The Canadian Mineralogist Vol. 43, pp. 1527-1544 (2005)

POLYPHITE AND SOBOLEVITE: REVISION OF THEIR CRYSTAL STRUCTURES

ELENA SOKOLOVA§ AND FRANK C. HAWTHORNE

Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

ALEXANDER P. KHOMYAKOV

Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements, Russian Academy of Sciences, Veresaev Street, 15, Moscow 121357, Russia

Abstract

The crystal structures of polyphite, Na₅ (Na₄Ca₂) Ti₂ [Si₂O₇] (PO₄)₃ O₂ F₂, triclinic, space group $P\overline{1}$, Z = 2, a 5.3933(2), b 7.0553(3), c 26.451(1) Å, $\alpha 95.216(1)$, $\beta 93.490(1)$, $\gamma 90.101(1)^\circ$, V 1000.44(8) Å³, and sobolevite, Na₁₂ Ca (NaCaMn) Ti₂ (Ti Mn) [Si₂O₇]₂ (PO₄)₄ O₃ F₃, monoclinic, space group Pc, Z = 2, a 7.0755(5), b 5.4106(4), c 40.623(3) Å, $\beta 94.42(1)^\circ$, V 1552.8(3) Å³ from the Khibina–Lovozero alkaline complex, Kola Peninsula, Russia, have been refined (for the holotype single crystal of polyphite) to residual *R* values of 3.7 and 4.3%, respectively, using 5849 and 9030 observed ($|F_o| > 4\sigma F$) reflections collected with a single-crystal diffractometer fitted with a CCD detector and MoK α X-radiation. The single crystals were subsequently analyzed with an electron microprobe, resulting in significant revision of both chemical formulae. There is a close relation among the structures of polyphite, sobolevite and quadruphite, Na₁₄ Ca₂ Ti₄ [Si₂O₇]₂ (PO₄)₄ O₄ F₂. This type of structure consists of two structural blocks, Ti-silicate (*TS*) and alkali-cation (*AC*), stacked along [001]. There is also a close relation among the silicophosphate minerals polyphite, sobolevite, quadruphite and nacaphite, Na (Na,Ca)₂ (PO₄) F. The *TS* block has a three-layered structure consisting of a central sheet of octahedra and two adjacent heteropolyhedral sheets. The *AC* block consists of nacaphite-like trimeric clusters that link along [100] to form an infinite chain. The *TS* and *AC* blocks link together through an intermediate (*I*) layer of Na polyhedra and P tetrahedra. In polyphite, sobolevite and quadruphite, and quadruphite, and acations are arranged as close-packed layers parallel to (001) and characterized by a plane unit-cell approximately 5.4 × 7 Å with $\gamma \approx 90^\circ$.

Keywords: polyphite, sobolevite, crystal structure, Khibina-Lovozero, Kola Peninsula, Russia.

SOMMAIRE

Nous avons affiné les structures cristallines de la polyphite, Na₅ (Na₄Ca₂) Ti₂ [Si₂O₇] (PO₄)₃ O₂ F₂, triclinique, groupe d'espace P1, Z = 2, a 5.3933(2), b 7.0553(3), c 26.451(1) Å, $\alpha 95.216(1)$, $\beta 93.490(1)$, $\gamma 90.101(1)^\circ$, V 1000.44(8) Å³ (monocristal holotypique), et de la sobolevite, Na₁₂ Ca (NaCaMn) Ti₂ (Ti Mn) [Si₂O₇]₂ (PO₄)₄ O₃ F₃, monoclinique, groupe d'espace Pc, Z = 2, a 7.0755(5), b 5.4106(4), c 40.623(3) Å, $\beta 94.42(1)^\circ$, V 1552.8(3) Å³, provenant du complexe alcalin de Khibina–Lovozero, péninsule de Kola, en Russie, jusqu'aux résidus R de 3.7 et 4.3%, respectivement, en utilisant 5849 et 9030 réflexions observées ($|F_o| > 4\sigma F$) prélevées avec un diffractomètre et un rayonnement MoK α , muni d'un détecteur CCD. Les monocristaux ont par la suite été analysés avec une microsonde électronique, ce qui a mené à une révision importante des deux formules. Il y a une étroite relation parmi les structures de la polyphite, la sobolevite et la quadruphite, Na₁₄ Ca₂ Ti₄ [Si₂O_{7]2} (PO₄)₄ O₄ F₂. De telles structures contiennent deux modules structuraux, un contenant le Ti et le silicate (TS) et l'autre, le cation alcalin (AC), empilés le long de [001]. Il y a aussi une étroite relation parmi les minéraux silicophosphatés polyphite, sobolevite, quadruphite et nacaphite, Na (Na,Ca)₂ (PO₄) F. Le module TS a une structure à trois couches contenant un feuillet central d'octaèdres avec deux feuillets hétéropolyédriques adjacents. Le bloc AC contient des groupes trimériques semblables à la nacaphite liés le long de [100] pour former une chaîne infinie. Les modules TS et AC sont liés l'un à l'autre par l'intermédiaire d'une couche I de polyèdres Na et de tétraèdres P. Dans la polyphite, la sobolevite et la quadruphite, tous les cations sont agencés en couches à empilement compact parallèles à (001) et possédant une maille planaire d'environ 5.4×7 Å, avec $\gamma \approx 90^\circ$.

(Traduit par la Rédaction)

Most-clés: polyphite, sobolevite, structure cristalline, Khibina-Lovozero, péninsule de Kola, Russie.

[§] E-mail address: elena_sokolova @umanitoba.ca

INTRODUCTION

Polyphite and sobolevite are alkali titanium silicate minerals from hyperagpaitic pegmatitic rocks of the Khibina-Lovozero alkaline complex, Kola Peninsula, Russia (Khomyakov 1995, Khomyakov et al. 1983, 1992). Khomyakov and co-investigators reported the following chemical formulae: for sobolevite, Na14 Ca2 Mn Ti₃ [Si₂O₇]₂ (PO₄)₄ O₄, and for polyphite, Na₁₇ Ca₃ Mg (Ti,Mn)₄ [Si₂O₇]₂ (PO₄)₆ O₂ F₆, on the basis of electron-microprobe data, together with results of a semiquantitative analysis for fluorine. Thus there was no possibility to calculate empirical formulae on an anion basis. Sokolova et al. (1987b, 1988) reported crystal structures and general structural formulae of polyphite, Na₁₇ Ca₃ Mg (Ti,Mn)₄ [Si₂O₇]₂ (PO₄)₆ O₂ F₆, a 5.412(2), b 7.079(3), c 26.56(1) Å, α 95.21(4), β 93.51(2), γ 90.10(3)°, V 1111.4 Å³, Z = 1, space group P1, R 5.0%, and sobolevite, Na₁₁ (Na,Ca) (Mg,Mn) Ti₄ [Si₂O₇]₂ (PO₄)₄ O₃ F₃, a 7.078(1), b 5.4115(7), c 40.618(10) Å, α 90.01(2), β 93.19(2), γ 90.00(1)°, V 1553.5(5) Å³, Z = 2, space group P1, R 7.8%. The crystal structures of polyphite, sobolevite and the related mineral quadruphite, Na₁₄ Ca₂ Ti₄ [Si₂O₇]₂ (PO₄)₄ O₄ F₂ (Sokolova et al. 1987a, Sokolova & Hawthorne 2001), consist of two types of block that differ both in chemical composition and bond topology: (1) a Ti-silicate (TS) block, and (2) a (Na,Ca)-phosphate or alkali-cation (AC) block. Structural relations of Ti-silicate minerals with a three-layered TS block (consisting of a close-packed sheet of octahedra and two adjacent heteropolyhedral sheets of tetrahedra and octahedra) have been discussed extensively in recent years (Egorov-Tismenko & Sokolova 1990, Ferraris 1997, Sokolova 1998, Christiansen et al. 1999). Egorov-Tismenko & Sokolova (1990) showed that the TS block corresponds to the structure of seidozerite, Na₄ Mn Ti (Zr_{1.5}Ti_{0.5}) [Si₂O₇]₂ O₂ (F,OH)₂ (Simonov & Belov 1960, Christiansen et al. 2003). In the structures of quadruphite, polyphite and sobolevite, the AC block corresponds to a fragment of the structure of nacaphite, Na (NaCa) (PO₄) F (Sokolova et al. 1989, Sokolova & Hawthorne 2001). Quadruphite, polyphite and sobolevite commonly form intergrowths with lomonosovite, Na₁₀ Ti₄ [Si₂O₇]₂ [PO₄]₂ O₄ (Belov et al. 1977); from a structural perspective, they also can be regarded as derivatives of lomonosovite.

The original crystal-structure determinations of polyphite and sobolevite are not completely satisfactory, first of all because they relied on formulae calculated on a cation basis, Si = 4 apfu (atoms per formula unit), with unknown contents of F. In the original work, no absorption correction was done, and there was some ambiguity as to the degree of order of Mn and Mg at the junction of the *TS* and *AC* blocks. We have refined the structures of polyphite and sobolevite, and discuss the refined chemical formulae and details of cation and anion order in their structures.

ELECTRON-MICROPROBE ANALYSIS

Chemical analyses of polyphite (holotype crystal) and sobolevite single crystals were done with a Cameca SX-50 electron microprobe operating in wavelengthdispersion mode with an accelerating voltage of 15 kV, a specimen current of 20 nA and a beam size of 20 μm. Standards were as follows: fluorapatite: Ca, P, F; tugtupite: Na, Si, Cl; forsterite: Mg; titanite: Ti; spessartine: Mn; strontianite: Sr; zircon: Zr; MnNb₂O₆: Nb; witherite: Ba; fayalite: Fe; manganotantalite: Ta. Data were reduced using the $\phi(\rho z)$ procedure of Pouchou & Pichoir (1985). The chemical compositions of polyphite (holotype) and sobolevite crystals are given in Table 1 (mean of ten determinations for each fragment), and the unit formulae were calculated on the basis of 23 (210 + 2F) and 36 (33O + 3F) anions pfu (per formula unit), respectively: Na_{8.72} Ca_{1.40} Sr_{0.03} Mg_{0.30} Mn_{0.68} Fe_{0.07} Ti1.41 Nb0.19 Zr0.19 P2.96 Si2.04 O20.94 F2.06 and Na13.62 Ca1.63 Sr0.03 Mg0.39 Mn1.02 Fe0.10 Ti2.42 Nb0.51 Zr0.09 P4.01 $Si_{4,13} O_{33,08} F_{2,92}$. The formulae differ (see constituents shown in bold) from the following empirical formulae on which the first structure-determinations of polyphite and sobolevite were based (Khomyakov et al. 1992, 1983): Na_{8,23} Ca_{1,35} Sr_{0,03} Ba_{0,06} Mg_{0,30} Mn_{0,72} Fe_{0,03} Ti_{1.36} Nb_{0.19} Zr_{0.12} P_{2.99} Si_{2.00} O_{20.29} F_{2.45} and Na_{13.47} Ca1.60 Mg0.21 Mn0.79 Fe0.11 Ti2.67 Nb0.46 P3.94 Si4.00 O33.19 F_{0.52}, and with corresponding generalized structural formulae for polyphite, Na₁₇ Ca₃ Mg (Ti,Mn)₄ [Si₂O₇]₂ (PO₄)₆ O₂ F₆, and sobolevite, Na₁₁ (Na,Ca) (Mg,Mn) Ti₄ [Si₂O₇]₂ (PO₄)₄ O₃ F₃ (Sokolova *et al.* 1987b, 1988).

TABLE 1. CHEMICAL COMPOSITIONS* (wt %) AND UNIT FORMULAE (apfu) OF POLYPHITE AND SOBOLEVITE

	Polyphite	Sobolevite		Polyphite	Sobolevite
P ₂ O ₅ Nb ₂ O ₅ SiO ₂	22.37 2.69 13.03	19.61 4.65 17.11	P Si	2.96 2.04	4.01 4.13
TiO ₂ ZrO ₂ FeO MnO MgO	11.97 2.42 0.49 5.11 1.29	13.32 0.75 0.50 4.99 1.07	Nb Zr Mg Ti ⁴ *	0.19 0.19 0.13 1.41	0.51 0.09 0.39 2.42
CaO SrO Na₂O F	8.38 0.31 28.75 4.16	6.31 0.22 29.10 3.83	Fe** Mn ²⁺ Σ	0.07 0.02 2.01	0.10 0.47 3.98
O=F	-1.75	-1.61	Mg Ca	0.00 0.17 1.40	0.00
Total	99.22	99.85	Sr Na Σ	0.03 8.72 10.98	0.03 13.62 15.83
			F	2.06	2.92
			0	20.94	33.08

* Ta2O5, HfO2 and BaO: not detected; ** Fe3+ in sobolevite, Fe2+ in polyphite.

COLLECTION OF X-RAY DATA AND STRUCTURE REFINEMENT

Sobolevite

Single-crystal X-ray-diffraction data for polyphite (holotype) and sobolevite were collected with a Siemens *P*4 diffractometer fitted with a 4K CCD detector, using MoK α X-radiation. An empirical absorption-correction (SADABS, Sheldrick 1998) was applied. The Bruker SHELXTL Version 5.1 system of programs (Sheldrick 1997) was used for refinement of the structures. Scattering factors for neutral atoms were taken from the International Tables for X-ray Crystallography (Ibers & Hamilton 1992).

Polyphite

The intensities of 11684 reflections with $\overline{7} < h < 7$, $\overline{9} < k < 9$, $\overline{37} < l < 37$ were collected using 15 s per 0.2° frame. The refined unit-cell parameters were obtained from 6707 reflections ($I > 10\sigma I$) and are given in Table 2. The crystal structure of polyphite was refined in space groups P1 and $P\overline{1}$ using atom coordinates from Sokolova *et al.* (1987b), with corresponding R_1 values of 3.4 and 3.7%, respectively. Analysis of the cation polyhedra confirmed the presence of an inversion center in the crystal structure of polyphite, and the space group $P\overline{1}$ was adopted. Final atom-parameters for polyphite are given in Table 3, selected interatomic distances are listed in Table 4, assigned site-occupancies are given in Table 5, and bond valences are presented in Table 6.

TABLE 2. MISCELLANEOUS DATA CONCERNING THE REFINEMENT OF POLYPHITE AND SOBOLEVITE

	Polyphite*	Sobolevite*
a (Å)	5.3933(2)	7.0755(5)
b	7.0553(3)	5.4106(4)
с	26.451(1)	40.623(3)
α (°)	95.216(1)	90
β	93.490(1)	93.156(1)
Υ	90.101(1)	90
V (Å ³)	1000.44(8)	1552.8(3)
Space group	Pī	Pc
Z	2	2
Absorption coefficient (mm	⁻¹) 2.36	2.3
D _{meas} (g.cm ⁻³⁾	3.07**	3.03***
D _{cate} (g.cm ⁻³)	3.1	3.098
F(000)	906.4	1405.7
Crystal size (mm)	0.09 × 0.13 × 0.1	6 0.16 × 0.18 × 0.24
Radiation	ΜοΚα	ΜοΚα
20 range for data collection	(°) 60.03	59.98
R(int) (%)	1.3	2
Reflections collected	11684	17784
Unique reflections	5849	9030
$F_{o} > 4\sigma F$	5604	8902
Refinement method	Full matrix least	t-squares on F ² ;
	fixed weights prop	portional to 1/σ(F)
Goodness of fit on F ²	1.18	1.163
Final R index (%) $[F_0 > 4\sigma F$] 3.73	4.31
R index (%) (all data)	3.96	4.37
wR ₂ (%)	9.04	9.86
GoF	1.18	1.064

data were collected from holotype crystals.

** Khomyakov et al. (1992).

*** Khomyakov et al. (1983).

The intensities of 17784 reflections with $\bar{9} < h < 9$, $\bar{7}$ < k < 7, $\overline{57} < l < 57$ were collected using 15 s per 0.2° frame. The refined unit-cell parameters were obtained from 6594 reflections $(I > 10\sigma I)$ and are given in Table 2. For sobolevite, we used triclinic [a 7.0753(5)], *b* 5.4104(4), *c* 40.622(3) Å, α 90.015(1), β 93.159(1), γ 90.006(1)°, V 1552.7(3) Å³] and monoclinic (see Table 2) versions of the unit cell for integration of intensities of reflections. The crystal structure of sobolevite was refined in five space groups: P1 and $P\overline{1}$ (triclinic system) and $P2_1/c$, $P2_1$ and Pc (monoclinic system). Corresponding final R_1/R_{int} indices are as follows: 4.6/0.0 (*P*1), 6.8/1.1 (*P*1), 7.4/2.0 (*P*2₁/*c*), 5.3/1.9 (*P*2₁) and 4.3/2.0 (Pc). On the basis of the lowest R indices, the latter space-group, Pc, was chosen for the crystal structure of sobolevite. Note that the space group Pc allows the most complete degree of Ca-Na order possible within the AC block, whereas other three space groups (excluding P1, with the lowest symmetry) give averaged scattering over the sites in the AC block. The details of X-ray data collection and structure refinement are given in Table 2. Final atom-parameters for sobolevite are given in Table 7, selected interatomic distances are listed in Table 8, assigned site-occupancies are given in Table 9, and bond valences are presented in Table 10. Final observed and calculated structure-factors for polyphite and sobolevite may be obtained from The Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada.

POLYPHITE

Coordination of the cations

The structure of polyphite consists of two blocks (TS and AC) stacked along [001] with an intermediate layer between them, denoted as I in Figure 1.

The T (= Si + P) sites: There are two unique Si sites in the crystal structure of polyphite, with $\langle Si-O \rangle$ 1.605 and 1.624 Å, respectively. The Si(1) and Si(2) tetrahedra link through O(10), forming an [Si₂O₇] group with an Si–O–Si angle of 137.0°, and the *Si* tetrahedra are confined to the heteropolyhedral sheet of the *TS* block. There are three unique *P* sites within the *AC* block, each of which is surrounded by a tetrahedral arrangement of O atoms, with $\langle P-O \rangle$ distances in the range 1.534–1.538 Å.

The octahedral sites of the TS block: There are two unique M sites, each of which is coordinated by six anions in an octahedral arrangement. The M(1) octahedron occurs within the heteropolyhedral (H) sheet (of tetrahedra and octahedra); the M(2) site belongs to the (O) sheet of octahedra in the central part of the block. The M(1) site is involved in shorter <M-O> bonds than the M(2) site: 1.973 Å compared to 2.031 Å (Table 4). The higher refined site-scattering value of 25.65 epfu THE CANADIAN MINERALOGIST

FIG. 1. The crystal structure of polyphite viewed down [100]. TS: Ti-silicate block, AC: alkaline-cation block, I: intermediate layer. Vertical lines 1–5 show the positions of "close-packed" cation layers for a symmetrically unique part of the structure. M octahedra are yellowish, Na octahedra are light navy-blue, Si tetrahedra are orange, P tetrahedra are purple, [4]- and [5]- coordinated Na polyhedra are greenish blue, Na-dominant A octahedra are greyish blue, Ca-dominant A octahedra are pink, F atoms are shown as yellow circles.

for M(1) indicates that most of the stronger-scattering species (Nb and Zr) occur at this site, together with the dominant Ti⁴⁺. However, $\langle M(2)-O \rangle$ is significantly larger than $\langle M(1)-O \rangle$, indicating that the larger scattering species occur at M(2), *i.e.*, Fe²⁺, Mg and Mn²⁺, possibly with some Zr. This results in the site populations given in Table 5. There is good agreement between the observed and calculated site-scattering values, and the observed and predicted mean bond-lengths order in the correct sequence.

Within the O sheet, there is one unique Na(4) site, octahedrally coordinated by O atoms, with $\langle Na(4)-O \rangle$ = 2.444 Å. Within the H sheet, there is one unique Na(3) site, octahedrally coordinated by six O-atoms with $\langle Na(3)-O \rangle$ = 2.549 Å.

The octahedrally coordinated sites of the AC block: There are six unique A sites within this block, each FIG. 2. The crystal structure of polyphite: (a) the octahedron O-sheet in the *TS* block; (b) a close-packed layer of Na and M cations corresponding to the O sheet shown in (a); (c) the heteropolyhedral H-sheet in the *TS* block; (d) a close-packed layer of Na, Si and M cations corresponding to the H sheet shown in (c); (e) linkage of O and H sheets, Na atoms of the H sheet are shown as circles; (f) IABI sequence of close-packed layers of cations corresponding to the O sheet (black) and H sheet. All cations of the O sheet are shown as bluck circles. Legend as in Figure 1; *Na*, *M* and *Si* sites are shown as blue, yellowish and orange circles in (b), (d) and (e); t₁ and t₂ translations correspond to unit-cell axes of about 5.4 and 7.1 Å.

THE CRYSTAL STRUCTURES OF POLYPHITE AND SOBOLEVITE

1531

THE CANADIAN MINERALOGIST

	x	У	Z	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	$U_{\rm eq}$
<i>M</i> (1)	0.13165(6)	-0.10753(5)	0.11831(1)	0.00509(17)	0.00571(18)	0.00889(18)	0.00093(12) 0.00055(12) 0.00019(11)	0.00654(11)
M(2)	0.22811(8)	0.61396(6)	0.00406(2)	0.0161(2)	0.0095(2)	0.0080(2)	0.00085(14)-0.00034(15	0.00279(15)	0.01124(14)
A(1)	0.22160(13)	-0.04447(9)	0.35026(3)	0.0220(4)	0.0172(3)	0.0168(3)	0.0018(2)	0.0023(2)	-0.0008(2)	0.0186(2)
A(2)	0.67082(14)	0.17653(11)	0.31741(3)	0.0104(4)	0.0135(4)	0.0090(4)	0.0013(3)	0.0002(3)	-0.0005(3)	0.0110(3)
A(3)	0.77837(16)	0.76266(12)	0.54343(3)	0.0189(5)	0.0139(5)	0.0118(4)	0.0003(3)	0.0016(3)	0.0028(3)	0.0149(3)
A(4)	0.73596(16)	0.46190(11)	0.41983(3)	0.0221(5)	0.0111(4)	0.0088(4)	0.0002(3)	-0.0025(3)	-0.0022(3)	0.0142(3)
A(5)	0.21592(19)	0.43500(15)	0.34468(4)	0.0198(6)	0.0151(5)	0.0166(6)	0.0034(4)	0.0025(4)	0.0023(4)	0.0170(3)
A(6)	0.7387(2)	0.98070(16)	0.42440(4)	0.0260(6)	0.0169(6)	0.0170(6)	0.0039(4)	0.0009(4)	0.0003(4)	0.0198(4)
Na(1)	0.1808(3)	0.66982(18)	0.23045(5)	0.0367(7)	0.0170(6)	0.0280(7)	0.0040(5)	0.0054(6)	0.0003(5)	0.0270(3)
Na(2)	0.6214(3)	0.38767(19)	0.21296(5)	0.0311(8)	0.0171(7)	0.0185(7)	-0.0002(5)	-0.0023(5)	0.0036(5)	0.0225(4)
Na(3)	0.1324(2)	0.38779(17)	0.12660(4)	0.0218(6)	0.0213(6)	0.0152(5)	0.0026(4)	-0.0006(4)	0.0001(5)	0.0195(2)
Na(4)	-0.2427(2)	0.88253(16)	-0.00295(5)	0.0128(5)	0.0152(5)	0.0280(6)	-0.0064(5)	-0.0070(4)	0.0032(4)	0.0195(3)
Na(5)	0.6373(2)	0.91134(16)	0.19672(4)	0.0272(6)	0.0129(5)	0.0161(5)	-0.0009(4)	-0.0007(5)	-0.0021(4)	0.0189(2)
P(1)	0.28000(12)	0.73333(9)	0.46176(2)	0.0128(3)	0.0103(3)	0.0098(3)	0.0012(2)	0.0008(2)	0.0001(2)	0.01095(13)
P(2)	0.12365(12)	0.15773(9)	0.23490(3)	0.0131(3)	0.0103(3)	0.0109(3)	0.0003(2)	0.0008(2)	0.0005(2)	0.01146(13)
P(3)	0.73298(12)	0.68636(10)	0.30796(3)	0.0131(3)	0.0129(3)	0.0102(3)	0.0012(2)	0.0002(2)	0.0010(2)	0.01209(13)
Si(1)	0.63422(13)	0.17405(10)	0.09611(3)	0.0132(3)	0.0077(3)	0.0089(3)	0.0009(2)	0.0001(2)	-0.0001(2)	0.00993(14)
Si(2)	0.62121(13)	0.60845(9)	0.10685(3)	0.0111(3)	0.0070(3)	0.0077(3)	0.0004(2)	-0.0002(2)	0.0000(2)	0.00866(13)
O(1)	0.1802(5)	0.5498(3)	0.43195(9)	0.0508(15)	0.0201(11)	0.0188(11)	-0.0031(9)	0.0006(10)	-0.0157(10)	0.0303(6)
O(2)	0.8826(6)	0.0831(4)	0.11853(10)	0.0570(18)	0.0507(17)	0.0249(13)	-0.0105(12)	-0.0167(12)	0.0439(15)	0.0458(8)
O(3)	0.3927(6)	0.0756(5)	0.11318(10)	0.0605(19)	0.0591(19)	0.0284(14)	-0.0100(13)	0.0185(13)	-0.0496(16)	0.0496(9)
O(4)	0.5823(4)	0.5958(3)	0.04495(7)	0.0207(9)	0.0133(9)	0.0074(8)	0.0006(7)	-0.0001(7)	0.0002(7)	0.0139(14)
O(5)	0.1789(4)	-0.0258(3)	0.20012(7)	0.0227(10)	0.0121(9)	0.0116(9)	0.0002(7)	-0.0003(7)	0.0033(7)	0.0156(4)
O(6)	0.6287(4)	0.6795(3)	0.25292(8)	0.0307(11)	0.0204(10)	0.0141(9)	0.0023(8)	-0.0072(8)	-0.0008(8)	0.0220(4)
O(7)	0.0186(4)	0.6935(3)	0.30991(9)	0.0144(9)	0.0273(11)	0.0272(11)	0.0064(9)	0.0004(8)	0.0007(8)	0.0228(4)
O(8)	0.6329(4)	0.1810(3)	0.03572(7)	0.0178(9)	0.0187(9)	0.0089(8)	0.0007(7)	0.0005(7)	-0.0000(7)	0.0152(4)
O(9)	0.0787(4)	0.4105(3)	0.03788(7)	0.0180(9)	0.0112(8)	0.0099(8)	0.0018(6)	0.0012(7)	-0.0001(7)	0.0130(4)
O(10)	0.6342(4)	0.3909(3)	0.12426(7)	0.0394(12)	0.0077(8)	0.0109(9)	0.0010(7)	0.0011(8)	0.0025(8)	0.0193(4)
O(11)	0.5663(4)	0.7295(4)	0.4638(1)	0.0138(9)	0.0341(13)	0.0318912)	0.0101(10)	0.0012(9)	0.0017(9)	0.0261(5)
O(12)	0.1133(4)	-0.1768(3)	0.04920(7)	0.0157(9)	0.0242(10)	0.0104(9)	0.0008(7)	0.0002(7)	-0.0024(7)	0.0169(4)
O(13)	0.1887(5)	0.3376(3)	0.21064(8)	0.0413(13)	0.0114(9)	0.0158(10)	0.0031(7)	0.0010(9)	-0.0048(8)	0.0228(5)
O(14)	0.3845(4)	0.6985(3)	0.13465(8)	0.0236(10)	0.0336(12)	0.0125(9)	-0.0005(8)	0.0007(8)	0.0171(9)	0.0234(5)
O(15)	0.8744(4)	0.7061(4)	0.13204(8)	0.0260(11)	0.0368(13)	0.0121(9)	0.0008(9)	0.0014(8)	-0.0212(10)	0.0251(5)
O(16)	0.1892(5)	0.9058(3)	0.43481(9)	0.0384(13)	0.0200(11)	0.0208(11)	0.0091(9)	0.0030(9)	0.0122(9)	0.0259(5)
O(17)	0.2804(5)	0.1511(3)	0.28513(8)	0.0370(13)	0.0247(11)	0.0131(10)	0.0014(8)	-0.0049(9)	0.0037(9)	0.0252(5)
O(18)	0.1917(5)	0.7468(3)	0.51586(8)	0.0378(13)	0.0250(11)	0.0113(9)	0.0021(8)	0.0083(9)	0.0021(9)	0.0244(5)
O(19)	-0.1530(4)	0.1554(3)	0.24535(11)	0.0165(10)	0.0242(12)	0.0503(16)	-0.0080(11)	0.0097(10)	-0.0002(8)	0.0307(6)
O(20)	0.6514(5)	0.5081(4)	0.33222(10)	0.0313(12)	0.0343(13)	0.0300(13)	0.0199(11)	-0.0012(10)	-0.0098(10)	0.0309(6)
O(21)	0.6389(5)	0.8645(4)	0.33874(10)	0.0428(15)	0.0365(14)	0.0254(12)	-0.0151(11)	-0.0045(11)	0.0209(12)	0.0362(6)
F(1)	-0.0360(3)	0.2038(3)	0.37737(7)	0.0128(7)	0.0245(9)	0.0266(9)	0.0034(7)	0.0012(7)	0.0014(6)	0.0212(4)
F(2)	0.4706(3)	0.2107(2)	0.38948(6)	0.0135(7)	0.0202(8)	0.0191(8)	0.0004(6)	-0.0003(6)	0.0000(6)	0.0177(3)

TABLE 3. ATOM PARAMETERS AND DISPLACEMENT FACTORS FOR POLYPHITE

coordinated by four O-atoms and two F-atoms. The following cations occur at the A sites: Na, Ca, Mn²⁺, Mg and Sr, ordered in terms of decreasing content in the ACblock. The <A(1-4)-O> distances (2.335, 2.246, 2.359 and 2.387 Å, respectively) are significantly shorter than the $\langle A(5)-O \rangle$ and $\langle A(6)-O \rangle$ distances (2.413 and 2.407 Å, respectively), and hence the smaller available cations, Mg and Mn²⁺, must occur at the A(1-4) sites. Thus the A(5) and A(6) sites are occupied by Na and Ca. We assign the minor amount of Sr to the A(1)site, which has the highest site-scattering value (17.6 epfu). The resultant site-populations (Table 5) show reasonable agreement between observed and calculated <A-O> distances. Calcium is dominant only at one site, A(1), as indicated by the high site-scattering. The A(2-6) sites are Na-dominant. Substitution of Na and Mn^{2+} at a site is fairly common in these minerals: previously, it has been described for vuonnemite, Na₁₀ (Na,Mn) Ti Nb₂ [Si₂O₇]₂ (PO₄)₂ O₃ (F,O) (Ercit *et al.* 1998) and quadruphite, Na₁₄ Ca₂ Ti₄ [Si₂O₇]₂ (PO₄)₄

 O_4 F_2 (Sokolova & Hawthorne 2001). Bond-valence calculations for O and F atoms are in accord with this distribution of cations (Table 6).

The Na sites of the I layer: There are two unique Na sites, Na(1) and Na(2), tetrahedrally coordinated by O atoms with a range of $\langle Na-O \rangle$ distances from 2.227 to 2.452 Å. There is one Na(5) site coordinated by five O-atoms with a $\langle Na(5)-O \rangle$ distance of 2.429 Å. The bond valences (Table 6) were calculated with the universal curves of Brown (1981). It is pertinent to this work that Na and Mg are represented by the same universal bond-valence curve. Calculation of the bond-valence sums incident at the Na sites of the I layer results in values of 0.87–1.09 vu (Table 6), indicating occupancy by Na and not by (Mg,Mn) as reported by Sokolova *et al.* (1987b).

Based on the SREF (Structure REFinement) results and bond-valence calculations, the end-member formula of polyphite is Na₅ (Na₄Ca₂) Ti₂ [Si₂O₇] (PO₄)₃ O₂ F₂, $P\bar{1}$, Z = 2.

TABLE 4.	SELECTED	INTERATOMIC	DISTANCES ((Å) AND /	ANGLES (°) FOR PC	LYPHITE
----------	----------	-------------	-------------	-----------	----------	-----------	---------

M(1)-O(2) M(1)-O(3) M(1)-O(5) M(1)-O(12) M(1)-O(14) M(1)-O(15) <m(1)-o></m(1)-o>	1.903(2) 1.929(2) 2.188(2) 1.845(2) 1.991(2) 1.982(2) 1.973	A(1)-O(7) A(1)-O(16) A(1)-O(17) A(1)-O(21) A(1)-F(1) A(1)-F(2) <a(1)-o,f></a(1)-o,f>	2.291(2) 2.312(2) 2.339(2) 2.371(3) 2.327(2) 2.367(2) 2.278	A(3)-O(1) A(3)-O(27) A(3)-O(22) A(3)-O(20) A(3)-F(1) A(3)-F(2) <a(3)-o,f></a(3)-o,f>	2.362(3) 2.328(3) 2.361(3) 2.387(3) 2.435(2) 2.284(2) 2.364	A(5)-O(1) A(5)-O(7) A(5)-O(17) A(5)-O(20) A(5)-O(12) A(5)-O(5) <a(5)-o,f></a(5)-o,f>	2.395(3) 2.345(2) 2.472(3) 2.452(3) 2.376(2) 2.439(2) 2.413
M(2)-O(4) M(2)-O(4)a M(2)-O(8) M(2)-O(9) M(2)-O(9)b M(2)-O(12) <m(2)-o></m(2)-o>	2.147(2) 2.176(2) 2.039(2) 1.956(2) 1.934(2) 1.939(2) 2.031	A(2)-O(17) A(2)-O(19) A(2)-O(20) A(2)-O(21) A(2)-F(1) A(2)-F(2) <a(2)-o,f></a(2)-o,f>	2.224(3) 2.175(3) 2.340(3) 2.330(3) 2.166(2) 2.242(2) 2.246	A(4)-O(1) A(4)-O(11) A(4)-O(18) A(4)-O(20) A(4)-F(1) A(4)-F(1) <a(4)-o,f></a(4)-o,f>	2.468(3) 2.343(3) 2.365(2) 2.386(3) 2.428(2) 2.330(2) 2.387	A(6)-O(11) A(6)-O(16) A(6)-O(18) A(6)-O(20) A(6)-F(1) A(6)-F(2) <a(6)-o,f></a(6)-o,f>	2.353(3) 2.492(3) 2.389(3) 2.368(3) 2.457(2) 2.386(2) 2.408
		Tetrahe	drally and [5]	-coordinated Na	-sites		
Na(1)–O(5) Na(1)–O(6) Na(1)–O(7) Na(1)–O(13) <na(1)–o></na(1)–o>	2.360(2) 2.452(3) 2.317(3) 2.356(2) 2.371	Na(2)-O(6) Na(2)-O(10) Na(2)-O(13) Na(2)-O(19) <na(2)-o></na(2)-o>	2.227(3) 2.354(2) 2.356(3) 2.244(3) 2.295	Na(5)-O(5)c Na(5)-O(6) Na(5)-O(14) Na(5)-O(15) Na(5)-O(19) <na(5)-o></na(5)-o>	2.518(2) 2.310(2) 2.466(3) 2.546(3) 2.305(3) 2.429		
Octa	ahedrally coc	rdinated Na-site	s				
Na(3)–O(2) Na(3)–O(3) Na(3)–O(9)	2.521(4) 2.623(4) 2.367(2)	Na(4)–O(4) Na(4)–O(8)b Na(4)–O(8)d	2.682(2) 2.255(2) 2.372(2)	Si(1)=O(2) Si(1)=O(3) Si(1)=O(8)	1.592(3) 1.584(3) 1.602(2)	Si(2)–O(4) Si(2)–O(10) Si(2)–O(14)	1.632(2) 1.643(2) 1.614(2)

Na(3)–O(3) Na(3)–O(9) Na(3)–O(13) Na(3)–O(14) Na(3)–O(15)	2.623(4) 2.367(2) 2.285(2) 2.563(3) 2.641(3)	Na(4)-O(8)b Na(4)-O(8)d Na(4)-O(9) Na(4)-O(12)b	2.255(2) 2.372(2) 2.381(2) 2.618(2) 2.356(2)	Si(1)-O(3) Si(1)-O(8) Si(1)-O(10) <si(1)-o></si(1)-o>	1.584(3) 1.602(2) 1.640(2) 1.605	Si(2)-O(10) Si(2)-O(14) Si(2)-O(15) <si(2)-o></si(2)-o>	1.643(2) 1.614(2) 1.608(2) 1.624
<na(3)=0(13) <na(3)=0></na(3)=0></na(3)=0(13) 	2.549	<na(4)-o(12)e <na(4)-o></na(4)-o></na(4)-o(12)e 	2.444	Si(1)-O(10)-Si	(2)	137.0(1)	
P(1)-O(1) P(1)-O(22) P(1)-O(23) P(1)-O(1) <p(1)-o></p(1)-o>	1.533(2) 1.542(2) 1.532(2) 1.530(2) 1.534	P(2)-O(5) P(2)-O(24) P(2)-O(20) P(2)-O(25) <p(2)-o></p(2)-o>	1.559(2) 1.523(2) 1.535(2) 1.534(2) 1.538	P(3)–O(6) P(3)–O(21) P(3)–O(28) P(3)–O(31) <p(3)–o></p(3)–o>	1.525(2) 1.539(2) 1.538(2) 1.538(2) 1.535		

TABLE 5. REFINED OCTAHEDRAL-SITE SCATTERING VALUES AND ASSIGNED SITE-POPULATIONS FOR POLYPHITE

	Scattering species	SREF value (<i>epfu</i>)	Site population (apfu)	Predicted site-scattering (epfu)	< <i>X</i> –φ> _{calc} * (Å)	< <i>X</i> -φ> _{obs} (Å)
M(1)	Nb, Ti	51.3(1)	1.56 Ti + 0.38 Nb + 0.06 Zr	52.3	1.995	1.973
M(2)	Nb, Ti	46.2(1)	1.26 Ti + 0.13 Fe ²⁺ + 0.31 Zr + 0.26 Mg + 0.04 Mn	47.6	2.031	2.033
A(1)	Ca, Na	35.2(1)	0.82 Ca + 0.72 Na + 0.40 Mn + 0.06 Sr	36.6	2.359	2.335
A(2)	Ca, Na	28.8(1)	1.10 Na + 0.46 Mn + 0.34 Mg + 0.10 Ca	29.7	2.304	2.246
A(3)	Ca, Na	28.0(1)	1.32 Na + 0.42 Ca + 0.26 Mn	29.4	2.371	2.359
A(4)	Ca, Na	29.4(1)	1.10 Na + 0.70 Ca + 0.20 Mn	31.1	2.374	2.387
A(5)	Ca, Na	24.1(1)	1.60 Na + 0.40 Ca	25.6	2.396	2.413
A(6)	Ca, Na	23.6(1)	1.64 Na + 0.36 Ca	25.2	2.396	2.407

* radii from Shannon (1976).

Topology of the structure

The structure of polyphite consists of *TS* and *AC* blocks stacked along [001] with an *I* layer between them (Fig. 1). The *TS* block has a three-layered structure consisting of a central sheet of octahedra and two adjacent heteropolyhedral sheets. The central sheet of octahedra at $z \approx 0$ is a local close-packing of *M*(2) and *Na*(4) octahedra (Figs. 2a, b). There are two symmetri-

cally distinct zig-zag chains of edge-sharing octahedra within the sheet; Sokolova & Hawthorne (2004) designated this type of edge-sharing chain of octahedra as a *brookite* chain, as it occurs in the crystal structure of brookite, TiO₂. In the *TS* block, *Na*(4) octahedra form the first brookite-type chain, and *M*(2) octahedra form the second chain. The size of the regular *M*(2) octahedron is less than the size of the irregular *Na*(4) octahedron, and substitution of Mg and Mn²⁺ (r [^{16]}Mg]

FIG. 3. The crystal structure of polyphite: (a) the *AC* block viewed down [100]; (b) the infinite chain of octahedron clusters rotated ~60° relative to each other; (c) and (d) close-packed layer of *A* and *P* atoms at $z \approx 0.65$ and 0.56. Legend as in Figure 1; Na- and M^{2+} -dominant *A* sites and *P* sites are shown as blue, pink and purple circles in (c) and (d).

= 0.72 and r $[^{[6]}Mn^{2+}]$ = 0.83 Å) (Table 5) for Na ($^{[6]}r$ = 1.02 Å) (Shannon 1976) promotes linkage between the two compositionally different types of brookite chains. Within the O sheet, the M and Na octahedra each share three common edges. The Na(4) octahedron is also elongate along the b axis in order to promote this linkage. In each of the two H sheets (located at $z \approx$ -0.12 and 0.12), [Si₂O₇] groups share common edges with M(1) octahedra, giving rise to large hexagonal voids that incorporate the Na(3) octahedra (Fig. 2c) [which share edges with M(1) octahedra in the plane of the sheet]. The central O-sheet links to the adjacent H-sheets through common vertices of (SiO₄) tetrahedra, M(1) and Na(3) octahedra of the H sheet, and M(2) and Na(4) octahedra of the O sheet (Fig. 2e). An array of inversion centers extends along the O sheet, making the two H sheets symmetrically equivalent (Fig. 2f).

The AC block (Fig. 3a) can be described in terms of nacaphite-like trimeric clusters of octahedra (Sokolova & Hawthorne 2001). The key motif in the structure of the AC block is the trimer of octahedra [as in nacaphite, Na (Na,Ca)₂ (PO₄) F]. Three A octahedra share a single edge, and also each shares a face with two adjacent octahedra; the central axis of each cluster is an edge (formed by two F atoms) that is common to all three constituent octahedra (Fig. 3a). These trimeric clusters link to form a convoluted chain of octahedra (Fig. 3b) that extends in the a direction. Clusters adjacent in the chain are rotated $\sim 60^{\circ}$ relative to each other and connect by sharing both faces and edges. Two octahedra of the cluster are connected to the next trimer through two common faces, and the remaining octahedra link through common edges. The chain shows pseudohexagonal symmetry described by a 63 axis along the sequence of common [F(1)–F(2)] edges that defines the central axis of the chain. Combination of two clusters corresponds to a sequence of two [F(1)–F(2)] edges of 2.700 and 2.731 Å with an \angle F–F–F = 166.5° (sum = 5.431 Å), defining the *a* repeat and giving an *a* unit-cell parameter of 5.3933(2) Å. There are six A sites within the AC block, corresponding to two unique trimeric clusters. The ratio of divalent to monovalent cations is 0.60. The thickness of the AC block along the *c* axis is about 12 Å, corresponding to two infinite chains of octahedron clusters.

In polyphite, the *I* layer is characterized by Na sites with coordination numbers of [4] and [5] (Table 4). The Na polyhedra link to P(2) tetrahedra to form a rather irregular layer (Fig. 4b). This layer is situated at the junction of the TS and AC blocks, and can be regarded as a derivative of the AC block (Figs. 1, 5a). The thickness of this layer is approximately that of one Na polyhedron.

Sobolevite

Coordination of the cations

The structure of sobolevite also consists of TS and AC blocks stacked along [001] with an intermediate layer between them (Fig. 5b).

The T (= Si + P) sites: There are four unique Si sites in the crystal structure of sobolevite, with a grand $\langle Si - O \rangle$ distance of 1.621 Å. The Si(1) and Si(3) tetrahedra

FIG. 4. The *I* layer: (a) a close-packed layer of Na and P atoms within the intermediate layer; (b) in polyphite, $z \approx 0.21$; (c) and (d) in sobolevite; $z \approx 0.43$ and 0.70; (e) and (f) in quadruphite, $z \approx 0.20$ and 0.75. The [4]- and [5]-coordinated Na polyhedra are greenish blue, [6]-coordinated Na polyhedra are light navy-blue, and the *P* tetrahedra are purple. In (a), Na and P atoms are greenish blue and purple circles.

link through O(16), and the Si(2) and Si(4) tetrahedra link through O(15), forming [Si₂O₇] groups with a mean Si–O–Si angle of 137.2°. There are four unique *P* sites within the alkali-cation block, all of which are coordinated by tetrahedra of O atoms with *<P*–O> distances in the range 1.526–1.549 Å.

The octahedral sites of the TS block: There are four unique M sites, each coordinated by an octahedral arrangement of O atoms. The M(1) and M(2) octahedra occur within the H sheets, and the M(3) and M(4) sites belong to the O sheet of octahedra in the central part of the block. Two pairs of sites, [M(1) and M(2)], and [M(3)and M(4)], are related by pseudo-inversion centers located in the O sheet: both refined site-scattering values and mean bond-lengths are very similar (Table 9). The M(1,2) sites are characterized by shorter < M-O> bonds than the M(3,4) sites: 1.980 and 1.965 Å versus 2.056 and 2.043 Å (Table 8). The higher refined site-scattering values of 25.80 and 24.90 epfu for M(1) and M(2) indicate that the dominant Ti⁴⁺ occurs at these sites, together with the more strongly scattering species (Nb, Zr and Fe³⁺). The $\langle M(3,4) - O \rangle$ distances are significantly greater than the $\langle M(1,2) - O \rangle$ distances, indicating that the larger scattering species, *i.e.*, Mg and Mn^{2+} , occur at M(3,4). This results in the site populations given in Table 9; note the good agreement between the observed and calculated site-scattering values and the observed and predicted mean bond-lengths.

Within the O sheet, there are two unique Na sites, Na(4) and Na(12), with a grand <Na–O> equal to 2.444 Å. Bond-valence calculations show that two anion

sites of the O sheet, OF(2) and OF(23), are occupied by O and F atoms in the ratio 1 : 1; together with F at the F(1) and F(2) sites, this gives a total of 3 F *apfu*, in accord with the F content determined by electronmicroprobe analysis (Table 1). Within the H sheets, there are two unique Na sites, [6]-coordinated Na(8) and [5]-coordinated Na(10), with <Na(8)-O> = 2.482and <Na(10)-O> = 2.481 Å.

The octahedrally coordinated sites of the AC block: There are six unique sites within this block, each coordinated by four O atoms and two F atoms. The following cations occur at these sites: Na, Ca, Mn²⁺ and Sr, ordered in terms of decreasing content in the AC block. There is complete order of Ca at the Ca site, with $\langle Ca-O \rangle = 2.383$ Å, and Na at two sites, Na(1) and Na(11), with $\langle Na-O \rangle = 2.415$ and 2.435 Å, respectively. The $\langle A(1-3) - O \rangle$ distances are 2.346, 2.278 and 2.309 Å, respectively. The highest scattering, 16 epfu, occurs at the A(3) site, and the longest mean distance involves the A(1) site, and so we assign the maximal amount of Na and 0.06 apfu Sr to the A(1) site. The A(1) and A(2) sites are dominated by Na, whereas the A(3) site is dominated by divalent cations. Ca and Mn²⁺. The resultant site-populations (Table 9) show reasonable agreement between observed and calculated <A-O> distances. Bond-valence calculations for O and F atoms are in accord with this distribution of cations (Table 10).

The Na sites of the I layer: There are two unique I layers in the crystal structure of sobolevite. One layer has two distinct Na sites, Na(3) and Na(7), tetrahedrally coordinated by O atoms, with $\langle Na-O \rangle$ equal to 2.300

P(1) P(2) P(3) Si(1) Si(2) M(1) M(2) A(1) A(2) A(3) A(4) A(5) A(6) Na(1) Na(2) Na(3) Na(4) Na(5) Σ 1.27 O(1) 0.24 0.21 0.23 1.95 0(2) 0.82 0.17 2.07 O(3) O(4) 1.11 0.76 2.01 0.97 0.38 0.41 0.13 1.89 O(5) O(6) 0.40 0.17 1.18 0.22 0.19 0.28 1.97 1.30 1.25 2.01 O(z)0.25 0.24 2.05 0.31 0(8) 1.06 0.55 0.27 0.22 2.10 O(9) 0.68 0.21 1.80 0.69 0.22 O(10) 1.04 0.95 0.22 2.21 O(11) O(12) 1.24 0.26 0.27 0.24 0.96 0.68 0.14 0.22 0.22 0.22 0.26 0.16 0.14 2.00 O(13) O(14) 1.30 2.00 2.01 2.01 2.00 2.03 1.99 1.02 0.65 0.18 O(14) O(15) O(16) O(17) 1.04 0.67 0.16 1.27 0.24 0.19 0.30 1.26 0.27 0.20 0.23 0.25 O(18) 1.28 0.23 O(19) 1.26 0.33 0.28 0.25 2.12 O(20) O(21) F(1) F(2) 0.23 0.24 0.25 1.92 1.99 1.18 0.24 0.20 1.25 0.26 0.22 0.24 0.20 0.16 0.17 0.17 0.21 0.21 0.21 0.21 0.15 0.23 1 22 Σ AG** 5.00 5.05 4.29 3.98 4.26 3.39 5.00 5.00 4.00 4.00 4.19 3.57 1.57 1.56 1.64 1.45 1.34 1.45 1.35 1.20 1.34 1.20 1.33 1.18 0.87 1.00 1.00 1.00

TABLE 6. BOND-VALENCE* (vu) TABLE FOR FOR POLYPHITE

1536

* bond valences (vu) from curves of Brown (1981) for Ca, Na, Sr, Mg, Nb, Ti⁴⁺, Zr, P, Si, Fe³⁺, Mn²⁺.

** aggregated charge.

	x	У	Ζ	U ₁₁	U ₂₂	U ₃₃	U_{23}	<i>U</i> ₁₃	U ₁₂	$U_{\rm eq}$
<i>M</i> (1)	0.30679(11)	0.65537(16)	0.14054(2)	0.0079(4)	0.0064(4)	0.0127(5)	-0.0023(3)	0.0002(3)	-0.0032(3)	0.0090(3)
M(2)	-0.03714(11)	0.84831(16)	-0.01221(2)	0.0061(4)	0.0038(4)	0.0056(4)	0.0011(3)	0.0013(3)	0.0034(3)	0.0051(3)
M(3)	0.52398(16)	0.5229(2)	0.06679(3)	0.0150(6)	0.0167(6)	0.0078(5)	0.0019(4)	0.0013(4)	0.0030(4)	0.0131(4)
M(4)	-0.25318(15)	0.9826(2)	0.06153(3)	0.0083(5)	0.0238(6)	0.0126(6)	0.0005(4)	0.0004(4)	0.0040(4)	0.0149(4)
A(1) A(2)	0.3720(3)	0.3620(5)	-0.20778(5)	0.0161(11)	0.0268(13)	0.0000(9)	-0.0013(8)	-0.0028(7)	-0.0019(9)	0.0144(6)
A(2)	0.1332(3)	0.3203(4)	-0.23131(0)	0.0133(12) 0.0247(10)	0.0100(11)	0.0169(12)	-0.0026(6)	0.0060(6)	-0.0010(8)	0.0154(7)
Ca	-0.10012(19)	-0.1402(3)	-0.14103(3) -0.16378(4)	0.0112(6)	0.0253(10)	0.0130(3) 0.0234(7)	-0.0014(0) -0.0034(5)	0.0040(7)	-0.0024(7)	0.0213(0)
Na(1)	-0.1112(4)	0.3569(5)	-0.21275(7)	0.0111(12)	0.0140(12)	0.0146(12)	0.0047(9)	-0.0019(9)	-0.0024(9)	0.0133(5)
Na(2)	0.4107(5)	0.3090(8)	-0.07527(10)	0.0291(18)	0.044(2)	0.0332(18)	-0.0154(15)	0.0024(13)	0.0099(15)	0.0353(9)
Na(3)	-0.1408(5)	0.1952(7)	0.20108(8)	0.0205(15)	0.044(2)	0.0215(14)	0.0198(13)	0.0057(11)	-0.0033(13)	0.0284(8)
Na(4)	0.0227(5)	0.5150(6)	0.06698(10)	0.0107(12)	0.0156(12)	0.0404(17)	-0.0004(12)	0.0085(11)	0.0004(10)	0.0220(6)
Na(5)	0.6813(4)	0.8643(6)	-0.08480(7)	0.0183(13)	0.0272(15)	0.0118(12)	0.0040(10)	-0.0024(10)	-0.0007(11)	0.0192(6)
Na(6)	0.3256(4)	0.1764(6)	0.19063(8)	0.0134(12)	0.0325(16)	0.0112(12)	0.0037(11)	0.0022(9)	-0.0038(11)	0.0190(6)
Na(7)	0.5909(5)	0.6472(8)	0.21383(11)	0.0148(15)	0.048(2)	0.050(2)	-0.0177(18)	0.0007(14)	-0.0029(14)	0.0376(10)
Na(8)	0.8201(4)	0.6544(5)	0.14646(7)	0.0128(12)	0.0167(13)	0.0164(13)	-0.0013(10)	-0.0038(10)	-0.0023(10)	0.0154(6)
Na(9)	0.0613(5)	0.3310(0)	-0.00309(9)	0.0101(13)	0.0171(13)	0.0243(14)	0.0035(11)	0.0050(11)	0.0008(10)	0.0190(6)
Na(10)	0.3834(5)	0.8641(6)	-0.01722(0) -0.15845(8)	0.0161(14)	0.0221(10) 0.0259(16)	0.0197(14)	0.0034(11)	0.0032(11)	-0.0006(13)	0.0205(6)
Na(12)	0.2575(5)	0.0006(5)	0.06354(8)	0.0295(15)	0.0120(12)	0.0208(13)	0.0097(10)	0.0111(11)	0.0076(10)	0.0204(6)
P(1)	0.1053(3)	0.7026(3)	0.21542(4)	0.0162(8)	0.0190(8)	0.0075(6)	0.0017(6)	0.0054(5)	-0.0005(6)	0.0140(3)
P(2)	0.1661(2)	0.8018(3)	-0.08850(4)	0.0071(7)	0.0152(7)	0.0148(7)	-0.0012(6)	-0.0020(5)	0.0006(6)	0.0125(3)
P(3)	-0.3834(3)	0.1110(4)	0.26344(5)	0.0152(8)	0.0216(8)	0.0193(8)	-0.0007(7)	0.0065(6)	-0.0047(7)	0.0185(3)
P(4)	0.6556(2)	0.3876(3)	-0.13664(4)	0.0114(6)	0.0110(6)	0.0047(6)	0.0018(5)	-0.0042(5)	0.0047(6)	0.0092(3)
Si(1)	0.0150(2)	0.1477(3)	0.12600(4)	0.0062(7)	0.0064(7)	0.0133(7)	0.0029(5)	-0.0037(5)	0.0017(5)	0.0088(3)
SI(2)	-0.3133(2)	0.3426(3)	-0.00553(4)	0.0029(6)	0.0129(8)	0.0112(7)	-0.0013(5)	-0.0015(5)	0.0045(5)	0.0091(3)
SI(3)	0.5846(3)	0.1624(3) 0.2607(4)	0.13313(5)	0.0169(8)	0.0091(7)	0.0102(7)	0.0024(5)	0.0033(6)	-0.0042(6)	0.0120(3)
O(1)	0.2574(5)	0.3007(4)	0.00121(4)	0.0129(7) 0.034(3)	0.0146(6)	0.0090(7) 0.024(3)	-0.0024(6)	0.0049(8)	-0.0033(6)	0.0121(3) 0.0252(12)
OF(2)	0.5262(7)	0.8184(9)	0.03928(10)	0.011(2)	0.025(2)	0.024(0)	-0.0043(15)	0.0010(14)	0.007(2)	0.0121(9)
O(3)	0.5160(8)	0.4078(9)	0.15191(12)	0.023(2)	0.011(2)	0.020(2)	-0.0110(17)	-0.0029(18)	0.0042(17)	0.0179(10)
O(4)	0.15912(10)	0.52131(10)	–0.09211(19)	0.041(4)	0.007(2)	0.058(4)	-0.010(2)	0.011(3)	0.003(2)	0.0351(15)
O(5)	0.6809(6)	0.2961(11)	-0.09997(10)	0.012(2)	0.038(3)	0.0000(15)	0.0148(17)	-0.0042(13)	-0.0077(18)	0.0165(10)
O(6)	0.4948(8)	0.9219(11)	0.14830(12)	0.028(2)	0.024(2)	0.015(2)	-0.0007(18)	-0.0068(17)	-0.014(2)	0.0225(11)
O(7)	0.6624(9)	0.6698(10)	-0.13496(14)	0.038(3)	0.016(2)	0.022(2)	-0.0082(18)	0.001(2)	-0.014(2)	0.0256(12)
0(8)	0.4622(7)	0.3099(12)	-0.15261(16)	0.011(2)	0.031(3)	0.037(3)	0.001(2)	-0.009(2)	-0.0109(19)	0.0267(12)
O(9)	0.1137(9)	0.9077(12)	-0.07250(12)	0.030(3)	0.036(3)	0.0094(19)	-0.013(2)	0.0012(19)	-0.025(3)	0.0277(13) 0.0208(10)
O(10)	0.7112(8)	0.3219(9)	0.03483(11)	0.031(3)	0.012(2)	0.003(2)	-0.0018(14)	0.0047(17)	-0.0016(17)	0.0152(9)
O(12)	0.5642(7)	0.1773(10)	0.09333(13)	0.0057(19)	0.035(3)	0.017(2)	0.007(2)	-0.0011(16)	0.0016(17)	0.0194(10)
O(13)	-0.0306(6)	0.1285(10)	0.08699(11)	0.0109(18)	0.022(2)	0.012(2)	-0.0066(17)	0.0085(14)	0.0069(16)	0.0147(9)
O(14)	0.0025(6)	0.8718(9)	-0.06568(11)	0.0015(16)	0.022(2)	0.0099(18)	0.0050(16)	-0.0015(13)	0.0048(15)	0.0111(8)
O(15)	0.4583(6)	0.3425(11)	-0.01683(13)	0.0000(17)	0.034(3)	0.018(2)	-0.0048(19)	0.0032(15)	0.0023(17)	0.0171(10)
O(16)	-0.1887(8)	0.1441(10)	0.14434(12)	0.020(2)	0.025(3)	0.010(2)	0.0019(18)	-0.0039(17)	-0.0031(19)	0.0185(10)
0(17)	0.1439(9)	0.5665(13)	0.24806(14)	0.032(3)	0.036(3)	0.018(2)	-0.005(2)	0.009(2)	0.003(3)	0.0285(12)
O(18)	0.1328(7)	0.9289(11)	-0.12219(13)	0.014(2)	0.035(3)	0.012(2)	0.011(2)	-0.0024(16)	-0.001(2)	0.0204(10)
O(20)	0.1413(9)	0.2100(12) 0.1223(11)	-0.01050(15)	0.039(3)	0.033(3)	0.073(2)	-0.004(2)	0.0143(19)	-0.005(2)	0.0274(12) 0.0277(12)
0(21)	0.1163(9)	0.1220(11) 0.4017(12)	0.13761(16)	0.029(3)	0.035(3)	0.039(3)	-0.016(3)	0.000(2)	-0.033(2)	0.0217(12) 0.0340(15)
O(22)	0.8112(10)	0.2993(17)	-0.15579(18)	0.033(3)	0.068(5)	0.040(3)	0.005(3)	0.009(3)	0.035(3)	0.047(2)
OF(23)	0.7483(8)	0.6789(10)	0.08908(14)	0.017(2)	0.016(2)	0.024(2)	-0.0016(19)	-0.0000(19)	-0.0018(17)	0.0191(10)
O(24)	-0.2339(7)	0.0962(10)	-0.02273(12)	0.021(2)	0.022(2)	0.013(2)	0.0092(18)	0.0053(17)	0.0117(19)	0.0185(10)
O(25)	-0.2344(7)	0.5879(9)	-0.02360(11)	0.024(2)	0.0122(19)	0.0094(17)	0.0024(15)	0.0075(15)	-0.0082(16)	0.0149(9)
O(26)	-0.4078(10)	0.1962(13)	0.22924(17)	0.037(3)	0.030(3)	0.042(3)	-0.004(3)	0.003(3)	0.008(3)	0.0360(14)
0(27)	0.2867(8)	0.3709(10)	0.040/3(12)	0.029(2)	0.017(2)	0.013(2)	0.0069(17)	-0.0082(17)	-0.0073(18)	0.0201(10)
0(20)	-0.1952(10)	0.2096(12)	0.27935(15)	0.044(3)	0.020(3)	0.019(2)	0.005(2)	-0.012(2)	0.002(2)	0.0308(13)
O(30)	0.1089(8)	0.9843(10)	0.22244(14)	0.022(2)	0.020(2)	0.027(2)	0.0035(19)	0.012(2) 0.017(2)	-0.0023(19)	0.0226(11)
O(31)	-0.0822(7)	0.6267(12)	0.20039(14)	0.0051(19)	0.037(3)	0.023(2)	0.004(2)	-0.0013(17)	-0.0043(19)	0.0217(11)
O(32)	0.2749(8)	0.6371(11)	0.19382(15)	0.027(3)	0.027(3)	0.022(3)	-0.004(2)	0.008(2)	0.002(2)	0.0252(12)
O(33)	-0.0630(7)	0.8481(9)	0.03138(11)	0.024(2)	0.016(2)	0.0037(18)	0.0023(15)	0.0018(17)	-0.0070(18)	0.0146(9)
O(34)	-0.3879(8)	0.8252(9)	0.26630(14)	0.020(2)	0.011(2)	0.028(3)	0.0101(17)	-0.0034(18)	0.0049(17)	0.0197(11)
F(1)	0.1321(8)	0.1001(9)	-0.19090(13)	0.034(2)	0.015(2)	0.038(3)	0.002(2)	0.013(2)	-0.0014(19)	0.0288(10)
F(2)	0.1353(6)	0.6007(8)	-0.18266(10)	0.0129(16)	0.0116(17)	0.0173(17)	0.0002(14)	-0.0006(13)	0.0002(14)	0.0140(7)

and 2.400 Å, respectively, and one Na(6) site coordinated by five O atoms with an $\langle Na(6)-O \rangle$ distance of 2.447 Å. The other layer also has two distinct Na sites, Na(2) and Na(5), tetrahedrally coordinated by O atoms

with <Na-O> 2.281 and 2.352 Å, respectively, and one Na(9) site octahedrally coordinated by six O atoms with an <Na(9)-O> distance of 2.471 Å. As with polyphite, the bond-valence sums incident at the Na sites of the I

layer (Table 10) indicate occupancy by Na rather than (Mg,Mn) as assigned in previous work.

On the basis of the SREF results and bond-valence calculations, the end-member formula of sobolevite is Na_{12} Ca ($NaCaMn^{2+}$) Ti⁴⁺₂ (Ti⁴⁺Mn) [Si₂O₇]₂ (PO₄)₄ O₃ F₃, space group *Pc*, Z = 2.

Structure topology

The *TS* block occurs at $z \approx 0.06$ and 0.56 (Fig. 5b). The O sheet at $z \approx 0.06$ is a local close-packing of M(3,4) and Na(4,12) octahedra identical to the O sheet in polyphite (Figs. 2a, b). The *Na* octahedra and M(3,4) octahedra form two types of *brookite* chains within the O sheet. As we have shown for polyphite and quadruphite (Sokolova & Hawthorne 2001), the size of a regular *M* octahedron is less than the size of an irregular *Na* octahedron, and in sobolevite, substitution of Mg and Mn²⁺ (r [^[6]Mg] = 0.72 and r [^[6]Mn²⁺] = 0.83 Å) (Table 9) for Na (^[6]r = 1.02 Å) (Shannon 1976) promotes linkage between the two compositionally different types of *brookite* chains. In sobolevite, the total content of (Mg + Mn²⁺) at the M(3) and M(4) sites of the O sheet is 1.68 *apfu*. In polyphite, it is 0.30 *apfu* at

FIG. 5. The crystal structures of (a) polyphite projected along [100]; (b) sobolevite projected along [010], and (c) quadruphite projected along [100]. The Na-dominant and M²⁺-dominant A-octahedra of the AC block are blue and pink, the [6–8]-coordinated Na polyhedra of the TS and AC blocks and intermediate layers are light navy-blue, the Ca octahedra of the AC block are dark pink, the [4–5]-coordinated Na polyhedra of I layers and TS block are greenish blue, the P tetrahedra are purple, the Si tetrahedra are orange, F atoms are shown as yellow circles, OF sites are shown as orange circles.

the M(2) site, about 2.5 times less in terms of an M site of the O sheet. In sobolevite, increase in M^{2+} at the Msites results in partial substitution of O^{2-} for F^- in the O sheet. In accord with the bond-valence requirements of the two sites, OF(2) and OF(23) are occupied by O and F atoms: ($O_{0.5}F_{0.5}$) (Table 10). Each site receives bond valence from two M sites and one Na site of the O sheet and one Na site of the adjacent H sheet. These two OF sites form a common edge in a brookite chain of Moctahedra. In each of the two unique H sheets (located at $z \approx 0$ and 0.14), [Si₂O₇] groups share common edges with M(1) and M(2) octahedra, giving rise to the voids that incorporate the [5]-coordinated Na(10) polyhedra or Na(8) octahedra (Fig. 5b). The central O sheet and adjacent H sheets link to each other through common vertices of (SiO₄) tetrahedra, M(1,2) octahedra and Na(8,10) polyhedra of an H sheet and M(1,2) and Na(4,12) octahedra of an O sheet.

The thickness of the AC block in sobolevite is about 6 Å along the c axis, *i.e.*, twice as small as in polyphite (Figs. 3a, 6a). The topologies of the AC block in sobolevite, polyphite and quadruphite (Sokolova & Hawthorne 2001) are identical (Figs. 5a–c). There are three A sites, two Na sites and one Ca site within the AC block, corresponding to two unique trimeric clusters. These trimeric clusters link to form a convoluted chain of octahedra (Fig. 6b) that extends in the b direction. Combination of two clusters corresponds to a sequence of two [F(1)–F(2)] edges of 2.722 and 2.729 Å, with an \angle F–F–F = 165.9° (sum = 5.451 Å), defining the b repeat

FIG. 6. The crystal structure of sobolevite: (a) the AC block viewed down [010]; (b) the infinite chain of trimeric clusters; (c) and (d) close-packed layers of P, Ca, Na and A cations at $z \approx 0.28$ and 0.35. Legend as in Figure 5.

and giving a b unit-cell parameter of 5.4106(4) Å. The ratio of divalent to monovalent cations is 0.61, close to the corresponding value of 0.60 in polyphite.

In sobolevite, the *I* layer is characterized by *Na* sites with coordination numbers [4], [5] and [6] (Table 8, Figs. 4c, d). In spite of irregularity of the *I* layer, its topology is identical in polyphite (Fig. 4b), sobolevite and quadruphite (Figs. 4e, f). Its composition is also very simple, and the only cations involved are Na and P, the only difference being the coordination numbers

of the Na atoms. In accord with bond-valence requirements, they change from structure to structure for better articulation of the *TS* and *AC* blocks.

COMPARISON WITH PREVIOUS RESULTS

Polyphite

(1) The space group has been changed from P1 to $P\overline{1}$.

TABLE 8. SELECTED INTERATOMIC DISTANCES (Å) AND ANGLES (°) FOR SOBOLEVITE

M(1)-O(1) M(1)-O(3) M(1)-O(6) M(1)-O(9) M(1)-O(21) M(1)-O(32) <m(1)-o></m(1)-o>	1.828(6) 2.030(5) 1.976(5) 1.932(6) 1.923(5) 2.191(6) 1.98	M(2)-O(14) M(2)-O(20) M(2)-O(24) M(2)-O(25) M(2)-O(29) M(2)-O(33) <m(2)-o></m(2)-o>	2.209(5) 1.946(6) 1.963(5) 2.019(5) 1.864(5) 1.790(4) 1.965	M(3)-O(1) M(3)-OF(2) M(3)-O(11) M(3)-O(12) M(3)-OF(23) M(3)-O(27) <m(3)-of></m(3)-of>	1.946(6) 1.951(5) 2.193(5) 2.170(5) 1.973(5) 2.103(5) 2.056	M(4)-OF(2) M(4)-O(11) M(4)-O(12) M(4)-O(13) M(4)-OF(23) M(4)-O(33) <m(4)-of></m(4)-of>	1.972(5) 2.140(5) 2.152(6) 1.998(5) 1.988(5) 2.006(5) 2.043
A(1)-O(8) A(1)-O(17) A(1)-O(19) A(1)-O(34) A(1)-F(1) A(1)-F(2) <a(1)-of></a(1)-of>	2.313(6) 2.378(7) 2.375(7) 2.284(6) 2.342(6) 2.388(5) 2.346	A(2)-O(17) A(2)-O(19) A(2)-O(28) A(2)-O(30) A(2)-F(1) A(2)-F(2) <a(2)-of></a(2)-of>	2.253(7) 2.325(7) 2.392(8) 2.157(6) 2.237(6) 2.303(5) 2.278	A(3)-O(4) A(3)-O(8) A(3)-O(18) A(3)-O(22) A(3)-F(1) A(3)-F(2) <a(3)-of></a(3)-of>	2.271(7) 2.345(6) 2.311(6) 2.371(8) 2.344(6) 2.212(5) 2.309	Ca–O(7) Ca–O(18) Ca–O(22) Ca–O(28) Ca–F(1) Ca–F(2) <ca–of></ca–of>	2.338(6) 2.325(5) 2.485(8) 2.400(6) 2.409(5) 2.338(4) 2.383
			[6]-coordina	ted Na-sites			
Na(1)-O(17) Na(1)-O(22) Na(1)-O(28) Na(1)-O(34) Na(1)-F(1) Na(1)-F(2) <na(1)-of></na(1)-of>	2.507(7) 2.427(8) 2.437(7) 2.312(6) 2.348(6) 2.458(5) 2.415	Na(4)-O(1) Na(4)-O(11) Na(4)-O(13) Na(4)-OF(23) Na(4)-O(27) Na(4)-O(33) <na(4)-of></na(4)-of>	2.605(7) 2.709(7) 2.283(6) 2.357(6) 2.335(7) 2.369(6) 2.443	Na(8)-O(3) Na(8)-O(9) Na(8)-O(16)b Na(8)-O(21) Na(8)-O(23) Na(8)-OF(31) <na(8)-o></na(8)-o>	2.552(6) 2.511(8) 2.652(6) 2.544(8) 2.362(6) 2.266(6) 2.482	Na(9)-O(4) Na(9)-O(5) Na(9)-O(14)a Na(9)-O(24) Na(9)-O(25) Na(9)-O(29) <na(9)-o></na(9)-o>	2.239(8) 2.289(5) 2.532(6) 2.618(7) 2.643(6) 2.504(8) 2.471
Na(11)-O(7) Na(11)-O(8) Na(11)-O(18) Na(11)-O(19) Na(11)-F(1) Na(11)-F(2) <na(11)-o></na(11)-o>	2.389(7) 2.484(7) 2.392(7) 2.414(6) 2.504(7) 2.427(5) 2.435	Na(12)-O(1) Na(12)-OF(2) Na(12)-O(12) Na(12)-O(13) Na(12)-O(27) Na(12)-O(33) <na(12)-of></na(12)-of>	2.351(7) 2.401(6) 2.608(6) 2.399(5) 2.222(6) 2.684(7) 2.444				
			[4]-coordina	ted Na-sites			
Na(2)–O(4) Na(2)–O(5) Na(2)–O(10) Na(2)–O(15) <na(2)–o></na(2)–o>	2.196(8) 2.209(6) 2.333(7) 2.386(7) 2.281	Na(3)–O(16) Na(3)–O(26) Na(3)–O(30) Na(3)–O(31) <na(3)–o></na(3)–o>	2.328(6) 2.262(8) 2.238(7) 2.372(7) 2.3	Na(5)-O(5) Na(5)-O(7) Na(5)-O(10) Na(5)-O(14) <na(5)-o></na(5)-o>	2.416(6) 2.291(7) 2.339(6) 2.362(5) 2.352	Na(7)O(26) Na(7)O(31) Na(7)O(32) Na(7)O(34) <na(7)o></na(7)o>	2.519(8) 2.408(7) 2.337(7) 2.336(8) 2.4
			[5]-coordina	ted Na-sites			
Na(6)–O(3) Na(6)–O(6) Na(6)–O(26) Na(6)–O(30) Na(6)–O(32) <na(6)–o></na(6)–o>	2.468(7) 2.552(7) 2.388(8) 2.306(6) 2.523(7) 2.447	Na(10)–OF(2) Na(10)–O(10) Na(10)–O(24) Na(10)–O(25) Na(10)–O(29) <na(10)–of></na(10)–of>	2.330(5) 2.309(6) 2.618(7) 2.643(6) 2.504(8) 2.481				
Si(1)–O(9) Si(1)–O(13) Si(1)–O(16) Si(1)–O(21) <si(1)–o></si(1)–o>	1.575(5) 1.603(5) 1.659(6) 1.608(6) 1.611	Si(2)–O(11) Si(2)–O(15) Si(2)–O(24) Si(2)–O(25) <si(2)–o></si(2)–o>	1.643(5) 1.655(5) 1.620(5) 1.630(5) 1.637	Si(3)–O(3) Si(3)–O(6) Si(3)–O(12) Si(3)–O(16) <si(3)–o></si(3)–o>	1.619(5) 1.587(6) 1.617(5) 1.646(6) 1.617	Si(4)–O(15) Si(4)–O(20) Si(4)–O(27) Si(4)–O(29) <si(4)–o></si(4)–o>	1.638(5) 1.588(6) 1.608(5) 1.628(6) 1.616
Si(2)–O(15)–Si Si(1)–O(16)–Si	(4) (3)	137.2(3) 137.1(3)					
P(1)-O(17) P(1)-O(30) P(1)-O(31) P(1)-O(32) <p(1)-o></p(1)-o>	1.528(6) 1.551(6) 1.487(5) 1.566(6) 1.533	P(2)-O(4) P(2)-O(10) P(2)-O(14) P(2)-O(18) <p(2)-o></p(2)-o>	1.526(6) 1.564(5) 1.569(5) 1.538(5) 1.549	P(3)-O(19) P(3)-O(26) P(3)-O(28) P(3)-O(34) <p(3)-o></p(3)-o>	1.599(6) 1.465(7) 1.543(7) 1.551(5) 1.54	P(4)-O(5) P(4)-O(7) P(4)-O(8) P(4)-O(22) <p(4)-o></p(4)-o>	1.571(4) 1.529(6) 1.540(5) 1.463(7) 1.526

a: x, y - 1, z; b: x + 1, y, z.

(2) The chemical formula has been changed from Na₁₇ Ca₃ Mg (Ti⁴⁺,Mn)₄ [Si₂O₇]₂ (PO₄)₆ O₂ F₆ and Z = 1 to Na₅ (Na₄Ca₂) Ti⁴⁺₂ [Si₂O₇] (PO₄)₃ O₂ F₂ and Z = 2. There are differences in the content of Na (17 *versus* 18), Ca (3 *versus* 4), O (2 *versus* 4) and F (6 *versus* 4 *apfu*).

(3) The [4]-coordinated cation sites of the intermediate layer were originally assigned as partly occupied by Mg and Mn; here, they are assigned as completely occupied by Na, as indicated by the bond-valence incident at these sites (Table 6).

Sobolovite

(1) The space group has been changed from P1 to Pc.

(2) The chemical formula has been rearranged from Na₁₁ (Na, Ca) (Mg, Mn) Ti⁴⁺₄ [Si₂O₇]₂ (PO₄)₄ O₃ F₃ and Z = 2 to Na₁₂ Ca (Na Ca Mn) Ti⁴⁺₂ (Ti⁴⁺ Mn) [Si₂O₇]₂ (PO₄)₄ O₃ F₃ and Z = 2, with changes in Na (12 versus 13), Ca (1 versus 2) and Ti (4 versus 3 apfu).

(3) The [4]-coordinated cation sites of the intermediate layer were originally assigned as partly occupied by Mg and Mn; here, they are assigned as completely occupied by Na, as indicated by the bond-valences incident at these sites (Table 10).

CLOSE PACKING OF CATION LAYERS IN POLYPHITE AND SOBOLEVITE

The O sheet in both polyphite and sobolovite has the form $[MO_2]$ (Fig. 2a); this sheet is close packed in the plane, and hence the layer of cations (designated 1 in Fig. 1) (Na and Ti⁴⁺) are close packed in that they occur at the vertices of a 3⁶ net (Fig. 2b). The next layer of cations in the H sheet (layer 2 in Fig. 1) lies at the *Si*(1), *Si*(2), *M*(1) and *Na*(3) sites, and these are also arranged in accord with a 3⁶ net (Fig. 2d). Next is the *I* layer (Figs.1, 4), which contain phosphate tetrahedra and Na in [4]-, [5]- and [6]-coordination. Despite the unusual appearance of the polyhedron sheets in this layer (Figs. 4b–f), the P and Na cations are at the vertices of a 3⁶ net (Fig. 2b).

(Fig. 4a). Adjacent to the *I* layer is the *AC* block with two symmetrically distinct cation-layers (Fig. 1, layers 4 and 5). The *AC* block in sobolovite is shown in Figure 6a. There are two layers of cations within this block (compare Fig.1 and Figs. 5a, b), and these are shown in Figures 6c, d. Again, the cations, (Na,Ca) and P, lie at the vertices of a 3^6 net, even though the coordination numbers of the Na cations here are very different from the coordination numbers of Na in the *I* layer.

All these cation layers in polyphite are shown in Figure 7, and all are characterized by a plane unit-cell of approximately 5.4 \times 7 Å with $\gamma \approx 90^{\circ}$. Although each layer of cations is close-packed (that is, they lie at the vertices of a 3⁶ net), inspection of the cation configurations in layers adjacent in the c direction (orthogonal to the plane of the figure) relative to the plane unit-cell shows that adjacent layers are not close packed, that is, they do not stack in a cubic or hexagonal close-packed arrangement. The reason for this involves the interleaving anion-layers. The anions within the O sheet form close-packed layers. However, the first layer of anions within the heteropolyhedral sheet deviates significantly from plane close-packing (i.e., they do not lie at the vertices of a 3^6 net), and the ensuing anion-layers deviate further and further from close packing. These deviations are sufficient to prevent three-dimensional close-packing of all ions within the structure.

This type of relation between close packing of cations and non-close-packing of anions is characteristic also of sobolovite and quadruphite, and inspection of a few of the thirty or so related structures containing the TS block suggests that planar close-packing of cations is a common feature in these minerals. It seems likely that this feature plays an important role in the crystal chemistry of these structures, and a detailed examination of these minerals is currently in progress.

SUMMARY

(1) Based on the SREF results and bond-valence calculations, the end-member formulae of polyphite and sobolevite are as follows:

TABLE 9. REFINED OCTAHEDRAL-SITE SCATTERING VALUES AND ASSIGNED SITE-POPULATIONS FOR SOBOLEVITE

	Scattering species	SREF	Site population	Predicted	<x \$\$\phi_calc}*<="" th=""><th><x\$\$_obs< th=""></x\$\$_obs<></th></x>	<x\$\$_obs< th=""></x\$\$_obs<>
		(epfu)	(apfu)	(epfu)	(Å)	(Å)
M(1)	Nb, Ti	51.6(1)	1.50 Ti + 0.10 Fe ³⁺ + 0.09 Zr + 0.27 Nb + 0.04 Mg	50.8	1.999	1.98
M(2)	Nb, Ti	49.8(1)	1.60 Ti + 0.10 Fe ³⁺ + 0.26 Nb + 0.04 Mg	48.9	1.994	1.965
M(3)	Nb, Ti	46.2(1)	0.80 Ti + 0.49 Mn + 0.42 Mg + 0.20 Nb + 0.09 Zr	46.7	2.073	2.056
M(4)	Nb, Ti	46.0(1)	0.94 Ti + 0.45 Mn + 0.32 Mg + 0.29 Nb	47.7	2.059	2.043
A(1)	Ca, Na	26.0(1)	1.54 Na + 0.40 Ca + 0.06 Sr	27.2	2.4	2.346
A(2)	Ca, Na	27.2(1)	0.78 Na + 0.56 Mn + 0.32 Ca + 0.34 🗆	29	2.332	2.278
A(3)	Ca, Na	32.0(1)	0.92 Na + 0.54 Ca + 0.54 Mn	34.4	2.343	2.309

FIG. 7. "Close-packed" cation layers in the crystal structure of polyphite formed by (a) M(2) and Na(4) at $z \approx 1.0$, line labeled 1 in Figure 1; (b) M(1), Na(3), Si(1) and Si(2) at $z \approx 0.90$, line labeled 2 in Figure 1; (c) Na(1), Na(2), Na(5) and P(2) at $z \approx 0.78$, line labeled 3 in Figure 1; (d) A(1), A(2), A(5) and P(2) at $z \approx 0.78$, line labeled 3 in Figure 1; (d) A(1), A(2), A(5) and P(3) at $z \approx 0.67$, line labeled 4 in Figure 1; (e) A(3), A(4), A(6) and P(1) at $z \approx 0.56$, line labeled 5 in Figure 1.

polyphite Na₅ (Na₄Ca₂) Ti₂ [Si₂O₇] (PO₄)₃ O₂ F₂

sobolevite Na $_{12}$ Ca (Na Ca Mn) Ti $_2$ (Ti Mn) [Si $_2O_7]_2$ (PO4)4 O3 F3.

(2) Polyphite is triclinic, $P\overline{1}$, Z = 2. Sobolevite is monoclinic, Pc, Z = 2.

(3) There is a close relation among the structures of polyphite, sobolevite and quadruphite, Na_{14} Ca_2 Ti_4

 $[Si_2O_7]_2$ (PO₄)₄ O₄ F₂. This type of structure consists of two structural blocks, Ti-silicate (*TS*) and alkali-cation (*AC*), stacked along [001]. The *TS* block has a threelayered structure consisting of a central sheet of octahedra (the O sheet) and two adjacent heteropolyhedral sheets (the H sheets). The *AC* block can be described in terms of nacaphite-like trimeric clusters; as in nacaphite, these trimeric clusters link along [100] to form an infinite chain. The *TS* and *AC* blocks join together

	<i>Si</i> (1)	Si (2)	Si (3)	Si (4)	Р (1)	P (2)	P (3)	P (4)	М (1)	M (2)	M (3)	M (4)	A (1)	A (2)	A (3)	Ca	<i>Na</i> (1)	Na (2)	Na (3)	Na (4)	Na (5)	<i>Na</i> (6)	Na (7)	Na (8)	Na (9)	Na (10)	<i>Na</i> (11)	<i>Na</i> (12)	Σ
O(1)									0.99		0.66									0.15								0.23	2.03
OF(2)											0.59	0.56																0.18	1.53
O(3)			1.01						0.58													0.18		0.16					1.93
O(4)						1.29									0.30			0.30							0.28				2.17
O(5)								1.14										0.29			0.20				0.25				1.88
0(6)			1.10					4.00	0.66							0.07					0.05	0.16					0.04		1.92
0(7)								1.28	5				0.07		0.00	0.37					0.25						0.21		2.11
0(0)	1 12							1.24	074				0.27		0.20									0.17			0.10	>	2.05
0(9)	1.15					1 16			0.74									0.22			0.22			0.17		0.24			1.96
0(10)	0.95					1.10					0.35	0.41						0.23		0.12	0.20					0.24			1.84
0(12)	0.00		1.01								0.39	0.40								0.72								0 14	1.04
O(13)	1.05										0,00	0.59								0.26								0.21	2.11
O(14)						1.15				0.36											0.22				0.16				1.89
O(15)		0.92	2	0.95														0.21											2.09
O(16)	0.91		0.94																0.24					0.13					2.22
O(17)					1.29								0.24	0.25			0.17												1.95
O(18)						1.25									0.18	0.38											0.21		2.02
O(19)							1.06	i					0.24	0.21													0.20)	1.71
O(20)				1.10	1					0.70																			1.80
0(21)	1.04							4.00	0.76						0.04	0.05	0.00							0.16					1.96
0(22)								1.55)		0 55	0 54			0.24	0.25	0.20			0.40				0.40					2.24
OF(23)		1.01	1							0.67	0.55	0.54								0.19				0.19	0.14	0.14			1.47
0(24)		0.08	2							0.07															0.14	0.14			1.90
0(26)		0.50	,				1 54			0.00									0 27			0.21	0 17		0.14	0.14			2 19
0(27)				1 04			1.01				0.45								0.21	0.23		0.2.1	0.77					0.29	2.01
O(28)							1.23							0.19		0.31	0.19												1.92
O(29)				0.98						0.87															0.17	0.17			2.19
O(30)					1.21									0.31					0.28			0.25							2.05
O(31)					1.44														0.22				0.20	0.26					2.12
O(32)					1.16				0.39													0.17	0.23						1.95
O(33)										1.06		0.58								0.22								0.13	1.99
O(34)							1.21						0.29				0.24						0.23						1.97
F(1)													0.19	0.20	0.20	0.22	0.16										0.12	2	1.09
L/21													0.17	0.17	U.27	U.26	U.19										0.14	k –	1.14

TABLE 10. BOND-VALENCE* (vu) TABLE FOR FOR SOBOLEVITE

* Bond valences (vu) from curves of Brown (1981) for Na, Sr, Mg, Nb, Ti^{4*}, Zr, P, Si, Fe^{3*} and Mn^{2*}, and from Brown & Altermatt (1985) for Ca. ** Aggregate charge.

with an intermediate layer, the *I* layer, of Na polyhedra and P tetrahedra between them.

(4) Sobolevite and quadruphite are topologically identical, but the unit cell of sobolevite is twice that of quadruphite. The doubling of the c unit-cell parameter in sobolevite results from Ca–Na order within the AC block.

(5) Despite the gross differences in structure between the *TS* and *AC* blocks, a prominent feature of the structures of polyphite, sobolovite and quadruphite is that *all* cations are arranged as close-packed layers parallel to (001) and characterized by a plane unit-cell approximately 5.4×7 Å with $\gamma \approx 90^{\circ}$.

ACKNOWLEDGEMENTS

FCH was supported by a Canada Research Chair in Crystallography and Mineralogy and by Major Facilities Access, Research Tools and Equipment, and Discovery Grants from the Natural Sciences and Engineering Research Council of Canada, and by Innovation Grants from the Canadian Foundation for Innovation. We thank the referees, Drs. Herta Effenberger and Giovanni Ferraris, and Associate Editor André-Mathieu Fransolet, for their pertinent comments.

References

- BELOV, N.V., GAVRILOVA, G.S., SOLOV'EVA, L.P. & KHALILOV, A.D. (1977): Refined structure of lomonosovite. *Sov. Phys. Dokl.* 22, 422-424.
- BROWN, I.D. (1981): The bond-valence method: an empirical approach to chemical structure and bonding. *In* Structure and Bonding in Crystals II (M. O'Keeffe and A. Navrotsky, eds.). Academic Press, New York, N.Y. (1–30).
- & ALTERMATT, D. (1985): Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Crystallogr.* **B41**, 244-247.
- CHRISTIANSEN, C.C., JOHNSEN, O. & MAKOVICKY, E. (2003): Crystal chemistry of the rosenbuschite group. *Can. Mineral.* **41**, 1203-1224.

- _____, MAKOVICKY, E. & JOHNSEN, O. (1999): Homology and typism in heterophyllosilicates. *Neues Jahrb. Mineral.*, *Abh.* **175**, 153-189.
- EGOROV-TISMENKO, YU.K. & SOKOLOVA, E.V. (1990): Homologous series seidozerite-nacaphite. *Mineral. Zh.* **12**(1), 40-49 (in Russ.).
- ERCIT, T.S., COOPER, M.A. & HAWTHORNE, F.C. (1998): The crystal structure of vuonnemite, Na₁₁Ti⁴⁺Nb₂(Si₂O₇)₂ (PO₄)₂O₃(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. *Can. Mineral.* **37**, 1311-1320.
- FERRARIS, G. (1997): Polysomatism as a tool for correlating properties and structure. *In* Modular aspects of minerals. *Eur. Mineral. Union, Notes in Mineralogy* 1, (S. Merlino, ed.). Eötvös University Press, Budapest, Hungary (275-295).
- IBERS, J.A. & HAMILTON, W.C., eds. (1992): International Tables for X-ray Crystallography IV. Kynoch Press, Birmingham, U.K.
- KHOMYAKOV, A.P. (1995): Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, U.K.
- _____, KUROVA, T.A. & CHISTYAKOVA, N.I. (1983): Sobolevite Na₁₄Ca₂MnTi₃P₄Si₄O₃₄ a new mineral. *Zap. Vses. Mineral. Obshchest.* **112**, 456-461 (in Russ.).
- NECHELYUSTOV, G.N., SOKOLOVA, E.V. & DORO-KHOVA, G.I. (1992): Quadruphite Na₁₄CaMgTi₄[Si₂O₇]₂ [PO₄]₄O₄F₂ and polyphite Na₁₇Ca₃Mg(Ti,Mn)₄[Si₂O₇]₂ [PO₄]₆O₂F₆ – new minerals of the lomonosovite family. *Zap. Vser. Mineral. Obshchest.* **121**(1), 105-112 (in Russ.).
- POUCHOU, J.L. & PICHOIR R.F. (1985): "PAP" (phi-rho-Z) procedure for improved quantitative microanalysis. *In* Microbeam Analysis (J.T. Armstrong, ed.). San Francisco Press, San Francisco, California (104-106).
- SHANNON, R.D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751-767.

- SHELDRICK, G.M. (1997): SHELX–97: Program for the Solution and Refinement of Crystal Structures. Siemens Energy and Automation, Madison, Wisconsin.
- _____ (1998): SADABS User Guide, University of Göttingen, Göttingen, Germany.
- SIMONOV, V.I. & BELOV, N.V. (1960): The determination of the crystal structure of seidozerite. *Sov. Phys. Crystallogr.* 4, 146-157.
- SOKOLOVA, E.V. (1998): Polysomatic series seidozerite-nacaphite. Zap. Vser. Mineral. Obshchest. **127**(2), 111-114 (in Russ.).
- _____, EGOROV-TISMENKO, YU.K. & KHOMYAKOV, A.P. (1987a): Special features of the crystal structure of Na₁₄ Ca Mg Ti₄ [Si₂O₇]₂ [PO₄] O₄ F₂ – homologue of sulphohalite and lomonosovite structure-types. *Mineral. Zh.* 9(3), 28-35 (in Russ.).
- _____, & _____(1987b): Crystal structure of Na₁₇Ca₃Mg(Ti,Mn)₄[Si₂O₇]₂[PO₄]₆O₂F₆, a new representative of the family of layered titanium silicates. *Sov. Phys. Dokl.* **32**, 344-347.
- _____, ____& ____(1988): Crystal structure of sobolevite. *Sov. Phys. Dokl.* **33**, 711-714.
- _____, ____& ____(1989): Crystal structure of nacaphite. Sov. Phys. Dokl. 34, 9-11.
- <u>k</u> (2004): The crystal chemistry of silicate minerals with chains of (TiO₆) octahedra. *Can. Mineral.* **42**, 807-824.
- Received March 1, 2005, revised manuscript accepted July 28, 2005.