Über ilmenitähnliche Phasen im System MgO-Sb₂O₅ und die Lichtabsorption von Ni²⁺ und Co²⁺ im Gitter von Mg₇Sb₂O₁₂

Von HORST KASPER

Anorganisch-Chemisches Institut der Rheinischen Friedrich-Wilhelms-Universität zu Bonn*

(Eingegangen am 28. Juli 1967)

Abstract

The system MgO—Sb₂O₅ has been reinvestigated. Besides the known MgSb₂O₆ (trirutile type) and Mg₄Sb₂O₉ (I) (ilmenite type) further phases with the general formula Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)} have been found converging for $k \to \infty$ to the compound Mg₇Sb₂O₁₂ (II). By x-ray investigation has been shown, that (II) represents a new type of lattice based on hexagonal close packing of oxygen. The light absorption of the colouring cations Co²⁺ and Ni²⁺ after isomorphous incorportion in (I) and (II) gives evidence, that the bivalent cations have sixfold coordination in these phases.

Auszug

Das System MgO-Sb₂O₅ wurde erneut untersucht. Außer den bekannten Phasen MgSb₂O₆ (Trirutiltypus) und Mg₄Sb₂O₉ (I) (Ilmenittypus) konnten weitere Phasen der allgemeinen Formel Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)} gefunden werden, die für $k \to \infty$ in die Phase Mg₇Sb₂O₁₂ (II) übergehen. Die röntgenographische Untersuchung ergab, daß (II) einen neuen Gittertypus darstellt, basierend auf einer annähernd hexagonal dichten Sauerstoffpackung. Die Untersuchung der Lichtabsorption des Co²⁺ und Ni²⁺ nach isomorphem Einbau in (I) und (II) ergab, daß die zweiwertigen Kationen in diesen Phasen die Koordinationszahl 6 besitzen.

1. Einleitung

Nach der Untersuchung der Lichtabsorption der Ilmenitphasen $Ni_{0,1}Mg_{0,9}TiO_3^{1,2}$, $NiTiO_3$, $Ni_{0,01}Cd_{0,99}TiO_3$ ergab sich die Frage, wie sich die Lichtabsorption des Ni^{2+} und Co^{2+} beim Einbau in die eben-

^{*} Jetzt: Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173.

¹ O. SCHMITZ-DU MONT und H. KASPER, Farbe und Konstitution bei anorganischen Feststoffen, 7. Mitt.: Die Lichtabsorption des zweiwertigen

falls im Ilmenitgitter kristallisierende Phase Mg₄Sb₂O₉ (I) verhalte. Mg₄Sb₂O₉ wurde von BLASSE³ bei 1200 °C dargestellt und läßt sich von der Ilmenitphase MgTiO₃ durch Austausch von $\frac{1}{3}$ Ti⁴⁺ gegen Mg²⁺ und von $\frac{2}{3}$ Ti⁴⁺ gegen Sb⁵⁺ ableiten. Da im Debyeogramm von (I) keine Überstrukturlinien gefunden werden konnten, wurde nur auf eine Nahordnung zwischen Mg und Sb geschlossen.

Diese Angaben konnte ich bestätigen; wurde $Mg_4Sb_2O_9'$ jedoch auf Temperaturen oberhalb von 1400 °C erhitzt, so begannen sich die Pulverreflexe gegeneinander zu verschieben, was eine Veränderung des Gittertypus anzeigte. Dies veranlaßte mich, das System $MgO-Sb_2O_5$ erneut zu untersuchen.

2. Versuchsergebnisse

a) System MgO-Sb₂O₅

Wie im folgenden beschrieben, kommen im System MgO-Sb₂O₅ außer der bekannten *Trirutilphase* MgSb₂O₆ und der *Ilmenitphase* Mg₄Sb₂O₉ zahlreiche weitere Phasen der allgemeinen Formel Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)} vor.

b) Röntgenographische Untersuchung

Nachweis der Existenz der Phase Mg₇Sb₂O₁₂

Bei der Gewinnung von $Mg_4Sb_2O_9$ erwies sich eine halbstündige Temperung bei 1350 °C als besonders günstig, da bei tieferen Sintertemperaturen die Reflexe der Röntgenaufnahme relativ breit waren. Wurde bei höheren Temperaturen oder längere Zeit erhitzt, so verschoben sich die Reflexe der Pulveraufnahme sprunghaft und auch neue Reflexe traten auf. Gleichzeitig war zu beobachten, daß sich ein Teil des Sb₂O₅ verflüchtigte. Deshalb wurde versucht, den Konvergenzpunkt der Reflexe zu finden, indem von Stöchiometrien mit kleinerem Sb₂O₅-Gehalt ausgegangen wurde. Es zeigte sich, daß die Reflexe der Phasen bei der Zusammensetzung Mg₇Sb₂O₁₂ (II) konvergieren. Die Reflexe von Mg₇Sb₂O₁₂ ließen sich *hexagonal* indizieren und es ergab sich a = 5,19 und c = 9,581 Å (Tab. 1).

Nickels in oxidischen Koordinationsgittern vom Ilmenittyp. Monatsh. Chem. 95 (1964) 1433-1449.

² H. KASPER, Dissertation, Bonn 1965, und unveröffentlicht.

³ G. BLASSE, On the structure of some compounds $Li_3Me^{5+}O_4$ and some other mixed metal oxids containing lithium. Z. anorg. allg. Chem. **331** (1964) 44-50.

	a	с	$c_{ m red}$		
$Mg_4Sb_2O_9$	5,173	14,23	4,74		
$Mg_5Sb_2O_{10}$	5,18	23,8	4,76		
$Mg_{11}Sb_4O_{21}$	5,188	33,32	4,76		
$Mg_{29}Sb_{10}O_{54}$	5,194	42,94	4,77		
$Mg_7Sb_2O_{12}$	5,190	9,581	4,79		

Tabelle 1. Gitterkonstanten von Phasen im System MgO-Sb₂O₅

Auf Grund der Verwandtschaft dieser Phase mit dem Mg₄Sb₂O₉ wird folgender Strukturvorschlag gemacht: Analog zum Ilmenit wird die Packung der O^{2-} eine hexagonale dichte Sauerstoffpackung sein, da die Gitterkonstante a mit derjenigen der Ilmenitphase Mg₄Sb₂O₉ (I) praktisch übereinstimmt, und da die Gitterkonstante c von (II) etwa zwei Drittel derjenigen von (I) beträgt (Tab. 1), muß man annehmen, daß in der Elementarzelle nicht sechs [wie bei (I)], sondern nur vier O²⁻-Schichten aufeinanderfolgen, so daß eine kubische dichte Packung nicht in Frage kommt. Die Elementarzelle enthält eine Formeleinheit Mg₇Sb₂O₁₂ und somit 12 Oktaederlücken, die mit Kationen besetzt werden können. Aus der spektralphotometrischen Untersuchung (siehe Abschnitt 3) ergibt sich, daß alle Mg²⁺ oktaedrisch koordiniert sind, und Sb⁵⁺ wird ebenfalls sechszählig koordiniert sein, da es in oxidischen Phasen normalerweise oktaedrische Koordination besitzt. Es stehen also 7 Mg²⁺ und 2 Sb⁵⁺ für die Besetzung der 12 Oktaederlücken zur Verfügung, so daß hier im Gegensatz zum Ilmenit (Zweidrittel-Besetzung der Oktaederlücken) eine Dreiviertel-Besetzung der

Fig. 1. Strukturvorschlag für den Mg7Sb2O12-Typus

Oktaederlücken vorhanden ist. Es besteht folgende Möglichkeit: Drei aufeinanderfolgende Schichten von Oktaedern sind wie im Ilmenit zu zwei Dritteln mit Kationen besetzt, die vierte Schicht aber vollständig. Aus anderen Antimonverbindungen (CdSb₂O₆, NaSbO₃) ist bekannt, daß sich vorzugsweise zu zwei Dritteln ausschließlich mit Sb⁵⁺ besetzte Schichten bilden. Nimmt man dies hier ebenfalls an, so kann man die Schichtenfolge des Mg₇Sb₂O₁₂ folgendermaßen vom MgTiO₃ ableiten: Man ersetzt jede zweite Ti⁴⁺-Schicht durch Sb⁵⁺ und die restlichen zu zwei Dritteln besetzten Ti⁴⁺-Schichten durch vollbesetzte Mg²⁺-Schichten. Gemäß der kleineren Gitterkonstanten c wird beim Mg₇Sb₂O₁₂ aber bereits die fünfte Schicht mit der ersten identisch (Fig. 1). Die Punktlagen des ideal gepackten Gitters wären folgende:

Sb:
$$\frac{1}{3} \frac{2}{3} 0, \frac{2}{3} \frac{1}{3} 0$$

Mg: $0 0 \frac{1}{2}$
 $\frac{1}{3} \frac{2}{3} \frac{1}{2}, \frac{2}{3} \frac{1}{3} \frac{1}{2}$
 $0 0 \frac{1}{4}, \frac{1}{3} \frac{2}{3} \frac{1}{4}, 0 0 \frac{3}{4}, \frac{2}{3} \frac{1}{3} \frac{3}{4}$
O: $\frac{1}{3} \frac{1}{3} \frac{1}{8}, \frac{2}{3} 0 \frac{1}{8}, 0 \frac{2}{3} \frac{1}{8}$
 $\frac{2}{3} \frac{2}{3} \frac{3}{8}, \frac{1}{3} 0 \frac{3}{8}, 0 \frac{3}{3} \frac{3}{8}$
 $\frac{1}{3} \frac{1}{5} \frac{5}{8}, \frac{2}{3} 0 \frac{5}{8}, 0 \frac{2}{3} \frac{3}{8}$
 $\frac{2}{3} \frac{2}{3} \frac{7}{8}, \frac{1}{3} 0 \frac{7}{8}, 0 \frac{3}{3} \frac{7}{8}$

Es ergibt sich demnach beim Mg₇Sb₂O₁₂ ein ilmcnitähnliches Gitter, bei dem jedoch verschiedene kristallographische Gitterpositionen des Mg²⁺ vorhanden sind. Dieser Strukturvorschlag macht es auch verständlich, daß sich die Ilmenitphase (I) mit gemischten Kationenschichten (Mg²⁺, Sb⁵⁺) relativ leicht beim Erhitzen durch Verdampfen von Sb₂O₅ in die Phase (II) umwandelt, in der die Kationenschichten entweder nur Mg²⁺ oder Sb⁵⁺ enthalten. Wie bereits erwähnt, findet man keinen direkten Übergang von dem Ilmenit Mg₄Sb₂O₉ zum Mg₇Sb₂O₁₂, sondern eine Reihe von Zwischenstufen. Ein ähnliches Problem konnte kürzlich bei den Verbindungen $Zn_kIn_2O_{3+k}$ behandelt werden⁴, wo es aus Überstrukturreflexen möglich war, die Größe der Elementarzelle zu finden. Bei den zwischen Mg4Sb2O9 und Mg7Sb2O12 liegenden Verbindungen wurden derartige Reflexe jedoch nicht beobachtet, so daß kein direkter Hinweis auf die Zellgröße vorhanden war. Jedoch wurde versucht, allein aus den starken Reflexen die Elementarzelle zu gewinnen, wobei analoge Reflexe ähnliche Regelmäßigkeiten

⁴ H. KASPER, Neuartige Phasen mit wurtzitanalogen Strukturen im System ZnO--In₂O₃. Z. anorg. allg. Chem. **349** (1967) 113-123.

HORST KASPER

in bezug auf die Indizierung erwarten ließen, wie sie sich bei den Verbindungen $Zn_kIn_2O_{k+3}$ gezeigt hatten. Dementsprechend wurde von der Hypothese ausgegangen, daß der Übergang Mg₄Sb₂O₉ $\rightarrow Mg_7Sb_2O_{12}$ durch Vergrößern der Elementarzelle des Ilmenitgitters in der c-Richtung um Einheiten des Mg₇Sb₂O₁₂ entsprechend der Formel $2Mg_4Sb_2O_9 + kMg_7Sb_2O_{12} = Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)}$ verläuft (vgl. analog $In_2O_3 + kZnO = Zn_kIn_2O_{k+3}$).

Wie aus der Tab. 2 zu erkennen ist, konnten die Debyeogramme unter dieser Annahme indiziert werden. Demzufolge hat Mg₄Sb₂O₉ (c = 14,23 Å) keine vollbesetzten Mg-Schichten im Gegensatz zu den Mg-reicheren Phasen: Mg₁₅Sb₆O₃₀ = 3Mg₅Sb₂O₁₀ (c = 23,8 Å) auf vier Sb-haltige Schichten eine vollbesetzte Mg-Schicht, Mg₂₂Sb₈O₄₂ (c = 33,32 Å) auf fünf Sb-haltige zwei vollständig besetzte Mg-Schichten, Mg₂₉Sb₁₀O₅₄ (c = 42,94 Å) auf sechs Sb-haltige Schichten drei

Tabelle 2. d-Werte, geschätzte Intensitäten und Indizes (hexagonal) aus Pulveraufnahmen (Co-Strahlung)

					a)]	$Mg_4Sb_2O_9$						
d 4,67 4,26 3,77 2,58 2,58 2,26 2,21 2,15 1,88	$ \begin{array}{r} 1 \\ 50 \\ 50 \\ 50 \\ 70 \\ 70 \\ 70 \\ 22 \\ 60 \\ \hline 60 \\ \end{array} $	$\begin{array}{c} \mathbf{h} \ \mathbf{k} \ \mathbf{l} \\ 0 \ 0 \ 3 \\ 1 \ 0 \ 1 \ 2 \\ 1 \ 0 \ 1 \ 2 \\ 1 \ 0 \ 4 \\ 1 \ 1 \ 0 \ 4 \\ 1 \ 1 \ 0 \ 5 \\ 0 \ 2 \ 1 \\ 2 \ 0 \ 2 \\ 0 \ 2 \ 4 \end{array}$	d 1,83 1,68 1,68 1,65 1,56 1,52 1,49 1,42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,34 1,292 1,259 1,248 1,239 1,225 1,189 1,171 1,132 1,117	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,106 1,080 1,025 1,025 1,014 0,9952 0,9861 0,9776 0,9719	1 40 5 2 2 10 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	h k 1 0 4 2 2 1 10 4 0 4 1 3 7 3 2 1 3 2 1 3 2 9 3 2 4 4 1 0 0 2 13	d 0,9367 0,9437 0,9299 0,9203 0,9143 0,9098 0,9017	1 30 2 60 10 30 30 100	b k 1 4 1 3 4 0 8 3 1 10 3 0 12 3 2 7 4 0 9 4 1 6
					b) N	$g_{11}Sb_4O_{21}$						
d 4,777 3,966 2,677 2,599 2,388 2,200 2,055 2,055 2,055 4,866	t 50 40 50 50 50 50 50 51 50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,25 1,68 1,68 1,59 1,51 1,51 1,51 1,47 1,43 1,35 1,35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,297 1,283 1,268 1,251 1,239 1,239 1,181 1,181 1,167 1,135	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,139 1,118 1,113 1,089 1,081 1,075 1,065 1,052 1,046 1,027 1,024	I 25 1 5 25 2 2 2 2 2 2 2 2	$\begin{array}{c} \mathbf{h} \ \mathbf{k} \ \mathbf{l} \\ 2 \ 2 \ 14 \\ 4 \ 0 \ 3 \\ 3 \ 0 \ 2 1 \\ 2 \ 2 \ 17 \\ 2 \ 1 \ 24 \\ 4 \ 0 \ 10 \\ \left(\begin{array}{c} 3 \ 1 \ 17 \\ 2 \ 0 \ 28 \\ 1 \ 0 \ 28 \\ 1 \ 0 \ 3 \\ 3 \ 2 \ 3 \\ 3 \ 2 \ 4 \end{array}\right)$	d 1,004 0,9975 0,9847 0,9806 0,9743 0,9696 0,9721 0,9273 0,9122 0,9083 0,9066	I 52 20 20 10 20 10 30 10 50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
					c) M	g ₂₉ Sb ₁₀ O ₅₄						
d 4,73 5,67 5,66 2,564 2,59 2,28 2,28 2,29 2,17	1 50 50 50 50 50 10 50 50 50 50 50 50 50 55 55	$\begin{array}{c} \mathbf{h} \ \mathbf{k} \ \mathbf{l} \\ 0 \ 0 \ 9 \\ 1 \ 0 \ 1 \\ 1 \ 0 \ 4 \\ 1 \ 0 \ 5 \\ 1 \ 0 \ 1 \\ 1 \ 0 \ 5 \\ 1 \ 1 \ 0 \\ 1 \ 0 \\ 1 \ 0 \\ 1 \ 0 \\ 1 \ 4 \\ 2 \ 0 \ 5 \\ 2 \ 0 \ 5 \end{array}$	d 1,86 1,81 1,76 1,76 1,57 1,57 1,51 1,50 1,40 1,47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,43 1,36 1,298 1,289 1,269 1,253 1,239 1,235 1,195 1,180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,166 1,156 1,141 1,092 1,074 1,064 1,064 1,065 1,027 1,006	1 152 2022 2022 2022 2025	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 0,9843 0,9809 0,9692 0,9540 0,9540 0,9269 0,9118 0,9075	I 20 20 20 15 30 50	h k 1 3 2 13 4 1 0 2 0 40 4 1 9 3 0 36 3 1 31 3 2 22 4 1 18
					d) N	$fg_7Sb_2O_{12}$						
$\frac{1}{4}$ $\frac{1}{4}$, $\frac{50}{4}$ $\frac{1}{2}$, $\frac{60}{2}$ $\frac{2}{2}$, $\frac{60}{2}$ $\frac{2}{2}$, $\frac{25}{2}$ $\frac{2}{2}$, $\frac{19}{2}$	1 10 8 80 4 100 (-7 20 2 8	$\begin{array}{c} \mathbf{b} \ \mathbf{k} \ \mathbf{l} \\ \mathbf{b} \ 0 \ 2 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \\ 1 \ 0 \ 2 \\ 0 \ 0 \ \mathbf{h} \\ 1 \ 1 \ 2 \\ 0 \ 0 \\ 2 \ 0 \ 1 \end{array}$	d 2,10 2,03 1,84 1,76 1,70 1,67 1,64 1,60 1,50	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,46 1,43 1,39 1,297 1,270 1,252 1,236 1,206 1,199	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1,168 1,161 1,140 1,116 1,092 1,066 1,045 1,036 1,036	I 8 10 5 6 10 5 2 2 6	h k 1 2 0 7 3 1 3 2 2 4 4 0 1 3 0 6 2 1 7 4 0 3 3 1 5 3 1 5 3 2 1	d 1,007 0,9808 0,9607 0,9353 0,9216 0,9075 0,9021 0,8988	1 20 6 8 10 25 4 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

76

vollständig mit Mg^{2+} besetzte Schichten, und beim $Mg_7Sb_2O_{12}$ ist dann pro Sb^{5+} -Schicht je eine vollbesetzte Mg^{2+} -Schicht vorhanden. Der Mechanismus des Überganges (I) \rightarrow (II) kann durch folgende Modellvorstellung beschrieben werden: 1. Durch Verdampfen von Sb_2O_5 werden die sowohl Mg^{2+} als auch Sb^{5+} enthaltenden Schichten (A) sukzessive von Sb^{5+} befreit. 2. Gleichzeitig erfolgt eine Neuordnung der Kationen, indem zwischen den Schichten (A) ein Austausch von Mg^{2+} gegen Sb^{5+} stattfindet, derart, daß die Mg^{2+} -Konzentration in den meisten Sb^{5+} -haltigen Schichten *abnimmt*. 3. Auf Grund der Sb_2O_5 -Verdampfung nach 1. nimmt die Zahl der Sb^{5+} -Schichten (A) ab und infolge des Austausches von Mg^{2+} gegen Sb^{5+} nach 2. wird ein Teil derselben durch vollständig besetzte Mg^{2+} -Schichten ersetzt. Im Endeffekt werden nur Sb^{5+} und ausschließlich Mg^{2+} enthaltende Schichten in der für (II) angegebenen Folge entstehen.

Gemäß diesem Schema lassen sich die Verhältnisse, wie die Indizierung der Debyeogramme zeigt, erklären. Zu fragen bleibt aber, weshalb man z.B. bei den Verbindungen $Zn_kIn_2O_{k+3}$ ausgeprägte Überstrukturreflexe findet, die hier im Debyeogramm nicht auftreten. Je nach der Fehlordnung⁵ kann man in diesem Zusammenhang röntgenographisch drei Grenzfälle betrachten:

- 1. Überstrukturreflexe sind zu finden; k ist dann praktisch eine *natürliche* Zahl.
- 2. Überstrukturreflexe treten *nicht* auf, aber bei hinreichend großer Zunahme von k verschieben sich die Röntgenreflexe nicht mehr, sondern es treten diejenigen einer weiteren Phase auf. Hier wird k nur positive *reelle* Zahlen annehmen, die in kleinen Bereichen um die in Frage kommenden natürlichen Zahlen liegen.
- 3. Wie bei 2. sind *keine* Überstrukturreflexe vorhanden, aber die Röntgenreflexe verschieben sich stetig mit der Änderung der Zusammensetzung, d.h. *k* ist nicht mehr auf definierte Bereiche um natürliche Zahlen beschränkt wie bei 2., sondern kann stetig reelle Zahlenwerte annehmen.

Da die Fehlordnung von den Darstellungsbedingungen abhängt, ist der auftretende Grenzfall durch die Angabe einer bestimmten Stöchiometrie noch nicht festgelegt. Allgemein kann man

⁵ Zur röntgenographischen Untersuchung von Fehlordnungen vgl. H. JAGOD-ZINSKI, Diffuse disorder scattering by crystals; in Advanced methods of crystallography, Herausgeber G. N. RAMACHANDRAN, London und New York, 1964.

HORST KASPER

sagen, daß mit Annäherung an die Stöchiometrie der Konvergenzverbindung $(k \to \infty)$ ein Übergang $1 \to 2 \to 3$ stattfinden wird. Unter den von mir benutzten Darstellungsbedingungen fielen die Phasen Zn_kIn₂O_{k+3} mit kleinem k in den Bereich 1., während bereits für kleines k die Phasen Mg_{8+7k}Sb_{2(2+k)}O_{6(3+2k)} im Bereich von 2. lagen. Dementsprechend muß man bei den Magnesiumantimonaten und den höheren Zinkindaten (k > 11) annehmen, daß bei größer werdendem k im Mg₇Sb₂O₁₂ bzw. ZnO die Folge der Kationenschichten nicht mehr regelmäßig genug ist, um zu Überstrukturinterferenzen zu führen. Das Auftreten von Überstrukturreflexen bei den Zinkindaten Zn_kIn₂O_{k+3} (k < 11) wird damit zusammenhängen, daß sich die Gitter in Abhängigkeit von k stärker unterscheiden und die Gitterkonstante a erheblich von k abhängt im Vergleich zu den Magnesiumantimonaten.

3. Weitere Phasen im System MgO–Sb₂O₅

Außer den genannten Phasen $Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)}$ treten im System MgO-Sb₂O₅ bei Temperaturen oberhalb 1450°C noch zahlreiche weitere Phasen auf, die durch Verdampfen unterschiedlicher Mengen von Sb₂O₅ und vielleicht auch O₂ entstehen. Bei der Darstellung der Verbindungen Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)} wurde beobachtet, daß die Preßkörper nach der Sinterung oft voluminöser sind als vorher, während in der Regel das Umgekehrte der Fall ist. Viele Sinterkörper zerrieselten beim Abschrecken oder Abkühlen an der Luft, was auf eine Modifikationsumwandlung hindeutet. In diesen Fällen wurden Debyeogramme erhalten, die von denjenigen der Phasen $Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)}$ verschieden waren. In einem Fall konnte das Debyeogramm teilweise gedeutet werden: Ein Sinterkörper der Zusammensetzung $15 \text{MgO} \cdot \text{Sb}_2\text{O}_5$ wurde eine halbe Stunde auf $1560 \,^\circ\text{C}$ erhitzt. Das Debyeogramm ergab neben den Reflexen von MgO diejenigen eines Spinells (Mg₇Sb₂O₁₂?), obwohl im System MgO-Sb₂O₅ bisher nie eine stabile Spinellphase gefunden wurde. Möglicherweise ist bei der hohen Temperatur und dem verhältnismäßig geringen Sb⁵⁺-Gehalt der Probe die Ausbildung von Sb⁵⁺-Schichten, wie sie in den Phasen $Mg_{8+7k}Sb_{2(k+2)}O_{6(2k+3)}$ vorliegen, nicht begünstigt.

4. Austausch von Mg²⁺ durch andere Kationen im Mg₇Sb₂O₁₂ (II)

Das dem Mg²⁺ in mancher Beziehung ähnliche Zn²⁺ gibt wohl eine Verbindung Zn₇Sb₂O₁₂, die jedoch infolge der Bevorzugung von Tetraederlücken durch Zn²⁺ Spinellstruktur besitzt. Auch die analoge

Kobaltverbindung hat Spinellstruktur: $[M_3^{II}]^4 [M_4^{II}Sb_2]^6O_{12}$, $M^{II} = Zn$ oder Co. Infolge der strukturellen Verschiedenheit dieser Spinellphasen einerseits und des Magnesiumantimonats $Mg_7Sb_2O_{12}$ (II) andererseits war eine weitgehende Substitution des Mg²⁺ in (II) durch Zn²⁺ oder Co²⁺ nicht zu erwarten. Immerhin gelang es, ein Mg²⁺ durch Zn²⁺ auszutauschen: ZnMg₆Sb₂O₁₂. Dagegen konnten nur geringe Mengen Co^{2+} an Stelle von Mg²⁺ eingebaut werden: $Co_{0,1}Mg_{6,9}Sb_2O_{12}$. Die Ursache für das unterschiedliche Verhalten von Mg²⁺ einerseits und Zn²⁺ und Co²⁺ andererseits ist in der Bevorzugung der tetraedrischen Koordination von Zn^{2+} und Co^{2+} zu suchen. Ni²⁺ konnte ebenso wie Co²⁺ nur in geringen Mengen in (II) isomorph eingebaut werden (Ni_{0.1}Mg_{6.9}Sb₂O₁₂). Dies ist auch nicht anders zu erwarten, da im System NiO-Sb₂O₅ nur die Trirutilphase NiSb₂O₆ vorkommt. Es ist sehr bemerkenswert, daß hier die den Verbindungen (I) und (II) analogen Phasen $Ni_4Sb_2O_9$ und $Ni_7Sb_2O_{12}$ nicht auftreten, obwohl Ni^{2+} wie Mg²⁺ die oktaedrische Koordination, wie sie in (I) und (II) vorliegt, bevorzugt. Aussschlaggebend dürfte die Kristallfeldstabilisierungsenergie des $[Ni^{2+}]^6$ sein, die im Koordinationsgitter von NiSb₂O₆ bzw. NiO größer als im Schichtengitter der Strukturtypen (I) und (II) ist.

5. Die Lichtabsorption des Ni²⁺ nach isomorphem Einbau in Magnesiumantimonate (V)

Die Farbkurve von $Ni_{0,1}Mg_{6,9}Sb_2O_{12}$ zeigt die für *oktaedrisch* koordiniertes Ni^{2+} charakteristischen Absorptionsbanden (Fig. 2). Daraus

Fig. 2. Die Lichtabsorption des Ni²⁺, 1: Ni_{0,1}Mg_{6,9}Sb₂O₁₂, 2: Ni_{0,1}Mg_{3,9}Sb₂O₁₂

Phase	$\tilde{\nu}_1$: ³ T ₂ (³ F)	$ar{v}_2$: ${}^3 extsf{T}_1({}^3 extsf{F})$	${}^{1}\mathrm{E}({}^{1}\mathrm{D})$	${}^{1}T_{2}({}^{1}D)$	$\bar{\nu}_3$: ${}^3\mathrm{T}_1({}^3\mathrm{P})$	B
${f M_{g_{3,9}}Sb_2O_9} \ Ni_{0,1}Mg_{6,9}Sb_2O_9 \ Ni_{0,1}Mg_{6,9}Sb_2O_{12}$	8 000 8 000	$\begin{array}{r}12500\\12500\end{array}$	(14000) (14000)	(19000) (19000)	$\begin{array}{r} \mathbf{23500} \\ \mathbf{23000} \end{array}$	$\frac{850}{820}$

Tabelle 3. Die Lichtabsorption des Ni²⁺, Lage der Banden in cm⁻¹

Daten in Klammern beziehen sich auf Banden, die nur als Schulter ausgeprägt sind.

kann geschlossen werden, daß im Mg₇Sb₂O₁₂ oktaedrisch koordiniertes Mg²⁺ vorhanden ist. Der Kristallfeldparameter Δ ergibt sich aus der Lage der ersten Hauptabsorptionsbande ${}^{3}A_{2}({}^{3}F) \rightarrow {}^{3}T_{2}({}^{3}F)$ zu 8000 cm⁻¹. Aus der Farbkurve der *Ilmenitphase* Ni_{0,1}Mg_{3,9}Sb₂O₉ ergibt sich der gleiche Feldparameter Δ jedoch ein größerer Racahparameter *B* (vgl. Tab. 3) Man kann hieraus schließen, daß die für den Δ -Wert maßgebende Geometrie der NiO₆-Oktaeder in beiden Phasen sehr ähnlich ist.

6. Die Lichtabsorption des Co²⁺

Auch die Farbkurve des $Co_{0,1}Mg_{6,9}Sb_2O_{12}$ (Fig. 3) zeigt nur die Banden des *oktaedrisch* koordinierten Co²⁺. Daraus folgt, daß im Mg₇Sb₂O₁₂ nur [Mg²⁺]⁶ vorhanden ist, da in allen bekannten Fällen

Fig. 3. Die Lichtabsorption des Co²⁺, 1: Co_{0,1}Mg_{6,9}Sb₂O₁₂, 2: Co_{0,1}Mg_{3,9}Sb₂O₁₂

von Mg-Verbindungen mit $[Mg^{2+}]^6$ und $[Mg^{2+}]^4$ eine partielle Substitution des Mg^{2+} stets zum Einbau von Co²⁺ in *Tetraederlücken* führt, was in der charakteristischen Farbkurve zum Ausdruck kommt. Aus der Differenz der Wellenzahlen der Banden $\bar{\nu}_1: [^{4}T_1(^{4}F) \rightarrow ^{4}T_2(^{4}F)]$ und $\bar{\nu}_2: [^{4}T_1(^{4}F) \rightarrow ^{4}A_2(^{4}F)]$ ergibt sich der Kristallfeldparameter \varDelta des $[Co^{2+}]^6$ zu 5300 cm⁻¹. Mit diesem Wert von \varDelta berechnet sich die Lage der ersten Bande des $[Co^{2+}]^6$ etwa um 1500 cm⁻¹ (Tab. 4, Spalte St.⁶) kleiner als experimentell gefunden wurde.

Tabelle 4. Die Lichtabsorption des Co²⁺, Lage der Banden in cm⁻¹

Phase	$\bar{v}_1\!:\!{}^4\mathrm{T}_{2g}({}^4\mathrm{F})$	$\left \tilde{v}_2 : {}^4 ext{A}_{2g}({}^4 ext{F}) ight $	$\bar{v}_3: {}^4 ext{T}_{1g}({}^4 ext{F})$	$^{2}\mathrm{T_{1}}$	Δ	B	St.
$c_{00,1}Mg_{3,9}Sb_2O_9$ $c_{00,1}Mg_{6,9}Sb_2O_{12}$	$\begin{array}{c} 6200\\ 6000\end{array}$	(12 000) 11 300	$\begin{array}{c} 17400\\ 16400\end{array}$	$19500\\19750$	$(5800)\ 5300$	(800) 740	(1 200) 1 500

Besonders bemerkenswert sowohl bei den Ilmenit- als auch den Mg₇Sb₂O₁₂-Phasen ist, daß der Kristallfeldparameter Δ des Co²⁺ viel kleiner als der des Ni²⁺ ist. Während z.B. im Ni_{0,1}Mg_{0,9}TiO₃ ($\Delta = 7300 \text{ cm}^{-1}$) das Kristallfeld am Ort des Ni²⁺ um 700 cm⁻¹ schwächer ist als in Ni_{0,1}Mg_{6,9}Sb₂O₁₂, findet man demgegenüber, daß es im Co_{0,1}Mg_{0,9}TiO₃⁷ am Ort des Co²⁺ um 1750 cm⁻¹ stärker ist als im Co_{0,1}Mg_{6,9}Sb₂O₁₂. Es ist möglich, daß dies mit der Besetzung kristallographisch unterschiedlicher Lücken durch Ni²⁺ und Co²⁺ zusammenhängt.

Außer der geringen Größe von Δ [Co²⁺]⁶ fällt hier noch besonders die hohe Intensität des spinverbotenen Überganges ${}^{4}T_{1}({}^{4}F) \rightarrow {}^{2}T_{1}$ bei 19500 cm⁻¹ auf (Fig. 3). Bei anderen [Co²⁺]⁶ enthaltenden Phasen, wie Co_xCd_{1-x}TiO₃⁷, CoNb₂O₆⁶ oder CoTa₂O₆ findet man diese Bande nur als Schulter oder kleines Nebenmaximum, nicht aber als freistehendes Maximum vergleichbar mit Bande \overline{r}_{3} .

Man könnte die Frage stellen, ob die Bande r_3 bei ~ 17000 cm⁻¹ nicht auch einem *spinverbotenen* Übergang zu den bei dieser Wellenzahl liegenden Termen ²T₁ und ²T₂ zuzuordnen ist. Dazu kann gesagt werden, daß ein Teil der Absorptionsintensität bei dieser Wellenzahl

Z. Kristallogr. Bd. 128, 1/2

6

⁶ H. KASPER, Die Lichtabsorption des Ni²⁺ und Co²⁺ in Phasen mit Niobit-, Rutil- und Trirutilstruktur und über ein neues Tantalat mit Niobitstruktur. Monatsh. Chem. **98** (1967) 2104—2126.

⁷ O. SCHMITZ-DU MONT und D. GRIMM, Farbe und Konstitution bei anorganischen Feststoffen, 12. Mitt.: Die Lichtabsorption des zweiwertigen Kobalts in oxidischen Koordinationsgittern vom Ilmenittyp. Monatsh. Chem. 96 (1965) 922-931.

sicher von den spinverbotenen Übergängen herrührt. Aber daraus, daß sich Bande $\overline{\nu}_3$ gleichsinnig mit Bande $\overline{\nu}_1$ beim Wechsel des Wirtsgitters (Co_{0,1}Mg_{0,9}Sb₂O₁₂ \rightarrow Co_{0,1}Mg_{3,9}Sb₂O₉) verschiebt, ist zu schließen, daß Bande $\overline{\nu}_3$ ihre Intensität im wesentlichen dem *spinerlaubten* Übergang [⁴T₁(⁴F) \rightarrow ⁴T₁(⁴P)] verdankt.

7. Über die kristallchemische Beziehung zwischen Spinell- und Mg₇Sb₂O₁₂-Typus

Es erhebt sich die Frage, weshalb Zn₇Sb₂O₁₂ und Co₇Sb₂O₁₂ im Spinellgitter kristallisieren, nicht aber Mg₇Sb₂O₁₂, obwohl z.B. Mg₂SnO₄ wie Co₂SnO₄ und Zn₂SnO₄ eine Spinellphase ist. Weiter konnten vor einiger Zeit Verbindungen mit einer Schichtenstruktur vom CuAlInO₄-Typus⁸ gefunden werden, die infolge der unterschiedlichen Kationenradien nicht im Spinellgitter kristallisieren. Beim Mg₂Sb₂O₁₂ können aber die Radienunterschiede M²⁺--M⁵⁺ nicht die wesentliche Ursache für den anderen Gittertypus bilden, da diese beim Co₇Sb₂O₁₂ und Zn₇Sb₂O₁₂ noch größer sind. Der wesentliche Punkt dürfte in den Unterschieden der von den Kationen bevorzugten Lückenart innerhalb der dichten Sauerstoffpackungen zu suchen sein. Während Co²⁺ und in noch stärkerem Maße Zn²⁺ Tetraederlücken bevorzugen, ist dies beim Mg²⁺ nicht der Fall. Andererseits ist aber Mg²⁺ mit seiner edelgaskonfigurierten Elektronenschale im Gegensatz zu Co²⁺ und besonders Ni²⁺ und Sb⁵⁺ erfahrungsgemäß auch in verzerrt oktaedrischen Lücken stabil. Das Auftreten der Struktur des Mg₇Sb₂O₁₂ ist demnach so zu erklären, daß hier Sb⁵⁺ eine verhältnismäßig reguläre oktaedrische Koordination besitzt, aber die MgO₆-Oktaeder verzerrt sind, und zwar in unterschiedlicher Weise. Ein hypothetischer Spinell [Mg₃]⁴[Mg₄Sb₂]⁶O₁₂ mit Mg²⁺ auf Tetraederplätzen, und die Oktaederplätze statistisch mit Mg²⁺ und Sb⁵⁺ besetzt, wäre infolge der Radienunterschiede der Kationen in Oktaederplätzen und der geringeren Präferenz von Mg²⁺ für Tetraederplätze energetisch ungünstig. Dementsprechend wird die besondere Struktur des Mg7Sb2O12 gegenüber dem Spinelltypus durch die von den betreffenden Kationen bevorzugten Koordinationsverhältnisse bedingt.

⁸ O. SCHMITZ-DU MONT und H. KASPER, Über eine neue Klasse quarternärer Oxide vom Typus $M^{11}M^{111}InO_4$. Die Lichtabsorption des zweiwertigen Kupfers, Nickels und Kobalts sowie des dreiwertigen Chroms. Z. anorg. allg. Chem. 341 (1965) 252–268.

8. Zusammenfassung

- 1. Die Ilmenitphase $Mg_4Sb_2O_9$ (I) mit gemischten $Mg^{2+}-Sb^{5+}$ -Schichten verliert bei höheren Temperaturen Sb_2O_5 und geht in $Mg_7Sb_2O_{12}$ (II) über, das nur Mg^{2+} -freie Sb^{5+} -Schichten aufweist.
- Mg₇Sb₂O₁₂ stellt eine Phase auf der Basis einer (hexagonal) dichten Sauerstoffpackung dar, die trotz ihrer Stöchiometrie im Gegensatz zu Zn₇Sb₂O₁₂ und Co₇Sb₂O₁₂ nicht die Spinellstruktur besitzt.
- 3. Die vorstehende Untersuchung zeigt in einem weiteren Fall [Mg₇Sb₂O₁₂ (II)], daß der isomorphe Einbau farbgebender Kationen und die nachfolgende spektralphotometrische Untersuchung die Ermittlung der Koordinationszahlen derjenigen Kationen erlaubt, die sich durch die farbgebenden Kationen ersetzen lassen. So ließ sich beweisen, daß alle Mg²⁺ in (II) hexakoordiniert sind.

9. Experimentelle Angaben

Die Phasen wurden aus feingepulverten Sb₂O₃-MgCO₃-Gemischen hergestellt. Zur Oxidation von Sb³⁺ wurde das Gemenge innerhalb von 24 Stunden langsam auf 800 °C erhitzt, nochmals in einer Reibschale gemischt und dann zu einem Probekörper gepreßt, der im Korund- oder Platinschiffchen gesintert wurde. Die Sintertemperaturen betrugen etwa 1400 °C und nahmen mit steigendem Mg-Gehalt der Probe langsam zu. Die Sinterzeit betrug nur 15-30 Minuten, um Antimonverluste zu vermeiden. Versuche mit einem Zusatz von 1 bis 5 Gew.-0/00 WO₃ oder besonders MoO₃ setzten die benötigte Sintertemperatur um 100 bis 150 °C herab und führten zu einer erheblichen Steigerung der Schärfe der Röntgenreflexe. In Gegenwart einer Co-Beimengung zeigte aber der Probekörper nach der Sinterung blaue Punkte, die von Fremdphasen mit MoO₃ bzw. WO₃ herrühren werden.

Kleine hexagonale Kristallplättchen (0,3 mm) konnten durch langsames Abkühlen (50 Stunden) eines Platintiegels mit 1 g Preßkörper Mg₇Sb₂O₁₂, 1/2 g MgO und 20 g K₂MoO₄ von 1350 °C gewonnen werden.

Die Gitterkonstanten wurden aus Pulveraufnahmen mit einer Seemannkamera (Umfang 360 mm) nach der asymmetrischen Methode von STRAUMANIS gewonnen. Die Berechnung der d-Werte erfolgte mit einem Programm für die Rechenanlage IBM 7090 (Tab. 2).

Die spektralphotometrische Untersuchung der als Kristallpulver vorliegenden Substanzen geschah in Remission. Es wurde mit dem

83

6*

HORST KASPER

Spektralphotometer der Firma Zeiss PMQ II mit Infrasiloptik gemessen (Weißstandard Mg₇Sb₂O₁₂). Die wiedergegebenen charakteristischen Farbkurven wurden nach der Beziehung von SCHUSTER, KUBELKA und MUNCK^{9,10}

$$\lg rac{k}{s} = \lg rac{(1-R_{
m diff})^2}{2\,R_{
m diff}}$$

aus der diffusen Remission erhalten (k = Absorptionskoeffizient, s = Streukoeffizient, R_{diff} = Bruchteil der remittierten Strahlung, bezogen auf den Weißstandard).

Auch an dieser Stelle möchte ich meinem verehrten Lehrer, Herrn Professor Dr. SCHMITZ-DU MONT, für seine freundliche Unterstützung, und der Deutschen Forschungsgemeinschaft für ihre finanzielle Hilfe meinen aufrichtigen Dank aussprechen.

84

⁹ P. KUBELKA, New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. America 38 (1948) 448-457.

¹⁰ G. KORTÜM, W. BRAUN und G. HERZOG, Prinzip und Meßmethodik der diffusen Reflexionsspektroskopie. Angew. Chem. **75** (1963) 653-661.