Die Kristallstruktur des Nickelbromids und -jodids.

Von

J. A. A. Ketelaar in Amsterdam.

Über die Struktur des Nickelbromids und -jodids liegen zur Zeit keine Angaben vor. Die Untersuchung dieser Verbindungen erschien wichtig, weil dadurch eine Lücke im Strukturschema der Dihalogenide beseitigt werden konnte.

Die Herstellung der Präparate geschah in der Weise, daß Lösungen von Nickelhydroxyd oder -carbonat in wäßriger Brom- und Jodwasserstoffsäure auf dem Wasserbade zur Trockne eingedampft wurden. Für die Röntgenaufnahmen wurden die Substanzen wegen ihrer Zerfließlichkeit in dünnwandigen Lindemannröhrchen eingeschlossen.

Nickelbromid.

Nickelbromid wurde auf die obengenannte Weise als ein ockerfarbiges, hygroskopisches Pulver erhalten. Durch Umkristallisieren aus Alkohol und Trocknen bei 440° wurde ein reines wasserfreies Präparat erhalten, wie aus den Nickelbestimmungen hervorging. Die Röntgenogramme (Tab. II) dieses Präparats waren freilich identisch mit denen des nicht umkristallisierten Produktes.

Durch Sublimation in einer *HBr*-Atmosphäre bei Rotglut wurde das Nickelbromid in Form schillernder Blättchen erhalten. Eine Pulveraufnahme dieses Präparats ist in Tab. I wiedergegeben.

Aus den Aufnahmen des sublimierten Nickelbromids geht hervor, daß dieses die Kristallstruktur des $CdCl_2$ -Typus besitzt, mit den Elementarabständen:

Hexagonaler Elementarkörper

 $a = 3,71^5 \pm 0,01$ Å, $c = 18,30 \pm 0,04$ Å, $\frac{c}{a} = 4,93$. Anz. d. Moleküle Z = 3. Rhomboedrischer Elementarkörper

 $a = 6.46^5 + 0.02$ Å, $a = 16^{\circ} 40$. Anzahl der Moleküle Z = 1.

Die berechnete Dichte beträgt d = 5,25, während pyknometrisch d = 5,40 gefunden wurde.

¹⁾ W. Biltz und E. Birk, Z. anorg. Ch. 127, 37. 1923.

In Übereinstimmung mit der $CdCl_2$ -Struktur wurden nur Reflexionen beobachtet, welche die Rhomboederbedingung erfüllen. Die Anordnung der Atome im Grundrhomboeder ist:

Ni: 000; $2 Br: uuu, \overline{u}\overline{u}\overline{u}.$

Mit einem Parameterwert $u = 0.255 \pm 0.003$ für die Br-Atome ergibt sich eine gute Übereinstimmung zwischen beobachteten und berechneten Intensitäten, wie aus Tab. I hervorgeht. Wegen des Vorherrschens der Basisflächen im Pulver sind die Reflexionen dieser sowie diejenigen an Flächen mit geringer Neigung gegenüber diesen Begrenzungsflächen (z. B. 40I.19) in der Intensität bevorzugt. Zwecks genauerer Festlegung der Intensitätsverhältnisse der verschiedenen Ordnungen der Basis wurden Aufnahmen gemacht, wo diese Tatsache noch mehr ausgenutzt wurde, in dem die blättchenförmigen Kristallmassen zwischen zwei Mikroskopdeckgläschen unter Druck zerrieben wurden. Die Aufnahmen eines solchen Gläschens zeigten die erwarteten Einkristallreflexionen der Basisflächen; die Prismenreflexionen waren dagegen fast vollständig verschwunden.

Die Berechnung geschah mit der Formel:

$$S = F_{Ni} + 2 F_{Rr} \cos 2\pi u \left(h + k + l\right)$$

In der 6. Spalte der Tab. I ist angegeben S^2 , berechnet mit $F_{Ni} = 4$ und $F_{Br} = \frac{4}{3}$.

Die Röntgenogramme des nicht sublimierten Nickelbromids weichen aber beträchtlich ab von denen des sublimierten Produktes¹). Es handelt sich um eine Wechselstruktur, eine Schwankung zwischen dem $CdCl_2$ -Typus und dem CdJ_2 -Typus, wie diese vor kurzem von Bijvoet und Nieuwenkamp bei $CdBr_2$ gefunden wurde. Für eine Diskussion dieser Struktur sei auf diese Arbeit verwiesen²). Wie dort angegeben, läßt sich die Wechselstruktur auf einen hexagonalen Elementarkörper beziehen, welcher nur $\frac{1}{3}$ Molekül $NiBr_2$ enthält.

Die Abmessungen dieses Elementarkörpers sind:

 $a = 2.41 \pm 0.005$ Å, $c = 6.08 \pm 0.04$ Å, $Z = \frac{1}{3}$.

¹⁾ Erst durch Erhitzung auf 600° geht die Wechselstruktur über in die $CdCl_2$ -Struktur des sublimierten Produktes. Auch $NiBr_2$, erhalten durch thermische Zersetzung von $Ni(NH_3)_6Br_2$, zeigt das Röntgenogramm der Wechselstruktur mit denselben Elementarabständen.

²⁾ J. M. Bijvoet und W. Nieuwenkamp, Z. Krist. 86, 466. 1933.

Abst.	40^{3}	$40^3 \sin^2 \Theta$	h k i l	h h l	Inter	ısität	
in	$\sin^2\Theta$	berechnet	hexagonal	rhom-	berechn	1.	beob-
<u>mm¹</u>)	beob.			boedrisch	νS^2	$\Sigma \nu S^2$	acht.
7,3	46,1	15, 9	0003	111	3	3	st.
		58, 8	1011	100	5	5	
44,6	63,2	64, 0, 63, 6	1012, 0006	140, 222	17+5	22	s. st.
17,1	86,5	85,5	1014	211	80	80	m.st.
		101	1015	221	2	2	-
22,4	145	143, 143	1017, 0009	322, 333	45+0	15	s.
24,5	171	170, 171	101 8, 112 0	332, 110	78+80	158	st.
25,8	190	187	$11\bar{2}3$	210	19	19	s.
28,9	234	232, 234, 234,	2021, 10110, 1126,	111, 433, 321,	5+14+	67	m. s.
		236	$20\overline{2}2$	200	31 + 17		
30,3	254	255, 257	$00012, \ 20\overline{2}4$	444, 220	24 + 80	104	s.st.
31,4	271	271, 273	$10\overline{1}11$, $20\overline{2}5$	443, 311	22 + 2	24	m.s.
		314, 315	1129, 2027	432, 331	1+15	16	
36, 0	345	342	$20\bar{2}8$	422	78	78	m.s.
	-	355	10113	445	0	0	
39,0	396	398	00015	555	40	10	m.s.
39,5	404	402, 403, 406,	2131, 10114, 20210,	210, 554, 442,	10+12	70	s.+
		407	$21\overline{3}2$	$1\overline{1}\overline{2}$	+14+34		1
40,9	429	426, 428	$11\overline{2}12, 21\overline{3}4$	543, 310	145 + 160	305	st.
41,7	443	443, 444	$20\overline{2}41, 21\overline{3}5$	533, 320	22 + 4	26	s.s.
	-	486	2137	421	30	30	
45,7	512	510, 513, 514	10 116, 2 138, 3 030	655, 431, 2 1 1	66+156 + 80	302	st.+
$46,\! 6$	528	527, 530	$20\bar{2}43, \ 30\bar{3}3$	$553, 300, 22\overline{1}$	0+10+10	20	s.
49,2	573	568, 569, 572,	$10\overline{1}17, 11\overline{2}15, 00018$	665, 654, 666,	1+59+	136	m.
		575, 577, 577	20214, 3036, 21310	644, 330, 411,	3+12+		
				532	16 + 16 + 29		
52,4	627	624	21311	542	43	43	s
		657	3039	225, 441	0,5+0,5	1	
55,9	685	682, 687	$20\overline{2}16, 22\overline{4}0$	$664, 2\overline{2}0$	66 + 80	146	m.
56,4	694	695, 698	40149, 21343	766, 643	38 + 0	38	m.
	_	703	$22\bar{4}3$	311	19	49	
		740	$20\bar{2}47$	755	1	1	
59,9	748	743, 746, 746,	11218, 3141, 21314,	765, 221, 653,	19 + 10 +	118	m. s.
		750, 754	$22ar{4}6,31ar{4}2$	$420, 3\overline{1}0$	24 + 31 + 34		
61,1	766	766, 769, 772	10120, 30312, 3144	776, 633, 522,	59 + 73	365	st.
				$32\overline{1}$	+73+160		
62,4	786	782, 788	00021, 3145	777, 440	1+4	5	s.
	_	830, 831	2249, 3147	531, 430	1 + 30	31	-
68,3	863	853, 857, 867	21316, 3148, 20219	754, 521, 775	132 + 156	326	st. br.
				1	+38		mehrf.
			•				•

Tabelle I. Pulverdiagramm von $NiBr_2$ (sublimiert), CuKa-Strahlung, Kameraradius 2,84 cm.

1) Korrigiert für Stäbchendicke.

Zum Vergleich seien auch die Abmessungen des Elementarkörpers vom gleichen Inhalt wie jener des sublimierten Nickelbromids im $CdCl_2$ -Typus angegeben.

Wechselstruktur:
$$a = 3,65 \pm 0,01$$
 Å, $c = 48,24 \pm 0,03$ Å
CdCl₂-Struktur: $a = 3,71^5 \pm 0,01$ Å, $c = 48,30 \pm 0,04$ Å.

Vergleichen wir diese beide Formen, so fällt auf, daß die Abmessungen in Richtung der hexagonalen c-Achse praktisch übereinstimmen, in Richtung der a-Achse jedoch ein Unterschied besteht, und zwar hat die Wechselstruktur den kleineren Elementarkörper und somit die größere Dichte. Diese ist $d_{R\delta} = 5,45$, während sublimiertes Nickelbromid die Dichte $d_{R\delta} = 5,25$ besitzt.

Die Beugung erfolgt bei der Wechselstruktur an einem hexagonalen Gitter mit:

$$\frac{1}{3}Ni: 000; \frac{2}{3}Br: 00u, 00\bar{u}.$$

Tabelle II. Pulverdiagramm von $NiBr_2$ (Wechselstruktur) CuKa-Strahlung Kameraradius 2,84 cm.

Abstand	$10^3 \sin^2 \Theta$	$10^3 \sin^2 \Theta$	$h \ k \ i \ l$	${ m Intensit}$ at vS^2			
in mm ¹)	beobachtet	berechnet		$\mathbf{b}\mathbf{e}\mathbf{r}\mathbf{e}\mathbf{c}\mathbf{h}\mathbf{n}\mathbf{e}\mathbf{t}$	beobachtet		
7,2	16	16	0001	3	m. s.		
14,6	64	64	0002	5	m. s.		
—		144	0003	1			
25,0	178	178	40 1 0	80	st.		
26,2	496	186	4014	16	s.		
29,5	241	242	$40\overline{1}2$	32	m. s.		
30,4	256	256	0004	26	m. s.		
		322	4013	4			
39,1	398	400	0005	6	s. s.		
41,3	434	434	1014	156	st.		
46,9	534	534	$44\overline{2}0$	80	m. st.		
48,3	558	560	1121	16	s. s. s.		
49,3	575	576, 578	0006, 40 4 5	39	m. s+		
50,6	597	598	$41\overline{2}2$	32	m. s.		
		678	$44\overline{2}3$	4			
57,7	714	742	$20\bar{2}0$	80	m. st.		
		728	$20\overline{2}4$	16			
60,2	752	754	10 16	29	s. s.		
61,9	778	776	$20\bar{2}2$	32	s.		
_		784	0007	0			
$62,\! 6$	789	790	$11\overline{2}4$	156	st.		

1) Korrigiert für Stäbchendicke.

 S^2 wird berechnet mit der Formel: $S = F_{Ni} + 2F_{Br} \cos 2\pi ul$ mit $F_{Ni} = 4$ und $F_{Br} = \frac{4}{3}$ und einem Parameterwert $u = 0.258 \pm 0.005$. Auch hier ist die Übereinstimmung zwischen beobachteten und berechneten Intensitäten sehr gut, wodurch die von Bijvoet und Nieuwenkamp aufgestellte Wechselstruktur eine weitere Bestätigung findet.

Tabelle III. Pulverdiagramm von NiJ₂, CuKa-Strahlung, Kameraradius 2,47 cm.

Abstand	$10^3 \sin^2 \Theta$	$40^3 \sin^2 \Theta$	$h \ k \ i \ l$	h k l	Inte	nsität
in mm ¹)	beob.	berechnet	hexagonal ²)	rhomboedr.	vS^2 ber.	beobacht.
6,1	15	14	0003	111	42	m. st.
11,8	56	55,5	0006	222	48	s. st.
12,1	59	58	$10\overline{1}2$	110	54	s.
13,9	77	77	1014	211	150	s. st.
17,9	126	125	0009	333	2	s.
19,7	15 0	151	1018	332	450	st.
20,1	157	156	$41\overline{2}0$	440	150	st.
23,2	205	206	10110	433	54	s .
23,7	213	212, 214	$11\bar{2}6, \ 20\bar{2}2$	321, 200	162	m. s.
24,2	221	222	00042	444	50	m.
24,9	233	234	$20\overline{2}4$	220	150	m. s.
30,8	307	307	$20\overline{2}8$	422	15 0	m. s.
31,1	347	347	00045	555	2	8
31,7	358	354, 362	10114, 20210	554, 442	108	s.
32,4	372	372	2132	$4\overline{4}\overline{2}$	108	s^+
32,7	378	378	$11\overline{2}12$	543	300	m. st.
33,3	390	389	$21\overline{3}4$	310	300	m. st.
36,2	447	446	40116	655	45 0	m. s.
37,1	467	466	303 0	$2\overline{1}\overline{1}$	450	m. s.
38,8	500	498	00018	666	18	m. s.
39,2	508	540	$20\bar{2}14$	644	54	s.
39,9	522	518, 523	$21\bar{3}10, \ 30\bar{3}6$	532, 330, 414	216	m. s.
43,8	600	602	$20\overline{2}16$	664	450	s.
45,0	624	624	$22\overline{4}0$	$2\overline{2}0$	150	s.
46,5	654	654	$11\bar{2}18$	765	108	s.
47,1	665	666, 667	21314, 10120	653, 776	162	m. s.
48,0	682	679, 680,	$00021, 22\overline{4}6,$	777, 420,	218	m.
		683	$31\overline{4}2$	340		
48,5	691	690	$30\bar{3}12$	633, 552	300	m. s.
49,0	704	701	$31\overline{4}4$	$32\overline{1}$	300	m.
52,0	755	758	$21\bar{3}16$	754	300	m.
53,0	772	770	$31\overline{4}8$	524	300	m.

1) Korrigiert für Stäbchendicke.

2) Reflexionen hkil mit $l \neq 2p$, ausgenommen die Basisreflexionen, wurden nicht beobachtet und sind fortgelassen.

Nickeljodid.

Nickeljodid wurde wie oben beschrieben erhalten als eine schwarze, dem Jod ähnliche Masse.

In Tab. III ist eine Pulveraufnahme wiedergegeben. Die Struktur ist, wie beim Nickelbromid, vom $CdCl_2$ -Typus; Andeutungen einer Wechselstruktur wurden hier jedoch nicht erhalten.

Die Abmessungen des Elementarkörpers sind:

Hexagonaler Elementarkörper:

$$a = 3,89^5 \pm 0,01$$
 Å, $c = 19,63 \pm 0,04$ Å, $\frac{c}{a} = 5,04, Z = 3.$

Rhomboedrischer Elementarkörper:

 $a = 6.92 \pm 0.02$ Å, $a = 16^{\circ}20'$, Z = 1.

Die berechnete Dichte beträgt d = 6,36, während in der Literatur $d = 5,83^{1}$) angegeben wird.

Zum Unterschied von Nickelbromid werden bei Nickeljodid fast ausschließlich Reflexionen mit geradem Index l beobachtet. Eine Ausnahme bilden die Basisreflexionen 0009, 00045 und (00024). Das Vorkommen dieser Reflexionen mit kleinem Strukturfaktor ist wohl dem Vorherrschen der Basisflächen im Pulver zuzuschreiben.

Aus den beobachteten Intensitäten läßt sich der Parameter der Jodatome zu $u = 0,250 \pm 0,005$ bestimmen. Bei der Berechnung von S² nach der Formel auf S. 27 wurde $F_{Ni} = 4$ und $F_J = 2$ gesetzt.

Diskussion der Struktur.

Die Kristallstruktur des Nickelbromids und des Nickeljodids gehört dem $CdCl_2$ -Typus an. Die Brom- bzw. Jodatome befinden sich in fast regelmäßiger kubisch dichtester Kugelpackung. Diese Struktur bildet ein Schichtengitter, indem Schichten bestehend aus zwei Anionenschichten, welche eine Ebene besetzt durch Metallatome einschließen, und Schichten bestehend aus zwei unmittelbar aufeinander folgenden Anionenebenen miteinander abwechseln.

Der Parameter u der Jodatome in NiJ_2 weicht nicht merkbar ab von dem Idealwert u = 0.25; die Ebenen der Anionen sind alle äquidistant. Bei dem sublimierten $NiBr_2$ und ebenfalls bei der Wechselstruktur ist der Parameter jedoch u = 0.255 bzw. u = 0.258. Der Abstand zweier Ebenen von Bromatomen beiderseits einer Ebene von Nickelatomen ist geringer als der Abstand zwischen zwei unmittelbar aufeinander folgenden Anionenebenen. Diese Abweichung der Äquidistanz dürfte ihren Grund

¹⁾ W. Biltz nnd E. Birk, loc. cit.

 S^2 wird berechnet mit der Formel: $S = F_{Ni} + 2F_{Br} \cos 2\pi ul$ mit $F_{Ni} = 1$ und $F_{Br} = \frac{4}{3}$ und einem Parameterwert $u = 0.258 \pm 0.005$. Auch hier ist die Übereinstimmung zwischen beobachteten und berechneten Intensitäten sehr gut, wodurch die von Bijvoet und Nieuwenkamp aufgestellte Wechselstruktur eine weitere Bestätigung findet.

Tabelle III. Pulverdiagramm von NiJ₂, CuKa-Strahlung, Kameraradius 2,47 cm.

Abstand	$40^3 \sin^2 \Theta$	$10^3 \sin^2 \Theta$	$h \ k \ i \ l$	$h \ k \ l$	Inte	nsität
in mm ¹)	beob.	$\mathbf{berechnet}$	hexagonal²)	rhomboedr.	vS^2 ber.	beobacht.
6,1	15	14	0003	111	12	m. st.
41,8	56	55,5	0006	222	18	s. st.
12,1	59	58	1012	440	54	s.
13,9	77	77	1014	211	150	s. st.
47,9	126	125	0009	333	2	s.
19,7	150	151	$10\overline{1}8$	332	15 0	st.
20,1	157	156	$11\bar{2}0$	110	150	st.
23,2	205	206	10 110	433	54	s.
23,7	213	212, 214	$11\overline{2}6, \ 20\overline{2}2$	321, 200	162	m. s.
24,2	224	222	00042	444	50	m.
24,9	233	234	$20\overline{2}4$	220	150	m. s.
30,8	307	307	$20\overline{2}8$	422	150	m. s.
31,1	347	347	00015	555	2	s^{-}
31,7	358	$354, \ 362$	$10\overline{1}14, \ 20\overline{2}10$	554, 442	108	s.
32,4	372	372	$21\overline{3}2$	112	108	s^+
32,7	378	378	$11\overline{2}12$	543	300	m. st.
33,3	390	389	$21\overline{3}4$	340	3 00	m. st.
36,2	447	446	10 116	655	450	m. s.
37,1	467	466	$30\overline{3}0$	$2\overline{1}\overline{1}$	1 50	m. s.
38,8	500	498	00018	666	18	m. s.
39,2	508	510	$20\overline{2}14$	644	54	s.
39,9	522	518, 523	$21\bar{3}10, \ 30\bar{3}6$	532, 330, 41	l 246	m. s.
43,8	600	602	$20\overline{2}16$	664	150	s.
45,0	624	624	$22\overline{4}0$	$2\overline{2}0$	45 0	s.
46,5	654	654	$11\overline{2}18$	765	108	s.
47,1	665	666, 667	21314, 10120	653, 776	162	m. s.
48,0	682	679, 680,	$00021, 22\overline{4}6,$	777, 420,	218	m.
		683	$31ar{4}2$	310		
48,5	691	690	$30\overline{3}12$	633, 552	300	m. s.
49,0	704	701	$31\overline{4}4$	$32\overline{1}$	300	m.
52,0	755	758	$21\bar{3}16$	754	300	m.
53,0	772	770	$31\overline{4}8$	524	300	m.

1) Korrigiert für Stäbchendicke.

2) Reflexionen hkil mit $l \neq 2p$, ausgenommen die Basisreflexionen, wurden nicht beobachtet und sind fortgelassen.

Nickeljodid.

Nickeljodid wurde wie oben beschrieben erhalten als eine schwarze, dem Jod ähnliche Masse.

In Tab. III ist eine Pulveraufnahme wiedergegeben. Die Struktur ist, wie beim Nickelbromid, vom $CdCl_2$ -Typus; Andeutungen einer Wechselstruktur wurden hier jedoch nicht erhalten.

Die Abmessungen des Elementarkörpers sind:

Hexagonaler Elementarkörper:

$$a = 3,89^5 \pm 0,01$$
 Å, $c = 19,63 \pm 0,04$ Å, $\frac{c}{a} = 5,04, Z = 3.$

Rhomboedrischer Elementarkörper:

 $a = 6,92 \pm 0,02$ Å, $a = 16^{\circ}20'$, Z = 4.

Die berechnete Dichte beträgt d = 6,36, während in der Literatur $d = 5,83^{1}$) angegeben wird.

Zum Unterschied von Nickelbromid werden bei Nickeljodid fast ausschließlich Reflexionen mit geradem Index l beobachtet. Eine Ausnahme bilden die Basisreflexionen 0009, 00045 und (00024). Das Vorkommen dieser Reflexionen mit kleinem Strukturfaktor ist wohl dem Vorherrschen der Basisflächen im Pulver zuzuschreiben.

Aus den beobachteten Intensitäten läßt sich der Parameter der Jodatome zu $u = 0,250 \pm 0,005$ bestimmen. Bei der Berechnung von S² nach der Formel auf S. 27 wurde $F_{Ni} = 4$ und $F_J = 2$ gesetzt.

Diskussion der Struktur.

Die Kristallstruktur des Nickelbromids und des Nickeljodids gehört dem $CdCl_2$ -Typus an. Die Brom- bzw. Jodatome befinden sich in fast regelmäßiger kubisch dichtester Kugelpackung. Diese Struktur bildet ein Schichtengitter, indem Schichten bestehend aus zwei Anionenschichten, welche eine Ebene besetzt durch Metallatome einschließen, und Schichten bestehend aus zwei unmittelbar aufeinander folgenden Anionenebenen miteinander abwechseln.

Der Parameter u der Jodatome in NiJ_2 weicht nicht merkbar ab von dem Idealwert u = 0.25; die Ebenen der Anionen sind alle äquidistant. Bei dem sublimierten $NiBr_2$ und ebenfalls bei der Wechselstruktur ist der Parameter jedoch u = 0.255 bzw. u = 0.258. Der Abstand zweier Ebenen von Bromatomen beiderseits einer Ebene von Nickelatomen ist geringer als der Abstand zwischen zwei unmittelbar aufeinander folgenden Anionenebenen. Diese Abweichung der Äquidistanz dürfte ihren Grund

¹⁾ W. Biltz nnd E. Birk, loc. eit.

haben in den anziehenden Kräften, welche zwischen den positiven Nickelund den negativen Bromebenen wirken.

Unten sind die gefundenen Abstände zusammen mit den entsprechenden Größen in den Kristallstrukturen von $CoBr_2$ und von CoJ_2 , welche zu dem CdJ_2 -Typus¹) gehören, aufgeführt. Unter den Abständen zweier Anionen sind drei verschiedene Fälle zu unterscheiden:

4. Abstand zwischen zwei Ionen innerhalb einer Ebene;

2. Abstand zwischen zwei Ionen in benachbarten Ebenen, beiderseits einer Nickelebene;

3. Abstand zwischen zwei Ionen in unmittelbar aufeinander folgenden Ebenen.

BrBr	1.	$NiBr_2$	subl.	3,71 ⁵ Å,	$NiBr_2$	Wechsels	tr. 3,65 Å, C_{1}	0B1	$_{2}^{\circ}3,72$ Å
	2.	»	»	3,58 Å,	»	»	$3,62 { m ~\AA},$	»	3,74 Å
	3.	»	»	3,95 Å,	»	»	3,78 Å,	»	$^{\circ}$ 3,74 Å
J J	1.		NiJ_2	3,89 5 Å,	CoJ_2 3	3,96 Å			
	2.		und 3	B. NiJ_2	3,97 Å,	CoJ ₂ 4,0	3 Å		
NiBr	sub	1. 2,58	Å, W	echselst	r. 2,57	Å, $Co-B$	8r 2,64 Å		
Ni - J	2,'	78 Å, C	J_{o-J}	2,83 Å.					

In Übereinstimmung mit dem Befund in anderen Verbindungen ist das Nickelion etwas kleiner als das Kobaltion. Dieser Unterschied beträgt 0,06 Å und 0,07 Å, während V. M. Goldschmidt 0,04 Å angibt. Eine Berechnung des Radius des Ni^{2+} -Ions ist nicht statthaft, wegen des Einflusses der Polarisation.

Während also die Kristallstrukturen des Nickelbromids und des Nickeljodids dem $CdCl_2$ -Typus angehören, kristallisieren die entsprechenden Kobaltverbindungen in der CdJ_2 -Struktur. Vom kristallchemischen Standpunkte betrachtet erscheint dieser Unterschied überraschend.

Im allgemeinen wird ja angenommen, das Auftreten der $CdCl_2$ oder der CdJ_2 -Struktur sei bedingt durch den Unterschied in der Polarisation der Anionen, indem der CdJ_2 -Typus bei leichter polarisierbaren Ionen³) vorkommt. Diese Hypothese wird gestützt durch die verschiedene Ladungsverteilung in beiden Strukturen. Die Coulomb-

1) A. Ferrari und F. Georgi, Rend. Accad. Lincei 9, 4134. 1929: 10, 522. 1929.

3) Diese Betrachtungen gelten auch für eine nach den Angaben von O. Hassel (loc. cit.) abgeänderte $\mathit{CdJ}_2\text{-}Struktur.$

32

²⁾ Nach eigenen Aufnahmen sind die Elementarabstände des $CoBr_2 a = 3,72 \pm 0,02$ Å, $c = 6,44 \pm 0,02$ Å, während A. Ferrari und F. Georgi (loc. cit.) fanden a = 3,68 Å, c = 6,42 Å. Andeutungen einer Verdoppelung der c-Achse, wie O. Hassel (Z. physikal. Ch. (B)22, 333. 1933) bei CdJ_2 beobachtete, wurden nicht erhalten.

sche Energie ist in der $CdCl_2$ -Struktur geringer, die Polarisationsenergie aber umgekehrt größer als in der CdJ_2 -Struktur. Bei starker Polarisation wird also die zweite Struktur stabil sein. Der geringe Unterschied zwischen der Größe des *Ni*-Ions und des *Co*-Ions vermag den beobachteten Unterschied in den Kristallstrukturen nicht zu erklären, weil gerade das *Ni*-Ion das kleinere der beiden ist.

Aus der Stabilität der $CdCl_2$ -Struktur von $NiBr_2$ und NiJ_2 würde man schließen, daß die Kraftwirkung, welche das Nickelion auf die umgebenden Anionen ausübt, geringer ist als diejenige, welche vom Kobaltion ausgeht. Bei Ionen mit Edelgasstruktur wäre ein solcher Unterschied schwer zu erklären; Ni^{2+} und Co^{2+} besitzen jedoch eine unabgeschlossene äußere Elektronenschale. Im Grundzustand zählt Ni^{2+} zwei, Co^{2+} aber drei unkompensierte Elektronenspins. Vielleicht dürfen wir in dieser Tatsache eine Erklärung für den Unterschied in dem polarisierenden Kraftfeld beider Ionen erblicken¹). Dieser Erklärungsmöglichkeit widerspricht jedoch, daß $MgBr_2$ und MgJ_2 beide CdJ_2 -Struktur haben, obgleich das Mg^{2+} -Ion Edelgasstruktur und somit keinen Spin besitzt und übrigens von der gleichen Größe wie das Ni^{2+} -Ion ist.

Die Beobachtung eines Unterschiedes in den Elementarabständen bei der Wechselstruktur und der stabilen Struktur des Nickelbromids ist wichtig für die Aufklärung dieser Wechselstruktur. Wie Bijvoet und Nieuwenkamp hervorheben, kann die Wechselstruktur als eine wiederholte Zwillingsbildung der CdJ2- oder der CdCl2-Struktur gedeutet werden. Entweder herrscht die CdCl2-Struktur vor und haben nur vereinzelte Schichtenpaare die Aufeinanderfolge der CdJ_2 -Struktur, oder es ist das umgekehrte der Fall oder beide Strukturen sind am Aufbau gleich beteiligt. Dabei können die Individuen relativ groß sein, oder jedes Individuum kann nur einige wenige Schichten in ungestörter Folge umfassen. Im zweiten Fall werden beide Strukturen wohl ungefähr zu gleichen Teilen vorhanden sein. Aus dem hervorgehobenen Unterschied in den Elementarabständen der Wechsel- und der CdCl2-Struktur folgt, daß größere Individuen mit CdCl2-Struktur in der Wechselstruktur nicht vorkommen. Wahrscheinlich liegt eine ideale Wechselstruktur mit Individuen von sehr geringer Größe vor, denn ein Wiederholungszwilling einer hypothetischen CdJ_2 -Struktur läßt sich zwar nicht ausschließen, ist aber doch wenig plausibel.

¹⁾ Nach einer Bemerkung, welche ich Herrn Dr. C. J. Gorter verdanke, hängt damit vielleicht die größere Variabilität der Magnetonenzahl des Kobaltions zusammen, welche auch auf stärkere homöopolare oder Polarisationskräfte bei den Kobaltverbindungen hinweist (C. J. Gorter, Diss. Leiden 1932).

Zeitschr. f. Kristallographie. 88, Bd.

34 J. A. A. Ketelaar, Die Kristallstruktur des Nickelbromids und -jodids.

Warum aber gerade die Wechselstruktur die größere Dichte hat, läßt sich zur Zeit noch nicht einsehen. Ebenso läßt sich nicht erklären, warum bei Nickeljodid keine Wechselstruktur beobachtet wurde.

Zusammenfassend kann man jedenfalls sagen, daß die kristallochemischen Zusammenhänge in der Gruppe der Dihalogenide noch nicht restlos geklärt sind.

Zusammenfassung.

Sublimiertes $NiBr_2$ und NiJ_2 haben die Kristallstruktur des $CdCl_2$ -Typus mit folgendem Elementarkörper:

- $\begin{array}{ll} NiBr_2 & \text{Hexagonal:} \ a=3,71^5\pm0,01 \text{ Å}, \ c=48,30\pm0,04 \text{ Å}, \ Z=3;\\ & \text{Rhomboedrisch:} \ a=6,46^5\pm0,02 \text{ Å}, \ a=16^\circ40', \ Z=1;\\ & \text{Parameter:} \ u=0,255\pm0,003. \ \text{Dichte} \ 5,25. \end{array}$
- $\begin{array}{ll} NiJ_2 & \text{Hexagonal: } a=3,89^5\pm0,01 \text{ Å}, \ c=19,63\pm0,04 \text{ Å}, \ Z=3; \\ & \text{Rhomboedrisch: } a=6,92\pm0,02 \text{ Å}, \ a=16^\circ20', \ Z=1; \\ & \text{Parameter } u=0,250\pm0,05. \ \text{Dichte } 6,36. \end{array}$

Außerdem zeigt nicht sublimiertes $NiBr_2$ eine Wechselstruktur mit den Elementarabständen:

$$a = 2,41 \pm 0,005$$
 Å, $c = 6,08 \pm 0,01$ Å, $Z = \frac{1}{3}$;
Parameter $u = 0,250 \pm 0,005$. Dichte 5,45.

Vom kristallchemischen Standpunkte erscheint der Unterschied in der Kristallstruktur von $NiBr_2$ und NiJ_2 einerseits und $CoBr_2$ und CoJ_2 , welche CdJ_2 -Struktur haben, anderseits unerwartet. Auf eine Erklärung durch die verschiedenen Zahlen unkompensierter Elektronenspins der beiden Metallionen Ni^{2+} und Co^{2+} wird hingewiesen. Die Wechselstruktur wird näher charakterisiert als Wiederholungszwilling der $CdCl_2$ - und der CdJ_2 -Struktur, wobei die Individuen nur wenige Schichten der beiden Strukturen umfassen.

Amsterdam, 6. Dezember 1933, Lab. für Allg. und Anorg. Chemie der Universität.

Eingegangen, den 41. Dezember 1933.