Affinement de la structure cristalline du monophosphate d'argent Ag₃PO₄. Existence d'une forme haute témperature

Par R. MASSE, I. TORDJMAN et A. DURIF

Laboratoire des Rayons X. C.N.R.S. Grenoble*

(Reçu le 10 janvier 1976)

Abstract

The crystal structure of the well-known monophosphate Ag_3PO_4 was refined until a final R value of 0.042 for 90 independent reflections. The phosphate group PO₄ is a regular tetrahedron. A high-temperature cubic form was identified. This new form is isotypic with γ Na₃PO₄, a = 7.720(8) Å.

Résumé

La structure cristalline du monophosphate d'argent Ag₃PO₄, cubique, a été affinée jusqu'à la valeur de R = 0.042 pour 90 réflexions indépendantes. Le groupement PO₄ est un tétraèdre régulier. Une forme haute température a été mise en évidence. Elle est eubique, isotype de γ Na₃PO₄, a = 7.720(8) Å.

Introduction

La structure cristalline de Ag_3PO_4 a été décrite depuis 1925 par de nombreux auteurs (WYCKOFF, 1925; HELMHOLZ, 1936; HANA-WALT *et al.*, 1938; VEGARD, 1947).

Elle n'a jamais été vraiment précisée et les études sur monocristaux font apparaître des raies de diffraction incompatibles avec la description des atomes d'argent, de phosphore et d'oxygène dans les positions spéciales du groupe $P\overline{4}3n$. Nous avons montré que le modèle de WYCKOFF est affinable dans le groupe spatial $P\overline{4}3n$.

Préparation chimique

On dissout dans l'eau l'orthophosphate disodique Na_2HPO_4 , $12H_2O$, puis on ajoute du nitrate d'argent $AgNO_3$.

 Na_2HPO_4 , $12H_2O + 3AgNO_3 \rightarrow Ag_3PO_4 + 2NaNO_3 + HNO_3 + 12H_2O$.

* 166 X - Centre de Tri, 38042 - Grenoble Cedex, France.

L'orthophosphate d'argent Ag_3PO_4 précipite sous forme de poudre fine de couleur jaune. On la redissout ensuite dans une solution d'ammoniaque. En évaporant vers 70 °C cette solution, on obtient de beaux cristaux, couleur gris jaune, de forme octaédrique. La préparation est inspirée de celle utilisée par WYCKOFF (1925).

Données cristallographiques

Le paramètre de maille a été affiné par la méthode des moindres carrés à partir de valeurs angulaires recueillies au diffractomètre automatique Philips, à la longueur d'onde $\lambda_{MoK\bar{x}} = 0.7107$ Å.

$$a = 6,026(5)$$
 Å
 $V = 218,8(5)$ Å³
 $d_{\rm x} = 6,354$ g/cm³.

Technique expérimentale

Nous avons enregistré au diffractomètre automatique Philips PW 1100, avec monochromateur, 2477 réflexions non indépendantes.

— dimensions du cristal : $0,10 \times 0,10 \times 0,10$ mm³.

- absorption: $\mu R = 0.6$.

- nombre de réflexions indépendantes: 103 après avoir effectué les moyennes compte-tenu de la symétrie cubique.

- nombre de réflexions utilisées pour l'affinement: 103.

- radiation utilisée: $\lambda_{MoK\overline{a}} = 0,7107$ Å.
- domaine de mesure: $3^{\circ} < \theta < 40^{\circ}$.
- vitesse de balayage: 0,04°/sec.
- balayage en ω largeur de balayage: 1° θ .

Etude structurale

Comme WYCKOFF (1925) nous avons décrit la structure de Ag₃PO₄ dans le groupe spatial $P\overline{43}n$. La symétrie cubique est confirmée par l'étude radiocristallographique du cristal.

Ag	en	position	6d
Р	\mathbf{en}	position	2a
0	\mathbf{en}	position	8e .

Un affinement par la méthode des moindres carrés conduit à un résidu cristallographique $R = 12^{0}/_{0}$, si l'on attribue des coefficients

isotropes de température à chacun des atomes. Les intensités des réflexions (410), (810), (430) et (621) sont calculées nulles conformément aux conditions de réflexions autorisées par les positions spéciales 6d, 2a et 8e. Elles sont pourtant observées sur les diagrammes de rayons X et ont pu être mesurées au diffractomètre automatique. Elles sont dues aux effets de vibration thermique anisotrope comme le montre le calcul des facteurs de structure. Le facteur de structure peut s'écrire:

$$egin{aligned} F_{\mathbf{c}}(hkl) &= \sum\limits_{i=1}^{i=n} fi imes \mathrm{e}^{-Ti} imes \mathrm{e}^{i\,q_i} \ ec{q}_i &= 2\pi(hx_i+ky_i+lz_i) \end{aligned}$$

$$T_i = h^2(\beta_{11})_i + k^2(\beta_{22})_i + l^2(\beta_{33})_i + 2hk(\beta_{12})_i + 2hl(\beta_{13})_i + 2kl(\beta_{23})_i.$$

Pour les raies (410), (810), (430) et (621) F_c n'est pas nul contrairement aux conditions de symétrie du groupe $P\bar{4}3n$. Les coefficients T_i pour chaque position équivalente d'un même site cristallographique ont une valeur différente à cause des relations de symétrie existant entre les β_{ij} . Le calcul des F_c pour ces raies montre que seule la contribution de l'argent (6d) intervient. L'effect d'anisotropie est dû essentiellement à l'argent, la contribution des autres sites étant nulle. Un affinement effectué sur le paramètre x de position du site d'oxygène et sur les coefficients anisotropes β_{ij} de l'ensemble des sites conduit à un résidu cristallographique $R = 6,9^{0}/_{0}$ sur 103 réflexions. Si l'on

Tableau 1. Coordonnées cristallographiques des atomes

	x	y	z		
Ag	0,25	0	0,5		
P O	0,1486(9)	0 0,1486(9)	0,1486(9)		

Tableau 2.	Facteurs	de	température	anisotropes	ßii	$\times 10^{4}$
------------	----------	----	-------------	-------------	-----	-----------------

	β_{11}	β_{22}	β33	β ₁₂	β_{13}	β23
$\mathbf{A}\mathbf{g}$	221(4)	103(3)	103(2)	0	0	0
Р	65(4)	65(4)	65(4)	0	0	0
0	112(9)	112(9)	112(9)	-29(10)	-29(10)	-29(10)

	U	θ_a	θ_b	θ_c
	0.202 Å	0°	90°	90°
Aσ	0,138	90	0	90
6	0,138	90	90	0
	0.110	0	90	90
Р	0.110	90	0	90
	0,110	90	90	0
	0.162	45	135	90
0	0.162	114	114	35
0	0,100	54	54	54

 U^2 : carrés moyens des amplitudes de vibration thermique le long des axes principaux des ellipsoïdes de vibration.

 $\theta_a, \theta_b, \theta_c$: angles des axes principaux des ellipsoïdes de vibration thermique avec les axes cristallographiques a, b, c.

rejette 13 réflexions les moins bien mesurées, $R = 4,2^{0}/_{0}$ pour 90 réflexions. Le tableau 1 donne les coordonnées cristallographiques, les tableaux 2 et 3 les facteurs de température anisotropes.

Fig. 1. Projection suivant [001] de la structure Ag₃PO₄

Tableau 3. Axes principaux des ellipsoïdes de vibration thermique

Description de la structure

Ag₃PO₄ est fait de tétraèdres PO₄ et AgO₄ qui se joignent par leurs sommets. Trois tétraèdres mettent un sommet en commun. Le tétraèdre AgO₄ possède la symétrie $\overline{4}mm$. Le tétraèdre PO₄ possède la symétrie du tétraèdre parfait: $\overline{4}3m$. Le tableau 4 donne les distances interatomiques et angles de liaison. La distance P—O est celle habituellement rencontrée dans les monophosphates: 1,54 Å en moyenne. Nous avons ici l'exemple d'un monophosphate ou le tétraèdre PO₄ est régulier.

Tétraèdre Ag $-O_4$	
Ag-O = 2,379(1) O-O = 3,473(1) O-O = 4,598(1)	$O-Ag-O = 93,76^{\circ}$ O-Ag-O = 150,19
Tétraèdre PO ₄	
P-O = 1,551(3)	$O-P-O = 109,48^{\circ}$

Données cristallographiques de la forme haute-témperature

O - O = 2,533(3)

Une étude par microanalyse thermique différentielle de Ag_3PO_4 montre une transformation réversible à 520 °C. A l'aide d'une chambre haute-température Siemens modifiée par LISSALDE (1974), un enregistrement du diffractogramme de poudre de Ag_3PO_4 a été effectué

Tableau 5. Facteurs de structure observés et calculés

h k 1	F	P _e	h k l	P _o	۴	h k l	r,	r _c	b k 1	۶	r.	h k 1	F _o	F.
200	107,1	109,9	820	19,0	19,3	611	45,4	44,2	4 2 2	45,4	44,0	862	12,5	12,4
4	160,9	177,9	9	36,4	33.5	321	91.6	91.6	6	76.1	79.0	772	19.8	17.9
6	82,6	81,4	330	17.2	18.4	4	99.8	111.0	в	25.5	25.7	8	15.2	15.1
8	74,7	75,9	à.	11,0	16,9	5	62,7	62.3	10	24,5	25,6	4 3 3	35,1	34.7
10	27,8	26,2	5	27,2	28,1	6	13.3	17.4	332	66,3	64,5	6	36.4	36.8
1 1 0	50,9	48,2	6	57,9	63.7	7	37,1	37.0	4	83,1	77.7	543	14.9	16.3
2	151,8	194.9	7	25.9	27.8	a	33.0	38.1	5	51,8	50.3	6	38.9	35.5
3	82,2	81,0	8	13.9	15.8	9	25.0	24.6	7	38.8	37.0	653	25.4	24.8
4	14,5	20,1	10	18,1	20.0	10	10,8	11.7	8	27.8	26.5	763	12.1	12.6
5	36,8	35,5	440	135,1	145.3	431	16.3	16.7	9	23.0	21.4	8	14.8	17.6
6	65,5	73,8	6	40,0	39.4	6	27.8	28.5	442	39.8	38.8	444	84.8	87.8
7	14,2	14,8	8	50,6	52,1	10	10,6	31.4	5	62,0	68,2	5	11.9	11.4
8	14,9	17,8	10	27,7	26,5	541	18,6	20,3	6	11,3	12,2	6	38.3	37.8
9	15.0	15,1	550	23.5	23.0	6	44.0	40.2	7	41.4	46.6	8	39.8	40.4
10	18,2	22,3	6	41.8	49.3	7	16.0	16.0	8	14.6	14.7	654	29.6	35.0
220	50,2	49.9	7	14,2	14.4	10	13,1	11.6	9	26.7	29.5	764	21.8	19.7
3	128,9	129,4	760	31.7	27.9	651	27.6	26,1	552	40.0	40.2	8	11.0	11.0
4	76.8	76.1	8	20,5	20.2	761	21.5	21.9	7	27.4	27.8	655	19.9	18.6
5	91,3	85,9	9	18,8	17.8	8	16,2	19.6	8	24,0	21,0	765	12.5	12.8
6	12,9	13,4	211	105,9	108,5	9	11,6	11,5	9	16.9	17.6			
7	59,0	54,6	4	42,5	42,2	2 2 2	164,9	194,4	662	39,6	41,8			

Tableau 6. Depouillement d'un diagramme de poudre Ag₃PO₄ forme haute température

hkl	dobs	d_{calc}	Iobs
111	4,45	4,46	12
200	3,85	3,86	7
220	2,730	2,729	100
311	2,326	2,327	5
222	2,227	2,228	10
400	1,931	1,930	7
422	1,576	1,576	. 7
440	1.364	1,365	2

à 610° ± 5°C. Le support de l'échantillon était un film de platine. Les raies de diffraction (111) et (200) du platine ont servi de référence pour la mesure. La radiation utilisée est: $\lambda(CuK\alpha_1) = 1,54051$ Å.

La maille est cubique faces centrées: $a = 7.720 \pm 0.008$ Å. Ag₃PO₄ forme haute-température est isotype de γ Na₃PO₄ forme haute-température (PALAZZI *et al.*, 1971). Le tableau 6 donne le dépouillement d'un diagramme de poudre.

Références

- J. D. HANAWALT, H. W. RINN and L. K. FREVEL (1938), Chemical analysis by x-ray diffraction. Ind. Eng. Chem., Anal. Ed. 10, 457-512.
- L. HELMHOLZ (1936), The crystal structure of silver phosphate. J. Chem. Physics 4, 316-322.
- F. LISSALDE (1974), Thèse. Université Scientifique et Médicale de Grenoble. N° Ordre, CNRS. 9435.
- M. PALAZZI, FR. REMY et H. GUERIN (1971), Polymorphisme des orthoarséniates et orthophosphates trisodiques anhydres. C.R. Acad. Sc. [Paris] 272 C, 1127.
- L. VEGARD (1947), The crystal structure of Ag₃PO₄ and Ag₃AsO₄. Skrifter Norske Videnskaps. Akad. [Oslo] I. Mat. Naturv. K1. 1947, N° 2, 67-72.
- R. W. G. WYCKOFF (1925), Kristallstruktur des Silberphosphats und Silberarsenats. Z. Kristallogr. 62, 529-539. — Crystal structure of silver phosphate and silver arsenate. Amer. J. Sci. 10, 107-118.

6

81