Refinement of the crystal structure of emplectite, $\mathrm{CuBiS}_{2}{ }^{*}$

By Jan C. Portheine ** and W. Nowacki
Abteilung für Kristallographie und Strukturlehre, Universität Bern***

(Received 2 September 1974)

Abstract

Auszug Die Kristallstruktur des Emplektits, CuBiS_{2}, wurde auf Grund von dreidimensionalen Röntgendaten verfeinert. Die Raumgruppe ist Pnma und die Gitterkonstanten betragen: $a=6,1426(3), b=3,9189(4)$ und $c=14,5282(7) \AA$; $Z=4$. Intensitäten wurden mit Hilfe eines Supper-Pace Autodiffraktometers unter Verwendung von $\mathrm{CuK} \alpha$-Strahlung gemessen. Für die 375 unabhängigen Reflexe ist der endgültige R-Wert gleich 0,063 .

Die erhaltene Struktur stimmt mit derjenigen von Hofmann (1933) und Kurčík (1965) überein. Die kürzesten ($\mathrm{Bi}-\mathrm{S}$)-Abstände [2,536(4) und 2 mal $2,653(2) \AA$] spannen eine trigonale Pyramide mit Bi als Spitze auf. Die BiS_{3}. Pyramiden sind über gemeinsame Ecken zu endlosen Ketten verknüpft, welche die Zusammensetzung $\mathrm{BiS}_{\mathbf{2}}$ und die Periode b haben. Cu ist von vier S-Atomen [mit den Abständen 2,304(5), 2,317(5) und 2 mal 2,343(3) \AA] in Form eines fast regulären Tetraeders koordiniert. Die BiS_{2}-Ketten bilden zusammen mit den CuS_{4}-Tetraederketten Schichten $\|$ (001). Wegen der endlosen BiS_{2}-Ketten muß die Emplektitstruktur dem Typ IV.a3 der Klassifikation von Nowacki (1969) zugeordnet werden.

Die bekannten Strukturen der Cu ,Bi-führenden Sulfosalze $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$, $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}(x=1,21)$, Hodrushit, $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ und Emplektit weisen gemeinsame strukturelle Einheiten, die als Doppelketten von viereckigen BiS_{5}-Pyramiden beschrieben werden können, auf. Solch eine Pyramide wird von den fünf nächsten S -Nachbarn des Bi -Atoms gebildet, während das Bi -Atom selber dem Zentrum der Basisfläche naheliegt. Jede BiS $_{5}$-Pyramide besitzt zwei gegenüberliegende Basiskanten, die mit angrenzenden Pyramiden gemeinsam sind, wodurch eine erste endlose Kette entsteht, und zwei Pyramidenkanten, die zu anderen angrenzenden Pyramiden gehören, welche eine zweite, mit der ersten parallele und äquivalente Kette bilden. Die Doppelkette hat eine Zusammensetzung von $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ und dine Periode von $4 \AA$, die mit der kleinsten Gitterkonstanten der genannten Strukturen übereinstimmt.

* Communication no. 263 b.-Part 78 on sulfides.
** Present address: Laboratoire de Cristallographie aux Rayons X de l'Université, 24 Quai Ernest Ansermet, 1211 Genève 4.
*** CH-3012 Bern, Sahlistrasse 6.

Abstract

The crystal structure of emplectite, CuBiS_{2}, has been refined with the aid of three-dimensional x-ray intensity data. The space group is Pnma and the lattice dimensions are: $a=6.1426(3), b=3.9189(4)$ and $c=14.5282(7) \AA$; $Z=4$. The intensities were measured by means of a Supper-Pace autodiffractometer using $\mathrm{CuK} \alpha$ radiation. The final R value for the 375 independent reflections is 0.063 .

The resulting structure corresponds to the structures of Hofmann (1933) and KUPčík (1965). The three smallest $\mathrm{Bi}-\mathrm{S}$ distances [2.536(4) and two of $2.653(2) \AA$] span a trigonal pyramid with Bi at the vertex. The BiS_{3} pyramids are coupled by corner sharing to endless chains with composition BiS_{2} and b as period. Cu is coordinated by four S atoms [at distances $2.304(5), 2.317(5)$ and two of $2.343(3) \AA$] in a nearly regular tetrahedron. The BiS_{2} chains join with chains of CuS_{4} tetrahedra to form sheets parallel to (001). Because of the endless BiS $_{2}$ chains emplectite belongs to type IV. a_{3} of Nowacki's (1969) classification.

The known structures of the Cu, Bi-bearing sulfosalts $\mathrm{CuBi}_{5} \mathrm{~S}_{8}, \mathrm{Cu}_{2+x} \mathrm{Bi}_{\mathbf{6}-x} \mathrm{~S}_{9}$ ($x=1.21$), hodrushite, $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and emplectite have in common structural units which can be described as double chains of BiS_{5} square pyramids. Such a pyramid is formed by the five nearest S neighbours of the Bi atom, while the Bi itself lies near the center of the basal plane. Each BiS ${ }_{5}$ pyramid shares two opposite edges of the basal plane with adjacent pyramids in one endless chain; two side edges are shared with pyramids belonging to the second chain, which is parallel and equivalent to the first chain. The double chain has a composition of $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ and a period of $4 \AA$ corresponding to the shortest lattice dimension of the structures mentioned.

Introduction

The crystal structures of the sulfosalt minerals wolfsbergite CuSbS_{2} and emplectite CuBiS_{2}, which are isotypic, were determined by Hofmann in 1933. His atomic coordinates were obtained by trial and error methods on the basis of photographic intensity data. KuPčík (1965) refined the emplectite structure, using photographic data, and showed that Hofmann's (1933) structure is correct. At present a refinement of emplectite is reported in which diffractometer data are used. The resulting geometry is essentially the same as the previous ones, but more accurate.

Experimental

For this investigation a crystal was selected from a sample originating from Schwarzenberg in Germany. The crystal had the shape of a short needle with one naturally rounded-off end. It had an anthracitelike appearence and dimensions $0.085 \times 0.094 \times 0.127 \mathrm{~mm}$. The longest dimension was along the needle axis [010].

Because of the systematic absences $h k 0$ for h odd and $0 k l$ for $k+l$ odd the diffraction symbol is $m m m P n-a$. Pnma $\left(D_{2 h}^{16}\right)$ and $P n 2_{1} a$
$\left(C_{2 v}^{9}\right)$ are the possible space groups. The centric space group was adopted and this proved satisfactory.

The lattice parameters were determined with the aid of zero-level Weissenberg photographs of the specimen rotated about [001] and [010]; the camera radius was 57.29 mm Superposed Si powder lines were used for the calibration. The parameter values were calculated (T. Iro, unpublished) from 78θ values between 50 and 80°. In Table 1 some diffraction data are given.

For the collection of the intensities the crystal was mounted on a Supper-Pace autodiffractometer for rotation around [010]. 1406 dependent reflections, comprising all accessible ones with this mounting, were measured with the ω-scan technique using Ni-filtered Cu radiation.

An ellipsoidal absorption correction according to Johnson (1963) was applied and structure amplitudes, F, were derived as mentioned earlier (Portheine and Nowacki, 1975). 375 independent ${ }^{1}$ amplitudes, F_{0}, were obtained by averaging $F_{0}=(1 / n) \sum_{i=1}^{n} F_{i}$, where n is the number of equivalent ones. 11 reflections were not significant at the 1% level.

The discrepancy between equivalent reflections $\left\langle\sum_{i=1}^{n}\right| F_{i}-F_{0}\left|/ \sum_{i=1}^{n} F_{i}\right\rangle$, averaged over all, amounted to 0.073 . This discrepancy is a measure for the inaccuracy of the absorption correction which implies rotational symmetry about [010]. The error in the average F_{o} due to absorption is probably smaller than 7.3%.

Table 1. Diffraction data of emplectite Composition $\mathrm{CuBiS}_{2}, M=336.6 \mathrm{~g} \cdot \mathrm{~mole}^{-1}$, space group $P n m a, Z=4, F(000)=576$ electrons, $\lambda=1.54178 \AA, \mu=1125 \mathrm{~cm}^{-1}$.

	Hofmann (1933)	KUPČíí I (1965)	present work II	DaNa (1944)
a	$6.14(1) \AA$ (from kx)	$6.15(1) \AA$	$6.1426(3) \AA$	
b	$3.90(1)$	$3.92(1)$	$3.9189(4)$	
c	$14.54(1)$	$14.55(2)$	$14.5282(7)$	
ϱ_{c}	$6.43 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	$6.37 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	$6.393 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	$6.38 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$

${ }^{1}$ Kupčík's unit cell has been transformed according to $\{100,00 \overline{1}, 010\}$ and the origin has been moved towards the equivalent centre at $0 \frac{1}{2} 0$.
${ }^{\text {II }}$ Quoted errors are twice the calculated standard deviations.

[^0]The statistics of the normalized structure amplitudes, E, indicate the presence of a center of symmetry (see Table 2).

Refinement

The structure was refined by Fourier and least-squares methods using programs adapted for the IBM $370 / 155$ by T. ITo ${ }^{2}$. The quantity $\Sigma w\left(F_{\mathrm{o}}\right) .\left(F_{\mathrm{o}}-\left|F_{\mathrm{e}}\right| / k\right)^{2}$ was minimized, where $w\left(F_{\mathrm{o}}\right)$ is the weight of $F_{\mathbf{o}},\left|F_{\mathbf{c}}\right|$ the calculated structure amplitude and k the scale factor.

As a start atoms at Hofmann's (1933) positions for wolfsbergite (Sb replaced by Bi) were refined isotropically in space group Pnma. Unit weights were used and all measured reflections were included. The scattering factors for neutral atoms of Doyle and Turner (1968) were employed and the anomalous dispersion terms were taken from Cromer and Liberman (1970). In three cycles the conventional R value, $\Sigma\left|F_{\mathrm{o}}-\left|F_{\mathrm{c}}\right| / k\right| / \Sigma F_{\mathrm{o}}$, dropped to 0.0793 . A difference map at this stage indicated that the structure was correct. The only significant features were negative regions at the atomic sites (see below). There was also evidence for anisotropic vibration of the Bi atom with highest amplitude in the [100] direction.

The parameters varied in this refinement were: k and for each of the four atoms the isotropic temperature factor and the positional parameters x and z. One could have accepted the results of a subsequent refinement in $P n 2_{1} a$ at a 0.005 significance level if R had dropped below $0.0793 / \Re_{4,358,0.005}=0.0777^{3}$. On the basis of the resulting value of 0.0790 however, the centric space group was retained.

Analysis of $\left|F_{0}-\left|F_{\mathrm{c}}\right| / k\right|$ as a function of F_{0} prompted us to consider the weighting scheme: $w\left(F_{o} \leq 49.52\right)=\left(3.94 \cdot 10^{-2} \times F_{0}\right.$ $+2.198)^{-2}$ and $w\left(F_{0}>49.52\right)=\left(9.65 \cdot 10^{-4} \times F_{0}^{2}+4.61 \cdot 10^{-2} \times F_{0}\right.$

Table 2. Distribution of normalized structure amplitudes observed for emplectite compared with the theoretical distribution for the centric case

	theor.	obs.		theor.	obs.
$<E^{2}>$	1.000	1.002	$E>1$	32.0%	28.9%
$<\left\|E^{2}-1\right\|>$	0.968	1.018	$E>2$	5.0	6.0
$<E>$	0.798	0.789	$E>3$	0.3	0.0

[^1]$-0.50)^{-2}$, which effected independence of $w\left(F_{\mathrm{o}}\right) .\left(F_{\mathrm{o}}-\left|F_{\mathrm{c}}\right| / k\right)^{2}$ on F_{o} over most of the F_{o} range. After two cycles of refinement with this weighting scheme R and $R_{\mathrm{w}}=\left[\Sigma w\left(F_{\mathrm{o}}\right) \cdot\left(F_{\mathrm{o}}-\left|F_{\mathrm{c}}\right| / k\right)^{2} / \Sigma w\left(F_{\mathrm{o}}\right) \cdot F_{\mathrm{o}}{ }^{2}\right]^{1 / 2}$ both amounted to 0.095 .

Introduction of anisotropic thermal parameters lowered the values of R and R_{w} to 0.067 and 0.071 respectively. Comparison of the R_{w} values of the isotropic and the anisotropic refinements shows that the results of the latter are significantly better ($\Re_{12,350,0.005}=1.030$).

In the subsequent difference map the regions at the atomic sites proved to have virtually the same minima as before: $-18,-10,-3.6$ and $-3.2 \mathrm{e} \cdot \AA^{-3}$ for $\mathrm{Bi}, \mathrm{Cu}, \mathrm{S}(1)$ and $\mathrm{S}(2)$ respectively. In addition it was found that for the strong reflections $\left|F_{c}\right|$ was systematically larger than $k \cdot F_{\mathbf{o}}$. From the ratios $\langle | F_{\mathrm{c}}\left|/ k F_{\mathrm{o}}\right\rangle$, averaged for different groups of F_{0}, a value of $2.34 \cdot 10^{-6}$ was derived for the extinction parameter g in the relation of Stout and Jensen (1968): $\left|F_{\mathrm{c}}\right|=k F_{\mathrm{o}}$. $\left(1+g L p\left|F_{\mathbf{c}}\right|^{2}\right)$, where L and p are the Lorentz and polarization factors, respectively. Corrected structure amplitudes were obtained from the above expression after replacing $\left|F_{\mathrm{c}}\right| / k$ by F_{o} (corr).

Further refinement with the aid of the F_{0} (corr) values resulted in the final parameters of Tables 3 and 4. The parameter shifts were less

Table 3. Positional coordinates for emplectite in fractions of the cell edges σ in terms of the last digit is added in parentheses

	x		y	z	
	Kupčík	this work			KuPčík
this work					
Bi	0.2299	$0.23156(11)$	$\frac{1}{4}$	0.0636	$0.06304(4)$
Cu	0.7495	$0.7509(4)$	$\frac{3}{4}$	0.1692	$0.1719(2)$
$\mathrm{S}(1)$	0.6367	$0.6362(6)$	$\frac{1}{4}$	0.0970	$0.0980(2)$
$\mathrm{S}(2)$	0.1235	$0.1258(6)$	$\frac{3}{4}$	0.1786	$0.1777(2)$

Table 4. Thermal parameters and associated σ 's for emplectite
The Debye-Waller factor is defined as:

$\exp \left\{-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{13} h l a^{*} c^{*}\right)\right\}$					
	U_{11}	U_{22}	U_{33}	U_{13}	B^{1}
Bi	$0.0259(4) \AA^{2}$	$0.0223(5) \AA^{2}$	$0.0141(4) \AA^{2}$	$-0.0010(2) \AA^{2}$	$1.64 \AA^{2}$
Cu	$0.0329(14)$	$0.0331(18)$	$0.0209(14)$	$-0.0006(9)$	2.29
$\mathrm{~S}(1)$	$0.0255(18)$	$0.0226(18)$	$0.0132(16)$	$-0.0014(13)$	1.61
$\mathrm{~S}(2)$	$0.0277(19)$	$0.0222(18)$	$0.0134(15)$	$0.0010(14)$	1.66

[^2]
than $\frac{1}{7} \sigma$, the estimated standard deviation. The final list of structure amplitudes is given in Table 5 . Corresponding R values are $R=0.063$ and $R_{\mathrm{w}}=0.067$.

The most pronounced minima in the final difference map are at the Bi and Cu positions, amounting to -4.0 and $-2.4 \mathrm{e} \cdot \AA^{-3}$ respectively. The largest maxima (about 4 and $2 \mathrm{e} \cdot \AA^{-3}$) occur as positive spherical shells around these positions. Since the crystal in question had strong reflections even at the edge of the limiting sphere, which is demonstrated by the fact that only 11 reflections were not significant, these extremes may be due to the effect of series termination.

Discussion of the structure

It can be seen from Table 3 that our structure of emplectite corresponds to that of Kupčík (1965), but there are differences in parameter values. The distances between the atomic positions in the two

Table 6. Interatomic distances and associated σ 's in emplectite

$\mathrm{Bi}-\mathrm{S}(\mathbf{1})$	2.536(4) \AA	$\mathrm{S}(1)-\mathrm{Cu}$)	
-S(2)		$-\mathrm{Cu}^{\prime \prime}$)	2.343(3)
$-\mathrm{S}(2)^{\prime} \mathrm{f}$	2.653(2)	$-\mathrm{Bi}$	2.536(4)
Average	2.614		
$\left.\mathrm{Bi}-\mathrm{S}(1)^{\prime}\right)$		$\left.\begin{array}{l}-\mathrm{Bi}^{\prime} \\ -\mathrm{Bi}^{\prime \prime}\end{array}\right\}$	3.158(3)
-S(1) ${ }^{\prime \prime}$ \}	3.158(3)	$-\mathrm{Bi}^{\prime \prime \prime}$,	3.692(4)
$-\mathrm{S}(1)^{\prime \prime \prime}$	3.692(4)		
		$\mathrm{S}(1)-\mathrm{S}(2)^{\prime \prime}$	3.772(5) $2 \times$
$\mathrm{Bi}-\mathrm{Cu}^{\prime}$	3.415(3)	$-\mathrm{S}(2)^{\prime \prime \prime}$	3.804(4) $2 \times$
$-\mathrm{Cu}^{\prime \prime \prime}$	3.881(2)		
$-\mathrm{Cu}^{\text {IV }}$	$4.322(3) 2 \times$		
$\mathrm{Cu}-\mathrm{S}(2)^{\prime \prime}$	2.304(5)	$\mathrm{S}(2)-\mathrm{Cu}^{\prime \prime}$ '	2.304(5)
$-\mathrm{S}(2)^{\prime \prime \prime}$	2.317(5)	$-\mathrm{Cu}^{\text {IV }}$	2.317(5)
$-\mathrm{S}(1)^{\text {IV }} \mathrm{S}(1)$	2.343(3)		
$-\mathrm{S}(1)$ Average	2.327	$\left.\begin{array}{l}-\mathrm{Bi} \\ -\mathrm{Bi}^{\text {IV }}\end{array}\right\}$	2.653(2)
$\mathrm{Cu}-\mathrm{Cu}^{\text {IV }}$	3.819(4) $2 \times$	$\mathrm{S}(2)-\mathrm{S}(2)^{\prime \prime \prime}$	3.721(5) $2 \times$

Table 7. Interatomic angles and associated σ 's in emplectite

$\mathrm{S}(1)-\mathrm{Bi}-\mathrm{S}(2)$	96.57(10) ${ }^{\circ} 2 \times$		$\mathrm{Bi}^{\prime \prime \prime}-\mathrm{S}(1)-\mathrm{Cu}$	$76.41(11)^{\circ} 2 \times$	
$-\mathrm{S}(1)^{\prime}$	84.03(9)	$2 \times$			
$-\mathrm{S}(1)^{\prime \prime \prime}$	160.57(9)		$\mathrm{Bi}^{\prime \prime \prime}-\mathrm{S}(1)-\mathrm{Bi}^{\prime}$	69.10(7)	$2 \times$
			$-\mathrm{Bi}$	160.57(13)	
$\mathrm{S}(1)^{\prime}-\mathrm{Bi}-\mathrm{S}(2)$	94.00(7)	$2 \times$			
$-\mathrm{S}(1)^{\prime \prime}$	76.71(6)		$\mathrm{Bi}^{\prime}-\mathrm{S}(1)-\mathrm{Cu}$	75.12(8)	$2 \times$
$-\mathrm{S}(1)^{\prime \prime \prime}$	110.90(8)	$2 \times$			
			$\mathrm{Bi}^{\prime}-\mathrm{S}(1)-\mathrm{Bi}^{\prime \prime}$	76.71(8)	
$\begin{gathered} \mathrm{S}(2)-\mathrm{Bi}-\mathrm{S}(1)^{\prime \prime \prime} \\ -\mathrm{S}(2)^{\prime} \end{gathered}$	$\begin{aligned} & 70.80(9) \\ & 95.24(8) \end{aligned}$	$2 \times$	$-\mathrm{Bi}$	95.97(9)	$2 \times$
			$\mathrm{Cu}-\mathrm{S}(1)-\mathrm{Bi}$	112.73(11)	$2 \times$
$\begin{array}{r} \mathrm{S}(2)^{\prime \prime}-\mathrm{Cu}-\mathrm{S}(1) \\ -\mathrm{S}(2)^{\prime \prime \prime} \end{array}$	$\begin{aligned} & 108.50(12) \\ & 107.28(17) \end{aligned}$	$2 \times$			
			$\mathrm{Cu}-\mathrm{S}(1)-\mathrm{Cu}^{\prime \prime}$	113.50(17)	
$\begin{array}{r} \mathrm{S}(1)^{\mathrm{IV}}-\mathrm{Cu}-\mathrm{S}(1) \\ -\mathrm{S}(2)^{\prime \prime \prime} \end{array}$	$113.50(16)$$109.43(12)$		$\mathrm{Cu}^{\text {IV }}-\mathrm{S}(2)-\mathrm{Bi}$	120.74(10)	$2 \times$
			$\mathrm{Cu}^{\text {IV }}-\mathrm{S}(2)-\mathrm{Cu}^{\text {III }}$	111.47(18)	
			$\mathrm{Bi}-\mathrm{S}(2)-\mathrm{Bi}^{\text {IV }}$	95.24(11)	
			$\mathrm{Bi}-\mathrm{S}(2)-\mathrm{Cu}^{\prime \prime}$	102.82(12)	$2 \times$

$B i$

Cu

$S(2)$

Fig. 1. Atomic coordinations in emplectite. For Bi and $\mathbb{S}(1)$ the square pyramids are indicated with broken lines. The three nearest S neighbours of Bi are marked by hatching
structures are $0.013,0.036,0.015$ and $0.022 \AA$ for $\mathrm{Bi}, \mathrm{Cu}, \mathrm{S}(1)$ and $\mathrm{S}(2)$ respectively.

The interatomic distances (Table 6) and angles (Table 7) are calculated with the aid of the program BDS (P. Engel, unpublished). Numerals of equivalent atoms are illustrated in Fig. 1 in which the coordinations of the atoms are drawn. In Fig. $2 a$ the (010) projection of the structure is given.

Usually the Bi atom in sulfosalts has three S neighbours at approximately orthogonal distances smaller than $2.85 \AA$, spanning a trigonal pyramid ${ }^{4}$. This is also the case in emplectite and the average $\mathrm{Bi}-\mathrm{S}$ distance of $2.614 \AA$ lies near the lower limit of the range of averages $2.59-2.79 \AA$, observed in other sulfosalts. Each BiS_{3} group shares corners with two adjacent groups in such a way that endless chains are formed running along \mathbf{b}, having b as period and $\mathrm{BiS}_{\mathbf{2} \cdot \frac{1}{2}+1}=\mathrm{BiS}_{2}$ as composition.

The Cu atom is surrounded by four S atoms in a nearly regular tetrahedron. The average $\mathrm{Cu}-\mathrm{S}$ distance of $2.327 \AA$ lies well in the

[^3]

Fig. $2 a$. (010) projection of the emplectite structure. $\mathrm{Bi}-\mathrm{S}$ distances inside the BiS_{5} pyramids are fully drawn while those outside are broken. $\mathrm{Cu}-\mathrm{S}$ distances are dotted. Double distances represent different distance vectors which are projected above each other. Hatched areas indicate the $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ double chains

Fig.2b. Sheet of composition CuBiS_{2} in emplectite perpendicular to \mathbf{c}
range of $2.304-2.365 \AA$ for Cu in tetrahedral coordinations not strongly distorted ${ }^{5}$. In the same way as the BiS_{3} pyramids the CuS_{4} tetrahedra are joint together into endless chains along \mathbf{b}; they have the composition $\mathrm{CuS}_{2 \cdot \frac{1}{2}+2}=\mathrm{CuS}_{3}$.

By means of corner sharing between the elementary tetrahedra and pyramids the two kinds of chains are joint in sheets perpendicular to \mathbf{c} with a thickness of $\frac{1}{2} c$. The composition of these sheets as seen in Fig. $2 b$ is CuBiS_{2}. The sheet representation of the emplectite structure is in accordance with the principal cleavage along (001).

Within a distance of $3.2 \AA$ the coordination of $\mathrm{S}(1)$ consists of three Bi and two Cu atoms in the form of a square pyramid. The farther $\mathrm{Bi}^{\prime \prime \prime}$ atom (see Fig. 1) completes a distorted octahedral coordination similar to that of Bi . The thermal parameters of Bi and $\mathrm{S}(\mathbf{1})$

[^4]are virtually equal which is consistent with this similarity. The thermal parameters of Cu and $\mathrm{S}(2)$ show the same trend, specifically $U_{j j}(\mathrm{Cu})$ $\sim 1.4 U_{j j}\{S(2)\}$, but in view of the high symmetry of the coordinations involved it is not clear why in each case $U_{33}<U_{11} \sim U_{22}$.

Emplectite belongs to class IV in Nowacki's (1969) classification since the atomic S / Bi ratio is equal to 2 . The complete specification is IV.a3 because of the endless chains of BiS_{3} pyramids (of composition BiS_{2}).

Comparison of the structures of $\mathbf{C u}, \mathrm{Bi}-$ bearing sulfosalts

The structures of emplectite and the other Cu, Bi-bearing sulfosalts: $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ (Ohmasa and Nowacki, 1973), $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}(x=1.21$, Ohmasa, 1973), hodrushite ($\mathrm{Cu}_{8} \mathrm{Bi}_{12} \mathrm{~S}_{22}{ }^{6}$, Kupčík and Makovický, (1968 and Koděra, Kup̌̌ík and Makovický, 1970) and $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ Ozawa and Takédchi, 1972) have in common Bi-containing structural units which are easily visualized if one takes into account neighbours more distant from Bi than the three nearest S atoms.

The five nearest S neighbours of Bi in sulfosalts are arranged in a square pyramid ${ }^{7}$ with Bi near the centre of the basal plane ${ }^{8}$. Distances towards the fourth and fifth nearest S atoms range between 2.86 and $3.16 \AA$.

Two types of Bi coordinations can be distinguished when further S neighbours are considered. Either there is one additional S at a distance between 2.99 and $3.45 \AA$ completing an octahedron (type α) or there are two additional ones comprizing a split vertex of an octa-

[^5]

Fig. $3 a$

Fig. $3 b$

Fig. 3 a. Schematic projection of two adjacent $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ chains in emplectite. In nuffieldite (Конatsu and WUensch, 1973) a similar constellation of two chains is found. In the latter case $\mathbf{M}(4)(=\mathrm{Bi})$ corresponds to $\mathrm{Bi}(\mathrm{I})$ in the figure and $\mathrm{M}(1)(=\mathrm{Pb}+\mathrm{Bi})$ to $\mathrm{Bi}(\mathrm{II})$. Distances are given in \AA; upper values apply to emplectite

Fig. 3 b. Fragment of the sheet which contains the type- $\beta \mathrm{Bi}$ atoms in $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ and $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-y} \mathrm{~S}_{9}$. The square (on the twofold axis) and the crosses are the projections of the Cu atoms in the two structures respectively. Distances are given in \AA

Fig. $3 c$

Fig. $3 d$

Fig. 3 c. Schematic projection of the four-membered chain in hodrushite. Distances with two values indicate the three-membered subchain in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$

Fig. 3 d. Projections of the $\mathrm{Bi}_{2} \mathrm{~S}_{8}$ chain in galenobismuthite (IItaka and Nowacki, 1962) and aikinite. The lower distance values correspond to aikinite (left: Ohmasa and Nowacki, 1970; right: Kohatsu and Wuensch, 1971)
hedral coordination (type β). The octahedral coordination of Bi in emplectite will be characterized as type β, with one atom of the split vertex missing, because of the large deviation from regularity. The same coordination is found for $M(4)(=\mathrm{Bi})$ in nuffieldite (Конатsu and Wuensch, 1973; see Fig. 3a).

Fig. 4 (a)
Fig. 4. Projections of the structures of (a) hodrushite and (b) $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ on the plane perpendicular to the axis of $4 \AA$. Thick lines are the boundaries of the buckled sheets which consist of Bi atoms with type- β coordinations and CuS_{4} tetrahedra. Broken lines with wavy ends mark the eight-membered chain which the two structures have in common. See also legend of Fig. $2 a$

The emplectite structure can now be described in another way. The basal planes of the BiS_{5} pyramids, which are parallel to b , share edges perpendicular to \mathbf{b}, thus forming endless chains with b as period and $\mathrm{BiS}_{4-\frac{1}{2}+1}=\mathrm{BiS}_{3}$ as composition. Two of these chains are joint to a double chain, $\mathrm{Bi}_{2} \mathrm{~S}_{4}$, with the same period, by side-edge sharing of the elementary pyramids. The two single chains are related by an internal 2_{1} axis (see Fig. $2 a$). The chains of CuS_{4} tetrahedra, already mentioned, link the double chains in a three-dimensional structure by means of edge and corner sharing. Additionally there are $\mathrm{Bi}-\mathrm{S}$ interactions of the sixth-nearest-neighbour type between the double chains (Fig. 3a).

Similar $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ double chains are found in the structures of $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$, $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}$, hodrushite and $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$. In all cases the chain periods

Fig. 4 (b)
correspond to the shortest lattice periods which are equal to 4.025 , $3.993,3.93$ and $3.95 \AA$ respectively. As in emplectite the Bi atoms in these chains have coordinations belonging to type β. The structures of hodrushite (Kurčík und Makovick ý, 1968) and $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ (Ozawa and Takéuchi, 1972) are given in Fig. 4 as projections on the plane perpendicular to the lattice translation of $4 \AA$.

In $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ and $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}$ the double chains are connected by parallel chains of distorted CuS_{4} tetrahedra ${ }^{9}$ in sheets (Fig. $3 b$) with compositions of $\mathrm{CuBi}_{2} \mathrm{~S}_{4}$ and $\mathrm{Cu}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{4}$. The sheets are packed together alternatingly with parallel layers having a structure similar to PbS (Ohmasa, 1973). In these layers there are only type- α-coordinated Bi atoms.

[^6]The $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ chains in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ (along c) have attached to them a parallel single chain of Bi atoms which have a type- β coordination as well. The resulting three-membered chains (Fig. 3c) form, together with parallel chains of corner-sharing CuS_{4} tetrahedra and CuS_{3} triangles, buckled sheets perpendicular to \mathbf{b}. In the structure these sheets are stacked anti-parallel to each other with double chains of BiS_{6} octahedra and CuS_{4} tetrahedra in between them.

The Bi atoms with type- β coordinations in hodrushite are found in four-membered chains (Fig. 3 c), which consist of a central $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ double chain and two flanking single chains. Together with double chains of CuS_{4} tetrahedra these four-membered chains form buckled sheets [parallel to (100)] similar to those in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$. In the structure PbS-like layers with type- $\alpha \mathrm{Bi}^{10}$ atoms are sandwiched by pairs of such sheets and the resulting triple layers are stacked parallel to each other with double chains of CuS_{4} tetrahedra ${ }^{11}$ and single chains of BiS_{6} octahedra ${ }^{12}$ in between them.

There is another similarity between the structures of $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and hodrushite which will be pointed out now. All Bi atoms in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ are found in eight-membered chains with internal distances smaller than $3.2 \AA$ and a composition of $\mathrm{Bi}_{8} \mathrm{~S}_{16}$. These eight-membered chains consist of two of the three-membered chains already mentioned at opposite sides of a double chain of octahedrally coordinated Bi atoms. The chains are stacked in a zig-zag way in the structure. In hodrushite these chains are found as subunits of sheets parallel to (302), which corresponds to the best developed crystal face (Koděra, Kupčík and Makovický, 1970).

For $\mathrm{CuBi}_{5} \mathrm{~S}_{8}, \mathrm{Cu}_{2+x} \mathrm{Bi}_{6}{ }_{6} \mathrm{~S}_{9}$, hodrushite, $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and emplectite the ratio of Bi atoms with type- β coordinations and the total number of Bi atoms increases monotonously as follows: $0.40,0.42,0.69,0.75$ and 1.00. The given order corresponds to an increase ${ }^{13}$ of the atomic

[^7]ratio $\mathrm{Cu} /(\mathrm{Cu}+\mathrm{Bi})^{14}$. In the same order the distortions of constituent CuS_{4} tetrahedra or the percentage of distorted ones decreases until in emplectite a near regularity is reached.

It seems that the geometries of the two Bi coordinations are incompatible. In all structures discussed there are endless chains consisting of Bi atoms with the same coordination type. The type- $\beta \mathrm{Bi}$ chains are joint together in multimembered chains with up to four chain units while the type- $\alpha \mathrm{Bi}$ chains tend to form layers with a PbS-like structure. Together with single or double chains of CuS_{4} tetrahedra the multimembered chains form sheets which in $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ and $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}$ occupy about 45% of the cell volume and in hodrushite and $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ about 80%. Emplectite is a three-dimensional array of type- $\beta \mathrm{Bi}$ (double) chains and CuS_{4} chains and consequently its structure comprises the limiting case of the mentioned structures which contain sheets.

In the sulfosalt structures known thus far it appears that the $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ double chain is specific for the Cu, Bi-bearing sulfosalts. When additional Pb is present in the structure four-membered Pb, Bi-mixed chains occur (Kонatsu and Wuensch, 1973) which are similar to the four-membered chains in bismuthinite. Just as in the case of the $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ double chains the end members of these four-membered chains are single chains of Bi atoms with type- β coordinations. In galenonbismuthite and aikinite $\left(\mathrm{PbCuBiS}_{3}\right.$, Онmasa and Nowacki, 1970 ; Kohatsu and Wuensch, 1971) another type of double chain Fig. $3 d$) is found which consists of Bi atoms with type- β coordinations. This chain has the composition $\mathrm{Bi}_{2} \mathrm{~S}_{8}$.

Acknowledgements

We would like to thank Dr. P. Engel and Mr. A. Edenharter for their assistance during the data collection and reduction .The investigation was supported by Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung (project no. 2.516.71) and Stiftung Entwicklungsfonds Seltene Metalle. The calculations were performed on the IBM 1620 of our department (data reduction) and on the IBM $370 / 155$ of the Bernische Datenverarbeitungsgesellschaft BEDAG.

References

D. T. Cromer and D. Liberman (1970), Relativistic calculation of anomalous scattering factors for x-rays. J. Chem. Physics 53, 1891-1898.

[^8]J. D. Dana and E.S. Dana (1944), The system of mineralogy, 7 th edition, p. 436. John Wiley, New York.
P. A. Doyle and P.S. Turner (1968), Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Crystallogr. A 24, 390-397.
W. Hofmann (1933), Strukturelle und morphologische Zusammenhänge bei Erzen vom Formeltyp ABC_{2}. I. Die Struktur von Wolfsbergit CuSbS 2 und Emplektit CuBiS_{2} und deren Beziehungen zu der Struktur von Antimonit $\mathrm{Sb}_{2} \mathrm{~S}_{3}$. Z. Kristallogr. 84, 177-203.
Y. Iitaka and W. Nowacki (1962), A redetermination of the crystal structure of galenobismuthite, $\mathrm{PbBi}_{2} \mathrm{~S}_{4}$. Acta Crystallogr. 15, 691-698.
C. K. Johnson (1963), 1620 programs from I.C.R. Department of Molecular Structure, I.C.R. No. 10, Absorption factors for a crystal ground as an ellipsoid of revolution.
V. Kocman and E. W. Nuffield (1973), The crystal structure of wittichenite, $\mathrm{Cu}_{3} \mathrm{BiS}_{3}$. Acta Crystallogr. B 99, 2528-2535.
M. Koděra, V. Kupčík and E. Makovický (1970), Hodrushite-a new sulphosalt. Min. Mag. 37, 641-648.
I. Kohatsu and B.J. Wuensch (1971), The crystal structure of aikinite, $\mathrm{PbCuBiS}_{3}$. Acta Crystallogr. B 27, 1245-1252.
I. Kohatsu and B.J. Wuensch (1973), The erystal structure of nuffieldite, $\mathrm{Pb}_{2} \mathrm{Cu}(\mathrm{Pb}, \mathrm{Bi}) \mathrm{Bi}_{2} \mathrm{~S}_{7}$. Z. Kristallogr. 138, 343-365.
V. Kupčík (1965), Struktur des Emplektits, CuBiS 2 . Program and Abstracts for meeting of the Crystallographic Section of the German Mineralogical Society, Oct. 13-16, 1965, Marburg 16-17.
V. Kupčík und E. Makovický (1968), Die Kristallstruktur des Minerals (Pb, $\mathrm{Ag}, \mathrm{Bi}) \mathrm{Cu}_{4} \mathrm{Bi}_{5} \mathrm{~S}_{11}$. N. Jahrb. Miner., Monatsh., 236-237.
V. Kupčík und L. Veselá-Nováková (1970), Zur Kristallstruktur des Bismuthinits, $\mathrm{Bi}_{2} \mathrm{~S}_{3}$. Tschermaks Miner. Petrogr. Mitt. 14, 55-59.
W. Nowacki (1969), Zur Klassifikation und Kristallchemie der Sulfosalze. Schweiz. Mineral. Petrogr. Mitt. 49, 109-156.
M. Оhmasa (1973), The crystal structure of $\mathrm{Cu}_{2_{+} x} \mathrm{Bi}_{6_{-y}} \mathrm{~S}_{9}(x=1.21)$. N. Jahrb. Miner., Monatsh., 227-233.
M. Ohmasa and W. Nowacki (1970), A redetermination of the crystal structure of aikinite $\left[\mathrm{BiS}_{2}|\mathrm{~S}| \mathrm{Cu}^{\mathrm{IV}} \mathrm{Pb}^{\mathrm{VII}}\right]$. Z. Kristallogr. 132, 71-86.
M. Ohmasa and W. Nowacki (1973), The crystal structure of synthetic $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$. Z. Kristallogr. 137, 422-432.
T. Ozawa and Y. Takéuchi (1972), The crystal structure of $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and its relation to simple sulfide structures. Acta Crystallogr. A 28, S 70 (abstract).
J. C. Portheine and W. Nowacki (1975), Refinement of the crystal structure of zinckenite, $\mathrm{Pb}_{6} \mathrm{Sb}_{14} \mathrm{~S}_{27}$. Z. Kristallogr. 141, 79-96.
T. Srikrishnan and W. Nowacki (1974), A redetermination of the crystal structure of cosalite, $\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{5}$. Z. Kristallogr. 140, 114-136.
G. H. Stout and L. H. Jensen (1968), X-ray structure determination, p. 412. Macmillan, New York.
G. Weitz und E. Hellner (1960), Über komplex zusammengesetzte sulfidische Erze, VII. Zur Kristallstruktur des Cosalits, $\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{5}$. Z. Kristallogr. 113, 385-402.

[^0]: ${ }^{1}$ The number of possible independent reflections in the Cu sphere is 456.

[^1]: 2 Now in Tokyo.
 ${ }^{3}$ In this case: the indices of \mathfrak{R} are the number of additional parameters varied in $P n 2_{1} a$ (y 's of the four atoms), the number of degrees of freedom in the refinement and the significance level.

[^2]: 1 The equivalent isotropic temperature factor, B.

[^3]: ${ }^{4}$ Exceptions to this rule are the atoms $\mathrm{Bi}(1)$ in cosalite $\left(\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{5}\right.$, Weitz und Hellner, 1960 and Srikrishnan and Nowacki, 1974) and in $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ (Ohmasa and Nowacki, 1973). In cosalite Bi(1) has five S atoms nearer than $2.86 \AA$ forming a square pyramid and in $\mathrm{CuBi}_{5} \mathrm{~S}_{8} \mathrm{Bi}(1)$ is coordinated octahedrally by six S atoms within this distance.

[^4]: ${ }^{5}$ Coordinations with $\mathrm{S}-\mathrm{Cu}-\mathrm{S}$ angles of more than 115° are excluded.

[^5]: ${ }^{6}$ This is an idealized composition. The one resulting from microprobe analysis (Koděra et al., 1970) is $\mathrm{Cu}_{8.12} \mathrm{Bi}_{11.54} \mathrm{Fe}_{0.29} \mathrm{~S}_{22.00}$.

 7 There are four examples where the square pyramid is not formed by the five nearest S atoms. The square pyramids of $\mathrm{Bi}(1)$ in bismuthinite $\left(\mathrm{Bi}_{2} \mathrm{~S}_{3}\right.$, Kupčík and Veselá-Nováková, 1970), $\operatorname{Bi}(1)$ in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and $\mathrm{Bi}(5)$ in hodrushite are formed by the three nearest S atoms together with the fifth and sixth nearest. For $\operatorname{Bi}(2)$ in galenobismuthite (Ittaka and Nowacki, 1962) the square pyramid is realized within the six nearest S atoms if the third is omitted [see Fig. 3d].

 8 The "square pyramid" for Bi in wittichenite $\mathrm{Cu}_{3} \mathrm{BiS}_{3}$ (Kocman and NuFfield, 1973) has an exceptional form. The three nearest S neighbours are arranged at virtually equal distances (2.57, 2.60 and $2.61 \AA$) and constitute a side face which is nearly perpendicular to the "basal plane". The fourth and fifth S atoms lie at unusual large distances 3.43 and $3.56 \AA$ (normal value $=3.0 \pm 0.15 \AA$). The BiS_{3} pyramids occur as isolated units in the structure and consequently wittichenite, with its atomic S / Bi ratio of 3 , belongs to type II. a_{1} of Nowacki's (1969) classification.

[^6]: ${ }^{9}$ The chains in $\mathrm{CuBi}_{5} \mathrm{~S}_{8}$ consist of tetrahedra which share edges perpendicular to an internal twofold axis. The tetrahedra are far from regular because of a compression of $0.7 \AA$ along the chain axis. In $\mathrm{Cu}_{2+x} \mathrm{Bi}_{6-x} \mathrm{~S}_{9}$ there are two interwoven double chains of CuS_{4} tetrahedra, with Cu occupancies of $\frac{1}{2}$, in between consecutive $\mathrm{Bi}_{2} \mathrm{~S}_{4}$ chains. The CuS_{4} tetrahedra share corners within a single chain and a double chain is formed by edge sharing.

[^7]: ${ }^{10}$ One third of the corresponding atomic positions is occupied for about ${ }^{3}$ by Bi and contains possibly the additional Fe in the structure (Kodéra, Kupčík and Makovický, 1970).
 ${ }^{11}$ The four independent Cu atoms in the structure have four S neighbours within $3.0 \AA$, which form a distorted tetrahedron in such a way that the Cu is near the centre of a side face. A similar coordination is found for one of the Cu atoms in $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$.
 ${ }^{12}$ The central atoms have the partial occupancies mentioned in footrote ${ }^{10}$.
 ${ }^{13}$ The Cu content of $\mathrm{Cu}_{4} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ is probably a little lower than the formula in. dicates. Ozawa and Takéderi (1972) mention as a possible explanation for the high temperature factor ($B=7.2 \AA^{2}$) of $\mathrm{Cu}(4)$ a partial occupancy of this atoms.

[^8]: ${ }^{14}$ For hodrushite the ratio $\mathrm{Cu} /(\mathrm{Cu}+\mathrm{Bi}+\mathrm{Fe})$ is taken.

