The crystal structure of chlorotionite, CuK₂Cl₂SO₄*

By C. GIACOVAZZO, E. SCANDALE and F. SCORDARI

Istituto di Mineralogia e Petrografia, Università di Bari

(Received 13 January 1976)

Auszug

Chlorothionit, CuK₂Cl₂SO₄ hat die Raumgruppe *Pnma*; die Gitterkonstanten sind a = 7,732(15), b = 6,078(1), c = 16,292(3) Å; Z = 4. Die Struktur wurde mit direkten Methoden bestimmt. Atomparameter und anisotrope Temperaturfaktoren wurden nach der Methode der kleinsten Quadrate bis zu R = 0,032für 893 beobachtete Reflexe verfeinert.

Die Koordination der Cu-Atome ist pseudooktaedrisch. Diese Pseudooktaeder vereinigen sich zu Doppelketten der Zusammensetzung $^{\sim}_{1}$ [Cu₂Cl₄O₄]⁸⁻. Jedes SO₄-Tetraeder beteiligt sich mit einer Kante an einem Cu-Pseudooktaeder. In der asymmetrischen Einheit befinden sich zwei verschiedene K-Atome. Die $^{\circ}_{1}$ [Cu₂Cl₄O₄]⁸⁻-Doppelketten sind durch diese miteinander verbunden.

Abstract

Chlorotionite, CuK₂Cl₂SO₄, is orthorhombic, space group *Pnma* with Z = 4. The unit-cell dimensions are: $a = 7.732 \pm 0.0015$, $b = 6.078 \pm 0.001$, $c = 16.292 \pm 0.003$. The crystal structure has been determined by direct methods and refined by least-squares to an *R* value of 0.032 for 893 measured reflections.

Cu atom is surrounded by four chlorine and two oxygen atoms to form a pseudo-octahedron in [4+2] coordination. Cl(1)—Cl(1) edges are shared by [CuCl₄O₂] pseudo-octahedra which build a double chain running along *b* axis, whose repeat unit is ${}_{1}^{\infty}$ [Cu₂Cl₄O₄]⁸⁻. Cu pseudo-octahedra and SO₄ tetrahedra are linked via two oxygen atoms to form a more complex structural unit of composition ${}_{1}^{\infty}$ [Cu₂Cl₄O₄(SO₄)₂]¹²⁻. The two symmetrically independent K atoms are six-coordinated by four oxygen and two chlorine atoms and provide the connection among the copper and sulphate polyhedra chains.

Introduction

Chlorotionite is an halogen sulphate of potassium and copper, first described by SCACCHI (1872). Owing to symmetry and colour similarity this mineral is sometimes mistaken for euchlorine. Natural

^{*} Paper presented at the Convegno S.I.M.P., Roma, 1975.

crystals of chlorotionite were chemically studied by SCACCHI (1872) and by ZAMBONINI (1935) and artificial ones by BELLANCA (1946). The chemical analyses are not in complete agreement, essentially with respect to the Cu and K content. For the artificial chlorotionite BELLANCA deduced the following formula: K₂SO₄CuCl₂. Data on x-ray crystallography were provided also by BELLANCA, who assigned to chlorotionite the space group *Pnma* and cell parameters a = 6.105, b = 16.132, c = 7.697 Å with Z = 4.

Experimental

The best crystals among those available for structural study were found in a sample coming from Vesuvius, eruption 1906 (Mineralogical Museum, University of Bari). They occur in crystalline aggregate associated with other unidentified minerals. As no x-ray powder pattern is quoted in the mineralogical files of JCPDS, chlorotionite crystals were identified comparing our lattice parameters with those given by BELLANCA. Lattice constants were determined from Weissenberg photographs and refined by application of the leastsquares method using data from x-ray powder pattern. The values so

h k l	$d_{\mathbf{cal}}$	d_{obs}	Ι
101	6.980	6.98	9
011	5.698	5.69	29
111	4.589	4.58	12
004	4.073	4.073	8
013	4.049	4.049	12
201	3.760	3.761	14
210	3.263	3.262	29
2 0 3	3.149	3.149	21
020	3.039	3.039	100
022	2.846	2.847	33
1 2 2	2.671	2.672	14
2 0 5	2.491	2.491	21
$2\ 2\ 3$	2.187	2.187	71
207	1.994	1.994	19
$2\ 2\ 5$	1.927	1.927	14
$3\ 1\ 5$	1.918	1.918	12

Table 1. X-ray powder pattern of chlorotionite

Philips powder diffractometer, Ni-filtered Cu $K\alpha$ radiation, NaF as internal standard

determined are: $a = 7.732 \pm 0.0015$, $b = 6.078 \pm 0.001$, c = 16.292 \pm 0.003 Å. The indexed powder pattern is given in Table 1. Indexing was done taking into account the intensities of Weissenberg pictures. Our experimental density, obtained by the method of the heavy liquids, is 2.69 g cm^{-3} , which well agrees with $2.67 \text{ and } 2.673 \text{ g cm}^{-3}$ given by SCACCHI and BELLANCA. The sample used for the intensity data collection had a prismatic orthorhombic habit elongated in the [010] direction. The intensities were measured by Philips PW 1100 computer-controlled four-circles diffractometer, using $MoK\alpha$ radiation and graphite monochromator. The ω -2 θ scan technique was used. The rate of scanning was $0.05^{\circ} \text{ s}^{-1}$ and the scan range was 2° . The intensities were measured up to $2\theta = 60^{\circ}$. A total of 1212 independent reflections were measured. Of these 319 weak reflections with $(I_{top} - 2\sqrt{I_{top}}) < I_{back}$ were omitted (I_{top}) is the intensity in counts s^{-1} measured at the maximum of reflection during the first scan. I_{back} is the mean of two preliminary background measurements of 5 sec). To unobserved reflections a conventional value equivalent to

Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
Cu K(1) K(2) Cl(1) Cl(2)	$\begin{array}{c} 0.6212(1)\\ 0.3821(2)\\ 0.1193(2)\\ 0.6026(2)\\ 0.8402(2) \end{array}$	ઝોન મુન્ક ઝોન ગોન ગોન ગોન	$\begin{array}{c} 0.4615(1)\\ 0.2808(1)\\ 0.4050(1)\\ 0.5485(1)\\ 0.5526(1) \end{array}$	S O(1) O(2) O(3)	0.6296(2) 0.7758(7) 0.6324(7) 0.4752(7)	34/4 34/4 0.9481(6) 34/4	$\begin{array}{c} 0.3024(1)\\ 0.3629(4)\\ 0.2518(3)\\ 0.3587(4) \end{array}$

Table 2. Fractional atomic coordinates with standard deviations in parentheses

 Table 3. Final anisotropic temperature factors for all atoms in chlorotionite

 Standard deviations are in parentheses

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	β н *
Cu	0.0039(1)	0.0175(3)	0.0011(0)	0	0	0	1.55
$\mathbf{K}(1)$	52(2)	111(4)	36(1)	0	4(1)	0	2.26
$\mathbf{K}(2)$	57(2)	110(4)	15(1)	0	- 1(1)	0	1.51
Cl(1)	57(3)	157(6)	13(1)	0	-4(1)	0	1.70
Cl(2)	63(3)	114(5)	14(1)	0	- 7(1)	0	1.56
\mathbf{s}	36(2)	81(4)	11(1)	0	-2(1)	0	1.07
O(1)	28(8)	0.023 (2)	14(2)	0	1(3)	0	1.89
O(2)	87(7)	0.0060(8)	17(1)	- 0.0001(10)	-6(2)	-0.0007(3)	1.58
O(3)	31(8)	0.021 (2)	12(2)	0	5(3)	0	1.70

* $\beta_{\rm H}$ are the equivalent isotropic thermal parameters according to HAMILTON.

The crystal structure of chlorotionite

Table 4. Observed and calculated structure factors. Values shown are multiplied by a factor of 10

h I	k 1	Fo	Fc	h	k 1	F	F _c	h k	1	Fo	F _c	h	k 1	Fo	Fc	h	k 1	F	F.c	h	k 1	F	Fc
0	0 4	1039	1054	6	0 2	72	-75	2 1	18	474	-479	9	1 12	214	219	5	2 17	482	-475	3	3 3	92	-84
	6	944	-947		3	855	839	3 1	1	69 45	-44	10	1 0	648	646 70		14	155	167		4	353	349
	10	592 878	-877		- 7	516	516		3	173	147		3	146	153		18	65	- 192		6	766	762
	12	1057	- 1060		.9	325	321		4	492	-480		4	280	279	4	19	124	112		7	272	283
	16	288	-257		11	185	- 59		- 6	1030	-1022		8	273	-281	0	2 0	317	-311		9	515 45	-43
	18	162	-164		12	72	68		7	382	-381	0	2 2	1217	-1201		3	1017	-1002		- 11	259	264
	20	652	526		13	98 368	- 364		11	640 328	-660		4	105	-120		4	73	-200		12	114	117
1	0 2	162	-144		16	158	164		12	124	-137		8	1079	1080		é	61	-69		14	444	-456
	- 7	29	-29		17	123	-132		13	349	-351		10	331	331		2	681	-676		16	130	-122
	- 4	1252	1309	7	0 1	131	139		15	58	-68		14	249	254		ć	70	-82		18	82	-99
	6	526	- 528		2	306	311		16	174	176		16	442	421		11	334	-339		19	60	78
	7	278	-304		- 3	200	-206		17	159	-149		20	471	-460 -h2h		14	207	-76	4	3 0		-43
	9	282	-283		5	450	455		19	73	-95	1	2 1	736	-703		16	124	-125	•	<u>í</u> 1	168	-164
	10	350	-343		6	608	610		20	90	69 155		2	130	-20	7	2 17	209	215		2 3	54	-58
	12	176	- 195		9	92	93	4 1	0	236	240		4	29	28			270	-275		4	64	-59
	13	508	-512		10	136	140		1	76	-73		5	1037	-1068		-	183	186		5	.53	-33
	17	592 184	-177		12	130	-199		3	406	-388		7	217	242		-	389	-407		7	362	347
	18	117	132		13	183	-176		5	321	-297		8	862	886			565	-556		9	392	-372
	20	305	295		14	520	-527		7	928	-122		10	270	268		5 0	757	-749		10	53	549
	22	99	116		16	194	- 183		8	66	-70		11	746	771		10	117	-124		13	419	408
2	0 1	1227	-1198		0 17	186	-186		.9	241	225		12	206	219		11	150	153		15	64	62
	5	1989	-2001	0	1	110	-110		12	54	-487		14	394	-403		13	182	182	5	3 1	458	- 552 467
	6	58	54		3	205	205		13	630	-630		16	57	47		14	474	486		2	211	-210
	7	1018	-1010		4	350	- 172		15	498	55 490		17	182	+140		16	174	-82		3	129	-115
	10	33	36		7	36	47		21	88	77		20	262	-244	8	2 (922	-933		5	521	531
	11	124	-128		12	171	-171	5 1	1	588	-594		21	49	-57			154	-157		5	117	117
	15	833	816		13	82	87		3	178	-174	2	2 0	65	-62		i	174	-163		8	428	436
	16	110	-116		14	279	-285		4	135	109		1	218	227		8	274	280		. 9	287	-288
	17	361 798	799	9	0 1	433	279		- 6	167	-159		3	2079	2058		10	139	-102		10	413	-422
3	0 î	40	Ó		4	125	120		• 7	407	410		4	49	-46		12	428	426		12	234	241
	2	122	-158		5	456	458		8	550 337	-554		5	1122	1057		17	112	-115		13	325	-332
	- 4	689	-686		7	341	-347		10	151	-150			50	-57	9	2 1	389	-404		15	92	82
	5	1102	-1115		8	74	-84		11	522	528			115	-95		,	251	-247		16	95	109
	7	393	392		- 11	512	-515		13	378	-289 384		13	117	-133		÷	415	-428	6	3 0	974	955
	8	962	-982		12	165	-182		14	154	156		15	551	- 539		(177	178		3	170	176
	9	53	-60	10	0 0	136	-147		15	- 68 105	-62		16	474	92 -483		1	314	325		5	107	119
	11	282	285		2	91	102		19	89	- 85		19	625	-608		¢	272	277		10	334	320
	12	133	-149		3	191	-187	6.3	20	172	162	3	2 1	30	19	10	11	468	481		11	82	-82
	14	543	550		- 6	58	-50	0 1	1	72	-1364		- 3	160	137	10	<u> </u>	253	253		16	345	- 341
	15	122	138		7	206	-195		2	171	150		4	586	579			54	-57	7	3 2	257	-261
	17	178	286	0	1 1	779	770		4	187	-205		6	977	927			77	83		4	123	-180
	18	181	195		3	702	634		5	82	-91		7	294	-297		. 7	238	250		5	486	498
	19	88	114		5	672	-668		6	103	93		10	869	874	0	3 1	51	-53		6 8	390	-386
	21	60	61		9	206	199		10	236	-214		11	207	-214			758	734		9	164	158
4 1	0 0	2507	-2643		11	576	590		11	50	56		12	145	144		7	297	-279		10	97	-75
	2	363	=361		15	144	155		14	136	146		14	503	-518		- 1	674	-686		13	210	-222
	3	178	-176		17	206	203		16	333	328		15	67	-81		17	383	-368		14	345	366
	4 5	1229	-1180		21	215	- 196	7 1	18	317	320		17	197	-240		17	256	-267	я	3 0	162	169
	6	797	757	1	1 1	865	819		3	196	195		18	173	- 183		19	520	511		3	461	-458
	8	743	727		2 3	122	102		4	159	-581		19 20	144	-81	1	3 1	227 570	- 222		5	73	-71
	10	235	237		4	40	34		6	465	464		21	88	-82		í :	68	-61		7	282	-284
	11	84	-85 665		5	1036	1073		7	72	-81	4	2 0	1825	1821		4	50	-61		11	241	-241
	13	93	-99		7	332	-357		9	172	-168		2	791	765			378	-371	9	3 1	214	-215
	14	650	658		8	965	993		10	109	112		3	64	68		7	268	281		2	202	204
	16	308	298		10	265	-261		13	254	270		- 4	300	-277		6	221	-745		3	78	-79
	20	467	-451		11	748	-779		14	397	-410		7	75	-70		10	112	-119		5	268	-288
e 1	21	88	92 -704		12	81	101	8 1	17	235	234		8	987	-968		11	570	590		7	201	211
	2	57	-72		14	398	-415	0.	1	245	254		10	82	67		13	369	367		9	137	130
	3	383	-371		15	128	119		2	70	-69		12	840	-822		14	355	361	10	3 0	518	- 507
		198	-188		18	97	-82		;	452 202	200		14	392	-409		16	60	-131		2	105	-103
	6	330	324		20	199	-186		6	87	81		16	418	-415		17	63	71		- 4	179	-183
	2	482	487	2	1 0	1672	1638		1	265	259		19	57	-65	9	3 0	146	143	0	4 2	444	443
	9	448	436		2	793	-766		13	144	135	5	2 1	705	694	-	12	131	132		6	342	-349
	10	153	149		3	190	190	o •	15	126	-125		2	73	73		3	105	-105			594	- 596
	12	837 257	266		4 5	055 70	590	y 1	2	255	-232		4	178	165		-	96	-95		10	331 776	-342
	13	528	522		6	324	-279		3	90	104		5	727	736		- 6	96	-98		14	273	-282
	14	137	-148		7 8	60 34	63		4 5	113	-101		- 0	266	-259		5 10	236	226		16	236	-225
	18	68	-76		10	778	764		7	242	-250		8	382	-385		11	78	-348		20	450	426
	19	135	-118		11	70	-73		8	268	276		.9	391	-392		10	323	324	1	4 1	425	426
6 (20	198	-196		12	368	-214		10	153	= 150 62		10	761	-754		16	603	588		25	53	-43
	1	673	650	•	16	591	- 581		11	199	-215		12	269	-276		18	320	322		6	316	- 323

h	k	1	Fo	F _c	h	k 1	Fo	Fc	h k	. 1	Fo	Fc	h	k	IF,	Fc	h	k	I F _o	F c	h	k	1	Fo	P.c
1	4	7	193	-204	5	4 8	247	252	1 5	; 5	510	525	5	5	5 66	-60	1	6 1	183	-204	0	7	13	193	-196
		8	547	-562		ç	280	280		6	258	256		· ·	255	263	2	6	1 309	309	1	7	1	154	-167
		9	152	-149		10	85	84		7	222	-231			3 287	-292			3 643	623			5	307	-322
		10	171	- 181		11	566	574		8	430	449) 174	180			5 547	541			6	137	-137
		11	524	-553		12	191	201		9	126	~119		1	306	314			7 440	431			7	133	147
		12	149	-156		13	352	349		10	62	67		1	2 169	-173		1	1 96	99			8	249	-268
		13	334	-335		14	113	-117		11	384	-404		1	5 214	217		1	5 354	-346			9	71	82
		14	273	287		- 16	89	102		12	65	58		1	110	106	3	6	2 51	-15			11	203	223
		17	127	-118	6	4 1	352	344		13	229	-231		1	5 67	-63			4 158	175	2	7	0	351	-340
	:	20	203	199		3	635	620		14	247	-260	6	5) 845	-825			5 421	430			2	183	167
2	4	1	455	-436		5	310	313		15	108	103			2 233	218			5 373	376			3	61	-53
		3	1129	-1083		6	36	29	2 5	5 0	905	879			5 169	-180			7 105	-123			8	71	73
		5	948	-904		7	399	402		2	487	-471			4 166	-157		1	377	387			10	434	-443
		7	784	-756		9	104	103		3	105	103			5 144	131		1	1 104	-88			12	104	108
		11	184	-188		11	188	189		- 4	353	345		1) 157	-152		1	3 176	-180	- 3	7	4	88	90
		15	506	500		15	229	-222		6	211	-211		1	2 128	126		1	270	-285			5	336	-354
		17	282	282	7	4 2	184	193		8	105	108	7	5	2 171	180	4	6	0 1013	988			6	277	285
3	4	4	344	-349			155	-167		10	439	427			5 145	149			1 65	-62			7	109	111
		5	661	-668		4	320	323		14	226	~229			¥ 70	70			2 126	125			8	203	217
		6	663	-654		5	326	337		16	291	-287			5 362	-370			341	340			11	104	106
		7	201	215			424	422		18	343	-346			5 282	290			6 250	-247	- 4	7	0	99	-97
		8	618	-610		8	571	570	35	52	41	-40		i	3 231	254			3 358	-359			3	187	185
		.9	66	-64		. 9	77	80		- 4	169	-181) 125	-126		1	2 329	-320			2	108	-93
		10	71	-54		10	76	81		- 5	559	570		_ 1	138	149		_ '	5 56	65			7	94	93
		11	158	169			115	-120		6	501	-506	8	5	83	-86	- 5	0	1 280	285		_	9	221	-221
		12	73	-91		12	87	-94		7	188	-188			1 193	199			2 44	50	5	7	1	171	179
		13	282	279		. 13	123	-124		8	326	-336			5 224	221			3 105	103			2	114	-117
		14	390	398	8	4 (785	793		11	170	-185			5 125	132			4 154	149			4	94	-98
		16	179	175			72	-65		13	177	-178			7 108	97			5 369	378			5	233	248
		17	130	130		2	115	123		14.	314	327	0	0	1437	-1458			5 101	-102		-	7	156	-162
		18	108	118			186	185		16	102	92			2 192	= 193			227	-230	0	7	0	413	409
4	4		1540	-1490			80	-90		17	71	-77			a 269	-2/6			5 155	-150			2	67	-68
			711	710			80	-10)	4 3		177	170			200	260			770	-170	•		2	405	- 95
		-	79	- 512	0		002	705			177	-172			, , , 0	170			1 370	- 300	v	•		160	170
		2	571	=00	9		140	177		2	99	91		- 2	5 100	179	4	<u>د</u> '	2 140	-140			2	109	179
		6	750	- 349		1	105	109		2	170	-92			404	191	0	υ.	2 2 2 3 4	-238			0	12	-02
		8	500	570		1	105	100		2	66	- 141		- 1	106	104			5 399	- 300		•	1	291	- 520
		0	590	-51		Ĩ	1/18	-163		2	50	-01	,	ε."	901	- 210			7 039	033		0		76	67
		12	533	500		-	955	059			177	- 59		0	201	-210	7	6	109	100			1	069	097
		13	106	04	0	с (1	295	796		.,	009	007			1 00 1 LLO	160	'	° :	100	- 109			2	208	20)
			763	767	0	' '	175	100		10	220	-22)			177	-402			, 100	120			-	74	-00
		16	956	21.7			150	173		17	630	-45			173	170			1 100	-199		0		20	-05
5	L.	1	495	-485		ź	123	-137		15	4.59	-455			4 314	331			5 266	-270	-	0	÷	443	-453
2	•	÷	210	-204		11	268	264	5, 5		310	-312			2 75	76	0	7	5 200	-223			ś	180	-455
		í.	188	-172		13	476	465	, (167	161		1	77	. ,0	0	· ·	210	-22)	3	8	÷	73	- 100
		ŝ	557	-559		17	203	208		ŝ	48	-53		- 1	307	324			7 68	-46			í.	61	-67
		6	187	191	1	5 1	327	327		ú	131	118		1	- J07	123			173	170			5	250	-262
		-	336	343		· .	57	20		÷	377	707			214	216			0.95	20%				- 20	202

the mean of the two minimum F_0 measured values, was attributed. The intensities were corrected for Lorentz and polarization effects. No correction for absorption was applied.

Structure determination

The systematic absences are consistent with the space groups Pnma or $Pna2_1$. Intensity statistic tests clearly indicated the centrosymmetric space group. As this group would require a large percentage of atoms on special position a first attempt to find a solution to the structure was made in $Pna2_1$. The multisolution technique of GERMAIN, MAIN and WOOLFSON (1971) was used, with 180 reflections having $|E| \ge 1.30$ as input. The heavy-atom locations were derived from Fourier E map obtained using the solution with the higest figure of merit. The structure-factor calculation for this partial structure yielded an isotropic $R = \Sigma ||F_0| - \Sigma |F_0||/|F_0|$ of 0.22 for the observed reflections. The oxygen atoms were located from F_0 synthesis but the new R index reached 0.27. The structure was then refined in Pnma

Table 5.	Analusis	of	anisotropic	thermal	parameters
rabie o.	11 naigoto	<i>v</i> ,	antibotiopic	incor mai	parametere

α,β	and γ	are	the	angles	of	the	principal	axes	of	the	thermal	ellipsoids	with
				resp	ect	to to	the crysta	llogra	phi	ic ax	es		

Atom	Root-mean-square	α	β	γ
Cu	0.120 Å	88°	90°	20
eu	0.120 11	90	0	90
	0.108	2	90	92
K(1)	0.144	90	0	90
(-)	0.222	86	90	4
	0.125	4	90	94
K(2)	0.141	105	90	15
(-)	0.144	90	0	90
	0.130	15	90	75
Cl(1)	0.142	130	90	40
(-)	0.172	90	0	90
	0.122	40	90	50
Cl(2)	0.146	90	0	90
()	0.154	44	90	135
	0.120	45	90	45
s	0.122	104	90	14
	0.123	90	0	90
	0.102	14	90	75
O(1)	0.139	86	90	4
()	0.209	90	0	90
	0.092	4	90	94
O(2)	0.145	56	107	39
• •	0.169	34	84	123
	0.100	85	18	73
O(3)	0.134	68	90	22
. /	0.197	90	0	90
	0.089	. 22	90	112

assuming that K, Cu, Cl, S and two O were on the symmetry plane. Atomic coordinates and anisotropic temperature parameters, in Tables 2 and 3 respectively, were refined by a modified version of the full-matrix least-squares program ORFLS (BUSING, MARTIN and LEVY,

Cu–Cl(1) (2 \times)	3.0467(2) Å	K(1)Cl(2)	3.213 (3) Å
Cl(1'')	2.237 (2)	Cl(1)	3.262 (3)
-Cl(2)	2.252 (2)	-O(2') (2 ×)	2.716(5)
O(1)	2.001 (6)	$-O(2)$ (2 \times)	2.719(5)
-O(3)	2.019 (6)		
		$K(2)$ - $Cl(2'')$ $(2 \times)$	3.1320(6)
S-O(1)	1.500 (6)	$-\mathrm{O}(2')$ (2 \times)	2.828(5)
-O(3)	1.506 (6)	O(3)	2.853(6)
-O(2) (2×)	1.460 (4)	O*(1)	2.744(6)

Table 6. Interatomic distances (with standard deviations in parentheses) in chlorotionite

* i1

-O(3)	2.019(6)		
		K(2)- $Cl(2'')$ (2 ×)	3.1320
-O(1)	1.500 (6)	$-\mathrm{O}(2')$ (2 $ imes$)	2.828
O(3)	1.506 (6)	-O(3)	2.853
$-O(2) (2 \times)$	1.460 (4)	-O*(1)	2.744
ndicates atoms	of adjacent cells.		

Table 7. Interatomic angles in CuCl₄O₂ and in SO₄

(with standard deviations in parentheses)

Cl(1)—Cu—Cl*(1)	$171.83(6)^{\circ}$	Cl(2)-Cu-O(1)	94.6(2)
Cl(1)	89.85(4)	O(1)-Cu-O(3)	70.7(2)
Cl(2)	94.05(4)	O(1) - S - O(3)	101.3(3)
— O(1)	89.17(4)	$-\mathrm{O}(2)$ (2 $ imes$)	112.2(2)
-O(3)	85.95(4)	O(3)-S-O(2) (2 ×)	111.8(2)
Cl(1)CuCl(2)	99.39(8)	O(2) - S - O(2)	111.2(3)
-O(3)	95.4(2)		

* indicates atoms of adjacent cells.

1962). The final R value is 0.032 for 893 observed reflections and 0.041 with the unobserved ones included. Observed and calculated structure factors are compared in Table 4. The analyses of the anisotropic thermal parameters are given in Table 5. Interatomic distances, angles and their standard deviations are in Tables 6 and 7.

Description of the structure

The complete atomic arrangement of chlorotionite is shown in Fig. 1. The crystal structure of chlorotionite is built up by three kinds of polyhedra: [Cu Cl₄O₂] pseudo-octahedra, SO₄ tetrahedra and KCl₂O₄ polyhedra.

Around Cu an irregular square-planar arrangement of ligand atoms occurs which involves two chlorine in cis position and two oxygen atoms, all placed on the mirror plane. The usual [4 + 2] coordination

Fig.1. Projection of the chlorotionite structure on the *xz* plane. For elarity some atoms are slightly shifted from the positions symmetrically related by mirror plane

is completed by two chlorine atoms which are the apices of the pseudooctahedron. The two closer chlorine neighbours have distances Cu-Cl(1) and Cu-Cl(2) of 2.24 and 2.25 Å respectively and the two more distant $Cu-Cl(1) [\times 2]$ of 3.05 Å. These values can be usefully compared with those found by DUNITZ (1957) in $CuPy_2Cl_2$, where each Cu has two closer chlorine atoms in *trans* configuration (2.28 Å) and two more distant (3.05 Å). As shown by Fig. 2 the metal-oxygen distances are Cu-O(1) = 2.00 Å and Cu-O(3) = 2.02 Å. It is of interest that the bond angles around the copper atom are strongly distorted (see Fig. 2 and 3). For example, O(1)-Cu-O(3) is almost 71° and $Cl^*(1)-Cu-Cl(1)$ is almost 172°. This last value is significantly different from that found in caledonite (GIACOVAZZO, MENCHETTI and

Fig. 2. Configuration and connection between Cu[Cl₄O₂] and SO₄ showing some metal-anions angles and distances

Fig.3. The Cu—S configuration showing O—O distances and four Cu-anion angles $\label{eq:cu}$

SCORDARI, 1973) and in copper dipyridine dichloride (DUNITZ, 1957) which are 177° and 176° respectively.

The sulphate group shows a distorted tetrahedral configuration with two S—O(1) and S—O(3) longer distances (1.50 and 1.51 Å) and two shorter symmetry related S—O(2) ones (1.46 Å). SO₄ tetrahedra are linked by O(1)—O(3) edges with Cu pseudo-octahedra. Because of their electrostatic repulsion, S and Cu are pushed towards O(2)—O^I(2) and Cl^{II}(1)—Cl(2) edges respectively. Consequently O(1)—O(3) is the smallest (2.32 Å) of the O—O distances in the SO₄ tetrahedron against an average value of 2.43 Å, and O(1)—S—O(3) is the smallest angle (about 102°) against an average value of 112°. The electrostatic repulsion Cu—S and the steric effect due to two bulky Cl atoms in *cis* position seem to cause the above-mentioned distortion occuring in the Cu pseudo-octahedra.

In chlorotionite there are two symmetrically independent potassium atoms K(1) and K(2) lying on the mirror plane. Both K(1) and K(2) are surrounded by four oxygen and two chlorine atoms, but the coordination polyhedra are rather different: K(1) has four K(1)—O(2) distances of 2.71 Å and two K(1)—Cl with a mean value of 3.24 Å. It lies at the top of a four-sided pyramid, whose basis is made by four oxygen atoms; two additional chlorine atoms complete the environement. The resultant polyhedron is similar to a trigonal prism.

K(2) has three K(2)—O distances with a mean value of 2.84 Å, one K(1)—O(1) of 2.74 Å, and two K(2)—Cl(2) of 3.13 Å. These six anions form a polyhedron similar to a distorted pseudo-octahedron. K(2) is much more influenced by the S-electrostatic repulsion than K(1). In fact, K(2)—O distances are in the average larger than K(1)—O and K(2)—Cl shorter than K(1)—Cl.

The most interesting structural features in chlorotionite are chains running along the *b* axis: Cu[Cl₂,O₂]Cl₂ pseudo-octahedra are connected via Cl(1) apices to form a straight chain. Two of these chains, shifted against each other by $\frac{1}{2}$ *b* are joined by common zigzag Cl(1)—Cl(1) edges to form a compact double chain (see Fig. 4) whose repeat unit is ${}_{1}^{\infty}$ [Cu₂Cl₄O₄(SO₄)₂]¹²⁻. SO₄ tetrahedra are linked on opposite sides to Cu pseudo-octahedra by O(1)—O(3) edges. They constitude a "head-bridge" towards parallel Cu chains (Fig. 1). The double chains are connected by K polyhedra.

As well known, Cu pseudo-octahedra frequently form simple chains as in natrochalcite (RUMANOVA and VOLODINA, 1958), in caledonite (GIACOVAZZO, MENCHETTI and SCORDARI, 1973), in linarite (BACHMANN and ZEMANN, 1961) etc., or sheets as in brochantite (Cocco e MAZZI, 1959), in dolerophanite (FLÜGEL-KAHLER, 1963), or three-dimensional networks as in cornetite (FEHLMANN *et al.*, 1964). This structure therefore reveals a rather unusual crystallochemical feature of Cu pseudo-octahedra.

Fig.4. Partial clinographic projection of chlorotionite. Cu pseudo-octahedra are linked forming chains parallel to the b axis

Considering physical properties of chlorotionite, the structure explains

a) the prismatic habit elongated in [010] direction. The direction of the Cu chains coincides in fact with b.

b) the easy cleavage on $\{100\}$, $\{101\}$, $\{001\}$. The cleavage planes $\{100\}$ and $\{001\}$ were already noticed by BELLANCA (1946) together with a $\{010\}$ easy cleavage plane. However, the structure does not explain this last one.

This work was supported by the Italian C.N.R. contract No. 75.00034.05.115.4593.

References

- H. G. BACHMANN und J. ZEMANN (1961), Die Kristallstruktur von Linarit, PbCuSO₄(OH)₂. Acta Crystallogr. 14, 747–753.
- A. BELLANCA (1946). Cella elementare e gruppo spaziale della clorotionite. Periodico Min. 15, 33-41.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1962), ORFLS. 2nd edit. Oak Ridge National Laboratory Report ORNL-TM-305.
- G. Cocco e F. Mazzı (1959), La struttura della brochantite. Periodico Min. 28, 121–149.
- J. D. DUNITZ (1957), The crystal structures of copper dipyridine dichloride and the violet form of cobalt dipyridine dichloride. Acta Crystallogr. 10, 307–313.
- M. FEHLMANN, S. GHOSE and J. J. FINNEY (1964), Direct determination of the crystal structure of cornetite, Cu₃PO₄(OH)₃, by the Monte Carlo Method. J. Chem. Physics 41, 1910–1916.
- E. FLÜGEL-KAHLER (1963), Die Kristallstruktur von Dolerophanit, Cu₂O(SO₄). Acta Crystallogr. 16, 1009–1014.
- G. GERMAIN, P. MAIN and M. M. WOOLFSON (1971), The application of phase relations to complex structures. III. The optimum use of phase relationships. Acta Crystallogr. A 27, 368–376.
- C. GIACOVAZZO, S. MENCHETTI and F. SCORDARI (1973), The crystal structure of caledonite, Cu₂Pb₅(SO₄)₃CO₃(OH)₆. Acta Crystallogr. B **29**, 1986–1990.
- W. C. HAMILTON (1959), On the isotropic temperature factor equivalent to a given anisotropic temperature factor. Acta Crystallogr. 12, 609-610.
- I. M. RUMANOVA and G. F. VOLODINA (1958), From crystal chemical classification of minerals. 2nd edit. by A. S. POVARENNYKH, Plenum Press, New York, 1972.
- A. SCACCHI (1872). From A. BELLANCA (1946), Periodico Min. 15, 33-41.
- F. ZAMBONINI (1935). From A. BELLANCA (1946), Periodico Min. 15, 33-41.