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Auszug

Dufrenoysit wurde strukturell untersucht. In der Einheitszelle befinden sich
zwei Formeleinheiten PbgAsgS20' Die Raumgruppe ist O~-P21 und die Gitter-
konstanten sind a = 7,90, b = 25,74, c = 8,37 A, fJ = 90°21'.

Die Grundstruktur ist dieselbe wie bei Rathit-I, Rathit-Ia und Rathit-III;
die Unterschiede liegen in der chemischen Zusammensetzung und in kleinen da-
durch bedingten Atomverschiebungen. Jedes von vier der acht unabhangigen
Pb-Atome ist von neun, jedes der anderen vier Pb-Atome von sieben (6 + 1)

S-Atomen umgeben. Das siebente der nachsten S-Atome des letzten Typus ist
relativ weit weg gelegen. AIle As-Atome scheinen eine trigonal-pyramidale
S-Koordination aufzuweisen. Sieben unabhangige AsSa-Pyramiden sind iiber
S-Atome unter Bildung von AS4S9- und AsaS7-Gruppen miteinander verkniipft.
Die achte AsSa-Pyramide ist wahrscheinlich isoliert.

Abstract

A structural investigation of dufrenoysite has been carried out. There are
two chemical units of PbgAsaS20 in a unit cell. The space group is O~-P 21> and
the unit-cell constants are a = 7.90A, b = 25.74A,c = 8.37 A,fJ = 90°21'.

The main structure is the same as that ofrathite-I, rathite-Ia and rathite-III,
the differences among them lying in the chemical composition and in small shifts
of atoms due to the difference in composition. Each of four out of eight indepen-
dent Pb atoms is surrounded by nine S atoms, the other four Pb atoms each being
surrounded by seven (6 + 1) S atoms. The seventh of the nearest S atoms of the
latter type is at a fairly distant position. All As atoms seem to have trigonal
pyramidal coordinations of S atoms. Seven independent AsSa pyramids are
joined by sharing S atoms, giving an AS4S9 and an AsaS7 group. The remaining

AsSa pyramid is probably isolated.
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1. Introduction

The structure determination of dufrenoysite was undertaken to get
a systematic knowledge on the crystal chemistry of lead arsenosulfide
minerals, especially of the rathite group, to which rathite-I, rathite-III,
dufrenoysite (NOWACKIet al., 1964) and rathite-Ia (MARUMOand No-
WACKI, 1966) belong. The detailed structure of rathite-I was reported
by MARUMOand NOWACKI(1966) and structure determinations of ra-
thite-III and rathite-Ia were published by LEBIHAN (1962). These
structures are all composed essentially of two kinds of layers. One kind
of layers consists of Pb atoms surrounded by nine S atoms, and the
other kind of layers have a deformed galena-type structure. The differ-
ences between these structures lie in the chemical composition of the
latter kind of layers.

There are several arsenosulfide minerals which have structures
similar to the rathite-group minerals. Their structures are composed
of layers of the same kind as in the rathite group minerals, but the
thickness of the second kind of layers is not always the same as in
the rathite group. Scleroclase, baumhauerite, rathite-II and probably
jordanite are examples of this kind of minerals.

2. Experimental

A crystal from Lengenbach (B 348, labeled as "marrite"), Bin-
natal, Switzerland was used in this investigation. Four pieces were
cut off from the crystal for x-ray intensity measurement, chemical
analysis, x-ray microanalysis and powder photography. The unit-cell
dimensions measured by KUNZ (NOWACKI, IITAKA, BURKI and KUNZ,
1961) with the same material were adopted throughout this work
(Table 1). The possible space groups obtained from x-ray diagrams
areO~h-P21Im andO~-P21. Since the crystal is strongly piezoelectric,
the true space group of dufrenoysite is O~-P21.

An ordinary chemical analysis was carried out by Fa. Fresenius
(Wiesbaden) and an x-ray microanalysis by NOWACKI and BAHEZRE

Table 1. A comparison of dufrenoysite and the related minerals



Pb As S Total

Ordinary chemical analysis 55.72% 19.94% 23.72% 99.38%
X-ray microanalysis 54.8 20.6 26.7 102.1
Ideal formula Pb16As16S40 57.20 20.68 22.12 100.00

The crystal structure of dufrenoysite

Table 2. Ohemical analyses of dufrenoysite
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(1963). The results of the two analyses are in good agreement (see
Table 2). If the density of the crystal is assumed to be 5.53 gjcm3
(DANA'SSystem of Mineralogy, Vol. I, 1944) the values obtained by
the chemical analysis give the empirical formula Pb15.33As15.1SS42.1S'
However, it is certain that dufrenoysite is a member of the rathite-
group minerals from its similarity to rathite-I and rathite-Ia in unit-
cell dimensions and hkO x-ray diffraction patterns. Since in the
rathite-group minerals the number of S atoms in the unit cell is
40 and the total number of metallic atoms is 32, the ideal empirical
formula of dufrenoysite should be Pb16As16S40' The experimental
formula becomes Pb14.54As14.40S40'if we assume the number of S atoms
in the unit cell to be 40.

As can be seen in Table 1, dufrenoysite and rathite-Ia have the
same symmetry and identical unit-cell dimensions within experimental
error. The chemical composition of these two minerals is also very
similar. However, there is a fairly large difference between the powder
data fordufrenoysite given by BERRY and THOMPSON(1962) and that
for rathite-Ia given by LEBIHAN (1962). A powder photograph was,
therefore, taken with FeKcX radia-

.
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CUKiX radiation. Integrated Weissenberg photographs were taken
around the a and the c axis. The relative intensities of the Okl and
hkO reflections were measured with a micro densitometer and Lorentz-
polarization and absorption factors were applied.

3. Structure determination

Dufrenoysite is quite similar to rathite-Ia (see Table 1). They have
identical unit-cell dimensions within experimental error, the same
symmetry, and similar chemical composition. In addition, dufrenoysite
gives for the hkO reflections, relative intensities almost identical to
those of rathite-Ia, indicating that their structures have identical
projections along the c axes. Since LEBIHAN (1962) gives the intensity
data of rathite- Ia only for the hkO reflections, we cannot make a further
search for the structural similarity using three-dimensional intensity
data. However, it is reasonable to assume from the above mentioned
similarities that dufrenoysite and rathite-Ia have essentially the same
structure. The difference lies in the ratio of Pb to As atoms. A part
of the As atoms in rathite-Ia are apparently replaced by Pb atoms
in dufrenoysite.

The struture determination was, therefore, carried out by suc-
cessive refinements of the a- and the c-axis projections with the aid
of difference Fourier syntheses, starting from the rathite-Ia structure
given by LEBIHAN. In the first difference Fourier projections, it was
observed that two of the nine independent As atoms are accompanied
by salient peaks corresponding to about one third of a Pb atom,
while these As atoms themselves are in negative holes corresponding
to about minus one third of an As atom. This indicates that part of
the As atoms in rathite-Ia are replaced by Pb atoms in dufrenoysite
and explains well the difference in chemical composition of the two
crystals. Five cycles of refinement were carried out assuming
the partial replacement by Pb atoms. The discrepancy factor,
R = L'llFol-JFcll!L'lFol, decreased from the initial value of 0.49
for F (Okl) and 0.26 for F(hkO) to 0.23 and 0.14, respectively. During
the course of the refinement, some of the Pb atoms were recognized
to have fewer electrons than a normal Pb atom. Fractional popula-
tions were assumed for such Pb atoms.

Although the total number of Pb atoms in the structure thus ob-
tained coincides well with the number of Pb atoms in a unit cell as
determined by chemical analyses, the assumption ofthe statistical distri-
bution ofPb atoms was discarded for the following reasons. The popula-



x I y I z BI ax ay a, I aRI

Pb(l) 0.017 0.001 0.871 3 0.003 0.0007 0.002 0.33
Pb(2) 0.978 0.4975 0.636 3 0.003 0.0007 0.002 0.33
Pb(3) 0.518 0.096 0.868 3 0.003 0.0007 0.002 0.33
Pb(4) 0.522 0.096 0.368 3 0.003 0.0007 0.002 0.33
Pb(5) 0.202 0.226 0.876 3 0.003 0.0007 0.002 0.33
Pb(6)

I

0.308 0.3725 0.135 3 0.003 0.0007 0.002 0.34
Pb(7) 0.660 0.256 0.639 3 0.003 0.0007 0.002 0.33
Pb(8) 0.187 0.2285 0.395 3 0.003 0.0007 0.002 0.32
As(1) 0.954 0.139 0.199 3 0.008 0.0016 0.006 0.85
As(2) 0.950 0.136 0.609 3 0.008 0.0016 0.006 0.86
As(3) 0.552 0.4595 0.884 3 0.008 0.0016 0.006 0.85
As(4) 0.548 0.451 0.433 3 0.008 0.0016 0.006 0.83
As (5) 0.883 0.363 0.373 3 0.007 0.0017 0.006 0.90
As(6) 0.871 0.351 0.947 3 0.007 0.0016 0.006 0.87
As(7) 0.258 0.351 0.632 3 0.008 0.0018 0.006 0.85
As(8) 0.625 0.233 0.104 3 0.008 0.0017 0.006 0.82
8(1) 0.263 0.031 0.123 3 0.017 0.004 0.014 1.9
8(2) 0.786 0.073 0.115 3 0.017 0.004 0.013 1.9
8(3) 0.110 0.113 0.830 1 0.012 0.002 0.009 1.1
8(4) 0.409 0.181 0.119 1 0.011 0.002 0.009 1.1
8(5) 0.222 0.691 0.082 1 0.011 0.002 0.010 1.0
8(6) 0.428 0.315 0.423 4 0.021 0.004 0.018 2.3
8(7) 0.426 0.309 0.839 2 0.014 0.003 0.012 1.4
8(8) 0.047 0.296 0.646 3 0.017 0.004 0.013 1.8
8(9) 0.042 0.299 0.115 3 0.017 0.004 0.013 1.8
8(10) 0.080 0.415 0.909 3 0.017 0.003 0.014 1.8
8(11) 0.375 0.487 0.061 2 0.014 0.003 0.012 1.3
8(12) 0.740 0.405 0.183 4 0.022 0.005 0.017 2.3
8(13) 0.738 0.399 0.600 1 0.011 0.002 0.009 1.1
8(14) 0.274 0.020 0.614 4 0.022 0.005 0.015 2.3
8(15) 0.783 0.068 0.620 1 0.011 0.002 0.009 1.1
8(16) 0.124 0.104 0.435 4 0.021 0.004 0.017 2.4
8(17) 0.407 0.181 0.623 2 0.013 0.003 0.011 1.4
8(18) 0.774 0.201 0.302 4 0.023 0.005 0.016 2.2
8(19) 0.106 0.417 0.424 3 0.017 0.004 0.014 1.8
8(20) 0.392 0.481 0.669 2 0.013 0.003 0.011 1.4
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tions of two Pb atoms which were supposed to be statistically replacing As
atoms increased during the course of the refinement and the sum of the
populations of the Pb atoms approached one. Since the structure is
nearly centrosymmetric and the two As atoms are related by a pseudo-
centre of symmetry, this kind of apparent partial replacement would
be brought about in a Fourier map phased for the structure having

Table 4. The atomic coordinates of dufrenoysite
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Table 5. Observed and calculated structure amplitudes of dufrenoysite
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Table 5. (Continued)

h k 1 IF,I IF,I h k 1 IF,I IF,I h k 1 [F,I IF,I h k 1 IF,I IF,I h k 1 IF,I IF,I
8 12 0 120 16, 8180 27 23 9 J 0 69 86 990 28 1'. 10 0 0 27 50

13 66 ., 19 62 82 ,
"

51 10 57 '0 1 36 68

"
'7 77 20 51 10' 5 0 2. 11 27 37 2 0 32

15 '.0 53 9 0 0 106 1111 6

"
17 12

"
35 3 '7

63
16 1I1I 42 1 1115 1(,2 7 124 153 13 18 36
17 22 36 2 81

'0
8 53 22 14 20 22

no replacement, even if one of the As atoms is fully replaced by a Pb
atom. Also, anomalous dispersion was not taken into account, even
though the dispersion effect is fairly large for a Pb atom. This might
cause a decrease in the apparent number of electrons for the Pb atoms
in a Fourier map. And the final reason is that electron deficiency is
often caused by experimental errors, especially in substances which
have large absorption coefficient. A further refinement of the structure
was, therefore, also performed by the difference Fourier method
without the assumption of a statistical distribution of atoms. For the
two positions where As and Pb atoms were statistically distributed
in the former calculation, the one \vhich had the higher Pb atom
population was chosen as a Pb atom and the other as an As atom.
The final R value is 0.168 for F(Okl) and 0.140 for F(hkO).

The final atomic parameters are given in Table 4 and the calculated
structure amplitudes in Table 5, together with the observed structure
amplitudes for comparison.

4. Discussion

The interatomic distances are given in Table 6 and the bond angles
in Table 7. The Pb-S distances range between 2.80 A and 3.50 A,
just as in the structure ofrathite-I. Each offour of the eight independ-
ent Pb atoms is surrounded by nine S atoms, the other four Pb atoms
each being surrounded by six S atoms. For groups of the latter type
there are seventh S atoms at distances of about 3.6 to 3.8 A. The mean
Pb-S distance is shorter for groups of the latter type than for those
which have nine neighbouring S atoms. The same tendency is also
observed in the rathite-I structure. All As atoms seem to have trigonal-
pyramidal coordinations of S atoms as is usual in arsenosulfide crystals.
Most of the As-S distances obtained are, however, somewhat longer
than the normal covalent As-S bond length. This may be caused by
the inaccuracy of the two-dimensional study and also by the large
difference in atomic number between Pb and S. Since As (7) has the
fourth-nearest atom at a fairly short distance, 2.68 A, we cannot say
anything conclusive about the coordination around this atom.



8 (1) 8(2) I 8(3) I 8(4) 8(5) 8 (6) 8(7) I 8(8) I 8(9) I8(10)

Pb(1)
I

2.96 3.31 3.00 2.93

Pb(2) 2.91 3.39 3.14

Pb(3) 3.39 3.02 3.45 3.09 3.30
Pb(4) 3.35 3.05 3.09
Pb(5) 3.03 2.83 (3.68) 2.86 2.86 2.99
Pb(6) 2.82 3.02 2.93 2.83

Pb(7) 2.93 2.99 2.87 3.40

Pb(8) 3.12 3.01 2.89 3.10

As(1) 3.85 2.30 3.27 2.98
As(2) 2.27 3.18
As(3) 2.41
As(4) 3.64
As(5) 3.08 2.95
As(6) 3.97 3.14

2.36\
2.42

As(7) 2.37 2.41 2.27 3.12

As(8) 2.25 2.23 3.68 3.31 3.88
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Table 6. Interatomic distances

The a-axis and the c-axis projections of the structure are shown in
Fig.1 and Fig. 2. The structure is composed of the same kinds of
layers as in rathite-I, which are parallel to the plane determined by
the 8.4 A and 7.9 A axes. The first kind of layers are PbS3 layers and
consist of the coordination polyhedra around those Pb atoms which
are surrounded by nine S atoms. The second kind of layers have
a deformed PbS-type structure containing Pb, As and S atoms.
As-S3 pyramids, except As(7)-S3' are joined by sharing S
atoms, giving two kinds of chains. One is four-membered:
As(3)-As(4)-As(5)-As(6), and the other is three-membered:
As(2)-As(1)-As(8). The As(7)-S3 pyramid is isolated, assuming no
bond betweenAs(7) and S(19). The manner of linking is quite similar
to that observed in the rathite-I structure, although the lengths of
the strings are shorter than in rathite-I, owing to the high Pb
content.

The differences among the structures of dufrenoysite, rathite-I,
rathite-III and rathite-Ia lie in the metallic atom compositions of the
second kind of layers. The composition is Pb4Ass in dufrenoysite,
Pb2AgAs9 in rathite-I, Pb2AslO in rathite-III and Pb3As9 in rathite-Ia.
Since dufrenoysite and rathite-Ia have the same symmetry and the
same unit-cell dimensions, they might be considered as the same kind
of mineral. The discrepancies between the powder data of dufrenoysite



Is (11)1 S(12) S (13) S (14) S (15)IS (16)IS (17) S (18) Is (19)IS (20) Mean a

Pb(l) 3.35 3.23 3.01 3.27 13.34 3.16
Pb(2) 3.25 2.94 3.38 2.92 2.88 3.50 3.15
Pb(3) 3.00 3.46 3.06 3.06 3.20
Pb(4) 3.46 3.03 3.38 3.13 3.47 3.06 3.22 0.0

Pb(5) 2.89 2.91 ~0.1
Pb(6) 3.06 (3.73) 3.07 2.96
Pb(7) (3.75) 2.87 3.17 3.04
Pb(8) 3.26 2.84 (3.60) 3.04
As(l) 2.51 2.34 2.38
As(2) 2.24 2.17 4.00 3.29 2.23
As(3) 2.16 3.16 3.15 2.23 2.27
As(4) 3.40 2.82 2.46 2.35 3.80 2.41 2.41 0.0

As(5) 2.20 2.36 2.36 2.31 ~0.2
As(6) 2.58 3.20 2.45

AS(7)1 2.68 3.54 2.35
As(8) I 2.16 2.21

Table 7. Bond angles in dufrenoysite

S(2)-As(1)-S(16) 107.0° S(12)-As(5)-S(13) 92.6°
S(2)-As(1)-S(18) 102.1 S(12)~As(5)-S(19) 104.7
S(16)-As(1)-S(18) 110.5 S(13)-As(5)-S(19) 92.8

S(3)-As(2)-S(15) 97.6 S(9)-As(6)-S(10) 91.1
S(3)-As(2)-S(16) 89.6 S(9)-As(6)-S(12) 99.1
S(15)-As(2)-S(16) 98.6 S(10)-As(6)-S(12) 91.9

S(1)-As(3)-S(11 ) 102.0 S(6)-As(7)-S(7) 87.0
S(1)-As(3)-S(20) 100.2 S(6)-As(7)-S(8) 105.1
S(11)-As(3)-S(20) 90.0 S(7)-As(7)-S(8) 98.0

S(13)-As(4)-S(14) 95.0 S(4)-As(8)-S(5) 102.2
S(13)-As(4)-S(20) 96.4 S(4)-As(8)-S(18) 101.3
S(14)-As(4)-S(20) 103.1 S(5)-As(8)-S(18) 87.8

z. Kristallogr. Ed. 124, 6 27
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(inA) in dufrenoysite

6

9

9

5

and rathite-Ia were probably caused by the difference in the conditions

I ofrecording the powder patterns.
There are dufrenoysite crystals (1..3207-64) which give diffuse

streaks along the b* direction. This means that the periodicity along
the b axis is imperfect in these crystals. There are several possibilities
to explain these diffuse streaks. (1) The structure is centrosymmetric
if we neglect the difference between Pb and As atoms in the second
kind of layers and small shifts of atoms. Therefore it might be possible
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to insert an enantiomorphous layer in place of some layer without
a large change of the structure. Then we would get a one-dimensionally
disordered structure. (2) It might be possible to put the second
kind of layers of dufrenoysite and those of rathite-I into the structure

Os

Fig. 1. The a-axis projection of the crystal structure of dufrenoysite

Os

Fig. 2. The c-axis projection of the crystal structure of dufrenoysite

at random, since the difference between the dufrenoysite layer and the
rathite-I layer is small. In this case, the chemical composition should
be a little bit different from the ideal dufrenoysite. It was found that
the crystals are composed of microscopic blocks. According to an x-ray
microprobe analysis (G. BURRI, analysis no. 124), the larger blocks
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contain about 4% of TI (Pb 52, T14, As 23, S 21, E 100%), while the
smaller blocks does not contain TI (Pb 55, TI -, As 23, S 21.5,
1:99.5%). If the TI atom can replace the Ag atoms in rathite-I, we
can consider the TI bearing block as a mixture of rathite-I and du-
frenoysite as far as the chemical composition is concerned. Therefore,
the second possibility is more probable for the explanation of the
diffuse streaks.
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