A redetermination of the crystal structure of livingstonite, HgSb₄S₈*

By T. SRIKRISHNAN** and W. NOWACKI

Department of Crystallography and Structural Sciences, University of Bern

(Received 18 September 1973)

Auszug

Die Kristallstruktur von Livingstonit wurde neu bestimmt, um die neue chemische Formel HgSb₄S₈ (statt HgSb₄S₇) zu bestätigen und um die Koordination von Hg und die (S–S)-Bindung in der von NHZEKI und BUERGER (1957) veröffentlichten Struktur zu studieren. Livingstonit kristallisiert monoklin mit den Gitterkonstanten $a = 30,567 \pm 0,006$, $b = 4,015 \pm 0,001$, $c = 21,465 \pm 0,003$ Å und $\beta = 103,39 \pm 0,01^{\circ}$, in der Raumgruppe C_{2h}^6 –A 2/a mit 8 Formeleinheiten pro Zelle. Die Struktur wurde mittels Block-Diagonal-Least-Squares-Methoden bis zu einem R-Wert von 7,3% für 596 beobachtete (10,2% für alle 1099) Reflexe verfeinert.

Die Strukturbestimmung bestätigt die neue chemische Formel. Es kommt eine S₂-Gruppe mit S-S = 2,06 Å, die das zusätzliche achte S-Atom in der neuen Formel liefert, vor. In der Struktur sind zwei Schichtarten || c vorhanden. Die (S-S)-Bindung verknüpft zwei Sb₂S₄-Doppelketten, wodurch zwischen ihnen eine S₂-Gruppe entsteht. Die anderen Sb₂S₄-Doppelketten werden durch Hg-Atome untereinander verbunden. Die Bindungen zwischen diesen Doppelketten sind eher schwach und erklären die perfekte Spaltbarkeit || (001).

Die Koordination der Hg-Atome ist oktaedrisch; zwei der S-Atome sind stark und linear gebunden, ähnlich wie in Zinnober. In der Struktur sind vier unabhängige Sb-Atome vorhanden. Zwei davon weisen eine Viererkoordination durch S-Atome auf, in Form einer deformierten trigonalen Pyramide plus ein zusätzliches S-Atom. Die beiden anderen Sb-Atome haben eine quadratischpyramidale bzw. die normale trigonal-pyramidale Koordination. Die Strukturformel von Livingstonit kann als $[(Sb_2S_4)_2 | Hg^{II+IV}]$ geschrieben werden [Typ IV.a₁ der Klassifikation von NowACKI (1969)].

* Contribution No. 243b; part 72 on sulfides and sulfosalts (Preliminary note: SRIKRISHNAN and NOWACKI, 1973).

** Present address: Center for Crystallographic Research, Roswell Park Memorial Institute, 666 Elmstreet, Buffalo 3, N.Y., U.S.A.

A redetermination of the crystal structure of livingstonite

Abstract

The crystal structure of livingstonite has been redetermined with a view to confirm the new chemical formula, HgSb₄S₈ (not HgSb₄S₇) as well as to study the coordination of mercury and the S–S bond in the structure, reported by NHZEKI and BUERGER (1957). Crystals of livingstonite are monoclinic, having the cell dimensions $a = 30.567 \pm 0.006$, $b = 4.015 \pm 0.001$, $c = 21.465 \pm 0.003$ Å and $\beta = 103.39 \pm 0.01^{\circ}$. The space-group symmetry is $C_{2h}^6 - A 2/a$ and there are eight formula units in the unit cell. The structure was refined by block-diagonal least-squares method to a final R value of $7.3^{\circ}/_{0}$ for the 596 observed reflections (10.2°/₀ for all 1099 reflections).

The structure confirms the new chemical formula. There is an S_2 group with an S—S distance of 2.06 Å, which gives raise to the additional sulfur atom in the new chemical formula. There are two kinds of layers running parallel to the *c* axis in the structure. The S—S bond joins two Sb₂S₄ double chains. The other Sb₂S₄ double chains are joined together by the Hg atoms. The bonds between these two double chains are rather weak and hence explain the presence of a perfect cleavage || (001).

The coordination of the Hg atoms is octahedral; two of the S atoms are strongly and linearly bonded, as in cinnabar. There are four independent Sb atoms in the structure. Two of them have a coordination of four sulfur atoms which could be described as distorted trigonal pyramid plus one additional sulfur atom. The other two Sb atoms have a square pyramidal coordination and the familiar trigonal pyramidal coordination, respectively. The structural formula of livingstonite could be described as $[(Sb_2S_4)_2 | Hg^{II+IV}]$ [type IV.a₁ in the elassification of the sulfosalts by NOWACKI (1969)].

Introduction

Livingstonite is a mercury antimony sulfide and derives its name after its discoverer, DAVID LIVINGSTONE. It is quite often found to occur along with cinnabar, which is regarded as its pseudomorph. It occurs in association with stibnite, sulfur, cinnabar and valentinite in a matrix of calcite and gypsum, at Huitzuco, Guerrero, Mexico and also at Guadalcázar, San Luis Potozi, with gypsum and sulfur (DANA, 1944). For a long time, its chemical composition was taken to be HgSb₄S₇, until NHZEKI and BUERGER (in 1957) gave the correct chemical composition as HgSb₄S₈.

Livingstonite was first investigated by RICHMOND (1936), who described it as monoclinic, belonging to the space group $P2_1/c$. Later GORMAN (1954) reported it as triclinic. The cell dimensions reported by them are given in Table 1. NIIZEKI and BUERGER (1957) investigated its structure and found it to be monoclinic. They also found an anomaly in the chemical composition and concluded that the correct composition is HgSb₄S₈ instead of HgSb₄S₇. Their analysis,

although based on three-dimensional diffractometer data, was not very accurate, probably due to the limitations of the quality of the data and to the limitations on computing and least-squares refinement techniques in 1957.

Quite recently, another mercury-containing sulfosalt, vrbaite, Hg₃Tl₄As₈Sb₂S₂₀ has been investigated in this laboratory (OHMASA and NOWACKI, 1971). We have undertaken the redetermination of livingstonite to resolve the anomaly in its chemical composition with more accurate data and also to study the coordination of mercury and compare it with that of vrbaite.

Experimental

The crystal used for the present study was prepared from a sample of livingstonite from the type locality in Mexico. It was a thin and fibrous needle, having the dimensions $0.152 \times 0.081 \times 0.046$ mm, with approximately cylindrical cross-section.

The lattice constants were determined with the help of backreflection Weissenberg photographs, on which the diffraction pattern of standard silicon had been superimposed to calibrate the film shrinkage. The precise cell constants determined from a least-squares

	RICHMOND (1936)	Gorman (1954)	NIIZEKI and BUERGER (1957)	Present study
Space group	$P 2_1/c$	P1 or P1	A 2/a	A 2/a
a	15.14 Å	7.67 Å	30.25 Å	$30.567\pm0.006{ m \AA}$
b	3.98	4.00	4.00	4.015 ± 0.001
с	21.60	10.84	21.49	21.465 ± 0.003
α		99° 12′	-	
β	$104^{\circ}00'$	102° 1′	$104^{\circ}12'$	103.39 ± 0.02
γ	-	$73^{\circ}48'$		
V				$2562 \ { m \AA^3}$
Cell content	$4 \mathrm{HgSb_{4}S_{7}}$	$\mathrm{HgSb}_{4}\mathrm{S}_{7}$	$8 \mathrm{HgSb}_4\mathrm{S}_8$	$8~{\rm HgSb_4S_8}$
Computed density			5.06	$4.89 { m g cm^{-3}}$
Measured density			5.00	-
·			(FRONDEL)	
F(000)			. ,	3296 electrons
R for observed refle	ections	0.19	0.073	

Table 1. Crystallographic data of livingstonite

best fit of 20 (h0l) and 14 (0kl) reflections are given in Table 1, together with the values of NIIZEKI and BUERGER (1957), GORMAN (1945) and RICHMOND (1936). The calculations were made with the help of a program written by N. D. JONES (unpublished).

The crystal belongs to the monoclinic system. The systematic absences, as observed from Weissenberg photographs are

hkl:
$$k + l = 2n + 1$$

hol: $l = 2n + 1$ $(h \neq 4n)$
0k0: $k = 2n + 1$.

The possible space groups are A 2/a or Aa. But the former space group has been assumed, because an analysis of the distribution of the normalized structure amplitudes suggested the centric rather than the acentric space group (see Table 2). The systematic absences in h0lreflections are rather unusual. In addition to the space group extinctions of h = 2n + 1 and l = 2n + 1, there is an additional absence of $h \neq 4n$. This could be only interpreted as due to the structural arrangement. There are eight formula units in the unit cell and one in the asymmetric octant. In all this we follow and confirm the 1957 analysis by NHIZEKI and BUERGER.

	E	Theor	retical
	Experimental	centric	acentric
< E >	0.657	0.798	0.886
$< E^2 >$	1.029	1.000	1.000
$< E^2-1 >$	1.312	0.968	0.736
E > 3.0	$2.3^{0}/_{0}$	$0.30/_{0}$	0.01%/0
E >2.0	6.9º/0	$5.0^{0}/_{0}$	1.8%/0
E > 1.0	$24.4^{0}/_{0}$	32.0º/0	36.8%/0

Table 2. Distribution of normalized structure factors

Three-dimensional intensity data were collected by a Supper-Pace automated diffractometer having Weissenberg geometry and using $CuK\alpha$ radiation. The intensities were corrected for Lorentz and polarization factors. Correction for absorption was made with the help of an ICR-10 program (JOHNSON, 1963), because of the high linear absorption coefficient of the material ($\mu = 1068 \text{ cm}^{-1}$ for $CuK\alpha$ radiation).

T. SRIKRISHNAN and W. NOWACKI

Structure determination and refinement

The coordinates of the Hg atoms were determined from an analysis of the Patterson synthesis. There were two big peaks in the three-

b	۶,	F.	h	P _o	P _c	h	Fo	P _c	h	F.	P _c	h	P _o	F _c	h	F.	Fc	h	P _o	P _c	h	Fo	F.
h	0 0		-8	134	-137	3	241	-240	-2	294	-258	-16	211	-182	-6	70	81	-6	441	-440	-10	156	-142
8	661	667	-16	225	251	-7	94	79	-10	182	-188	-20	87	80	-7	160	-150	-9	59	-220	12	34	24
12	496 422	-490	-20	158	150	-9 -10	265 965	281 -982	-13 -14	99 133	-68 126	-21	32	34	-8 -9	302	328 111	10 	207	-206 -121	-12	77 181	-69 163
h	02		0	134	158	-11	243 485	-271	-15 -17	99 62	85 55	1	293	280	-12	184 138	195 134	11 12	188 61	197 -40	-15 -16	104 53	-116
4	528	-487	-4	143	135	-18	431	-420	-18	291	-291	-1	90	-80	-14	64	48	-12	69	-80	-21	46	31
8	674	694	-16	87	84	-22	341	308	-22	55	-43	-3	74	97	18	78	-89	-13	153	138	-23	102	-99
-8 12	1098 698	1028 686	-20	69	-59	-23	125	125	-26 -27	158 52	-156 -55	-5	655 79	590 76	19 -23	34 85	-3 83	-14 -15	214 150	-199 -127	h	3 17	
-12	649 464	664	-8	2020	170	-1	104	110	h	1 23		-7	166	174	-25	75	-80	-16	81 58	-58 -68	2	213	-187
h	0 4	,	h	1 1		2	410	-393	2	92	119	-9	265	-270	h	2 18	77	h	3 7		5	80	97
-4	630	568	6	1097	-1140	-2	182	-1024	-10	281	-145	-11	200	-216	3	133	133	-1	77	95	-5	79	-69
-12	521 850	536 785	~6	345 161	-365	-4	88 153	-103	-12	66 48	65 51	-12 -16	559 154	571	4 -4	210	185	2 -2	138 109	-128 -114	-9 -14	123	-85 -77
-20	894	876	-7	88	77	-5	208	-237	- 18	84 61	-82	-17	82	81	-7	169 145	168 	3	112	106	-17	79	-71
ь 0	0 6		-9	106	-111	7	196	196	-22	75	76	-20	284	286	-10	83	-84	-8	68	66	ь	3 19	
4	308 839	-297	-10	405	-744 352	-17	124	131	-23 h	58 1.25	51	-21	102	105	-12	56	-52	-9	275	-82	2	96 50	-88 -66
-4 -8	1371 833	1476 755	-11	200 119	210	-18 19	506 63	-529 -69	-2	52	-53	27 28	37 44	40 47	-19 -20	131 205	-134 210	-10 -14	199 71	-209	-7 -9	59 65	51 42
-12	991	948	13	95	109	-22	180	-175	-5	51	-52	h	2 10		-21	137	134	-16	83	77	-10	114	-100
h	0 8		-14	795	-734	 b	1 13		-14	40	43	0	362	388	 h	2 20		-18	170	-161	-14	100	-101
4	348 1217	-375 1276	-15	155	-161 94	1	125	124	-15 b	45	21	-3	116	-82 -142	1	55	70	h	39		-15 b	94	-69
8 -8	384 430	414 -433	18 -18	74 262	-66 -251	-2 -5	379 117	-382 120	. 8	350	394	4 -4	376 258	330 272	-1	111 62	-92 75	-1 -2	118 221	97 -232	9	85	-99
-12	1003	1001	ь	13		-6	484	-539	11	271	-289	7	209	-211	-4	278 58	268	4	72	46	10	59	-41
-20	590	586	-2	278	-262	-11	77	-87	16	259	255	-8	460	490	-12	211	205	-7	120	118	h	4 2	-))
∽24 h	125	129	-4	134	-59	-14	113	-195	h	22		-9	141	138	-15 -16	109	100	-8 -9	99 232	-73	6	67	-35
0	789	788	5 -5	277 327	310 304	-18 -19	136 94	140	-1 -5	97 162	-124 -170	-11 -16	186 240	201 250	-17 -20	81 52	-80 60	-11 -14	223 220	-219 -244	-7	77 65	99 -89
4	474	432	6	693	690	-22	150	-144	6 8	109	-88	-20	95	92	Ь	2 22		-18	188	- 185	h	4 4	,
-8	822	916	7	224	-260	26	35	-31	-8	391	407	-23	105	-113	0	82	82	-21	164	-149	0	54	74
-16	219	206	-8	139	- 582	-26	52	-157	-12	238	243	-24 b	9 19 9 19	154	3	46	63	-25	50	-45	-8	233	214
-24	324	350	-9 10	236 521	-211 -531	h	1 15		-14 15	79 183	83 194	0	217	237	-4	63	109	-25	43	40	-11 -12	87 210	-81 196
0	958	938	-11	106	105	1	101	-108	-16	245 82	233	-3	169	179	-9	79 80	-77	-1	100	117	16	49	66
8	716	750	15	100	-103	-2	79	74	21	101	86	-5	259	-262	-12	125	117	-2	377	-372	ь	4 6	
-16	661	725	-22	314	-344	6	154	-160	h	2 4		-0	246	213	-16	119	124	- 3	65	-67	-2	266	242
-24	121	142	h	15		-6 -10	189 80	-197 -73	-3	69 279	64 312	-7 8	169 421	-179 390	-17 -20	68 77	61 69	-4 -5	81 205	-62 -218	-5 8	60 90	71 87
0	858	824	2	222 267	-246	-11	96 157	109	-4	363	378	9	122	-121	h	3 1		6	110	-93	-13	65	64
-16	252	267	-5	122	94	-15	130	-129	-5	72	93	-15	162	-175	7	71	83	-7	112	125	-14	74	-68
-24	376	366	76	1127	-969	-22	400 96	-90	-7	297	296	-17	212	231	11	102	100	-8	105	94	-18	53	-51
-28	105	122	9 10	235	-274	-25 -26	- 91 - 111	-89 111	-8 -8	244 127	250 148	18 - 18	62 74	-60 -65	-12	91 208	-65 207	-10 -14	163 106	-161	h	48	
0	84	-53	-10	461	-418	-27	54	60	9	94 236	-107	-19	127	116	14	114 100	-113	-15 -16	102	98	2	66 59	58
4	95	-88	-14	970	-872	h 0	1 17	- 537	-10	113	-90		2 14	20	-18	58	-53	-17	105	107	-4	47	13
8	309	323	-18	223	-201	5	101	107	12	85	81	0	335	344	27	35	-34	-18	114	-134	8	54	-77 52
-12	414	448	h	17		-6	577	-577	-12	551 70	548 47	-1	269 212	-235 225	h	33		-19	69 52	-82 -33	-9 -11	74 90	-89 -105
-16	89 116	89 -114	23	725 149	-729 163	-9 -11	92 75	-85 41	-19 -20	216 460	-212 420	-2 -3	81 91	84 90	45	120 213	110	-24	52	31	h	4 10	
-28	103	113	-5	117	-114	-14	78	-69	-21	177	189	8	228	213	-5	225	223	ь 	3 13	70	0	73	71
h	0 18		-9	117	-137	-19	97	103	-24	70	91	-0	68	-88	-7	336	-330	-2	138	-117	-6	43	50
4	416	410	-10	359 215	- 197	-22	183	-148	29 b	47	27	-13	162 59	-199	-8 -9	93 235	-209	-5 -6	72 78	-91	78	61 36	-64 34
-4 -8	178	168 -323	-13	163 314	-154 269	h	1 19		0	71	-55	-14 -16	81 172	-82 189	10	279 85	-294	-8 -13	57 66	-65 -54	-8 -0	97 69	103
-12	200	208	-15	203	177	-1	89 105	-95	-1	246	-271	17	46	-56	-16	83	101	-14	103	-92	-11	58	66
-28	180	194	-17	107	104	-2	158	160	-4	587	616	21	69	57	-19	132	148	-17	98	-93	- 1 4 h	,0 4 19	- 14
հ	0 20		-18 -22	492 88	-494 -72	6 -10	63 268	-64 -277	-5 7	289 179	297 -203	-23 -24	92 164	-90 165	-20 -21	63 84	-60 87	-18 -22	70 99	-61 -94	-1	60	37
0	137 521	-124	27	52	51	12	62 83	80 77	-8	352 246	367	-25	97	99	-22	81	-97	h	3 15		-2	40 96	-69
-12	375	365	,	1 9	967	-14	358	-374	11	159	161	ь - 1	2 16		h	55 65	60	0	60	70	-11	37	39
-20 h	0 22	261	-1	85	57	- 18 h	1 21	-07	-12	503	473	- 1	119	-102	-1	151	-177	-2	121	-120			
-4	111	97	2 -2	459 531	477 -557	2	201	-207	-13 15	268 318	269 314	-4 5	277 126	293 121	-4 -5	86 141	75 151	-4 -6	70 168	73 -154			

Table 3. Observed and calculated structure factors for livingstonite

dimensional Patterson synthesis, corresponding to the Hg—Hg interactions. There are two kinds of Hg atoms in the structure. Hg(1) is located at the centre of symmetry and Hg(2) is placed on the twofold axis. A three-dimensional Fourier synthesis was computed with the Hg atoms and the antimony atoms could be located from this Fourier map. A structure-factor calculation with the mercury and antimony atomic coordinates and with the overall B of 4.6 Å², as indicated from the Wilson plot, yielded an R value of $45.6^{0}/_{0}$ for all 1099 reflections. A three-dimensional Fourier synthesis computed with these atoms, showed up all the sulfur atoms. The additional sulfur atom, found by the same procedure as by NIIZEKI and BUERGER, also showed up, with almost the same strength as the other sulfur atoms.

A structure-factor calculation with all these atoms, yielded an R value of $38.5^{\circ}/_{0}$ for all reflections (the final atomic coordinates, as reported by NIIZEKI and BUERGER, with an overall B of 4.6 Å² gave an R value of $190/_0$ for observed reflections and $27.70/_0$ for all 1099 reflections). Three-dimensional block-diagonal least-squares refinements were started with the initial R value of $38.5^{\circ}/_{0}$. After a series of isotropic block-diagonal least-squares refinements, the R value fell to $13.5^{\circ}/_{0}$ for all 1099 reflections. The refinements were continued with anisotropic thermal parameters for all the atoms and the final R value was $7.3^{0}/_{0}$ for the observed 596 reflections $(10.2^{0}/_{0}$ for all 1099 reflections). The effect of anomalous dispersion was taken into account but no significant difference was found between the two enantiomorphs. Reflections with $I < 2.233 \sigma(I)$ were assigned as unobserved reflections. Neutral atom scattering factors as given by THOMAS, UMEDA were used for the Hg and Sb atoms and those given by DAWSON were used for the S atoms (International tables, 1962).

A block-diagonal least-squares refinement programm written by ENGEL (1972) for IBM 370/155 was used in the structure refinement.

In the beginning stages of the refinement, unit weights were assigned to all the reflections, but in the final stages weights were calculated using the weighting function (ENGEL, 1972)

$$W = \frac{1}{(G_1 + F_{\rm obs} + G_2 \cdot F_{\rm obs}^2)} \ , \label{eq:W}$$

where $G_1 = 8$ and $G_2 = 0$.

A list of the final observed and calculated structure amplitudes is given in Table 3.

Description of the structure

The final atomic coordinates are given in Table 4a and the anisotropic thermal parameters in Table 4b. The root-mean-squared displacements of the atoms along the principal axes of the vibration ellipsoid

Table 4a. The final atomic coordinates of livingstonite, their standards deviations (in parentheses) and occupancy factors. In brackets: coordinates given by NIIZEKI and BUERGER (1957)

Atom	x	y	z	Occupancy factor
Hg(1) Hg(2)	$\begin{array}{ccc} 0 & [0] \\ 0.25 & [0.25] \\ 0.255 & [0.25] \end{array}$	$\begin{array}{ccc} 0.5 & [0.5] \\ 0.0089(11)[0.001] \\ 0.0029(12)[0.005] \end{array}$	0 [0] 0 [0]	0.5 0.5
Sb(1) Sb(2) Sb(3) Sb(4) S(1)	$\begin{array}{c} 0.0395(2) \left[0.042 \right] \\ 0.1244(1) \left[0.120 \right] \\ 0.1355(2) \left[0.131 \right] \\ 0.2057(2) \left[0.208 \right] \\ 0.0148(6) \left[0.022 \right] \end{array}$	$\begin{array}{c} 0.0628(12)[0.095]\\ 0.0563(12)[0.063]\\ 0.0586(12)[0.064]\\ 0.1091(12)[0.078]\\ 0.005(3)[0.021] \end{array}$	$\begin{array}{c} 0.2113(2) & [0.214] \\ 0.0779(2) & [0.075] \\ 0.4281(2) & [0.425] \\ 0.2847(2) & [0.287] \\ 0.3169(7) & [0.318] \end{array}$	
S(2) S(3) S(4) S(5)	0.0642 (5) [0.062] 0.0757 (6) [0.078] 0.1077 (6) [0.102] 0.1527 (6) [0.149]	0.517(3) [0.493] 0.516(3) [0.507] 0.501(4) [0.483] 0.511(3) [0.521]	0.0979(5) [0.092] 0.4625(6) [0.460] 0.2881(6) [0.277] 0.2300(5) [0.222]	1.0
S(6) S(7) S(8)	0.1698 (9) [0.172] 0.2060 (9) [0.189] 0.2177 (7) [0.229]	$\begin{array}{c} 0.511(3) & [0.521] \\ 0.520(5) & [0.506] \\ 0.512(3) & [0.494] \\ 0.024(4) & [0.028] \end{array}$	$ \begin{array}{c} 0.2300(3) & [0.222] \\ 0.0352(13) & [0.039] \\ 0.4216(9) & [0.407] \\ 0.1795(9) & [0.180] \end{array} $	

Table 4b. The final anisotropic temperature factor coefficients The values are the coefficients in the expression $\exp \left[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + hk\beta_{12} + hl\beta_{13} + kl\beta_{23}\right]$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$H_{\alpha}(1)$	0.00188(11)	0.086(3)	0.00303(12)	0.0004(8)	0.0013(2)	-0.0015(9)
Hg(2)	177(10)	81(3)	266(10)	0.000±(0)	12(2)	
Sb(1)	140(10)	86(4)	229(11)	- 18(8)	14(2)	3(10)
Sb(2)	134(10)	83(4)	200(10)	-52(7)	11(2)	41(8)
Sb(3)	125(9)	80(3)	217(11)	-41(7)	10(2)	- 29(8)
Sb(4)	185(11)	78(3)	228(11)	56(8)	17(2)	26(10)
S(1)	0.0010(3)	0.039(7)	0.0023(4)	0.006(2)	0.0026(6)	0.007(3)
S(2)	3(2)	37(6)	10(2)	-3(2)	- 3(3)	-2(2)
S(3)	15(3)	39(7)	11(3)	-7(2)	15(5)	-5(2)
S(4)	5(2)	70(10)	10(2)	-1(2)	2(4)	4(2)
S(5)	13(2)	26(6)	5(2)	2(2)	- 13(3)	-2(2)
S(6)	15(5)	64(12)	49(8)	- 10(3)	25(10)	-4(5)
S(7)	35(5)	2(6)	36(5)	-4(2)	52(9)	-3(3)
S(8)	4(2)	73(11)	24(4)	-1(2)	12(5)	- 5(3)

Fig. 1. The structure of livingstonite projected down [010]

Fig.2. A schematic representation of the structure of living stonite, in the whole unit cell, projected down the b axis

are given in Table 5. The arrangement of atoms projected down the b axis is given in Fig. 1. In Fig. 2, the structural scheme is illustrated for the unit cell.

The structure proposed by NIIZEKI and BUERGER is essentially correct. For purposes of comparison, the final atomic coordinates of NIIZEKI and BUERGER are also given in Table 4a, in brackets, along with those of this investigation. The average shift in the coordinates of the Sb atoms from the model of NIIZEKI and BUERGER is 0.077 Å, while those in the S atoms is 0.128 Å. The largest shift in a Sb-atom coordinate is 0.086 Å and that in a sulfur atom is 0.302 Å.

The interatomic distances and angles are given in Tables 6a and 6b respectively. There are two kinds of Hg atoms in the structure. One of them is located at the centre of symmetry and the other on the twofold axis. Both these Hg atoms are included in the structure-factor calculation, with an occupancy factor of 0.5, so as to be consistent with the unit cell content of 8 Hg atoms. The coordination of the two Hg atoms by the S atoms are octahedral; two of the S atoms are nearer than the other four and linked to Hg in a diagonal linear bond. The octahedron around Hg(1) is formed by S(2), S(2)', S(3)', S(3)'', S(3)''' and S(3)''''. Out of these, S(2) and S(2)' are linearly bonded to Hg at a distance of 2.52 Å $[S(2)-Hg(1)-S(2)' = 180.0^{\circ}]$. Such diagonal linear covalent linkage is characteristic of the structural chemistry of the Hg atom (GRDENIĆ, 1965) and is also found in the structure of cinnabar, HgS (Hg–S = 2.36 Å, S–Hg–S = 172° ; AURIVILLIUS, 1950) and also in vrbaite (Hg–S = 2.38 Å, S–Hg–S $= 166.0^{\circ}$; OHMASA and NOWACKI, 1971). The octahedral arrangement around Hg(1) is almost regular and runs almost parallel to the c axis. The average Hg–S distance is 3.04 Å and the average standard deviation in them is 0.013 Å. Hg(2) also has an octahedral arrangement with S(7)', S(7)'', S(6), S(6)', S(6)'' and S(6)'''. The atoms S(7)' and S(7)'' are almost linearly bonded to mercury. The angle S(7)'-Hg(2) $-S(7)'' = 179.1^{\circ}$, but the covalent distance between the Hg and S atoms is 1.90 Å, shorter than the sum of the covalent radii of the atoms (2.36 Å). The standard deviation in these bonds is 0.02 Å and it is rather difficult to assert that this bond is really short. Similar short bonds, those less than, or equal to, the sum of the covalent radii, have been reported in some mercury-bearing compounds: in dimethyl thio-mercury (BRADLEY and KUNCHUR, 1964), the Hg-S distance is 2.36 Å; in KI \cdot Hg(CN)₂, the Hg–C diagonal bond is 2.08 Å (KRUSE, 1963), which is less than the sum of the covalent radii 2.3 Å

Atom	B_{isotr}	Axes	В	$\sqrt{ar{u}^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
Hg(1)	5.78	1	6.66	0.290	0.954	0.058	0.294
8(7		2	5.69	0.268	0.092	0.877	-0.472
		3	5.00	0.252	-0.285	0.477	0.831
Hg(2)	5.35	1	6.27	0.282	0.977	0.000	0.215
0. /		2	5.21	0.257	0.000	1.000	0.000
		3	4.56	0.240	-0.215	0.000	0.977
Sb(1)	4.72	1	4.96	0.251	0.664	0.490	0.565
		2	5.77	0.270	-0.477	0.859	-0.184
		3	3.43	0.209	-0.575	-0.147	0.805
Sb(2)	4.47	1	3.79	0.219	0.811	0.584	0.021
. ,		2	6.39	0.284	-0.555	0.782	-0.284
		3	3.23	0.202	-0.182	0.218	0.959
Sb(3)	4.41	1	3.78	0.219	0.666	0.583	0.465
. ,		2	5.90	0.273	-0.511	0.811	-0.285
		3	3.53	0.212	-0.543	-0.048	0.838
Sb(4)	5.03	1	7.42	0.307	0.801	0.487	0.348
		2	4.28	0.233	-0.386	0.865	-0.322
		3	3.40	0.207	-0.457	0.124	0.881
S(1)	2.92	1	0.56	0.084	0.832	-0.158	-0.531
		2	1.82	0.152	-0.098	0.901	-0.422
		3	6.38	0.284	0.545	0.404	0.735
S (2)	1.84	1	0.50	0.079	0.738	0.357	0.573
		2	2.64	0.183	-0.356	0.927	-0.119
		3	2.39	0.174	-0.573	-0.116	0.811
S(3)	3.03	1	6.14	0.279	0.831	-0.421	0.363
		2	1.79	0.151	0.506	0.843	-0.181
		3	1.16	0.121	-0.230	0.334	0.914
S(4)	2.71	1	1.88	0.154	0.989	0.145	0.019
		$\begin{vmatrix} 2 \\ c \end{vmatrix}$	4.75	0.245	-0.145	0.963	0.228
		3	1.50	0.138	0.015	-0.228	0.973
S(5)	2.72	1	6.34	0.283	0.940	0.134	-0.315
		2	1.62	0.143	-0.162	0.985	-0.065
		3	0.19	0.049	0.301	0.112	0.947

 Table 5. The root-mean-squared displacements of the atoms along the principal axes of the vibration ellipsoids and direction cosines of these axes with respect to the crystallographic axes

Atom	B_{isotr}	Axes	B	$\sqrt{ar{u}^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
S(6)	5.69	1	5.80	0.271	0.635	-0.648	-0.422
.,		2	2.13	0.164	0.696	0.716	-0.051
		3	9.12	0.340	0.335	-0.261	0.905
S(7) 5.	5.51	1	13.74	0.417	0.817	-0.067	0.572
		2	0.07	0.031	0.051	0.998	0.044
		3	2.72	0.186	-0.574	0.007	0.819
S(8)	3.35	1	1.01	0.113	0.985	0.000	-0.174
		2	5.43	0.262	-0.111	0.769	-0.630
		3	3.62	0.214	0.133	0.640	0.757

Table 5. (Continued)

Table 6a. Interatomic distances in livingstonite

		i		
Hg(1) - S(2)	$2.52\pm0.01{ m \AA}$	$[2 \times]$	Sb(4) - S(8)	$2.40\pm0.02{ m \AA}$
S(3)'''	$3.34~\pm~0.01$	$[2 \times]$	S(5)	2.40 ± 0.01
S(3)'	3.26 ± 0.01	$[2 \times]$	S(8)'	2.83 ± 0.02
Mean	3.04		S(5)'	2.98 + 0.01
			Mean	2.65
Hg(2) - S(7)'	1.90 ± 0.02	$[2 \times]$		
S(6)	3.41 + 0.02	$[2 \times]$	Q(1) Q(1)/	2 4 9 1 0 0 9
S(6)'	3.36 + 0.02	$[2\times]$	S(1) - S(1)	3.42 ± 0.02
Mean	2.89	L]	S(1)	3.47 ± 0.02
			S(4)	3.64 ± 0.02
Sh(1) S(1)	9 55 1 0 09		S(4)'	$3.66~\pm~0.02$
	2.55 ± 0.02		S(3)	$\textbf{3.84} \pm 0.02$
8(1)	2.38 ± 0.01		S(3)'	3.79 ± 0.02
S(1)''	2.80 ± 0.01		S(4)''	3.90 ± 0.02
S(4)	2.93 ± 0.02		Sb(3)	3.91 + 0.02
Mean	2.67			
			9(9) Sh(1)	2 97 1 0 01
Sb(2)-S(6)	$2.61\ \pm\ 0.02$		S(2) - SU(1)	3.27 ± 0.01
S(6)'	2.83 ± 0.02		SD(1)	3.35 ± 0.02
S(2)	2.71 ± 0.01		S(5)	3.44 ± 0.02
S(2)'	2.94 + 0.01		Sb(1)'	$3.49~\pm~0.01$
S(3)'	2.58 ± 0.01	1	S(3)'	3.61 ± 0.02
Mean	2.00 1 0.01		$S(3)^{\prime\prime}$	3.62 ± 0.02
moun	2.10		S(6)	3.77 ± 0.03
Sb(3) = S(6)'	2.30 ± 0.03		S(4)	3.99 ± 0.02
SS(0) -S(0) S(9)	2.00 ± 0.00			
(e)a	4.01 ± 0.01		Q(9) Q(0)	9 55 1 0 09
8(7)	2.85 ± 0.02		S(3) - S(0)	3.33 ± 0.03
Mean	2.65		S(6)''	3.57 ± 0.03

S(4)-S(5) Sb(1)' Sb(3) S(7) Sb(2)'	$egin{array}{llllllllllllllllllllllllllllllllllll$	S(6)-S(7)'' S(8) S(8)'	$\begin{array}{c} \textbf{3.55} \pm 0.03 \text{ \AA} \\ \textbf{3.69} \pm 0.03 \\ \textbf{3.70} \pm 0.03 \end{array}$
Sb(3) Sb(4)' Sb(4)	3.69 ± 0.01 3.88 ± 0.02 3.40 ± 0.02	${f S(7)-Sb(3)'\over Sb(4)} \\ {f S(8)'\over Sb(4)'}$	$egin{array}{rrrr} 3.10\ \pm\ 0.02\ 3.35\ \pm\ 0.02\ 3.53\ \pm\ 0.03\ 3.79\ +\ 0.02\ \end{array}$
S(5)S(8) S(8)' Sb(2) Sb(1) Sb(2)' S(8)'	$egin{array}{rl} 3.15 \pm 0.02 \ 3.22 \pm 0.02 \ 3.67 \pm 0.01 \ 3.84 \pm 0.02 \ 3.86 \pm 0.01 \ 3.99 \pm 0.02 \end{array}$	S(7)' S(8)-Sb(2) Sb(4)'' S(8)'	$\begin{array}{c} 3.79 \ \pm \ 0.03 \\ \\ 3,17 \ \pm \ 0.02 \\ 3.28 \ \pm \ 0.02 \\ \\ 3.79 \ \pm \ 0.02 \end{array}$
S(6)—S(7)'	$=$ 3.51 \pm 0.03	S(8)'' S(9)'	$\begin{array}{c} 3.79 \pm 0.02 \\ 3.99 \pm 0.02 \end{array}$

Table 6a. (Continued)

_

Table 6b. Bond angles in livingstonite

S(2)' - Hg(1) - S(2)	180.0°	S(1)' - Sb(1) - S(1)	$87.8(5)^{\circ}$
${f S}(3)'$	76.2(3)	S(1)''	101.2(5)
$\mathrm{S}(3)^{\prime\prime}$	103.8(3)	S(4)	94.0(5)
S(3)'''	74.7(3)	S(4)'	164.5(1.7)
S(3)''''	105.4(3) (2 ×]	S(2)	70.8(5)
S(3)'-Hg(1)-S(3)''	180.0(3) [2×]	S(1) - Sb(1) - S(1)''	80.7(4)
S(3)'''	74.9(3) $[2 \times]$	S(4)	82.8(4)
S(3)''''	105.1(3) [2×]	S(4)'	77.0(4)
		S(2)	151.3(7)
S(7)' - Hg(2) - S(7)''	179.1(7)°		
S(6)'	78.5(7) [2×]	S(1)''-Sb(1)-S(4)	157.0(3)
S(6)"	102.1(7) [2×]	S(4)'	79.8(4)
S(6)'''	78.1(7) [2×]	S(2)	121.2(5)
$\mathbf{S}(6)$	101.3(7) [2×]		
	() [- · ·]	S(4) - Sb(1) - S(4)'	81.0(4)
$S(R)' = Tr_{cr}(9) = S(R)''$	109 6(5)	S(2)	80.0(3)
S(0) = IIg(2) = S(0)	79.7(5) [9.2]		
B(0) S(6)	179.7(5) [2 X]	S(4)' - Sb(1) - S(2)	122.1(5)
5(0)	$178.7(3) [2 \times]$		
		S(3)' - Sb(2) - S(6)	86.8(7)
S(6)'''-Hg(2)-S(6)	106.0(5)	S(2)	86.2(4)
		S(6)'	81.9(6)
		S(2)'	81.5(4)
	:	S(8)	152.3(6)

S(6) - Sb(2) - S(2)	90.3(5)°	S(8)' - Sb(4) - S(5)'	$157.1(5)^{\circ}$
S(6)'	95.1(6)	S(8)"	81.8(4)
S(2)'	168.2(5)	S(7)	69.1(5)
S(8)	78.7(5)		
	(-)	S(5)' - Sb(4) - S(8)''	79.0(4)
S(2) - Sb(2) - S(6)'	166.6(6)	$\mathbf{S}(7)$	128.7(4)
S(2)'	90.5(4)	~(.)	
S(8)	117.0(4)	S(8)'' - Sb(4) - S(7)	106.5(4)
8(0)	11110(1)		100.0(1)
S(6)' = Sb(2) = S(2)'	81.8(5)	Sb(1)' = S(1) = Sb(1)	92.1(5)
S(8)	76 1(6)	$s_{n}(1) = \frac{s_{n}(1)}{s_{n}(1)}$	101 2(5)
5(0)	10.1(0)	$\mathbf{S}(2)'$	67.1(4)
S(2)' = Sb(2) = S(8)	111 3(4)	S(1)'	48 1(6)
5(2) 55(2) 5(5)	111.0(4)	S(1)"	100.7(5)
Q(A) (Q1 (A) (Q(A)	0= 4(0)	5(1)	100.7(0)
S(6)' - SD(3) - S(3)	87.4(6)	Sb(1) = S(1) = Sb(1)''	99 3(4)
S(7)	85.2(6)	SU(1) = SU(1) = SU(1)	33.3(4) 159 0(5)
S(3)'	82.6(6)	S(2)	152.0(5)
S(7)'	80.6(6)	S(1) S(1)''	44.0(0) 59.8(6)
S(4)	151.0(1.4)	5(1)	52.8(0)
		Sb(1)' S(1) S(2)'	68 5(4)
S(3) - Sb(3) - S(7)	98.1(5)	SD(1) = S(1) = S(2) S(1)'	104.9(5)
S(3)'	86.6(4)	S(1) S(1)''	104.5(0)
S(7)'	167.5(8)		40.5(3)
S(4)	81.2(4)	9/9/ 9/1/ 9/1/	119 0/5)
		S(2) - S(1) - S(1)	112.9(3) 110.7(5)
S(7)-Sb(3)-S(3)'	166.7(1.5)	5(1)	110.7(3)
S(7)'	84.7(5)	S(1)' S(1) S(1)''	71 9(6)
S(4)	70.3(5)	S(1) = S(1) = S(1)	11.2(0)
		$H_{cr}(1) = S(2) = Sh(2)$	108 0(4)
S(3)' - Sb(3) - S(7)'	88.1(4)	11g(1) - 5(2) - 55(2)	100.0(4)
S(4)	122.9(5)	SD(2)	100.9(3)
~(-)	122.0(0)	$\operatorname{Sb}(1)$	109.7(4) 86.9(4)
Q(F)/ QL(9) Q(4)	111 1/2)	SD(1)	80.2(4) 178.0(4)
o(1) - ob(3) - o(4)	111.1(5)	5(5)	178.0(4)
		Sb(2) - S(2) - Sb(2)'	90.5(4)
S(8) - Sb(4) - S(5)	82.4(5)	$\mathbf{Sb}(1)$	91.2(3)
S(8)'	92.5(6)	$\operatorname{Sb}(1)'$	132.1(4)
S(5)'	72.6(5)	S(5)	72.2(4)
S(8)''	82.1(5)		
S(7)	157.7(1.0)	Sb(2)' - S(2) - Sb(1)	141.3(6)
		S (1)'	130.8(5)
S(5)-Sb(4)-S(8)'	99.2(5)	S(5)	74.1(3)
$\mathrm{S}(5)'$	96.0(4)		
S(8)''	164.5(9)	b(1)-S(2)-S(1)'	42.1(5)
S(7)	88.2(4)	S(5)	69.8(4)

Table 6b. (Continued)

A redetermination of the crystal structure of livingstonite

S(1)' = S(2) = S(5) 94 5(4)°	$Sb(4) = S(5) = Sb(4)' = 96.0(5)^{\circ}$
S(1) = S(2) = S(3) = 34.3(4)	SU(4) - SU(3) - SU(4) = 30.0(3) S(8) = 48.8(5)
Sb(2)' = S(3) = Sb(3) = 91.6(5)	S(0) = 40.0(0) S(8)' = 101.2(8)
SD(2) = S(3) = SD(3) = 91.0(3) SD(2)' = 96.7(4)	S(3) = 101.3(0) S(2) = 196.2(7)
$H_{\alpha}(1)' = 00.6(4)$	S(2) = 130.3(7)
Hg(1) = 90.0(4)	
$\Pi_{g(1)} = 94.9(4)$	Sb(4)'-S(5)-S(8) = 107.8(6)
S(6) 52.0(6)	S(8)' = 45.2(4)
	S(2) = 124.9(4)
Sb(3) - S(3) - Sb(3)' = 86.6(4)	
Hg(1)' = 175.3(1.5)	S(8) - S(5) - S(8)' 78.1(5)
$Hg(1)^{\prime\prime}$ 100.8(4)	S(2) 99.0(5)
S(6)' = 40.4(5)	
	S(8)'-S(5)-S(2) = 98.5(4)
Sb(3)' - S(3) - Hg(1)' 97.7(4)	
Hg(1)" 172.4(1.8)	Sb(3)/S(6) = Sb(2) = 104.0(7)
S(6)' = 92.1(5)	SU(3) S(0) - SU(2) = 104.0(7) SU(3) S(0) - SU(2) = 104.0(7)
	$H_{\alpha}(2) = 97.4(7)$
Hg(1)' - S(3) - Hg(1)'' 74.9(3)	$ \Pi_{\alpha}(2) = 00.0(7) \Pi_{\alpha}(2) = 00.0(7) $
${ m S(6)'}$ 140.8(6)	ng(2) = 90.2(7)
	S(1) = 34.0(1.0)
Hg(1)''-S(3)-S(6)' 94.7(4)	
G(2) G(4) GL(4) 00 9(0)	Sb(2)-S(6)-Sb(2)' 95.1(7)
$\delta(0) - \delta(4) - \delta D(1) = 99.3(6)$	Hg(2)' 165.9(2.1)
SD(1)' 96.9(6)	Hg(2) = 96.6(5)
Sb(4) = 44.1(5)	S(7)' = 157.4(2.5)
Sb(3) = 118.5(7)	
S(1) = 140.5(6)	Sb(2)'-S(6)-Hg(2)' = 93.9(5)
81-(1) 8(4) 81-(1)(01-0(4)	Hg(2) 164.1(1.4)
SD(1) - S(4) - SD(1) = S1.0(4) Sb(4) = 109.1(4)	S(7)' 93.1(6)
DD(4) = 103.1(4) DD(4) = 100.5(4)	
DD(3) = 100.0(4)	$H_{\alpha}(2)' = S(6) = H_{\alpha}(2)$ 79.7(5)
S(1) = 44.2(3)	$\frac{11g(2) - 5(0) - 11g(2)}{S(7)} = \frac{12.1(0)}{210(0)}$
Sb(1)' = S(4) = Sb(4) = 140.0(3)	5(7) 51.9(8)
Sb(1) - b(4) - bb(4) = 140.8(3) Sb(2) = 142.5(7)	$H_{\alpha}(2) = S(3) = S(7)^{\prime} = S(0) O(3)$
SU(3) = 143.3(7) S(1) = 01.9(7)	$\operatorname{Hg}(2) = \mathfrak{S}(0) = \mathfrak{S}(1) = \mathfrak{S}(0) \mathfrak{S}(0)$
S(1) = 91.8(4)	
Sb(4) - S(4) - Sb(3) = 74.8(3)	Hg(2)'-S(7)-Sb(3) 109.9(6)
S(1) = 1185(5)	Sb(3)' = 108.8(6)
~(1) 110.0(0)	Sb(4) 129.2(1.0)
Sb(3) = S(4) = S(1) 67.2(4)	S(6)' 69.6(8)
	S(8)' = 96.4(8)
S(4) - S(5) - Sb(4) = 99.2(6)	
Sb(4)' = 99.0(5)	Sb(3)-S(7)-Sb(3)' = 84.7(6)
S(8) 139.2(7)	Sb(4) 83.5(4)
S(8)' = 140.2(7)	S(6)' 40.8(7)
S(2) = 89.6(6)	S(8)' 130.8(8)
- , , + (-)	

Table 6b. (Continued)

Sb(3)'-S(7)-Sb(4)	121.4(5)°	Sb(4)'-S(8)-S(5)	$145.0(3)^{\circ}$
S(6)'	91.8(6)	Sb(2)	140.1(9)
S(8)'	125.7(4)	S(5)'	93.9(5)
		Sb(4)"	81.8(4)
Sb(4) - S(7) - S(6)'	113.6(5)		
S(8)'	48.5(5)	S(5)-S(8)-Sb(2)	70.9(4)
		S(5)'	78.1(5)
S(6)'-S(7)-S(8)'	142.4(1.1)	$\mathrm{Sb}(4)^{\prime\prime}$	87.0(5)
Sh(4) = S(8) - Sh(4)'	07.9/6)	Sb(2)-S(8)-S(5)'	74.4(4)
SU(4)	97.2(0) 19.8(8)	Sb(4)''	127.8(4)
S(J)	40.0(0)		
S(5)'	69 1(5)	S(5)'-S(8)-Sb(4)''	147.4(2)
S(0)	02.1(5) 86 9(5)		
6D(4)	00.2(0)	1	

Table 6b. (Continued)

and in the addition compound of mercuric chloride with coumarin (KITAIGORODSKII, KHOTSYANOVA and STRUCHKOV, 1953), the Hg–O distance is 2.38 Å. The average Hg(2)—S distance is 2.89 Å and the mean standard deviation is 0.02 Å.

There are four independent Sb atoms in the structure. Atom Sb(1)has a coordination of four sulfur atoms, which could be described as a distorted trigonal pyramid plus an additional sulfur atom. The Sb(1)-S distances are in the range 2.38 to 2.93 Å and have a mean standard deviation of 0.015 Å. Atom Sb(2) has a coordination of five sulfur atoms which form a distorted square-pyramidal configuration, similar to that found in stibuite, Sb_2S_3 (BAYLISS and NOWACKI, 1972). The Sb atom is almost at the centre of the basal plane of the square pyramid, which runs almost parallel to the c axis; the apex S is at a distance of 2.58 Å from the Sb. The other Sb(2)-S distances are in the range 2.61 to 2.94 Å with a mean standard deviation of 0.02 Å. Sb(3) has the familiar trigonal-pyramidal coordination, with three sulfur atoms in the range 2.3 to 2.85 Å. Similar coordination for antimony have been observed in many of the sulfosalts (NOWACKI, 1969, 1970). The average Sb(3)-S distance is 2.65 Å with a mean standard deviation of 0.02 Å. Sb(4), similar to Sb(1), has a distorted trigonal-pyramidal coordination plus an additional sulfur atom, thus having four sulfur atoms in the range 2.40 to 2.98 Å, with a mean standard deviation of 0.02 Å. The average of all the Sb-S distances is 2.68 Å.

The coordination around the Hg and Sb atoms are schematically shown in Fig. 3a and those around the sulfur atoms are shown in A redetermination of the crystal structure of livingstonite

Fig.3a. Coordination of the Hg and Sb atoms in livingstonite, projected down [001]

Fig. 3b, as projected down the c axis. The sulfur atoms S(2), S(3), S(5), S(6) and S(7) have five metal atoms surrounding them, while S(1) and S(8) have four metal atoms and S(4) has six metal atoms around them.

The structure of livingstonite can be described as essentially a double-layered structure. These double layers, formed by Sb atoms, run parallel to the c axis. If we consider the nearest three S atoms around each Sb atom, it could be represented as a SbS₃ unit. These SbS₃ units are connected as chains of composition SbS₂. In the

Fig. 3b. Coordination of the sulfur atoms in livingstonite, projected down [001]

structure there are three such groups of two SbS_2 chains. One group is related by a centre of symmetry, the second by a twofold axis and the third by no symmetry element. These SbS_2 chains are combined into Sb_2S_4 double chains, very similar to that in berthierite (BUERGER and HAHN, 1955). These two double chains of Sb₂S₄ differ in the way they are joined together. In one of them, they are connected as a layer, by a mutual S₂ group, S(4)-S(5) = 2.06 Å. This is probably the only example of an S_2 group in the structure of sulfosalts, although many examples are found in literature in simple sulfides. The S-S distance of 2.06 Å agrees very well with those found in CuS (S-S = 2.05 Å; OFTEDAL, 1932), in pyrite, FeS₂ (S-S = 2.10 Å; Bragg, 1913) and in marcasite, FeS_2 (S-S = 2.25 Å, BUERGER, 1931). This S_2 group in livingstonite is so disposed that its midpoint is at a pseudocentre of symmetry in the structure. It is this S_2 group that necessitated the new chemical formula, HgSb₄S₈. The other two double chains of Sb_2S_4 are joined by the Hg atoms in the structure.

In livingstonite, the factor φ , expressing the ratio of the number of sulfur to the metal atoms is 2 and hence it falls under Type IV of the classification of the sulfosalts by NOWACKI (1969), for which $\varphi = 2$. The chemical formula of livingstonite can be expressed as $[(Sb_2S_4)_2 \text{ Hg}^{II+IV}]$. The structure could be described as SbS₃ pyramids interconnected so as to form double chains of composition Sb₂S₄ running along [001]. Hence it comes under Type IV.a₁, the other examples of this type being trechmannite, AgAsS₂ (MATSUMOTO and NOWACKI, 1969) and smithite, AgAsS₂ (HELLNER and BURZLAFF, 1964).

Acknowledgement

The computations in this study were made on the IBM 1620 and 370/155 using the programs written by Dr. N. D. JONES, Mr. A. EDEN-HARTER, Dr. P. ENGEL and Dr. T. ITO. Thanks are due to them for the same. The authors would also like to thank Professor W. NEF and Dr. R. R. HÜSSER for permission to use the IBM 370/155 and also the Schweizerischer Nationalfonds (Projects No. 2.188.69 and 2.516.71) and Stiftung Entwicklungsfonds Seltene Metalle for financial assistance.

References

- K. L. AURIVILLIUS (1950), On the crystal structure of cinnabar. Acta Chem. Scand. 4, 1413–1436.
- P. BAYLISS and W. NOWACKI (1972), Refinement of the crystal structure of stibnite, Sb₂S₃. Z. Kristallogr. 135, 308-315.

- D. C. BRADLEY and N. R. KUNCHUR (1964), Structures of mercury mercaptides. I. X-ray structural analysis of mercury methylmercaptide. J. Chem. Physics 40, 2258–2261.
- W. L. BRAGG (1913), The analysis of crystals by the x-ray spectrometer. Proc. Roy. Soc. [London] [A] 89, 468-480.
- M.J.BUERGER (1931), The crystal structure of marcasite. Amer. Min. 16, 361-395.
- M. J. BUERGER and T. HAHN (1955), The crystal structure of berthierite, FeSb₂S₄. Amer. Min. 40, 226-238.
- J. D. DANA (1944). The system of mineralogy. 7th ed. Vol. I. J. Wiley, New York, pp. 485-486.
- P. ENGEL (1972), Kristallographische Programme für IBM 370/155 (unpublished).
- D. H. GORMAN (1954), An x-ray study of the mineral livingstonite. Amer. Miner. 36, 480-483.
- D. GRDENIĆ (1965), The structural chemistry of mercury. Quart. Rev. 19, 303-328.
- E. HELLNER and H. BURZLAFF (1964), Die Struktur des Smithits, AgAsS₂. Naturw. 51, 35-36.
- International tables for x-ray crystallography, Vol. III (1962), 210-212. Kynoch Press, Birmingham.
- C. K. JOHNSON (1963), 1620 programs from ICR, Program for absorption correction for crystal ground as an ellipsoid of revolution. ICR-10, Institute of Cancer Research, Philadelphia.
- A. I. KITAIGORODSKII, T. L. KHOTSYANOVA and JU. T. STRUCHKOV (1953), The crystal structure of the addition compound of mercuric chloride with coumarin. Zhur. fiz. Khim. 27, 780-790.
- F. H. KRUSE (1963), The crystal structure of KI.Hg(CN)₂. Acta Crystallogr. 16, 105-109.
- T. MATSUMOTO and W. NOWACKI (1969), The crystal structure of trechmannite, AgAsS₂. Z. Kristallogr. 129, 163-177.
- N. NIIZEKI and M. J. BUERGER (1957), The crystal structure of livingstonite, HgSb₄S₈. Z. Kristallogr. 109, 129-157.
- W. NOWACKI (1969), Zur Klassifikation und Kristallchemie der Sulfosalze. Schweiz. Min. Petr. Mitt. 49, 109-156.
- W. NOWACKI (1970), Zur Klassifikation der Sulfosalze. Acta Crystallogr. B26, 286-289.
- I. OFTEDAL (1932), Die Kristallstruktur des Covellins (CuS). Z. Kristallogr. 83, 9-25.
- M. OHMASA and W. NOWACKI (1971), The crystal structure of vrbaite, Hg₃Tl₄As₈SbS₂₀. Z. Kristallogr. 134, 360-380.
- W. E. RICHMOND (1936), Crystallography of livingstonite. Amer. Min. 21, 719-720.
- S. ŠćAVINČAR (1963), The crystal structure of mercury(II) oxycyanide. Z. Kristallogr. 118, 248-256.
- T. SRIKRISHNAN and W. NOWACKI (1973), Refinement of the crystal structure of livingstonite, HgSb₄S₈. Verh. Schweiz. Natf. Ges. Lugano, p. 166.