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absTracT

The	bismuthinite	–	aikinite	(Bi2S3	–	CuPbBiS3)	series	of	ordered	derivatives	(superstructures)	is	based	on	the	incremental	Bi	
+	vacancy	! Pb + Cu substitution. Selected structures of this series, gladite, salzburgite, paarite and krupkaite, were refined as 
commensurately	modulated	structures	using	the	superspace	approach.	The	superspace	group	Pmcn(0b0)00s	was	used	for	all	these	
structures,	b	assuming	the	value	of	1/3,	1/4,	1/5,	and	2	in	the	above	order.	Two	independent	large-cation	positions,	one	Cu	position	
(in oversubstituted members, two) and three S positions were refined for the sequence of one or three to five subcells forming 
the	above	structures	using	the	summation	of	sinusoidal	functions	for	positional	and	displacement	parameters.	In	this	paper,	we	
describe,	in	terms	intended	for	non-specialists,	our	choice	of	the	superspace	group,	its	application	to	individual	superstructures,	
the details of the structure refinement, and the structural interpretation of the results.

Keywords:	bismuthinite	–	aikinite	series,	gladite,	salzburgite,	paarite,	krupkaite,	superspace	approach,	commensurately	modulated	
structures.

sOmmairE

La	série	bismuthinite	–	aikinite	(Bi2S3	–	CuPbBiS3)	de	dérivés	ordonnés	(surstructures)	est	fondée	sur	la	substitution	par	
incréments	de	Bi	+	lacune	! Pb + Cu. Nous avons affiné la structure de certains membres de cette série, dont gladite, salzburgite, 
paarite	et	krupkaïte,	en	les	traitant	de	structures	à	modulations	commensurables	en	termes	de	surespace.	Le	groupe	de	surespace	
Pmcn(0b0)00s	a	été	utilisé	pour	toutes	ces	structures,	b	prenant	une	valeur	de1/3,	1/4,	1/5,	et	2	dans	ces	minéraux,	respective-
ment.	Deux	positions	indépendantes	occupées	par	de	gros	cations,	le	Cu	dans	une	(deux	dans	les	membres	sursubstitués),	et	
trois positions occupées par le S ont été affinées pour la séquence de une ou trois à cinq sous-mailles formant ces structures en 
utilisant	 les	fonctions	sinusoïdales	des	paramètres	de	position	et	de	déplacement.	Dans	ce	 travail,	nous	décrivons,	en	termes	
convenables	pour	les	non-spécialistes,	notre	choix	du	groupe	de	surespace,	son	application	aux	surstructures	individuelles,	les	
détails de l’affinement de la structure, et l’interprétation structurale des résultats.

	 (Traduit	par	la	Rédaction)

Mots-clés:	série	bismuthinite	–	aikinite,	gladite,	salzburgite,	paarite,	krupkaïte,	concept	de	surespace,	structures	à	modulations	
commensurables.
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inTrOducTiOn

The	bismuthinite	–	aikinite	series	(Bi2S3	–	CuPbBiS3)	
is	one	of	 the	classical	 series	of	 sulfosalts.	This	 series	
of	 ordered	 derivatives	 CuxPbxBi2–xS3	 has	 been	 a	
subject	of	long	and	intense	research	about	the	textural,	
compositional	 and	 structural	 aspects	 (Ohmasa	 &	
Nowacki	 1970a,	 b,	 Kohatsu	 &	Wuensch	 1971,	 1976,	
Syneček & Hybler 1974, Mumme 1975, Horiuchi & 
Wuensch 1976, 1977, Harris & Chen 1976, Mumme 
& Watts 1976, Mumme et al.	1976,	Chen	et al.	1978,	
 Makovicky & Makovicky 1978, Žák 1980, Pring 1989, 
1995, Mozgova et al. 1990, Balić-Žunić et al.	 2002,	
Topa	 et al.	 2002).	The	 most	 recent	 of	 these	 investi-
gations	 focused	 on	 descriptions	 of	 three	 new	 crystal	
structures,	among	which	are	two	four-fold	derivatives,	
salzburgite,	Cu1.6Pb1.6Bi6.4S12	 (Topa	et al.	 2000),	 and	
emilite,	Cu2.7Pb2.7Bi5.3S12 (Balić-Žunić et al.	2002)	and	
a new five-fold derivative, paarite, Cu1.7Pb1.7Bi6.3S12	
(Makovicky et al.	 2001).	 This	 enlargement	 of	 the	
bismuthinite–aikinite	 series	 establishes	 it	 as	 a	 series	
of	 one-,	 three-,	 four-,	 and	 five-fold	 superstructures	
built by compositional and positional modification of 
the	basic	Bi2S3	structure.	An	attempt	to	give	an	alter-
native, unified description of these superstructures for 
the	gladite	CuPbBi5S9	–	krupkaite	CuPbBi3S6	range	as	
commensurately	modulated	structures	by	means	of	the	
superspace	approach	is	the	topic	of	the	present	contri-
bution. The rationale of this study was to find out how 
closely	and	how	clearly	the	local	and	the	global	features	
of this structural series are reflected in the results of this 
novel	approach.	We	attempt	 to	describe	 the	basis	and	
the procedures of the superspace refinement in terms 
that	are	clear	to	the	non-specialist.

ThE	bismuThiniTE	–	aiKiniTE	sEriEs

Bismuthinite	 –	 aikinite	 derivatives	 are	 superstruc-
tures	 of	 the	 structure	 of	 bismuthinite,	 Bi2S3,	 formed	
by	 incremental	 substitution	 of	 bismuth	 in	 one	 of	 the	
two Bi sites by lead, connected with gradual filling of 
the	 adjacent,	 void	 coordination	 tetrahedron	by	Cu,	 in	
agreement	with	 the	scheme	Bi	+	M	!	Pb	+	Cu.	 In	a	
classical	description,	these	structures	are	composed	of	
M4S6	 ribbons	 with	 metal	 atoms	 in	 two	 distinct	 posi-
tions	 (Fig.	1).	The	M2	 sites	 (Bi2	 in	bismuthinite)	 are	
centrally	situated	in	the	ribbon;	both	Bi	and	Pb	occur	
in	 them.	The	 terminal	 Bi1	 sites	 accept	 only	 bismuth.	
Both are in square pyramidal coordination M3+2	 that	
can	be	completed	to	monocapped	prismatic	by	adding	
two	 sulfur	 atoms	 from	 the	 adjacent	 ribbon(s).	 The	
tetrahedral	voids	are	situated	in	the	inter-ribbon	space;	
they flank each ribbon at its terminal portions, and are 
sandwiched	between	M1	and	M2	coordination	prisms	
of	 an	 adjacent	 ribbon.	Lone-electron	pairs	 in	Bi	 (and	
Pb)	 are	 oriented	 away	 from	 the	 ribbon	 surfaces,	 into	
the	inter-ribbon	space.

The	step-wise	replacement	of	Bi	+	vacancy	by	Pb	
+	Cu	leads	in	the	ordered	derivatives	(i.e.,	at	ambient	
temperature)	to	three	distinct	types	of	ribbons	(Ohmasa	
&	Nowacki	1970a):	“bismuthinite-like”	ribbons	Bi4S6	
with	 an	 adjacent	 tetrahedral	 void,	 “krupkaite-like”	
ribbons	 CuPbBi3S6	 with	 one	 of	 the	 two	 M2	 sites	
containing Pb and the adjacent tetrahedral void filled 
by	 Cu,	 and	 “aikinite-like”	 ribbons	 Cu2Pb2Bi2S6	 in	
which	 both	 M2	 sites	 are	 occupied	 by	 Pb	 and	 both	
adjacent tetrahedral voids are filled by Cu (Fig. 2). 
Partial	 replacement	 of	 Bi2	 by	 Pb,	 associated	 with	
partial	occupancy	of	adjacent	tetrahedra	by	Cu,	has	been	
found	in	several	of	these	phases	(e.g.,	Topa	et al.	2000,	
Makovicky et al. 2001, Balić-Žunić et al.	 2002).	All	
these	structures	share	a	common	11.4	Å	subcell,	which	
is	the	unit	cell	of	the	underlying	Bi2S3-like	substructure.	
It	will	be	of	considerable	importance	in	the	derivations	
that	 follow.	The	 superstructure	 building	 occurs	 along	
[010],	yielding	 the	1b,	3b,	4b	 and	5b	 superstructures.	
These	are	invariably	ordered	arrangements	of	two	out	
of	the	three	types	of	ribbon	mentioned	above.

An	 alternative	 description,	 in	 form	 of	 structure	
intervals	 (modules)	 between	 adjacent	 planes	 (010)	 of	
fully	 occupied	 copper	 tetrahedra,	 was	 put	 forward	 in	
the	 three	 above-mentioned	 latest	 works	 as	 well.	The	
known	 intervals	 are	 those	 from	 gladite	 (1½	 bsubcell	
wide),	krupkaite	(1bsubcell	wide)	and	aikinite	(½	bsubcell	
wide).	The	more	complicated,	intermediate	phases	are	
then	combinations	of	these	modules,	e.g.,	salzburgite	is	
a sequence of two gladite-like and one krupkaite-like 
modules. This system of modules is not equivalent to 
the	 model	 of	 commensurate	 modulation	 described	 in	
this	paper.

chOicE	Of	suPErsPacE	grOuP

The	principal	aim	of	the	current	investigation	was	to	
find and apply a single (3 + 1)-dimensional superspace 
group	 to	 as	 many	 superstructures	 as	 possible	 (prefer-
ably	 all)	 of	 the	 bismuthinite	 –	 aikinite	 series.	The	 (3	
+	1)-dimensional	superspace	groups,	as	introduced	by	
deWolff	et al.	(1981),	are	four-dimensional	symmetry	
groups	 in	 which	 three	 dimensions	 correspond	 to	 the	
classical	three-dimensional	space,	and	are	used	here	to	
describe	the	basic	(sub)structure.	The	fourth	dimension	
is	used	in	the	current	type	of	problems	for	description	
of	the	periodic	wave-modulation	of	this	basic	structure.	
The	 usual	 approach,	 in	 reciprocal	 space,	 relates	 the	
vectors	 a*,	 b*	 and	 c*	 to	 the	 reciprocal	 lattice	 of	 the	
main reflections (i.e.,	the	Fourier	transform	of	the	basic	
unmodulated	structure),	whereas	q	 is	 the	wave-vector	
of the modulation. The corresponding Miller indices are 
usually	denoted	as	h,	k,	l	and	m	(International	Tables,	
volume	C).	The	symbol	of	a	superspace	group	consists	
of	three	parts:	(a)	the	space	group	of	the	basic	structure	
(substructure)	(International	Tables,	volume	A),	(b)	the	
definition of the modulation vector q	in	terms	of	recip-
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fig.	1.	 The	crystal	structure	of	aikinite	CuPbBiS3	(Kohatsu	&	Wuensch	1971).	Positions	
M1	are	occupied	by	Bi,	M2	by	Pb,	and	all	tetrahedral	voids	are	occupied	by	Cu.	Atoms	
are	situated	at	two	distinct	heights,	2	Å	apart.

fig.	2.	 Bismuthinite-like	ribbons	Bi4S6,	krupkaite-like	ribbons	CuPbBi3S6,	and	aikinite-like	ribbons	Cu2Pb2Bi2S6,	from	the	
crystal	structures	of	the	bismuthinite	–	aikinite	series.

b ca

rocal-space	parameters,	q	=	aa*	+	bb*	+	gc*	so	that	
the	 bracketed	 values	 in	 the	 superspace-group	 symbol	
are	 s	 =	 (a,b,g)	 [in	 this	 expression,	 the	 components	

of	 the	 modulation	 vector,	 restricted	 by	 symmetry	 to	
a	special	fraction,	are	written	explicitly,	others	by	the	
corresponding	Greek	 symbols	a,	b	 or	g],	 and	 (c)	 the	
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translational	parts,	along	 the	 fourth	dimension,	of	 the	
symmetry	 operators	 of	 the	 space	 group	 indicated	 in	
part (a). Each symbol is one of the letters 0, s, t, q or h 
according	to	the	rules	described	in	International	Tables	
volume	C,	e.g.,	s	=	1/2,	and	t	=	±1/3.

Gladite,	a	three-fold	superstructure,	was	taken	as	a	
point	of	departure.	The	choice	of	 the	supergroup	was	
based	 on	 the	 symmetry	 of	 the	 diffraction	 pattern	 and	
the	observed	systematic	extinctions.	The	symmetry	of	
the	substructure	is	Pmcn.	In	terms	of	the	complete,	33	
Å gladite lattice, the reflections are Q	=	HA*	+	KB*	+	
LC*.	Rewritten	in	terms	of	a	1b	subcell	plus	satellites,	
Q	=	ha*	+	kb*	+	lc*	+	mq,	where	q	=	B*	=	b*/3.	Thus	
the	main	(i.e., subcell) reflections have K	=	3k,	and	the	
satellites	become	K	=	3k	+	m	for	m = 1 or –1. The first 
condition for reflection following from the presence of 
a	c	glide	plane	along	B in	a	form	H0L:	L	=	2n	affects	
only reflections for which K	=	3k	+	m	=	0,	and	therefore	
it is equivalent in the superspace description to h0l0:	
l	 =	 2n. The second condition for reflection for HK0:	
H	+	K	=	2n	 (i.e.,	 the	n	glide	plane),	 turns	 into	hk0m:	
h+3k+m	=	2n	in	the	superspace	description,	which	can	
be simplified to h	+	k	+	m	=	2n.

The reflection conditions as derived above lead to 
the	superspace	group	Pmcn	 (0b0)00s.	The	value	of	b	
for the three-fold structure is equal 1/3. The letter s	
in	 the	part	 (c)	of	 the	symbol	of	 the	superspace	group	
means	that	the	glide	mirror	n	along	c has	the	translation	
component	 along	 “internal”,	 i.e.,	 the	 fourth	 direction	
equal to 1/2.

In	 the	 following,	 we	 shall	 show	 how	 the	 matrix	
form	 of	 all	 symmetry	 operators	 can	 be	 derived	 from	
the	 superspace	 group-symbol	 and	 how	 they	 can	 be	
used to derive four-dimensional reflection conditions. 
The	general	symmetry-operator	is	represented	by	4 3 
4	 rotation	 matrix	 combined	 with	 a	 four-dimensional	
translation	vector.
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In	this	matrix,	RE,	RM	and	RI	are,	respectively,	3 3 3	
external,	1 3 3	mixed	and	1 3 1	internal	part	of	 the	
rotation	matrix,	and	tE	and	tI	are,	respectively,	external	
and	internal	translation	vectors.	“External”	refers	in	the	
jargon	 of	 modulation	 crystallography	 to	 the	 physical	
three-dimensional	 space,	 whereas	 “internal”	 refers	 to	
the	 additional,	 fourth	 coordinate	 (also	 referred	 to	 as	
the	“complementary”	or	“perpendicular”	space).	From	
the	way	the	superspace	was	introduced,	it	follows	also	
that	the	right	upper	part	of	the	rotation	matrix	is	identi-
cally equal to zero, and that the remaining parts of the 
rotation matrix are related by the equation q	=	RE	-	RI	
•	q	=	RM.	The	RM part is equal to zero for our case [for 

more	details,	see	deWolff	et al.	(1981)],	and	thus	all	the	
rotation	matrices	are	reduced	to	two	blocks	composed	
of	RE,	RI.	The	external	rotation-matrix	and	translation	
vectors	can	be	determined	from	the	three-dimensional	
space-group	symbol,	part	(a)	as	for	 three-dimensional	
space groups. The internal rotation part is equal to +1 
if	 RE	 transforms	 the	 q vector	 into	 itself,	 and	 –1	 if	 it	
transforms	this	vector	to	–q.	The	internal	translation	part	
tI	is	derived	from	part	(c),	as	mentioned	above.

In (3 + 1)-dimensional space, the first operation, m,	
has	the	rotational	matrix	RE	and	the	translation	vector	
tE	as	follows:
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The	 value	 of	 1	 for	 the	 (1 3 1)	 RI	 of	 the	 4 3 4	 Rm	
matrix	suggests	that	m does	not	reverse	the	sense	of	the	
modulation	vector	q	(see	above).

For	the	c	glide	plane,
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The	 RI	 value	 is	 –1	 in	 this	 case	 (c	 reverses	 the	 sense	
of	 the	 q	 vector).	The	 parameter	 x	 cannot	 be	 directly	
derived	from	the	symbol,	and	it	will	be	deduced	from	
the	combination	of	other	symmetry	elements	later.

The	transformation	matrix	of	the	n	glide	plane	is
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We	combine	it	with	m in order to define the two-fold 
rotation	operation	m 3 n	=	2	,	which	we	further	combine	
with	inversion	in	order	to	obtain	2 3 1̄	=	c.	This	allows	
us	to	conclude	that	the	parameter	x is equal to ½.

For	 the	 reflections	 invariant	 with	 respect	 to	 the	
rotation part of the operator in question, the translation 
vectors can be used to derive reflection conditions by 
means	of	the	scalar	product	H	•	t	=	integer.	Thus,
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i.e.,	for	(h0l0):	l	=	2n	only	because	of	the	c glide	plane,	
and
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i.e.,	for	(hk0m):	h	+	k	+	m	=	2n	because	of	the	n	glide	
plane,	as	already	derived	above.	Analogous	schemes	are	
valid for the five-fold superstructure.

In	this	derivation,	we	ignored	the	fact	that	for	these	
commensurate structures, any reflection (h,k,l,m)	 can	
be alternatively understood as all reflections fulfilling 
the	 condition	 (h,k	 +	 n,l,m	 –	 3n)	 for	 the	 three-fold	
superstructure	 (i.e., a first-order satellite of one main 
reflection overlaps with the second-order satellite of 
the adjacent main reflection, etc.)	 and	 the	 condition	

(h,k	+	n,l,m	–	5n) for the five-fold superstructure. All 
these reflections obey the same condition for reflection, 
(hk0m):	h	+	k	+	m	=	2n.	For	the	four-fold	superstructure	
(i.e., salzburgite), the above rules give problems; reflec-
tions	(h,k	+	n,l,m	–	4n)	lead	to	a	different	parity	for	the	
reflection conditions where n	is	even	and	where	n is odd.	
The	diffraction	spot	should	thus	be	present	according	to	
the first (even) representation, and it should be absent 
according	 to	 the	 second	 (odd)	 representation.	 The	
symmetry	element	that	leads	to	such	an	inconsistency	
cannot	be	present	in	the	superstructure.

The	 superspace	 approach	 to	 modulated	 structures	
leads	to	translational	symmetry	in	(3	+	1)-dimensional	
direct	space.	The	unit	cell	is	now	(3	+	1)-dimensional,	
and	 the	 atom	 parameters	 are	 described	 by	 modula-
tion functions defined within this unit cell and not by 
discrete	values	as	it	was	in	the	three-dimensional	space.	
The	 real	 three-dimensional	 structure	 can	 be	 derived	
as	 a	 section	 through	 (3	 +	 1)-dimensional	 superspace	
perpendicular	 to	 the	 x4	 axis	 (Fig.	 3a).	There	 are	 an	
infinite number of such sections, each characterized by 
the	value	of	x4	at	the	intersection	of	the	hyperplane	with	
the	x4	axis.	The	coordinate	t that fulfills the following 
condition	(see	Fig.	3a),	x4	=	q	•	r	+	t,	remains	constant	
for	all	points	of	the	selected	section.	On	the	other	hand,	
the	 coordinate	 x4 is	 generally	 different	 for	 different	
modulated	positions	of	the	same	modulated	atom.	In	our	
case	(paarite	and	gladite),	the	three-dimensional	struc-
ture	 is	 represented	as	 the	 section	 t	=	0,	 and	 therefore	
the	coordinate	x4 is equal to x2/n	=	Y,	the	coordinate	in	
the	n-fold	supercell.

For	the	incommensurate	case,	all	sections	will	yield	
a	generally	identical	non-periodic	structure,	only	with	
the origin shifted differently in each case. Moreover, 
in	this	case,	every	point	of	the	modulation	function	has	
real	meaning	and	 is	 realized	 in	 the	 three-dimensional	
non-periodic	structure.	For	commensurate	cases,	only	
a finite number of sections (e.g.,	three	sections	for	the	
three-fold	structure)	are	realized	and	have	real	meaning	
(Fig.	3a).

In	 the	 subset	 x2	 –	 x4	 of	 superspace	 (Fig.	 3b),	 the	
action	of	n	can	be	shown	as	a	pair	of	points	(x1,	x2,	x3,	x4)	
and	(x1	+	½,	x2	+	½,	x3	+	½,	x4	+	½).	In	Figure	3b,	these	
points	fall	onto	two	out	of	 the	three	(or,	alternatively,	
five) occupied lattice-lines t	of	the	x2	–	x4	section	of	the	
four-dimensional	 lattice.	This	situation	is	valid	for	all	
odd-multiple	superstructures,	but	not	for	even-multiple	
ones, typified in our study by salzburgite. In these, the 
second	point	 falls	half-way	between	 the	 lattice	 levels	
t	obtained	 in	 the	x2	–	x4	section;	 the	relevant	element	
of	 symmetry,	however,	does	not	operate	outside	 the	 t	
sections	realized.	This	is	also	the	reason	why	it	cannot	
be	present	as	a	symmetry	element	in	the	even-multiple	
supercell.	From	Figure	3b,	it	also	is	clear	that	the	situ-
ation	in	the	x2	–	x4	section	is	independent	of	the	choice	
of the first section t0;	it	holds	for	all	sets	t0,	t0	+	1/3,	and	
t0 + 2/3 (or the corresponding fourths or fifths).
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fig.	3a.	 Subset	x2	–	x4	of	the	superspace	for	b = ¹̸3	(a	three-
fold	superstructure).	Symbols:	ai	are	axes	of	the	superspace	
cell,	xi	are	atom	coordinates	in	superspace,	q the	modula-
tion	vector.	The	tI	levels	represent	the	single	physical-space	
level	cut	out	of	superspace	over	the	three	subcells	involved	
and condensed into the first, fundamental cell. The three 
positions	of	the	atom	from	the	same	string	of	atoms	can	be	
seen	as	the	three	consecutive	intersections	of	the	t	 levels	
with	the	modulation	function	in	this	cell.

fig.	3b.	 Action	of	the	n-glide	plane	of	the	superspace	group	
Pmcn(0b0)00s	in	the	superspace	subset	x2	–	x4.	Note	the	
compatibility	with	t	lines	(cuts)	from	Figure	3a.
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However, not all symmetry elements of the supercell 
group	are	compatible	with	a	free	choice	of	the	t0	value.	
As a consequence, by selecting specific t0	values,	we	
can	 in	 general	 obtain	 different	 space-groups	 for	 the	
supercell.	For	example,	the	c	glide	plane	from	the	super-
space symbol yields equivalent points (x1,	x2,	x3,	x4)	and	
(x1,	 –x2	+	½,	x3	+	½,	–x4	+	½).	For	 the	odd-multiple	
superstructures	(b	=	1/q ,	q	being	an	odd	integer),	the	
c glide	plane	is	valid	only	for	t0	=	n/q,	or	also	for	t0	=	
1/(2q)	+	n/q	 (see	Fig.	4a	for	 the	 three-fold	case,	with	
the	permissible	t0	values equal to 0, 1/6, 1/3, 3/6, 2/3, 

and	 5/6).	The	 t	 sections	 falling	 outside	 these	 values	
yield	 supercell	 groups	without	c.	The	 same	holds	 for	
the	inversion	center.	Therefore,	in	the	case	of	the	odd-
multiple	superstructure,	we	can	obtain	either	Pmcn or 
Pm21n,	the	latter	one	with	a	loss	of	both	c	and	 1̄.	For	
the	even-multiple	superstructures	(b	=	1/q),	q being	an	
even	 integer),	 the	 glide	 plane	 n is	 not	 acceptable,	 as	
shown	above,	and	the	glide	plane	c and	the	 inversion	
center	are	no	longer	coexisting	in	the	same	t0	sections.	
Thus	 the	 sections	with	general	values	of	 t0	yield	Pm,	

fig.	4a.	 Action	(x1,	–x2	+	½,	x3	+	½,	
x4	+	½)	of	the	c	glide	plane	of	the	
superspace	 group	 Pmcn(0b0)00s	
in	 the	 x2	 –	 x4	 section	 of	 gladite	
(a	 three-fold	 superstructure)	 in	
which	 it	 “simulates”	 a	 symmetry	
centrum	 at	 (¼,	 ¼),	 etc.	 Atom	
“strings”	 describe	 the	 modulation	
of	 atom	 positions	 in	 the	 x2 – x4	
section	 of	 superspace	 (compare	
with	Fig.	10a).

fig.	 4b.	 The	 centrosymmetric	
superspace	group	Pmcn(0b0)00s	
used	 for	 the	 description	 of	 the	
Pmc21	 structure	 of	 salzburgite	
(a	 four-fold	 superstructure).	
Note	 a	 shift	 of	 t0	 by	 1/16,	 the	
real	t0	+	n/4	levels	(dashed)	and	
imaginary	 t0	+	n/8	 levels	 (stip-
pled),	as	well	as	the	real	(black)	
and	 imaginary	 (void)	atoms	on	
selected	strings.
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those	with	 t0	=	n/q	 and	 t0	=	1/(2q)	+	n/q	give	P21/m,	
whereas	those	at	t0	=	1/(4q)	+	n/q	and	t0	=	3/(4q)	+	n/q	
give	Pmc21,	 the	 space	group	observed	 in	 salzburgite,	
for	which	t0	=	1/16	+	n/4	or	3/16	+	n/4.

The	 full	 analysis	 of	 the	 superspace	 group	 Pmcn	
(0b0)00s	 for	 all	 possible	 rational	 modulation	 vectors	
b	=	p/q	 leads	 to	 the	supercell	space-groups	presented	
in	Table	1.

Further	application	for	odd-multiple	superstructures	
is	 straightforward:	 atom	 parameters	 are	 obtained	 as	
points	 of	 intersection	 of	 t	 levels	 with	 the	 modulation	
function.	It	is	not	so	for	even-multiple	superstructures.	
For	 the	 four-fold	 superstructure	of	 salzburgite,	 t0	had	
to	 be	 moved	 to	 1/16	 in	 order	 to	 preserve	 the	 c-glide	
planes,	which	in	the	x2	–	x4	section	“look“	like	centers	
of	symmetry	at	(¼,	¼)	(compare	with	the	transforma-
tion	 matrix	 of	 the	 c-glide	 plane	 above)	 (Fig.	 4b).	 In	
the	 case	of	 the	Pmc21	 structure,	we	 are	 sampling	 the	
centrosymmetric	system	of	modulation	functions	of	the	
superspace	group	Pmcn(0b0)00s	by	a	t	subset	of	levels	
with	the	initial	t0	value	shifted	against	the	origin	of	the	
superspace group. As a consequence, the atoms (points 
of	intersection)	on	the	t0	+	n/4	levels	invert	for	Pmc21	
(Fig.	4b)	by	the	action	of	the	original	internal	operator	
of	 the	superspace	group	 into	atoms	on	 the	 imaginary,	
t0	+	1/8,	3/8,…	levels.	In	order	to	describe	these	atom	
positions	by	a	single	modulation-function,	analogous	to	
that	used	for	odd-multiple	cases,	we	place	a	half	of	the	
atoms	onto	the	1/8,	3/8,	etc.	levels	and	bring	them	onto	
the	1/4	etc.	levels	by	the	action	of	the	superspace	center	
of	inversion	(and	vice versa for	the	other	half).	This	is	
done	by	increasing	the	number	of	waves	used	for	each	
parameter	to	the	mean	value	+	seven	harmonic	functions	
(three	 pairs	 of	 trigonometric	 functions	 plus	 one	 sine	
function	without	its	cosine	counterpart).	In	this	way,	we	
keep	the	centrosymmetric	superspace-group	also	for	the	
case	of	an	even-multiple	superstructure.

Krupkaite has	only	a	basic	11	Å	cell	with	the	space	
group	 Pm21n.	Therefore,	 it	 cannot	 be	 described	 as	 a	
basic	non-modulated	structure	with	b	=	11.2	Å,	which	
has	an	inversion	center.	It	follows	from	the	table	of	all	
possible	space-groups	as	presented	in	Table	1	that	the	
modulation vector equals q	=	2/1b*	=	2b*	(p	=	2,	q	=	
1)	with	t0 = ¼ would fulfill the symmetry requirement. 

This	limiting	case	is	similar	to	that	for	salzburgite,	but	
it	 is	 more	 complicated.	The	 situation	 is	 presented	 in	
Figure 5, where the refined modulation-curves of all 
cations are presented. The figure is similar to those for 
gladite,	paarite	and	salzburgite,	but	here	we	had	to	draw	
three	 superspace	cells	 to	 see	all	 intersections	 through	
the	selected	hyperplane	(t0	=	¼).	Let	us	concentrate	on	
the	 two	 central	 modulation-curves	 (black	 and	 yellow	
in	Fig.	5),	which	 represent	 the	modulation	of	 the	M2	
(Pb,Bi)	position.	Both	curves	are	related	by	an	inversion	
center	(the	large	open	circles)	in	the	four-dimensional	
superspace.	 The	 real	 atomic	 positions	 in	 the	 three-
dimensional	 structure	 are	 the	 intersections	 of	 these	
curves	 with	 the	 hyperplane.	 It	 is	 clearly	 visible	 that	
these	sites	are	not	symmetrically	related	by	an	inversion	
center,	 the	 intersection	with	 the	yellow	curve	has	a	y 
coordinate	close	to	½,	but	the	second	one	is	consider-
ably	shifted	from	y	=	½.	This	fully	corresponds	to	the	
fact	that	the	three-dimensional	structure	is	non-centro-
symmetric.	The	 intersection	of	 the	yellow	curve	with	
the	hyperplane	 is	 related	 through	 the	 inversion	center	
in	the	superspace	to	a	point	on	the	black	curve	as	indi-
cated	by	the	arrow.	This	point	lies	on	the	section	 t0	=	
¾,	and	the	inversion	operation	results	in	two	points	of	
the	independent	modulation-curve	being	realized	in	the	
three-dimensional	structure.	This	allowed	us	to	use	an	
average	position	and	one	harmonic	wave	to	describe	the	
structure	as	a	modulated	one.	Figure	13	(see	below)	also	
shows that the main features of the unified description 
are	the	same	for	all	compounds	of	the	system,	including	
the	special	case	of	krupkaite.

dETErminaTiOn	Of	ThE	sTrucTurE		
in	fOur	dimEnsiOns

The	values	of	observed	structure-factors	were	taken	
from	the	studies	by	Topa	et al. (2000), Makovicky et 
al. (2001), and Balić-Žunić et al.	 (2002),	 where	 all	
the	experimental	details	are	to	be	found.	Fundamental	
experimental values are quoted in Table 2. Starting 
parameters	of	the	atoms	were	also	obtained	from	these	
works.	For	each	atom	species	(i.e.,	an	entire	string	of	
atoms,	 such	 as	 M1,	 M2,	 S1, etc., as defined above), 
these	 parameters	 were	 averaged	 over	 all	 the	 subcells	
of each individual structure to be refined. Refinements 
converged smoothly, and no problems in the refinements 
were	observed.	Copper	atoms	were	left	out	in	the	initial	
cycle,	and	found	later	by	inspection	of	the	difference-
Fourier	maps	in	3	+	1	dimensions.	The	behavior	of	Cu	
was	described	in	the	present	study	by	crenel	functions	
(Petříček et al.	1995),	with	the	length	(number	of	inter-
sections	of	the	crenel	function	on	x4	with	the	sampling	
t levels) adjusted during the study to fit the observed 
situation (these are the finite strings in Figs. 4a, b).

The	positional	parameters	and	anisotropic	displace-
ment parameters were refined by means of modulation 
functions.	Full	 occupancy	was	 assumed	 for	 all	 atoms	
refined. Only in the second part of the present study, for 
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the	structures	in	which	partial	Cu	occupancy	of	certain	
sites	was	observed	(Topa	et al. 2000, Balić-Žunić et al.	
2002), the Cu occupancy of such sites was refined by an 
additional crenel function with a refinable occupancy-
factor.	The	atoms	Pb	and	Bi	in	the	central,	M2,	sites	of	
ribbons	 were	 not	 distinguished	 because	 of	 their	 very	
close atomic number; they were refined as Bi.

All refinements were started with the first harmonic 
only;	it	was	also	all	what	was	needed	for	the	descrip-
tion of the three-fold superstructure. For the five-fold 
superstructure, one more harmonic is required, whereas 
the	situation	for	the	four-fold	superstructure	has	already	
been described. Refinement of modulated structures 
proceeds by refining the coefficients of a Fourier series, 
which,	for	the	positional	parameters,	is

r r u ux n nx n nxave
x y

n
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where	n	 is	 the	order	of	 the	harmonic.	An	example	of	
the	y-component	displacement	waves	for	Pb,Bi	in	the	
five-fold structure of paarite is shown in Figure 6. In 
the final step, we refined also the modulation waves 
of	 anisotropic	 displacement	 parameters	 of	 all	 atoms	
except	 copper	 to	 account	 for	differences	 in	 coordina-
tion	induced	by	the	strong	positional	modulation.	The	
resulting coefficients, and the equivalent isotropic 
displacement	parameters	as	well	as	weighing	functions	
and goodness-of-fit parameters, are indicated in Table 3. 
Anisotropic	 displacement	 parameters	 are	 in	Table	 4	
(deposited).	These	being	commensurate	cases,	structure	

factors	were	calculated	using	discrete	t	sections	and	not	
the	 entire	 modulation-waves,	 as	 is	 necessary	 for	 the	
incommensurate	cases.

For	 all	 atoms	 situated	on	pure	 (i.e.,	 tI	=	0)	mirror	
planes,	 no	 superspace	 modulation	 exists	 in	 the		
x1	 –	 x4 section. Modulation waves in the x2	 –	 x4	 and	
x3	–	x4	sections	show	displacements	u2(x4)	and	u3(x4),	
respectively,	of	M1	and	M2	atoms	[Bi	and	(Bi,Pb),	in	
this	order],	copper	and	the	three	distinct	S	sites.	Inter-
cepts	of	 the	 respective	modulation-functions	with	 the	
consecutive	t levels are the only significant loci of these 
functions	and	represent	consecutive	atoms	in	the	given	
string,	subcell	after	subcell.

rEsulTs	Of	ThE	rEfinEmEnTs

Results of all refinements are the coefficients of 
an	vorthogonalized	harmonic	 function	summarized	 in	
Table	3.	The	curve	expressing	 the	y	coordinate	of	 the	
M2	site	in	gladite,	salzburgite	and	paarite	as	a	function	
of	 x4	 is	 given	 in	 Figures	 7a–c,	 superimposed	 on	 the	
Fourier	map	of	the	internal	space	x2	–	x4.	The	essential	
unity	of	these	displacements	in	the	three	superstructures	
becomes evident from these figures if the intersections 
of	the	y	coordinate	curves	with	the	 t	 levels	are	exam-
ined. Their full understanding requires comparison with 
the	real	structures	(Figs.	8a–c)	in	which	the	respective	

fig.	5.	 Application	of	the	superspace	group	Pmcn(0b0)00s	
for	 the	 description	 of	 the	 Pm21n	 structure	 of	 krupkaite.	
The	x2	–	x4	 section	of	 superspace	 is	 illustrated,	with	 the	
real	t0	=	¼	levels	interleaved	by	imaginary	t0	=	¾	levels.	
Inversion	centers	of	the	superspace	group	are	indicated	by	
large	void	circles;	real	atoms	are	black,	imaginary	are	void.	
Two	central	modulation	curves,	black	and	yellow,	describe	
the	modulation	of	M2	(Pb,Bi)	position.
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initial	 atoms	and	 the	 strings	of	atoms	generated	 from	
them	by	“modulation”	are	indicated.

The	central	M2	sites	occupied	by	Pb	have	negative	
Dy	and	Dz	values,	those	occupied	by	Bi	have	positive	
values.	Whereas	the	Dy	increments	are	nearly	identical	
for	all	Pb	and	for	all	Bi	positions,	respectively,	the	Dz	
increment lacks this symmetry. The “first” Bi-occupied 
position	after	the	Pb	position(s)	belongs	to	a	bismuthi-
nite-like	 ribbon	 and	 has	 a	 somewhat	 smaller	Dz	 than	
those	in	the	following	krupkaite-like	ribbons	(Fig.	9).

The	 Dy	 increments	 of	 M1	 atoms	 in	 gladite	 are	
smallest	 for	 the	 Bi	 positions	 adjacent,	 on	 the	 same	

ribbon	side,	to	M2,	but	largest	for	the	Bi1	atoms	next	
to	Cu-occupied	 tetrahedra.	Those	 in	 the	Bi4S6	 ribbon	
have	an	intermediate	Dy	value.	This	is	nearly	true	for	
paarite, although the scheme for the first-mentioned 
configuration is ambiguous (Fig. 9).

The	 y	 coordinate	 of	 Cu	 in	 the	 three	 structures	 is	
illustrated	 in	 Figures	 10a–c	 on	 a	 background	 of	 the	
relevant	positions	of	the	Fourier	map.	The	length	of	the	
non-zero	part	of	the	crenel	function	has	been	adjusted	
manually	to	cover	all	Cu	positions	in	accordance	with	
the	structure.	The	alternative	would	have	been	sets	of	
harmonic	functions	similar	to	those	for	M2.
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The	full	meaning	of	these	data	emerges	from	Figures	
11–12,	in	which	displacements	Dy	and	Dz	of	all	atoms	
in	the	fundamental	11	Å	cell	can	be	traced.	Again,	their	
interpretation	is	intimately	connected	with	Figures	8a–c	
of	the	full	structure.	For	the	sake	of	understanding	these	
figures, it has to be stressed again that, in the sections 
x2	–	x4	and	x3	–	x4,	the	x2	(x3)	axis	represents	the	y	(z)	
coordinate	 in	 the	 fundamental	 11	 Å	 cell,	 whereas	 x4	
indicates the full modulation-period (which is equal to 
three	fundamental-cell	lengths	for	gladite).	Atoms	lie	on	
the	intersection	of	their	modulation	curves	[yave	+	Dy]	
and	[zave	+	Dz],	respectively,	with	the	t	levels,	which	in	
upward	succession	indicate	the	successive	“subcells”	of	
the	modulated	structure.	For	the	x2	–	x4	section,	these	

fig. 6. Two component waves and the final Dy	displacement	
wave	(black)	for	M2 (Pb, Bi) in the five-fold structure of 
paarite.	Only	the	points	on	levels	t =	0	+	n/5	express	real	
displacements	of	atoms.

fig.	7a–c.	 The	y	coordinate	curves	for	“Pb”	(i.e.,	M2)	atom	
string	 in	 the	crystal	structures	of	gladite,	salzburgite	and	
paarite,	plotted	on	the	background	of	Fourier	maps	of	the	
internal	space	x2	–	x4.

b

c

a
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fig.	8.	 The	crystal	structures	of	(a)	gladite,	(b)	salzburgite	and	(c)	paarite,	with	the	cation	strings	parallel	to	b	indicated	by	
labeling.	Atoms	of	sulfur	are	shown	in	yellow,	and	atoms	of	copper,	in	green.

t	 levels	are	obvious;	however,	 for	 the	x3	–	x4	section,	
they move (“sweep the field”) upward as the value of 
x4 increases. To use the example of gladite, the first t	
level	 moves	 with	 the	 increasing	 x4	 value	 from	0.0	 to	
0.33,	the	second	t	level	follows	the	x4	value	from	0.33	
to	0.66,	and	the	third	one	from	0.66	to	1.00.	Thus	we	
must	estimate	the	x2 coordinate of the atom first (e.g.,	
by	reading	it	off	Fig.	11)	in	order	to	evaluate	its	x3	(or	
Dz)	coordinate.	Let	us	not	forget	the	starting	phase-shift	
t0	=	1/16	for	salzburgite.

Figures	11a	and	12a	for	gladite	are	easiest	to	inter-
pret.	The	 (Pb,Bi)	 M2	 curves	 in	 Figure	 11a	 show	 Dy	
values	for	the	Bi4S6	ribbon	(at	t	=	1/3)	to	be	larger	than	
those	 for	 the	 Cu2Pb2Bi2S6	 ribbon.	This	 is	 a	 result	 of	
larger	lateral	asymmetry	in	the	bond	scheme	of	Bi(2)S5	
pyramids	in	comparison	with	the	Pb(2)	pyramids.	The	
same	explanation	holds	for	the	movements	of	S2.	The	
Bi1	curves	around	the	1/3	and	2/3	levels	show	a	larger	
Dy	difference	for	Cu-free	ribbon	contacts	than	for	the	
Cu-populated	 ones.	 The	 two	 Bi1	 atoms	 illustrated	
belong	 to	 two	 distinct	 intermeshed	 ribbons,	 and	 the	

latter	trend	indicates	a	deeper	insertion	of	these	ribbons	
into	each	other’s	interspaces.

The	x3	–	x4	plot	reveals	a	sinusoidal	movement	of	
the	 z coordinate for all large cations. Modulations of 
the	(Pb,Bi)2	positions	are	parallel	for	all	four	(Pb,Bi)2	
strings	 in	 the	supercell	 (Fig.	12a);	 that	 for	Bi1	shows	
a	decrease	 in	 the	difference	of	 z	 coordinates	 for	pure	
Bi4S6	ribbons.	The	Bi1	curves	that	are	adjacent	in	the	
x3	–	x4	plot	belong	 to	Bi1	atoms	at	 the	opposite	ends	
of	 the	 same	 ribbon.	Thus,	 their	Dz	 gap	 can	 be	 taken	
as	 a	 measure	 of	 ribbon	 rotation	 about	 its	 central	 21	
axis.	The	Bi4S6	ribbons	in	gladite	are	therefore	closer	
to	 parallelism	 with	 the	 [010]	 direction,	 whereas	 the	
Cu2Pb2Bi2S6	ribbons	are	more	rotated,	 toward	the	Cu	
atoms	attached	to	them	(Fig.	8a).

Owing	 to	 the	 smaller	 degree	 of	 rotation	 of	 the	
Bi4S6	ribbons	and	a	more	pronounced	rotation	of	two	
consecutive	Cu2Pb2Bi2S6	ribbons	that	are	hinged	onto	
the	 former	 ones	 via	 Cu-free	 contacts	 (Fig.	 8a)	 and	
mutually	via	Cu-containing	contacts,	sinusoidal	shifts	
of	(especially)	the	central	(Pb,Bi)2	atoms,	–Dz	for	the	

b ca
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first subcell (t	=	1/3),	and	+Dz	for	the	third	subcell	(t	=	
2/3),	are	generated.	This	kind	of	information	can	also	be	
derived from discretely refined structures, but it requires 
a	more	laborious	analysis.

The	plots	x2	–	x4	and	x3	–	x4	of	salzburgite	(a	four-
fold	superstructure)	show	the	same	features	(Figs.	11b	
and	 12b).	Their	 “stiff”	 appearance	 is	 connected	 with	
the	presence	of	a	single	Bi4S6	ribbon	in	any	one	[010]	
sequence of four ribbons; this ribbon shows lesser 
rotation.	The	“stiff”	Dy	curves	for	Bi1	again	are	more	
distant	from	each	other	in	Cu-free	intervals,	and	closer	
in	the	intervening	Cu-containing	intervals.

Paarite	 (Figs.	 11c,	 12c)	 contains	 only	 one	 Bi4S6	
ribbon in a [010] string of five distinct ribbons. It has 
a	 pair	 of	 Cu-containing	 ribbon	 contacts	 interspersed	
between	 three	 Cu-free	 contacts.	 Thus,	 Dy	 of	 the	
(Pb,Bi)2	 curve	 lies	 between	 those	 of	 salzburgite	 and	
gladite,	whereas	 the	Bi1	curve	 is	 straight	 for	x4	 from	
0.0 to 0.4, and for its symmetry-equivalent, and shows 
constriction	 of	 the	 Bi1	 –	 Bi1	 curve	 interspace	 in	 the	
Cu-containing	parts;	the	same	explanation	as	for	salz-
burgite	applies.	The	x3	–	x4	diagram	shows	sinusoidal	

trends	that	are	nearly	identical	with	those	in	gladite;	an	
additional	–Dz shift of Pb is observed in the first subcell, 
indicating	 its	position	 in	 the	 trigonal	prismatic	site	of	
the	inter-ribbon	space.	The	interspace	of	Bi1–Bi1	curves	
again	 expresses	 lesser	 rotation	of	 the	Bi4S6	 ribbon	 in	
respect	to	the	krupkaite-like	ribbons.

The	 x2	 –	 x4	 diagram	 of	 oversubstituted gladite	 is	
virtually	identical	with	that	for	stoichiometric	gladite.	
The refined, partly occupied, position of Cu2 is shifted 
slightly	 in	 the	y	coordinate	against	 the	fully	occupied	
Cu1	 positions	 (Fig.	 13).	 Positional	 shifts	 for	 other	
cations,	connected	with	 the	vacancy	of	 the	Cu2	posi-
tions	in	the	previous	structures,	are	slightly	smaller	in	
this	case,	owing	to	only	partial	vacancies	at	Cu2	sites.

Table	5	 shows	 the	 fractional	 coordinates	of	 atoms	
derived from the superspace refinement of the gladite 
structure, compared to those refined as discrete atoms in 
the 33 Å supercell under the same conditions of refine-
ment.	These	 coordinates	 are	 almost	 identical,	 which	
reflects the fact that both descriptions are equivalent 
where	 the	 highest	 possible	 number	 of	 modulation	
waves	is	used.	Table	6	shows	the	selected	interatomic	

fig.	9.	 Curves	of	Dy	and	Dz	for	M2	(Pb,	Bi)	and	M1	(Bi)	positions	in	(a,	b)	gladite	and	(c,	d)	paarite.	Green	curve:	Dz,	red	
curve:	Dy.	The	interpretation	of	t	levels	for	Dy	and	Dz,	respectively,	is	explained	in	the	text.
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cation–anion	distances	in	gladite,	obtained	by	the	modu-
lated	structure	approach.

EPilOguE

Our	 results	 show	 the	 great	 versatility	 and	 univer-
sality	 of	 the	 superspace	 approach	 developed	 for	
modulated	structures.	Properly	applied,	it	is	capable	of	
describing	not	only	modulations	over	several	basic	cells,	
but	also	the	modulations	with	several	modulation-waves	
inside	 one	 basic	 cell.	 It	 should	 be	 stressed,	 however,	
that	amenability	of	a	family	of	related	structures	to	the	
superspace refinement as commensurately modulated 
structures	does	not	automatically	turn	them	into	typical	
modulated	structures.	In	the	commensurately	modulated	
description, we fit continuous sinusoidal functions to a 

fig.	10.	 The	Dy	coordinate	curves	for	the	string	of	Cu	atoms	
in	 stoichiometric	 gladite,	 salzburgite	 and	 paarite,	 on	 the	
background	of	Fourier	maps	in	the	internal	space	x2	–	x4.b

ca
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set	of	discrete	values	at	discrete,	periodically	repeating	
sites.	A	modulated	nature	of	the	structure	is	obvious	in	
the	situations	where	we	deal	with	“lock-in”	members	of	
a	series	of	incommensurately	modulated	structures.	It	is	
not	the	case	where	such	a	reference	frame	is	missing,	
as	in	the	present	instance.

The	structures	treated	in	this	paper	can	be,	and	also	
were, refined using discrete atoms and three-dimen-
sional	 space-groups	 instead	 of	 modulated	 strings	 of	
atoms	and	a	superspace	group.	Structural	descriptions	of	
this	family	were	given	in	terms	of	two	coexisting	types	
of	M4S6	ribbons	arranged	into	ordered	patterns	(Ohmasa	
&	Nowacki	1970a)	as	well	as	in	modular	terms,	refer-
ring	 to	 the	planes	of	 tetrahedra	 fully	occupied	by	Cu	
atoms	 and	 to	 the	 width	 of	 the	 copper-free	 intervals	
(moduli)	between	them	(Topa	et al. 2000, Makovicky 
et al.	2001,	Ferraris	et al.	2004).	The	present	descrip-
tion,	as	commensurately	modulated	structures,	besides	

giving an alternative method of structure refinement, 
adds	 one	 more	 approach	 to	 these	 structure	 descrip-
tions,	revealing	especially	the	global	adjustments	of	the	
structure	 framework.	The	 atom-coordinate	 curves	 are	
not	as	easy	to	interpret	as	the	interatomic	distances	but,	
properly analyzed, they reflect the overall positional (or 
displacement,	occupancy)	trends,	which	remain	usually	
submerged	in	localized	descriptions.

The	 structures	 of	 the	 aikinite–bismuthinite	 series	
are	not	 typical	modulated	structures,	such	as	 those	of	

fig.	 11.	 The	x2	–	x4	 sections	of	 superspace	 for	 (a)	gladite,	
(b)	salzburgite,	and	(c)	paarite,	indicating	y	coordinates	for	
all	strings	of	atoms	in	each	structure	illustrated	in	Figures	
8a–c.	The	 t	 levels	show	atom	loci	 in	each	string	and	for	
each	consecutive	subcell.	Black	curves:	M2	strings,	green	
curves:	M1	strings,	red	intervals:	Cu.
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Na2CO3 (deJong & Tuinstra 1979, Hogervorst et al.	
1979,	 Zubkova	 et al.	 2002,	 Dušek	 et al.	 2003),	 for	
example. At best, they can be classified as interface-
modulated structures	 (Amelinckx	 1979),	 where	 the	
interfaces	modulating	the	basic	structure	are	the	(010)	
planes	with	tetrahedra	occupied	by	Cu,	and	the	Pb	sites	
adjacent	 to	 these.	 It	means	 that	 these	 structures	 are	 a	
boundary	 case,	 eminently	 suitable	 also	 for	 the	 afore-
mentioned	alternative,	modular	approach.	Still,	owing	
to	 the	 introduction	of	 the	crenel	 function,	 the	present	
series	was	successfully	treated	as	a	modulated	structure	
by	a	superspace	approach.
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