Die Kristallstruktur von Te₂O₃ (HPO₄)

Von HELMUT MAYER

Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien*

(Eingegangen am 4. Oktober 1974)

Abstract

Single crystals of ditellurium(IV)-trioxid-hydrogenphosphate Te₂O₃ (HPO₄) were prepared by hydrothermal synthesis and the crystal structure has been determined from three-dimensional x-ray data (Weissenberg photographs, CuK α radiation). The crystals are orthorhombic, space group $Pca2_1-C_{2v}^5$, with $a = 10.23_2$, $b = 7.01_2$, $c = 7.92_8$ Å and Z = 4. The atomic positions were obtained from Patterson and Fourier maps and refined to an R value of $9.95^{\circ}/_{0}$ using 513 independent reflections.

The crystal structure comprises puckered tellurium(IV)-oxygen layers in which the tellurium atoms are linked together by three oxygen bridges respectively. The HPO₄ groups are arranged between these layers whereby two oxygen atoms of each group are bonded to two adjacent tellurium atoms of one layer and a third oxygen atom is in a weak interaction with one of the two independent tellurium atoms of the next layer. The tellurium atoms show a one-side coordination to four oxygen atoms which is typical for tellurium(IV). The average axial Te—O distances are 2.07 and 2.06 Å; the average equatorial Te—O distances are 1.89 and 1.85 Å.

Auszug

Kristalle des Ditellur(IV)trioxid-hydrogenphosphats, Te₂O₃(HPO₄), wurden durch Hydrothermalsynthese hergestellt und die Kristallstruktur aus dreidimensionalen Röntgendaten (Weissenberg-Aufnahmen, CuKa-Strahlung) bestimmt. Die Kristalle sind rhombisch, Raumgruppe $Pca2_1-C_{2v}^5$, mit $a = 10,23_2$, $b = 7,01_2$, $c = 7,92_8$ Å und Z = 4. Die Atomparameter wurden aus Pattersonund Fourier-Synthesen erhalten und unter Verwendung von 513 unabhängigen Reflexen nach der Methode der kleinsten Quadrate bis zu einem R Wert von $9,95^{0}/_{0}$ verfeinert.

Die Kristallstruktur besteht aus gewellten Tellur(IV)-Sauerstoff-Schichten, bei der die Telluratome jeweils über drei Sauerstoffbrücken miteinander verbunden sind. Zwischen diesen Schichten sind die (HPO₄)-Gruppen angeordnet, die jeweils über zwei Sauerstoffatome mit zwei benachbarten Telluratomen

^{*} Getreidemarkt 9, A-1060 Wien.

Die Kristallstruktur von Te₂O₃ (HPO₄)

einer Schicht verbunden sind, während über ein drittes Sauerstoffatom eine schwache Wechselwirkung zu einem der beiden unabhängigen Telluratome der nächsten Schicht besteht. Die Telluratome zeigen die, für 4wertiges Tellur typische, einseitige Koordination zu 4 Sauerstoffatomen. Die mittleren axialen (Te-O)-Abstände betragen 2,07 und 2,06 Å; die mittleren äquatorialen (Te-O)-Abstände 1,89 und 1,85 Å.

Einleitung

Von den Elementen Selen, Tellur und Polonium ist eine Reihe von Salzen anorganischer Säuren bekannt, über deren Zusammensetzung und Herstellung in der Literatur berichtet wird^{1,2}. Angaben über die Struktur dieser Verbindungen fehlen jedoch in den meisten Fällen. Es ist nur die Kristallstruktur des Ditellur(IV)dioxid-hydrogennitrats, Te₂O₄ · HNO₃³ vollständig bestimmt worden, während in der Arbeit über das Ditellur(IV)trioxid-sulfat, Te₂O₃ · SO₄⁴, sowohl der Vergleich zwischen beobachteten und berechneten Strukturfaktoren als auch die Angabe des *R*-Wertes fehlen. Eine Strukturbestimmung ist derzeit in Arbeit. Von den Phosphaten ist in der Literatur nur die Herstellung einer Verbindung mit vierwertigem Polonium der Zusammensetzung 2PoO₂ · H₃PO₄ beschrieben¹.

Nunmehr konnte auch ein Phosphat mit vierwertigem Tellur hergestellt werden, dessen Synthese und strukturchemische Untersuchung Gegenstand vorliegender Arbeit ist.

Experimentelles

Kristalle des Ditellur(IV)trioxid-hydrogenphosphats konnten durch Hydrothermalsynthese dargestellt werden. Tellur(IV)oxid (TeO₂, 99,999⁰/₀) wurde mit dem 2- bis 4 fachen Überschuß an Orthophosphorsäure (mindestens $85^{0}/_{0}$ H₃PO₄) in einem vollständig mit Teflon ausgekleideten Autoklaven 18 Stunden bei 220 °C zur Reaktion gebracht. Das kristalline Reaktionsprodukt wurde mit Aceton gewaschen und danach getrocknet. Die quantitative Bestimmung der bei verschiedenen Versuchen im Überschuß eingesetzten Orthophosphorsäure zeigt, daß die Umsetzung von TeO₂ mit H₃PO₄ immer im

¹ K. W. BAGNAL, The chemistry of selenium, tellurium and polonium. Elsevier Publ. Co., 1966.

² K. W. BAGNAL, Selenium, tellurium and polonium, in Comprehensive inorganic chemistry, Vol. 2. Pergamon Press, 1973.

³ L. N. SWINK and G. B. CARPENTER, The crystal structure of basic tellurium nitrate, $Te_2O_4 \cdot HNO_3$. Acta Crystallogr. **21** (1966) 578–583.

⁴ H. HUBKOVÁ, J. LOUB und V. SYNEČEK, Kristallstruktur von Ditellurylsulfat. Collect. Czechoslov. Chem. Commun. **31** (1966) 4353-4361.

Helmut Mayer

molaren Verhältnis von 2:1 erfolgt. Die thermische Analyse der Verbindung ergibt im Temperaturbereich von $395^{\circ}-420^{\circ}$ C ein endothermes DTA-Peak mit einer gleichzeitigen Gewichtsabnahme von ca. $2^{\circ}/_{0}$, was der Abgabe von etwa $\frac{1}{2}$ Mol H₂O entspricht, wenn man für die Verbindung die Zusammensetzung Te₂O₃ (HPO₄) annimmt, was in der Folge auch durch das Ergebnis der Kristallstrukturanalyse bestätigt wurde. Die durch Hydrothermalsynthese dargestellten, bis zu 1 mm großen, glasklaren farblosen Kristalle zeigten rhombischlangprismatische Ausbildung nach [001] (indiziert auf Grund der röntgenographischen Ergebnisse) und hatten durch das Vorherrschen der (010)-Fläche zumeist plättchenförmiges Aussehen.

Die Kristalle waren optisch zweiachsig mit negativem Charakter der Doppelbrechung $(n_{\alpha} || Z, n_{\beta} || Y, n_{\gamma} || X)$. Einkristall- und Guinier-Aufnahmen ergaben eine rhombische Elementarzelle mit den Gitterparametern:

$$a = 10,23_2, b = 7,01_2 \text{ und } c = 7,92_8 \text{ Å}.$$

Mit Hilfe der experimentellen Dichte $(\varrho_{exp} = 4,59 \text{ g} \cdot \text{cm}^{-3})$ lassen sich 4 Formeleinheiten Te₂O₃ (HPO₄) pro Elementarzelle errechnen. Die auf Präzessions-Aufnahmen um [100], [010] sowie Weissenberg-Aufnahmen um [001] beobachteten, systematischen Auslöschungsbedingungen: hol nur mit h = 2n und 0kl nur mit l = 2n vorhanden, führen auf die beiden Raumgruppen $Pca2_1-C_{2v}^5$ und $Pcam-D_{2h}^{11}$.

Zur Ermittlung der Intensitäten wurden von einem prismatischen Kristall (0,06 × 0,07 × 0,18 mm) integrierte Weissenberg- Aufnahmen um [001] (CuK α -Strahlung, nullte bis 7. Schichtebene) angefertigt. Die integrierten Reflexintensitäten wurden mit einem Mikrodensitometer photometriert und gemäß einer für den verwendeten Film ermittelten Schwärzungskurve korrigiert. Insgesamt wurden 513 Reflexintensitäten der asymmetrischen Einheit des reziproken Gitters erfaßt. Die Umrechnung der Intensitätswerte in Strukturfaktoren F_0 erfolgte unter Berücksichtigung der Lorentz-, Polarisations- und Absorptionsfaktoren⁵ für zylindrische Kristalle ($\mu R = 3,4$).

Bestimmung der Kristallstruktur

Die Kristallstrukturanalyse erfolgte mit Hilfe einer dreidimensionalen zugespitzten Patterson-Synthese, aus der die Positionen der Tellur-

356

⁵ International tables for x-ray crystallography, Vol. II. The Kynoch Press, Birmingham, 1959.

Die Kristallstruktur von Te₂O₃ (HPO₄)

Atom	Punktlage	x	y	z	В
	4a	0.1790(4)	0.2001(5)	0.2500	1.53(7) Å ²
Te(2)	4a	0.3628(4)	0.8352(5)	0.4439(9)	1.56(7)
P	4a	0.573(2)	0.473(2)	0.648(3)	1.4(3)
O(1)	4a	0.389(5)	0.336(7)	0.086(8)	2.2(9)
O(2)	4a	0.070(5)	0.444(7)	0.173(7)	1.8(9)
O(3)	4a	0.602(5)	0.331(6)	0.505(6)	1.6(8)
O(4)	4a	0.848(4)	0.419(6)	0.307(6)	1.7(8)
O(5)	4a	0.014(4)	0.082(6)	0.332(7)	1.2(7)
O(6)	4a	0.154(6)	0.104(9)	0.044(9)	4.0(1)
O(7)	4a	0.750(4)	0.067(5)	0.288(6)	1.4(7)

Tabelle 1. Atomparameter und isotrope Temperaturkoeffizienten für Te_2O_3 (HPO4);Raumgruppe $Pca2_1-C_{2v}^5$; Standardabweichungen der letzten Stellen in
Klammern

atome bestimmt wurden. Die 8 Telluratome besetzen in der Raumgruppe $Pca2_1$ zwei allgemeine 4zählige Punktlagen. Eine mit den Phasen der Telluratome gerechnete dreidimensionale Fourier-Synthese ergab die Lagen der 4 Phosphor- und in der weiteren Folge die aller 28 Sauerstoff-Atome. Eine Verfeinerung des Strukturmodells erfolgte in der Raumgruppe $Pca2_1$ nach der Methode der kleinsten Quadrate unter Berücksichtigung isotroper Temperaturfaktoren für jede Atomlage und getrennter Skalierungsfaktoren für die einzelnen Schichtebenen. Die Ausgleichsrechnung führte unter Zugrundelegung der Atomformfaktoren für neutrale Atome⁶ auf einen R Wert von $9,95^{0}/_{0}$. Als Ergebnis sind in Tab. 1 die Atomparameter und Temperaturkoeffizienten angeführt; Tab. 2 enthält eine Gegenüberstellung der beobachteten und berechneten Strukturamplituden.

Beschreibung und Diskussion der Kristallstruktur

In dieser Kristallstruktur haben die Telluratome Te(1) und Te(2) gegenüber den Sauerstoffatomen die Koordinationszahl 4 (für Te $-0 \le 2,12$ Å). Als Koordinationspolyeder ergibt sich die für das vierwertige Tellur typische, deformierte, trigonal-bipyramidale Anordnung, bei der eine äquatoriale Position unbesetzt ist.

⁶ International tables for x-ray crystallography, Vol. III. The Kynoch Press, Birmingham, 1962.

HELMUT MAYER

	F	h k	1	5	7	h	k 1	F	F	,		1		F	, h k		203(F	F	h	k 1	۶	,
· · · ·	* e			* 0 107	* e			• • •	°e 				••	• e	~ ~		- o	* c		n -	- 0 - 4 0	
217	226	3		133	132	ĩ		113	108	1	á	3	76	72	้ธ์		55	64	4		55	51
138	135	4		96	101	2		42	44	3			37	42	9		45	52	5		56 50	55
0 82	98	6		76	68	4		84	92	5			86	109	ĩ		55	58	7		54	58
45	32	7		88	80	5		50 148	51	6 7			46	56	4 5		54	59 47	8		50. 66	51 68
97	102	9		29	22	7		47	49	8			57	22	6		36	42	ó	36	161	132
113	106	10		79	81	8		123	134	9			52 198	55	7		51 M	55 64	1		64 64	51
52	51	12		36	42	0	4 3	138	123	1	5	3	49	41	07	4	47	61	4		71	86
124	125	23	1	146	163	1		.179	173	2			103	103	1		48	49	6		67	81
112	117	4		104	107	5		102	121	4			94	102	3		27	33	8		30	34
60	63	5		55	57	6		35	33	7			65	77	4		15	22	9	4.6	15	16
129	131	8		54	46	ģ		43	44	9			35	8	6		28	34	1		70	61
103	105	9		36	28	10		22	19	1	6	53	49	47	08	14	48	51	3		59	60
235	280	11		31	32	0	5 :	2 100	90	3			74	77	2		28	29	5		39	48
97	103	12		61	61	1		90	81	4			40	40	40	5	81	67 101	6		23	29
- 39	34	2	'	87	83	3		53	58	6			50	53	10		110	118	8		29	32
124	137	3		157	182	4		51	46	8	-		35	36	.1.1	5	121	105	0	56	102	102
107	121	5		43	51	6		61	66	4		2	39	40	3		192	192	2		38	35
49	42	6		45	39	8		69	79	5			43	45	4		50 67	37	3		23	25
43	45	8		31	34	10		27	29	7			30	33	6		49	49	5		45	56
52 100	44	9		60 20	62	0	6 2	2 65	68	1	8	3	35 59	40	7		79	69 45	6	6 6	46 64	56
49	58	11		58	56	4		66	70	5			62	68	10		30	30	1	00	44	51
78	86	15	1	70	68	5		47	46	4	0		45	46	1 2	! 5	104	104	2		17	13
96	102	3		71	75	7		62	65	4	0		142	122	4		84	79	4		42	55
24	25	4		69	72	8		66	66	6			133	111	6		67	67	5		30	37
55	54	6		55	60	0	7 9	2 96	93	10			36	43	9		30	34	0	76	34	32
98	89	7		54	59 70	1		87	78	0	1	4	83	91 195	10		49	51	1		27	33
66	63	26	1	64	59	3		24	17	2			41	38	3		39	37	2	07	165	147
68	79	3		81	79	4		45	43	3			85	83	4		39	31	4		127	98
43	39	5		42	37	6		45	50	5			123	104	6		72	102	8		39	49
59	55	6		60 76	56	7		23	24	6			50	42	8		23	-24	1	17	62	50
88	82	9		35	32	Ť	· ·	28	30	8			54	53	10		86	89	3		74	63
102	102	17	۱	62 76	48 75	2		31	30 30	9 10			74	83 20	14	5	87 76	74	4		40	36 70
39	30	3		81	73	4		14	16	11			19	16	3		126	136	6		31	29
67	62 23	4		65	67 30	2	0 3	5 246	271	0	2	4	151	152	57		39 54	48 68	7		47	52 29
42	40	ĭ 8	١	46	44	6		45	47	2			57	47	ย่		16	18	9		35	42
33	33	2		37	37 45	10		77	71	3			76 55	66 51	9	5	23	24 68	2	27	92 58	75
34	27	- Á		37	34	12		27	25	5			ъй	105	3	1	55	52	4		67	67
61 40	54 34	5 20	2	27 109	37 102	3	13	0 106 62	97 59	67			78 52	70 48	45		59 26	69 31	5		40 29	38 29
22	14	4	-	143	128	á		90	76	8			77	84	6		42	51	7		43	57
25 45	20 45	6 8		163	102	5		129	43	9 10			78 26	27	7	5	35 39	39	8		35 24	31 28
47	54	10		59	55	7		81	76	Ó	3	4	194	169	2	-	42	49	í	37	45	39
98 77	73	0 1	2	112	140	9		48 56	58	1 2			75 75	74) 5		30	52 36	3		42	47
42	34	1		213	238	10		29	27	4			100	107	6		52	65	4		52	6
21	29	3		70	65	1	2	5 50	57	5			54 84	52 94	2	2	53	70	5		29 46	40
70	76	4		95	82 165	2		144	152	7			41	46	3		54	68	8	2 7	41	40
183	166	7		91	84	ر 4		120	130	10			38	38	20	6	110	101	;	47	41	43
161	150	8		36	36	5		100	98 70	1	4	4	129	111	4		109	94	4		19	22
96	96	10		33	36	7		90	93	3			41	29	8		43	49	5 6		62 32	36
84 164	89 16=	12	•	20	22 60	8		55	57	4			38 50	39	10	6	37	39	7	57	32	35
147	143	1	2	135	155	10		59 29	32	5			50 34	58 39	1	0	101	88 93	2	51	20 59	69
187	217	2		85	79 59	11		72	85	7			54	65	2		37	25	3		36	46
105	101	5 4		4 i 59	42 58	2) :	168	58 198	9			28 63	55 66	3		54 51	47	4 5		59 16	1
77	72	5		130	141	3		68	73	ó	5	4	119	113	2		71	62	6	<i>c</i> -	22	2
71	99 68	7		63	8) 58	5		38	52	1			42	72 44	8		09 34	68 42	2	• /	24 41	6
44	42	8		91	96 16	6		52	51	3			45	45	2.	. 6	77	80	3		28	50
28	30	10		37	38	9		34	34	45			55	55 64	1	: 0	62	60				
111	124	12		27	31	10		22	21	6			54	64	2		42	34				

Die in Tab. 3 angeführten, interatomaren Abstände und Winkel, die mit den aus der Literatur^{7,8} bekannten Werten sehr gut überein-

⁷ J. ZEMANN, Zur Stereochemie des Te(IV) gegenüber Sauerstoff. Monatsh. Chem. 102 (1971) 1209–1216.

Die Kristallstruktur von Te₂O₃ (HPO₄)

	å		
Te(1)-O(6)	1,79 Å	O(2)— $Te(1)$ — $O(5)$	89 °
Te(1)-O(5)	1,99	O(2) - Te(1) - O(6)	88
Te(1)-O(7)	2,02	O(5)— $Te(1)$ — $O(7)$	83
Te(1)— $O(2)$	2,12	O(6) - Te(1) - O(7)	81
		O(5) - Te(1) - O(6)	91
Te(1)-O(1)	2,68	O(2)— $Te(1)$ — $O(7)$	166
Te(1)— $O(1)$	2,91		
Te(1)— $O(6)$	2,97		
Te(2)-O(7)	1,83	O(4) - Te(2) - O(5)	95
Te(2)-O(5)	1,87	O(4) - Te(2) - O(7)	85
Te(2)-O(6)	2,04	$\mathrm{O}(5)\mathrm{Te}(2)\mathrm{O}(6)$	88
Te(2)-O(4)	2,09	O(6)— $Te(2)$ — $O(7)$	82
		O(5) - Te(2) - O(7)	95
Te(2)-O(3)	2,95	O(4)-Te(2)-O(6)	168
	1.40		115
P=O(1)	1,48	O(1) - P - O(2)	115
P = O(2)	1,49	O(1) - P - O(3)	107
P = O(3)	1,54	O(1) - P - O(4)	111
P-O(4)	1,54	O(2) - P - O(3)	102
Mittelwert	1.51 Å	O(2) - P - O(4)	112
	1,01 11	O(3) - P - O(4)	
		Mittelwert	109,5 °
Te(1)— $Te(2)$	3.52	Te(1) - O(5) - Te(2)	137
Te(1) - Te(2)	3.54	$T_{e}(1) - O(6) - T_{e}(2)$	136
Te(1) - Te(2)	3.59	Te(1) - O(7) - Te(2)	132
	-,	(_) = ((-)	
Te(1)-P	3,51	Te(1)-O(2)-P	132
Te(1)—P	3,30	Te(2)-O(4)-P	126
Te(2)-P	3,69		
Te(2)—P	3,25		

Tabelle 3. Interatomare Abstände (\leq 3 Å) und Winkel für Te₂O₃ (HPO₄); die mittleren Standardabweichungen betragen \pm 0,04 Å bzw. \pm 2°

stimmen, zeigen, daß sich die beiden TeO₄-Polyeder nur geringfügig voneinander unterscheiden. Die beiden mittleren axialen Te—O-Abstände betragen 2,07 und 2,06 Å und sind um ca. $10^{0}/_{0}$ größer als die mittleren äquatorialen Te—O-Abstände mit 1,89 und 1,85 Å; die mittleren Valenzwinkel sind mit 85°, 91° und 166° bzw. 88°, 95° und 168° kleiner als die Idealwerte der trigonalen Bipyramide mit 90°, 120° und 180°.

⁸ O. LINDQUIST, The oxygen coordination of tellurium(IV) and tellurium(VI). Dissertation, Universität Göteborg, 1973.

HELMUT MAYER

Das vierfach koordinierte Te(1)-Atom weist zusätzlich zum Sauerstoffatom O(1) einen Abstand von 2,68 Å auf. Ähnliche Abstände eines Te(IV)-Atoms zu einem fünften Sauerstoffatom wurden auch für rhombisches TeO₂ (Tellurit)⁹ und Te-Catecholat¹⁰ mit 2,64 Å sowie Te₂O₅¹¹ mit 2,706 Å gefunden.

Diese, für das vierwertige Tellur typische, einseitige Koordination wurde z.B. auch bei Oxiden, Fluoriden und Oxifluoriden des Sb³⁺, Te⁴⁺ und Pb²⁺ festgestellt^{12–15} und tritt, von einigen Ausnahmen abgesehen, in AX₄-Polyedern auf, wenn das Zentralatom fünf Elektronenpaare in der Valenzschale aufweist. Die Struktur dieser Polyeder wird vielfach als trigonale Bipyramide mit sp^3d_z -Orbitalen beschrieben, wobei es durch den Einfluß des freien Elektronenpaares in der äquatorialen Position zu dieser einseitig koordinierten Anordnung kommt¹⁶.

Das Phosphoratom ist tetraedrisch von den vier Sauerstoffatomen O(1), O(2), O(3) und O(4) umgeben. Abstände und Winkel (Tab. 3) entsprechen den für Orthophosphatgruppen gefundenen Werten¹⁷. Das P-Atom ist über die Sauerstoffatome O(2) und O(4) mit den Telluratomen Te(1) bzw. Te(2) verbunden. Die (P-O-Te)-Bindungswinkel betragen 126° bzw. 132°. Auf Grund des P-O(3)-Abstandes von 1,54 Å kann das Wasserstoffatom der (HPO₄)-Gruppe am Sauerstoffatom O(3) angenommen werden. Der P-O(1)-Abstand mit 1,48 Å müßte demnach einer relativ langen Doppelbindung entsprechen¹⁷. Zusätzlich kann zwischen dem O(1)- und dem Te(1)-Atom, die einen

360

⁹ H. BEYER, Verfeinerung der Kristallstruktur von Tellurit, dem rhombischen TeO₂. Z. Kristallogr. 124 (1967) 228-237.

¹⁰ O. LINDQUIST, The crystal structure of tellurium(IV)-catecholate $Te(C_6H_4O_2)_2$. Acta Chem. Scand. 21 (1967) 1473-1483.

¹¹ O. LINDQUIST and J. MORET, The crystal structure of ditellurium pentoxide, Te₂O₅. Acta Crystallogr. B 29 (1973) 643-650.

¹² ST. ANDERSSON, A. ÅSTRÖM, J. GALY and G. MEUNIER, Simple calculations of bond lengths and bond angles in certain oxides, fluorides of oxide fluorides of Sb³⁺, Te⁴⁺ and Pb²⁺. J. Solid State Chem. 6 (1973) 187-190.

¹³ A. ÅSTRÖM and ST. ANDERSSON, The crystal structure of L-SbOF. J. Solid State Chem. 6 (1973) 191–194.

 $^{^{14}}$ J.-O. BOVIN, The crystal structure of $\rm Sb_4O_4(OH)_2(NO_3)_2.$ Acta Chem. Scand. A 28 (1974) 267–274.

¹⁵ CH. SÄRNSTRAND, The crystal structure of the antimony phosphate, $SbO(H_2PO_4) \cdot H_2O$. Acta Chem. Scand. A 28 (1974) 275–283.

¹⁶ R. J. GILLESPIE, Elektronenpaar-Abstoßung und Molekülgestalt. Angew. Chem. **79** (1967) 885–896.

 $[\]vdash$ 1¹⁷ D. E. C. CORBRIDGE, The structural chemistry of phosphates. Bull. Soc. franç. Minéral. Cristallogr. 94 (1971) 271–299.

Fig. 1. Die Kristallstruktur von Te₂O₃(HPO₄) mit eingezeichneten (HPO₄)-Tetraedern: a) Projektion in Richtung [001]. b) Projektion in Richtung [010] von + b/2 bis -b/2

Abstand von 2,68 Å aufweisen, eine schwache Wechselwirkung angenommen werden.

Der Aufbau der Kristallstruktur ist in Fig. 1*a* und 1*b* dargestellt. Die Telluratome Te(1) und Te(2) bilden, für sich gesehen, Schichten aus Sechser-Ringen, wobei jedes Telluratom über die drei Sauerstoffatome, O(5), O(6) und O(7), mit den drei nächsten Telluratomen verbunden ist. Dadurch kommt es zur Ausbildung von gewellten &Te₂O₃-Schichten parallel (010) mit einem mittleren (Te—O—Te)-Bindungswinkel von 135°. Jeweils zwei benachbarte Te(1)- und Te(2)-Atome einer Schicht sind zusätzlich mit den beiden Sauerstoffatomen O(2) bzw. O(4) der Hydrogenphosphatgruppen, die schichtweise zwischen den Tellur(IV)-Sauerstoff-Schichten angeordnet sind, verbunden. Die beiden axialen [Te—O(\rightarrow P)]-und [Te—O(\rightarrow Te)]-Abstände zeigen keine signifikanten Unterschiede, was auf Grund der gleichgroßen Elektronegativität der Phosphor- und Telluratome ($\chi_{\rm P} = 2, 1, \chi_{\rm Te} = 2, 1$)¹⁸ verständlich ist.

¹⁸ L. PAULING, Die Natur der chemischen Bindung. 3. Aufl. Verlag Chemie, Weinheim/Bergstr., 1968.

HELMUT MAYER

Das Ditellur(IV)trioxid-hydrogenphosphat kann als kovalente Schichtstruktur aufgefaßt werden, wobei zwischen den gewellten Schichten im wesentlichen nur eine schwache Wechselwirkung zwischen den Sauerstoffatomen O(1) der (HPO₄)-Gruppen und den Te(1)-Atomen der nächsten Schicht besteht [Te(1) \cdots O(1) = 2,68 Å].

Die Rechenarbeiten wurden an der Rechenanlage IBM 7040 des Rechenzentrums der Technischen Hochschule in Wien durchgeführt. Für die Überlassung der Rechenprogramme danke ich Herrn Dr. H. VÖLLENKLE.

Weiters danke ich der Österreichischen Nationalbank und der Hochschuljubiläumsstiftung der Stadt Wien, durch deren finanzielle Unterstützung die bei dieser Arbeit verwendeten wissenschaftlichen Geräte angeschafft werden konnten.

٠

362