The crystal structure of dufrenoysite, $\mathrm{Pb}_{16} \mathrm{As}_{16} \mathrm{~S}_{40}{ }^{*}$

By F.Mardmo** and W. Nowacki
Abteilung für Kristallographie und Strukturlehre, Universität Bern

(Received July 8, 1966)

Auszug

Dufrenoysit wurde strukturell untersucht. In der Einheitszelle befinden sich zwei Formeleinheiten $\mathrm{Pb}_{8} \mathrm{As}_{8} \mathrm{~S}_{20}$. Die Raumgruppe ist $C_{2}^{2-P 2_{1}}$ und die Gitterkonstanten \sin d $a=7,90, b=25,74, c=8,37 \AA, \beta=90^{\circ} 21^{\prime}$.

Die Grundstruktur ist dieselbe wie bei Rathit-I, Rathit-Ia und Rathit-III; die Unterschiede liegen in der chemischen Zusammensetzung und in kleinen dadurch bedingten Atomverschiebungen. Jedes von vier der acht unabhängigen Pb -Atome ist von neun, jedes der anderen vier Pb -Atome von sieben $(6+1)$ S-Atomen umgeben. Das siebente der nächsten S-Atome des letzten Typus ist relativ weit weg gelegen. Alle As-Atome scheinen eine trigonal-pyramidale S-Koordination aufzuweisen. Sieben unabhängige AsS_{3}-Pyramiden sind über S-Atome unter Bildung von $\mathrm{As}_{4} \mathrm{~S}_{9}$ - und $\mathrm{As}_{3} \mathrm{~S}_{7}$-Gruppen miteinander verknüpft. Die achte AsS_{3}-Pyramide ist wahrscheinlich isoliert.

Abstract

A structural investigation of dufrenoysite has been carried out. There are two chemical units of $\mathrm{Pb}_{8} \mathrm{As}_{8} \mathrm{~S}_{20}$ in a unit cell. The space group is $C_{2}^{2}-P 2_{1}$, and the unit-cell constants are $a=7.90 \AA, b=25.74 \AA, c=8.37 \AA, \beta=90^{\circ} 21^{\prime}$.

The main structure is the same as that of rathite-I, rathite-Ia and rathite-III, the differences among them lying in the chemical composition and in small shifts of atoms due to the difference in composition. Each of four out of eight independent Pb atoms is surrounded by nine S atoms, the other four Pb atoms each being surrounded by seven $(6+1) \mathrm{S}$ atoms. The seventh of the nearest S atoms of the latter type is at a fairly distant position. All As atoms seem to have trigonal pyramidal coordinations of S atoms. Seven independent AsS_{3} pyramids are joined by sharing S atoms, giving an $\mathrm{As}_{4} \mathrm{~S}_{9}$ and an $\mathrm{As}_{3} \mathrm{~S}_{7}$ group. The remaining AsS_{3} pyramid is probably isolated.

* Publication no. 165, Department of Crystallography and Structural Sciences, University of Bern. - Part 28 of papers on sulfides and sulfosalts.
** Present address: University of Tokyo, Institute for Solid State Physics, Azabu-Shinryudo-cho, Minato-ku, Tokyo.

1. Introduction

The structure determination of dufrenoysite was undertaken to get a systematic knowledge on the crystal chemistry of lead arsenosulfide minerals, especially of the rathite group, to which rathite-I, rathite-III, dufrenoysite (Nowacki et al., 1964) and rathite-Ia (Marumo and Nowacki, 1966) belong. The detailed structure of rathite-I was reported by Mardmo and Nowacki (1966) and structure determinations of ra-thite-III and rathite-Ia were published by LeBinan (1962). These structures are all composed essentially of two kinds of layers. One kind of layers consists of Pb atoms surrounded by nine S atoms, and the other kind of layers have a deformed galena-type structure. The differences between these structures lie in the chemical composition of the latter kind of layers.

There are several arsenosulfide minerals which have structures similar to the rathite-group minerals. Their structures are composed of layers of the same kind as in the rathite group minerals, but the thickness of the second kind of layers is not always the same as in the rathite group. Scleroclase, baumhauerite, rathite-II and probably jordanite are examples of this kind of minerals.

2. Experimental

A crystal from Lengenbach (B 348, labeled as ,,marrite"), Binnatal, Switzerland was used in this investigation. Four pieces were cut off from the crystal for x-ray intensity measurement, chemical analysis, x-ray microanalysis and powder photography. The unit-cell dimensions measured by Kunz (Nowacki, Ittaka, Bürki and Kunz, 1961) with the same material were adopted throughout this work (Table 1). The possible space groups obtained from x-ray diagrams are $C_{2 h}^{2}-P 2_{1} / m$ and $C_{2}^{2}-P 2_{1}$. Since the crystal is strongly piezoelectric, the true space group of dufrenoysite is $C_{2}^{2}-P 2_{1}$.

An ordinary chemical analysis was carried out by Fa. Fresenius (Wiesbaden) and an x-ray microanalysis by Nowacki and Bahezre

Table 1. A comparison of dufrenoysite and the related minerals

Mineral	Formula	a_{0}	b_{0}	c_{0}	β	Space group
dufrenoysite	$\mathrm{Pb}_{16} \mathrm{As}_{16} \mathrm{~S}_{40}$	7.90	25.74	8.37	$90^{\circ} 21^{\prime}$	$\mathrm{P} 2_{1}$
rathite-I a	$\mathrm{Pb}_{14} \mathrm{As}_{18} \mathrm{~S}_{40}$	7.91	25.80	8.43	90°	$\mathrm{P} 2_{1}$
rathite-I	$\left({\mathrm{Pb}, \mathrm{Tl})_{12} \mathrm{As}_{16}(\mathrm{As}, \mathrm{Ag})_{4} \mathrm{~S}_{40}}^{25.16}\right.$	7.94	8.47	$100^{\circ} 28^{\prime}$	$\mathrm{P} 2_{1 / a}(\mathrm{PI})$	
rathite-III	$\mathrm{Pb}_{12} \mathrm{As}_{20} \mathrm{~S}_{40}$	24.52	7.91	8.43	90°	$\mathrm{P} 2_{1}$

Table 2. Chemical analyses of dufrenoysite

	Pb	As	S	Total
Ordinary chemical analysis	$\mathbf{5 5 . 7 2 \%} \%$	19.94%	23.72%	$99.38^{\circ} / 0$
X-ray microanalysis	54.8	20.6	26.7	102.1
Ideal formula $\mathrm{Pb}_{16} \mathrm{As}_{16} \mathrm{~S}_{40}$	57.20	20.68	22.12	100.00

(1963). The results of the two analyses are in good agreement (see Table 2). If the density of the crystal is assumed to be $5.53 \mathrm{~g} / \mathrm{cm}^{3}$ (Dana's System of Mineralogy, Vol. I, 1944) the values obtained by the chemical analysis give the empirical formula $\mathrm{Pb}_{15.33} \mathrm{As}_{15.18} \mathrm{~S}_{42.18}$. However, it is certain that dufrenoysite is a member of the rathitegroup minerals from its similarity to rathite-I and rathite-Ia in unitcell dimensions and $h k 0$ x-ray diffraction patterns. Since in the rathite-group minerals the number of S atoms in the unit cell is 40 and the total number of metallic atoms is 32 , the ideal empirical formula of dufrenoysite should be $\mathrm{Pb}_{16} \mathrm{As}_{16} \mathrm{~S}_{40}$. The experimental formula becomes $\mathrm{Pb}_{14.54} \mathrm{As}_{14.40} \mathrm{~S}_{40}$, if we assume the number of S atoms in the unit cell to be 40 .

As can be seen in Table 1, dufrenoysite and rathite-Ia have the same symmetry and identical unit-cell dimensions within experimental error. The chemical composition of these two minerals is also very similar. However, there is a fairly large difference between the powder data for dufrenoysite given by Berry and Thompson (1962) and that for rathite-Ia given by LeBihan (1962). A powder photograph was, therefore, taken with $\mathrm{Fe} K \alpha$ radiation for identification of the material. The spacings and the relative intensities of the main lines are shown in Table 3, together with those of dufrenoysite and rathite-Ia. The crystal used was unequivocally identified as dufrenoysite.

In order to simplify the absorption correction, the piece used for x-ray intensity measurement was ground to a sphere with a diameter of about 0.15 mm . The absorption-correction factor for the sphere ranged between 498 at $\theta=0^{\circ}$ and 19.2 at $\theta=90^{\circ}$ for

Table 3. Powder data of the crystal studied, dutrenoysite (BERRY, 1962) and rathite-Ia (LEBIHAN, 1962)

Crystal		Dufrenoysite		Rathite-Ia	
1	d	1	d	I	d
		1	7.50 R		
		2	6.81		
		1	5.99		
			4.98		
4		2	4.27		
	4.10 R	2	4.11		
		1	3.93		
9	3.73	10	3.74		
6	3.53	5	3.56		
5	3.78	5	3.40		
6	5.17	6	3.21	5	3.140 A
4	3.10	2	3.12		
10	2.98	9	3.00	10	2.918
6	2.88	5	2.90		
5	2.78	4	2.80		
7	2.71	8	2.70		
2	2.58	1	2.58		
3	2.43	1	2.44		
9	2.34	6	2.36	6	2.253
5	2.50				
	2.21	6	2.23	5	2.166
		2	2.16		
5	2.08	3	2.09	7	2.049
	2.03	3	2.03		
				6	1.570 1.537
				3	1.083

$\mathrm{Cu} K \alpha$ radiation. Integrated Weissenberg photographs were taken around the a and the c axis. The relative intensities of the $0 k l$ and $h k 0$ reflections were measured with a microdensitometer and Lorentzpolarization and absorption factors were applied.

3. Structure determination

Dufrenoysite is quite similar to rathite-Ia (see Table 1). They have identical unit-cell dimensions within experimental error, the same symmetry, and similar chemical composition. In addition, dufrenoysite gives for the $h k 0$ reflections, relative intensities almost identical to those of rathite-Ia, indicating that their structures have identical projections along the c axes. Since LeBihan (1962) gives the intensity data of rathite-Ia only for the $h k 0$ reflections, we cannot make a further search for the structural similarity using three-dimensional intensity data. However, it is reasonable to assume from the above mentioned similarities that dufrenoysite and rathite-Ia have essentially the same structure. The difference lies in the ratio of Pb to As atoms. A part of the As atoms in rathite-Ia are apparently replaced by Pb atoms in dufrenoysite.

The struture determination was, therefore, carried out by successive refinements of the a - and the c-axis projections with the aid of difference Fourier syntheses, starting from the rathite-Ia structure given by LeBifan. In the first difference Fourier projections, it was observed that two of the nine independent As atoms are accompanied by salient peaks corresponding to about one third of a Pb atom, while these As atoms themselves are in negative holes corresponding to about minus one third of an As atom. This indicates that part of the As atoms in rathite- Ia are replaced by Pb atoms in dufrenoysite and explains well the difference in chemical composition of the two crystals. Five cycles of refinement were carried out assuming the partial replacement by Pb atoms. The discrepancy factor, $R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$, decreased from the initial value of 0.49 for $F(0 k l)$ and 0.26 for $F(h k 0)$ to 0.23 and 0.14 , respectively. During the course of the refinement, some of the Pb atoms were recognized to have fewer electrons than a normal Pb atom. Fractional populations were assumed for such Pb atoms.

Although the total number of Pb atoms in the structure thus obtained coincides well with the number of Pb atoms in a unit cell as determined by chemical analyses, the assumption of the statistical distribution of Pb atoms was discarded for the following reasons. The popula-
tions of two Pb atoms which were supposed to be statistically replacing As atoms increased during the course of the refinement and the sum of the populations of the Pb atoms approached one. Since the structure is nearly centrosymmetric and the two As atoms are related by a pseudocentre of symmetry, this kind of apparent partial replacement would be brought about in a Fourier map phased for the structure having

Table 4. The atomic coordinates of dufrenoysite

	x	y	z	B	σ_{x}	σ_{y}	σ_{z}	σ_{B}
$\mathrm{Pb}(1)$	0.017	0.001	0.871	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(2)$	0.978	0.4975	0.636	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(3)$	0.518	0.096	0.868	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(4)$	0.522	0.096	0.368	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(5)$	0.202	0.226	0.876	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(6)$	0.308	0.3725	0.135	3	0.003	0.0007	0.002	0.34
$\mathrm{~Pb}(7)$	0.660	0.256	0.639	3	0.003	0.0007	0.002	0.33
$\mathrm{~Pb}(8)$	0.187	0.2285	0.395	3	0.003	0.0007	0.002	0.32
$\mathrm{As}(1)$	0.954	0.139	0.199	3	0.008	0.0016	0.006	0.85
$\mathrm{As}(2)$	0.950	0.136	0.609	3	0.008	0.0016	0.006	0.86
$\mathrm{As}(3)$	0.552	0.4595	0.884	3	0.008	0.0016	0.006	0.85
$\mathrm{As}(4)$	0.548	0.451	0.433	3	0.008	0.0016	0.006	0.83
$\mathrm{As}(5)$	0.883	0.363	0.373	3	0.007	0.0017	0.006	0.90
$\mathrm{As}(6)$	0.871	0.351	0.947	3	0.007	0.0016	0.006	0.87
$\mathrm{As}(7)$	0.258	0.351	0.632	3	0.008	0.0018	0.006	0.85
$\mathrm{As}(8)$	0.625	0.233	0.104	3	0.008	0.0017	0.006	0.82
$\mathrm{~S}(1)$	0.263	0.031	0.123	3	0.017	0.004	0.014	1.9
$\mathrm{~S}(2)$	0.786	0.073	0.115	3	0.017	0.004	0.013	1.9
$\mathrm{~S}(3)$	0.110	0.113	0.830	1	0.012	0.002	0.009	1.1
$\mathrm{~S}(4)$	0.409	0.181	0.119	1	0.011	0.002	0.009	1.1
$\mathrm{~S}(5)$	0.222	0.691	0.082	$\mathbf{1}$	0.011	0.002	0.010	1.0
$\mathrm{~S}(6)$	0.428	0.315	0.423	4	0.021	0.004	0.018	2.3
$\mathrm{~S}(7)$	0.426	0.309	0.839	2	0.014	0.003	0.012	1.4
$\mathrm{~S}(8)$	0.047	0.296	0.646	3	0.017	0.004	0.013	1.8
$\mathrm{~S}(9)$	0.042	0.299	0.115	3	0.017	0.004	0.013	1.8
$\mathrm{~S}(10)$	0.080	0.415	0.909	3	0.017	0.003	0.014	1.8
$\mathrm{~S}(11)$	0.375	0.487	0.061	2	0.014	0.003	0.012	1.3
$\mathrm{~S}(12)$	0.740	0.405	0.183	4	0.022	0.005	0.017	2.3
$\mathrm{~S}(13)$	0.738	0.399	0.600	1	0.011	0.002	0.009	1.1
$\mathrm{~S}(14)$	0.274	0.020	0.614	4	0.022	0.005	0.015	2.3
$\mathrm{~S}(15)$	0.783	0.068	0.620	1	0.011	0.002	0.009	1.1
$\mathrm{~S}(16)$	0.124	0.104	0.435	4	0.021	0.004	0.017	2.4
$\mathrm{~S}(17)$	0.407	0.181	0.623	2	0.013	0.003	0.011	1.4
$\mathrm{~S}(18)$	0.774	0.201	0.302	4	0.023	0.005	0.016	2.2
$\mathrm{~S}(19)$	0.106	0.417	0.424	3	0.017	0.004	0.014	1.8
$\mathrm{~S}(20)$	0.392	0.481	0.669	2	0.013	0.003	0.011	1.4

Table 5. Observed and calculated structure amplitudes of dufrenoysite

Table 5. (Continued)

$k 1$	$\mathrm{F}_{0} \mid$	$\left\|\mathrm{F}_{\mathrm{c}}\right\|$	h $k 1$	$\left\|\mathrm{F}_{0}\right\|$	\| ${ }_{\text {c }} \mid$	h k ¢ 1	$\mid \mathrm{F}$ 。 ${ }^{\text {d }}$	$\left\|\mathrm{F}_{\mathrm{c}}\right\|$	h k : 1	$\mid{ }^{\text {P }}$ O \mid	$\mid{ }^{\text {c }}$ c ${ }^{\text {c }}$	h $\times 1$	$\left\|\mathrm{F}_{0}\right\|$	$\left\|\mathrm{F}_{\mathrm{c}}\right\|$
8120	120	161	8180	27	23	93	69	86	990	28	14	100	27	50
13 14	${ }_{4}^{66}$	84 77	${ }_{28}^{19}$	${ }_{51}^{62}$	${ }^{89}$	5	43	51 28	10 11	57 27	40 37	1	36	${ }_{82}^{68}$
15	40	53	900	106	4	6	43	17	12	45	35	3	47	63
17	${ }_{22}$	36	$\frac{1}{2}$	${ }_{81}$	140	\%	$\stackrel{124}{53}$	153 22	13 14	${ }_{20}^{18}$	-			

no replacement, even if one of the As atoms is fully replaced by a Pb atom. Also, anomalous dispersion was not taken into account, even though the dispersion effect is fairly large for a Pb atom. This might cause a decrease in the apparent number of electrons for the Pb atoms in a Fourier map. And the final reason is that electron deficiency is often caused by experimental errors, especially in substances which have large absorption coefficient. A further refinement of the structure was, therefore, also performed by the difference Fourier method without the assumption of a statistical distribution of atoms. For the two positions where As and Pb atoms were statistically distributed in the former calculation, the one which had the higher Pb atom population was chosen as a Pb atom and the other as an As atom. The final R value is 0.168 for $F(0 k l)$ and 0.140 for $F(h k 0)$.

The final atomic parameters are given in Table 4 and the calculated structure amplitudes in Table 5, together with the observed structure amplitudes for comparison.

4. Discussion

The interatomic distances are given in Table 6 and the bond angles in Table 7. The $\mathrm{Pb}-\mathrm{S}$ distances range between $2.80 \AA$ and $3.50 \AA$, just as in the structure of rathite-T. Each of four of the eight independent Pb atoms is surrounded by nine S atoms, the other four Pb atoms each being surrounded by six S atoms. For groups of the latter type there are seventh S atoms at distances of about 3.6 to $3.8 \AA$. The mean $\mathrm{Pb}-\mathrm{S}$ distance is shorter for groups of the latter type than for those which have nine neighbouring S atoms. The same tendency is also observed in the rathite-I structure. All As atoms seem to have trigonalpyramidal coordinations of S atoms as is usual in arsenosulfide crystals. Most of the As-S distances obtained are, however, somewhat longer than the normal covalent As-S bond length. This may be caused by the inaccuracy of the two-dimensional study and also by the large difference in atomic number between Pb and S . Since $\mathrm{As}(7)$ has the fourth-nearest atom at a fairly short distance, $2.68 \AA$, we cannot say anything conclusive about the coordination around this atom.

Table 6. Interatomic distances

	S (1)	S (2)	S (3)	S (4)	S (5)	S (6)	S (7)	S (8)	S (9)	S (10)
Pb (1)	2.96	3.31	3.00							2.93
Pb (2)	2.91	3.39								3.14
Pb (3)	3.39	3.02	3.45	3.09	3.30					
Pb (4)	3.35	3.05		3.09						
Pb (5)			3.03	2.83	(3.68)		2.86	2.86	2.99	
$\mathrm{Pb}(6)$						2.82	3.02		2.93	2.83
Pb (7)					2.93	2.99	2.87	3.40		
$\mathrm{Pb}(8)$				3.12		3.01		2.89	3.10	
As (1)	3.85	2.30	3.27		2.98					
As (2)			2.27		3.18					
As (3)	2.41									
As (4)						3.64				
As (5)								3.08	2.95	
As (6)							3.97	3.14	2.36	2.42
As (7)						2.37	2.41	2.27		3.12
As(8)				2.25	2.23	3.68	3.31		3.88	

The a-axis and the c-axis projections of the structure are shown in Fig. 1 and Fig. 2. The structure is composed of the same kinds of layers as in rathite-I, which are parallel to the plane determined by the $8.4 \AA$ and $7.9 \AA$ axes. The first kind of layers are PbS_{3} layers and consist of the coordination polyhedra around those Pb atoms which are surrounded by nine S atoms. The second kind of layers have a deformed PbS-type structure containing Pb, As and S atoms. As- S_{3} pyramids, except $\mathrm{As}(7)-\mathrm{S}_{3}$, are joined by sharing S atoms, giving two kinds of chains. One is four-membered: $\mathrm{As}(3)-\mathrm{As}(4)-\mathrm{As}(5)-\mathrm{As}(6)$, and the other is three-membered: $\mathrm{As}(2)-\mathrm{As}(1)-\mathrm{As}(8)$. The $\mathrm{As}(7)-\mathrm{S}_{3}$ pyramid is isolated, assuming no bond between $\mathrm{As}(7)$ and $\mathrm{S}(19)$. The manner of linking is quite similar to that observed in the rathite-I structure, although the lengths of the strings are shorter than in rathite-I, owing to the high Pb content.

The differences among the structures of dufrenoysite, rathite-I, rathite-III and rathite-Ia lie in the metallic atom compositions of the second kind of layers. The composition is $\mathrm{Pb}_{4} \mathrm{As}_{8}$ in dufrenoysite, $\mathrm{Pb}_{2} \mathrm{AgAs}_{9}$ in rathite-I, $\mathrm{Pb}_{2} \mathrm{As}_{10}$ in rathite-III and $\mathrm{Pb}_{3} \mathrm{As}_{9}$ in rathite-Ia. Since dufrenoysite and rathite-Ia have the same symmetry and the same unit-cell dimensions, they might be considered as the same kind of mineral. The discrepancies between the powder data of dufrenoysite
(in \AA) in dufrenoysite

	S (11)	$\mathrm{S}(12)$	S (13)	S (14)	S (15)	S (16)	S (17)	S (18)	S (19)	S (20)	Mean	σ
$\mathrm{Pb}(1)$	3.35	3.23		3.01	3.27				3.34		3.16	
$\mathrm{Pb}(2)$			3.25	2.94	3.38	2.92			2.88	3.50	3.15	
$\mathrm{Pb}(3)$	3.00			3.46	3.06		3.06				3.20	
$\mathrm{Pb}(4)$				3.46	3.03	3.38	3.13	3.47		3.06	3.22	0.06
$\mathrm{Pb}(5)$							2.89				2.91	$\widetilde{0.19}$
$\mathrm{Pb}(6)$	3.06	(3.73)							3.07		2.96	
$\mathrm{Pb}(7)$			(3.75)				2.87	3.17			3.04	
$\mathrm{Pb}(8)$						3.26	2.84	(3.60)			3.04	
As (1)						2.51		2.34			2.38	
As (2)					2.24	2.17	4.00	3.29			2.23	
As (3)	2.16	3.16	3.15							2.23	2.27	
As (4)	3.40	2.82	2.46	2.35					3.80	2.41	2.41	0.09
As (5)		2.20	2.36						2.36		2.31	$\widetilde{0.25}$
As (6)		2.58	3.20								2.45	
As (7)									2.68	3.54	2.35	
As (8)								2.16			2.21	

and rathite-Ia were probably caused by the difference in the conditions of recording the powder patterns.

There are dufrenoysite crystals (L3207-64) which give diffuse streaks along the b^{*} direction. This means that the periodicity along the b axis is imperfect in these crystals. There are several possibilities to explain these diffuse streaks. (1) The structure is centrosymmetric if we neglect the difference between Pb and As atoms in the second kind of layers and small shifts of atoms. Therefore it might be possible

Table 7. Bond angles in dufrenoysite

$\mathrm{S}(2)-\mathrm{As}(1)-\mathrm{S}(16)$	107.0°	$\mathrm{S}(12)-\mathrm{As}(5)-\mathrm{S}(13)$	92.6°
$\mathrm{S}(2)-\mathrm{As}(1)-\mathrm{S}(18)$	102.1	$\mathrm{~S}(12)-\mathrm{As}(5)-\mathrm{S}(19)$	104.7
$\mathrm{~S}(16)-\mathrm{As}(1)-\mathrm{S}(18)$	110.5	$\mathrm{~S}(13)-\mathrm{As}(5)-\mathrm{S}(19)$	92.8
$\mathrm{~S}(3)-\mathrm{As}(2)-\mathrm{S}(15)$	97.6	$\mathrm{~S}(9)-\mathrm{As}(6)-\mathrm{S}(10)$	91.1
$\mathrm{~S}(3)-\mathrm{As}(2)-\mathrm{S}(16)$	89.6	$\mathrm{~S}(9)-\mathrm{As}(6)-\mathrm{S}(12)$	99.1
$\mathrm{~S}(15)-\mathrm{As}(2)-\mathrm{S}(16)$	98.6	$\mathrm{~S}(10)-\mathrm{As}(6)-\mathrm{S}(12)$	91.9
$\mathrm{~S}(1)-\mathrm{As}(3)-\mathrm{S}(11)$	102.0	$\mathrm{~S}(6)-\mathrm{As}(7)-\mathrm{S}(7)$	87.0
$\mathrm{~S}(1)-\mathrm{As}(3)-\mathrm{S}(20)$	100.2	$\mathrm{~S}(6)-\mathrm{As}(7)-\mathrm{S}(8)$	105.1
$\mathrm{~S}(11)-\mathrm{As}(3)-\mathrm{S}(20)$	90.0	$\mathrm{~S}(7)-\mathrm{As}(7)-\mathrm{S}(8)$	98.0
$\mathrm{~S}(13)-\mathrm{As}(4)-\mathrm{S}(14)$	95.0	$\mathrm{~S}(4)-\mathrm{As}(8)-\mathrm{S}(5)$	102.2
$\mathrm{~S}(13)-\mathrm{As}(4)-\mathrm{S}(20)$	96.4	$\mathrm{~S}(4)-\mathrm{As}(8)-\mathrm{S}(18)$	101.3
$\mathrm{~S}(14)-\mathrm{As}(4)-\mathrm{S}(20)$	103.1	$\mathrm{~S}(5)-\mathrm{As}(8)-\mathrm{S}(18)$	87.8

to insert an enantiomorphous layer in place of some layer without a large change of the structure. Then we would get a one-dimensionally disordered structure. (2) It might be possible to put the second kind of layers of dufrenoysite and those of rathite-I into the structure

Fig. 1. The a-axis projection of the crystal structure of dufrenoysite

Fig. 2. The c-axis projection of the crystal structure of dufrenoysite
at random, since the difference between the dufrenoysite layer and the rathite-I layer is small. In this case, the chemical composition should be a little bit different from the ideal dufrenoysite. It was found that the crystals are composed of microscopic blocks. According to an x-ray microprobe analysis (G.Burri, analysis no. 124), the larger blocks
contain about 4% of $\mathrm{Tl}\left(\mathrm{Pb} 52, \mathrm{Tl} 4, \mathrm{As} \mathrm{23} ,\mathrm{~S} \mathrm{21}, \sum 100 \%\right.$), while the smaller blocks does not contain Tl ($\mathrm{Pb} 55, \mathrm{Tl}-\mathrm{As} 23, \mathrm{~S} 21.5$, $\Sigma 99.5 \%$). If the Tl atom can replace the Ag atoms in rathite-I, we can consider the Tl bearing block as a mixture of rathite-I and dufrenoysite as far as the chemical composition is concerned. Therefore, the second possibility is more probable for the explanation of the diffuse streaks.

Acknowledgments

We thank Prof. Dr. E. Nickel (Fribourg) for putting at our disponsal the B 348-crystal, Dr. N. D. Jones for his help in the English version of this paper and helpful criticism and Mr. G. Burri for the electron-microprobe analysis. We are indebted to Schweizerische Nationalfonds (Project No. 2337), Kommission zur Förderung der wissenschaftlichen Forschung (Project No. 384) and Stiftung Entwicklungsfonds Seltene Metalle for financial support.

References

L. G. Berry and R. M. Thompson (1962), X-ray powder data for ore minerals: The Peacock Atlas. Geol. Soc. America, Mem. 85, New York.
M.Th. LeBifan (1962), Étude structurale de quelques sulfures de plomb et d'arsénic naturels du gisement de Binn. Bull. Soc. Franç. Min. Cristallogr. 85, 15-47.
F. Marumo and W. Nowacki (1966), The crystal structure of rathite-I. Z. Kristallogr. 122, 433-456.
W. Nowacki und C. BaHezre (1963), Die Bestimmung der chemischen Zusammensetzung einiger Sulfosalze aus dem Lengenbach (Binnatal, Kt. Wallis) mit Hilfe der elektronischen Mikrosonde. Schweiz. Petr. Mitt. 43, 407-411.
W. Nowacki, Y. Iitaka, H. Bürkt and V. Kunz (1961), Structural investigation on sulfosalts from the Lengenbach, Binn Valley (Ct. Wallis). Part 2. Schweiz. Min. Petr. Mitt. 41, 103-116.
W. Nowacki, F. Marumo and Y. Takéught (1964), Untersuchungen an Sulfiden aus dem Binnatal (Kt. Wallis, Schweiz). Schweiz. Min. Petr. Mitt. 44, 5-9.

