORNE, F.C. (1981): Crystal chemistry of the amphiboles. In Amphiboles and Other Hydrous Pyriboles – Mineralogy (D.R. Veblen, ed.). Rev. Mineral. 9A, 1-102.

- JOHNSEN, O. (1996): TEM observations and X-ray powder data on lamprophyllite polytypes from Gardiner Complex, East Greenland. *Neues Jahrb. Mineral.*, Monatsh., 407-417.
  - & GRICE, J.D. (1999): The crystal chemistry of the eudialyte group. *Can. Mineral.* **37**, 865-890.
- KHALILOV, A.D. (1990): Refinement of the crystal structure of β-lomonosovite from the Lovozero alkaline massif. *Mineral. Zh.* **12**(5), 10-18 (in Russ.).
- LIEBAU, F. (1985): Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer-Verlag, Berlin, Germany.
- MA ZHESHENG, LI GUOWU, SHI NICHENG, ZHOU HUYUN, YE DANIAN & PUSHCHAROVSKY, D.YU. (2000): Structure refinement of astrophyllite. *Sci. China* **30D**, 399-406 (in Chinese).
- MAKOVICKY, E. & BALIĆ-ŽUNIĆ, T. (1998): New measure of distortion for coordination polyhedra. Acta Crystallogr. B54, 766-773.
- MARKGRAF, S.A., SHARMA, S.K., BHALLA, A.S. & NEWNHAM, R.E. (1985): X-ray structure refinement and pyroelectric investigation of fresnoite, Ba<sub>2</sub>TiSi<sub>2</sub>O<sub>8</sub>. *Ferroelectrics* 62, 17-26.
- McDONALD, A.M. (1996): The crystal structure of sabinaite, Na<sub>4</sub>Zr<sub>2</sub>TiO<sub>4</sub>(CO<sub>3</sub>)<sub>4</sub>. *Can. Mineral.* **34**, 811-815.
  - \_\_\_\_\_, GRICE, J.D. & CHAO, G.Y. (2000): The crystal structure of yoshimuraite, a layered Ba–Mn–Ti silicophosphate, with comments on five-coordinated Ti<sup>4+</sup>. *Can. Mineral.* 38, 649-656.
- MEGAW, H.D. (1968a): A simple theory of the off-centre displacement of cations in octahedral environments. Acta Crystallogr. B24, 149-153.
  - \_\_\_\_\_ (1968b): The thermal expansion of interatomic bonds, illustrated by experimental evidence from certain niobates. *Acta Crystallogr.* **A24**, 589-604.
- MELLINI, M. (1981): Refinement of the crystal structure of låvenite. *Tschermaks Mineral. Petrogr. Mitt.* 28, 99-112.
- & MERLINO, S. (1979): Refinement of the crystal structure of wöhlerite. *Tschermaks Mineral. Petrogr. Mitt.* 26, 109-123.
- MOORE, P.B. & ARAKI, T. (1977): Samuelsonite: its crystal structure and relation to apatite and octacalcium phosphate. *Am. Mineral.* **62**, 229-245.
  - & LOUISNATHAN, J. (1969): The crystal structure of fresnoite, Ba<sub>2</sub>(TiO)[Si<sub>2</sub>O<sub>7</sub>]. Z. Kristallogr. **130**, 438-448.
- ONDIK, H. & SMITH, D. (1962): Interatomic distances in inorganic compounds. *In* International Tables for X-Ray Crystallography. III. Interatomic and Interionic Distances (C.H. MacGillavry & G.D. Rieck, eds.). Kynoch Press, Birmingham, U.K. (257-274).

- PEN, Z.Z. & SHENG, T.C. (1963): Crystal structure of bafertisite, a new mineral from China. *Sci. Sinica* 12, 278-280 (in Russ.).
- PENG, C.C. & MA, C.S. (1963): Crystal structure of astrophyllite and a new type of band silicate radical. *Sci. Sinica* 12, 272-276 (in Russ.).
- PERCHIAZZI, N., MCDONALD, A.M., GAULT, R.A., JOHNSEN, O. & MERLINO, S. (2000): The crystal structure of normandite and its crystal-chemical relationships with låvenite. *Can. Mineral.* 38, 641-648.
- PIILONEN, P.C., LALONDE, A.E., MCDONALD, A.M. & GAULT, R.A. (2000): Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and crystal structure. *Can. Mineral.* 38, 627-639.
- (2003): Insights into the astrophyllite group. I. Nomenclature, composition and development of a standardized general formula. *Can. Mineral.* **41**, 1-26.
- \_\_\_\_\_, MCDONALD, A.M. & LALONDE, A.E. (2001): Kupletskite polytypes from the Lovozero massif, Kola Peninsula, Russia: kupletskite-1A and kupletskite-Ma2b2c. Eur. J. Mineral. 13, 973-984.
- PYATENKO, YU.A. & VORONKOV, A.A. (1978): Comparative crystal-chemical functions of titanium and zirconium in mineral structures. *Int. Geol. Rev.* 20, 1050-1058.
- RASTSVETAEVA, R.K. & DORFMAN, M.D. (1995): Crystal structure of Ba-lamprophyllite in the isomorphous lamprophyllite–barytolamprophyllite series. *Kristallografiya* 40, 1026-1029 (in Russ.).
- ROBINSON, E.A. (1963): Characteristic vibrational frequencies of oxygen compounds of silicon, phosphorus and chlorine: correlation of stretching frequencies and force constants with bond lengths and bond orders. *Can. J. Chem.* **41**, 3021-3033.
- ROBINSON, K., GIBBS, G.V. & RIBBE, P.H. (1971): Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. *Science* **172**, 567-570.
- SAF'YANOV, Y.N., VASIL'EVA, N.O., GOLOVACHEV, V.P., KUZ'MIN, É.A. & BELOV, N.V. (1983): Crystal structure of lamprophyllite. Sov. Phys. Crystallogr. 28, 207-209.
- SHABANI, A.A.T. (1999): Mineral Chemistry and Mössbauer Spectroscopy of Micas from Granitic Rocks of the Canadian Appalachians. Ph.D. thesis, Univ. Ottawa, Ottawa, Canada.
- SHANNON, R.D. (1975): Systematic studies of interatomic distances in oxides. *In* The Physics and Chemistry of Minerals and Rocks (R.G.J. Strens, ed.). John Wiley & Sons, New York. N.Y.
  - (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr.* **A32**, 751-767.

- SHELDRICK, G.M. (1993): SHELXL-93. Program for the refinement of crystal structures. University of Göttingen, Göttingen, Germany.
- SHI NICHENG, MA ZHESHENG, LI GUOWU, YAMNOVA, N.A. & PUSHCHAROVSKY, D.YU. (1998): Structure refinement of monoclinic astrophyllite. Acta Crystallogr. B54, 109-114.
- SHIBAEVA, R.P., SIMONOV, V.I. & BELOV, N.V. (1964): Crystal structure of the Ca, Na, Zr, Ti silicate rosenbuschite, Ca<sub>3.5</sub>Na<sub>2.5</sub>Zr(Ti,Mn,Nb)[Si<sub>2</sub>O<sub>7</sub>]<sub>2</sub>F<sub>2</sub>O(F,O). Sov. Phys. Crystallogr. 8, 406-413.
- SIMONOV, V.I. & BELOV, N.V. (1960): The determination of the structure of seidozerite. Sov. Phys. Crystallogr. 4, 146-157.
- TAYLOR, R. (1999): The Crystal Chemistry of Amphiboles from Mont Saint-Hilaire, Québec. B.Sc. thesis, Laurentian University, Sudbury, Canada.
- TIKHONENKOV, I.P. (1964): Zirconium minerals. In Geochemistry, Mineralogy and Genetic Types of Deposits of Rare Elements. II. Mineralogy of Rare Elements. Izd-vo Nauka, Moscow, Russia.

- VORONKOV, A.A., ZHDANOVA, T.A. & PYATENKO, YU.A. (1974): Refinement of the structure of vlasovite Na<sub>2</sub>ZrSi<sub>4</sub>O<sub>11</sub> and some characteristics of the composition and structure of the zirconosilicates. Sov. Phys. Crystallogr. 19, 152-156.
- YAMNOVA, N.A. & EGOROV-TISMENKO, YU.K. (2000): Refined crystal structure of iron-rich triclinic astrophyllite. *Kritallographia* N4-45, 642-647 (in Russ.).
- \_\_\_\_\_, <u>& Рекоv, I.V. (1998): Crystal structure</u> of perraultite from the Coastal Region of the Sea of Azov. *Crystallogr. Rep.* **43**, 401-410.
- WEISS, Z., RIEDER, M., CHMIELOVÁ, M. & KRAJÍČEK, J. (1985): Geometry of the octahedral coordination in micas: a review of refined structures. Am. Mineral. 70, 747-757.
- WOODROW, P.J. (1967): The crystal structure of astrophyllite. Acta Crystallogr. 22, 673-678.
- Received August 17, 2002, revised manuscript accepted December 27, 2002.