Die Struktur des Olivenites $Cu_2(OH)(AsO_4)$. Von Haymo Heritsch, Graz.

In einem Vorbericht teilte ich die Gitterkonstanten des Olivenites mit (1). Dort wies ich auch darauf hin, daß trotz der zweifellos vorhandenen gitterbaulichen Verwandtschaft von Olivenit mit Andalusit merkwürdigerweise der Reflex (012) erscheint, der eigentlich durch die Raumgruppe D_{2h}^{12} »verboten« ist. Es bestanden von vornherein nur die zwei Möglichkeiten: entweder für Olivenit eine Raumgruppe zu wählen, in der (012) als Reflex erlaubt ist, oder den Reflex durch Umweganregungen zu erklären. Die letztere Möglichkeit ist die wahrscheinlichere schon wegen der Ähnlichkeit mit Libethenit bzw. Adamin, auf deren Ähnlichkeit mit Andalusit wieder H. Strunz (2) bzw. P. Kokkoros (3) hingewiesen haben. Außerdem ist nur (012), also ein einziger störender Reflex, vorhanden. Wie das Folgende zeigt, ist diese zweite Annahme berechtigt gewesen.

E. Brandenberger hat die Bedingungen zum Auftreten von verbotenen Interferenzen zusammengestellt (4). Im Falle des Reflexes (042) an Olivenit in der angenommenen Raumgruppe D_{2h}^{12} handelt es sich um die Verletzung des nur zonalen Raumgruppenkriteriums: »(0kl) nur mit k + l = 2n vorhanden«. Die Anregung eines solchen »verbotenen« Reflexes erfolgt von Netzebenen außerhalb der Zone [400]. Diese Netzebenen müssen dann die gittergeometrische Bedingung erfüllen. In Betracht kommen als solche Netzebenenpaare z. B.: ($\overline{110}$) und (122) bzw. (120) und ($\overline{112}$); alle vier sind als recht starke Reflexe beobachtet. Auch die metrischen Bedingungen werden von diesen vier Netzebenen erfüllt, denn es gilt (vgl. 4):

$$\ll (h_1^* k_1^* l_1^*) / (h_2^* k_2^* l_2^*) \leq (90^\circ - \vartheta_{h_1 k_1 l_1}) + (90^\circ - \vartheta_{h_2 k_3 l_2})$$

das ist für das Netzebenenpaar ($\overline{110}$) und (122): $125^{\circ} 17' < 453^{\circ} 25'$ und für das Netzebenenpaar (120) und ($\overline{112}$): $144^{\circ} 25' < 151^{\circ} 33'$.

Damit ist einzusehen, daß der Reflex (012) ohne weiteres als durch Umweganregung hervorgerufen aufgefaßt werden kann, wenn sich durch die übrige Strukturbestimmung zeigen lassen kann, daß eine Verwandtschaft mit Andalusit, Adamin usw. besteht.

Die Aufnahmedaten für die Röntgenbilder und das verwendete Beobachtungsmaterial sind schon in dem erwähnten Vorbericht beschrieben worden. Diese Aufnahmen verwendete ich auch zur Strukturbestimmung. Bei der Strukturbestimmung ließ ich mich von dem Gedanken leiten, daß die, von Kokkoros (3) angegebenen, Parameter für Adamin auch ungefähr wenigstens für Olivenit stimmen müßten. Zu betonen ist allerdings, daß ich nicht die Zelle, wie sie Kokkoros aus dem Gitter schneidet, benütze, sondern die, die W. H. Taylor (6) und J. S. Hey und W. H. Taylor (5) verwenden. Zur ersten Berechnung nahm ich nur den Äquator der Drehkristallaufnahme um [001], um von den z-Parametern zunächst unabhängig zu sein. Ich rechnete die Parameter von Kokkoros auf die Taylorsche Aufstellung um, variierte diese Werte in einem Bereich von $\pm 10^{\circ}$ und prüfte dann durch.

Das soll z. B. für As gezeigt werden. Rechnet man die Kokkorosschen Parameter auf die Taylorsche Zelle um, so erhält man: 88° , 92° , 0° . Der geprüfte Bereich ist folgendermaßen besetzt:

98°	402°	0°	88°	82°	0°
98°	92°	0°	78°	102°	0°
98°	82°	0°	78°	92°	0°
88°	402°	0°	78°	82°	0°
88°	92°	0°			

 Cu_I in der Lage (0°, 0°, 90°) bleibt unverändert. Cu_{II} behandelte ich analog. Bei Sauerstoff nahm ich einen ebenso großen Variationsbereich, begnügte mich aber innerhalb dieses Bereiches mit nur fünf Positionen; z. B. für O_4 :

35°	-50°	0°	1	25°	-60°	0°
45°	-60°	0°	Ì	25°	-40°	0°
45°	-40°	0°	1			

Analog bei allen anderen Sauerstofflagen. Das ergibt allerdings bei der großen Zahl der Freiheitsgrade eine sehr große Anzahl von Kombinationsmöglichkeiten, aber es lassen sich bald unter Berücksichtigung weniger Reflexe viele Kombinationen ausschalten, so daß die Rechenarbeit nicht zu umfangreich wird. Es ließ sich nun zeigen, daß innerhalb des von mir ausgeschnittenen Bereiches keine der Parameterkombinationen die Intensitätsverteilung, wie sie an den Reflexen beobachtet wird, zu errechnen gestattet. Ich wählte zuerst einmal folgende Indizes: (020), (200), (040), (400), (120), (210). An diesen konnte keine der Kombinationsmöglichkeiten den beobachteten Intensitäten gerecht werden. Insbesondere waren niemals die errechneten Intensitäten von (040) und (400) in das beobachtete Verhältnis (040) mit etwa 3 und (400) mit 0 zu bringen. Daraus und aus ähnlichen Tatsachen konnte der Schluß gezogen werden, daß vielleicht die horizontalen Achsen vertauscht seien, was bei diesem pseudotetragonalen Mineral von vornherein nicht auszuschließen war. Ich vertauschte also die X- und Y-Richtung versuchsweise, und wie im folgenden gezeigt wird, darf dieser Versuch als gelungen betrachtet werden. Bis zu dieser Stelle sind noch die alten Indizes verwendet. Von hier ab werden im Text ausschließlich nur mehr die abgeänderten Indizes benützt.

Es wurden also, unter Berücksichtigung der Vertauschung der Achsen, die Intensitäten für die oben angeführten Bereiche berechnet, wobei wieder stufenweise jene Kombinationen von Punktlagen ausgeschaltet wurden, die sich schon bei einer geringen Anzahl von Indizes als unmöglich erwiesen. Durch immer neue Einführung von Indizes blieb dann eine beschränkte Anzahl von Lagekombinationen übrig, die die Verteilung der Intensitäten an folgenden Reflexen hinreichend erklärten: (020), (200), (040), (400), (420), (240), (430), (340), (230) (320), (410). Es waren nur noch 20 Parameterkombinationen übrig geblieben. Von diesen nahm ich die besten und mittelte sie. Das Ergebnis ist in der Tab. I niedergelegt. Damit war die Verteilung der x- und y-Parameter gefunden. Die Bestimmung des z-Parameters konnte in voller Analogie zu Taylor (6) bzw. Kokkoros (3) geschehen. Die dort ausgeführten Überlegungen, die dadurch verhältnismäßig einfach sind, daß in $z = \frac{1}{2}$ eine Spiegelebene durch die Zelle geht, können hier ohne weiteres sinngemäß übertragen werden.

Atom	$2\pi x$	$2\pi y$	$2\pi z$	x/a	$oldsymbol{y}/oldsymbol{b}$	z/c
$O_A = OH$	35°	-43°	0°	0,097	-0,119	0
O_B	38°	-53°	180°	0,405	-0,147	0,500
O_C^-	41°	135°	0°	0,114	0,375	0
O_D	85°	50°	90°	0,236	0,439	0,250
As	88°	95°	0°	0,244	0,264	0
Cu_I	0°	0°	90°	0	0	0,250
CuII	-44°	13 0°	0°	-0.422	0.364	Ó

Tabelle I.

Die Kontrolle dieser Verteilung geschah in den Schichtlinien der Drehkristallaufnahme um [001], ferner in den Aufnahmen um [100] und [010]. Der Vergleich der, mit dieser Verteilung berechneten, Intensitäten mit den beobachteten Intensitäten ist in der Tabelle II gegeben. Die Übereinstimmung ist durchaus befriedigend und bestätigt die in Tabelle I angegebenen Parameter.

Nicht mit völliger Sicherheit ließ sich bestimmen, ob die Sauerstoffparameter 38° , -53° , 180° und 35° , -43° , 0° sind, oder ob die Verteilung nicht auch sein könnte 38° , -53° 0°, und 35° -43° 180°. Die

Tabelle II. [001] Äquator.

_					-	_	1				
Index	Index	I	I	Index	Index	I	I	Index	Index	Ι	Ι
alt	neu	ber.	beob.	alt	neu	ber.	beob.	alt	neu	ber.	beob.
010	100			430	340	0.3	0	710	170	1	
100	010	_		500	050		_	640	460	0,2	0,5
110	110	9	6	540	150	2,2	3	720	270	0.0	0
020	200	1,3	1	250	520	0,2	0,5	370	730	1,9	2,5
200	020	1,1	1	520	250	1,6	2,5	730	370	1,4	2
120	210	6,5	7	440	440	12,6	13	560	650	0,5	0
240	12 0	2,3	2	350	53 0	0,2	0,5?	080	800	4,0	+4
220	220	28,1	>10	060	600		9	650	560	0,0	0
030	300	; —-		53 0	350	j ^{1,4}	4	180	810	0,0	0
300	030	-		160	610	1,5	2 —	470	740	0,0	0
130	31 0	8,9	10	600	060	0,3	0	280	820	0,1	0,5?
340	130	9,1	40	26 0	620	63	6	740	470	0,0	0
230	320	0,1	0	610	160	ر 0,0	0	800	080	3,0	5
320	230	1,8	2	450	540	0,2	0,5?	840	180	1,0	-2
040	4 00	1,5	2,5	540	450	0,0	0	380	830	0,1	0
140	440	0,6	1	620	26 0	3,1	4	820	280	0,0	0
400	040	0,0	0	3 60	630	0,1	0,5?	660	660	1,9	3
410	140	0.8	2	630	360	0,3	0,5	570	750	1,3	+1
330	330	J °,0		070	700			750	570	2,1	+2
240	420	0,0	0	170	740	0,1	0	830	380	0,2	0
420	240	0,0	0	550	550	0,3	0,5	090	900		
050	500		-	270	720	$ _{0.3} $	0.5	480	840	0.6	+1
340	43 0	$ _{3.6}$	4	460	640] '''	0,0	190	910]) ","	
150	540	J ´	1	700	070		!				
		· · · ·		[004] 1. Sc.	hichtli	nie.				د م
011	101	40,9	40	241	421	0,0	0	451	541	1,7	1,5
101	011	8,4	40	421	241	0,7	1	541	451] 4 5	9
111	111	10,8	10	051	501	0,7	1	621	261	$\int^{1,0}$	4
024	201	-	-	341	431			361	634	0,2	0,5?
201	021			151	511	8,5	6	631	361	ا م ا	-0.52
121	211	0,0	0	431	341)	1	071	701	∫ ^{0,1}	<0,01
211	121	0,0	0	501	051	0,0	0	171	711	0,6	0,5
224	224	4,0	3	511	151	8,0	- 6	551	551	0,3	0,5?
034	301	2,9	-3	251	521	0,0	0	271	721		
301	034	22.7	>10	524	254	0,5	0,5	461	641	{0 <u>.</u> 4	0,5?
131	311	J		441	441	0,0	0	704	071)	
311	131	12,3	40	351	351	1,3	1	711	171	0,7	1
231	321	0,2	0	064	604	、—		641	461	0,0	0
324	234	0,3	0	531	351	0.5	0.5	721	271	0,5	0,5
041	401	-		161	611	J ."	.,	371	731	2,2	2
141	411	1,9	2	604	061	$^{\prime}- $		734	371	1.6	1
401	041	<u> </u>		264	621	$ _{1,2}$	1	561	651) "	_
411	141	$ _{4,7}$	4	611	161	J					
331	331	J.					1	1		<u>ہ</u>	
Zeits	enr. 1. K	ristailo	grapnie.	AA' RG'					é	24	

Zeitschr. f. Kristallographie. 99. Bd.

H. Heritsch

				2	-						
Index	Index	1	I	Index	Index	I	Ι	Index	Index	I	I
alt	neu	ber.	beob.	alt	neu	ber.	beob.	alt	neu	ber.	beob.
012	102		*)	412	142	<u> </u>]		602	062	1,2	+ 1
102	012			332	332	3,8	0	262	622]	0 -
112	112	10,4	40	242	422	6,7	6	612	162	0,3	0,5
022	202	5,5	4	422	242	12,5	10	452	542	0,4	0,5
202	022	12,4	10	052	502	-		542	452	0	0
122	212	3,8	5	342	432)		622	262	0	0
212	122	0,9	1	152	512	1,6	2	362	632	0	0
222	222	0,0	0	432	342		İ	632	362	0	0
032	302	<u>`</u>		502	052	í		072	702		-
302	032			512	152	0,8	1	172	712	1,4	1
132	312	0,8	1	252	522	1,5	1.5	552	552	1,4	1
312	132	0,8	1	522	252	1,8	2	272	722]	
232	322	1,5	1	442	442	3,8	3	462	642	3,0	· 2
322	232	0,9	1	352	532	1,8	2.0	702	072	′ —	
042	402	3,8	3	062	602)		712	172	2,0	1
142	412	0,1	0	532	352	5,4	4	642	462	5,8	5
402	042	1,2	1,5	162	612			722	272	0,0	0

[001] 2. Schichtlinie.

*) Umweganregung.

[010] Äquator.

Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.
001	001	_	<u> </u>	031	301	4,5	4	023	203	_	_
011	101	17,0	> 10	022	202	11,3	40	042	402	7,8	8
020	200	1,7	0	040	400	1,9	2	050	500	i	
021	201	—		032	302			051	504]	9
002	002	8,0	8	041	401	_		033	303	2,8	2
030	300			003	003		—	052	502		
012	102		*)	013	103	2,7	2	004	004	14,2	14

*) Umweganregung.

[010] 1. Schichtlinie.

Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.
110	110	6,2	6	121	211	0,1	0	112	112	11,6	11
101	011	7,0	8	102	042			131	311	13,3	11
111	111	8,9	9	130	31 0	5,5	6	122	212	4,2	6
12 0	210	4,5	4								

Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.
240	120	2,3	4	222	222	0,0	0	251	521	0,0	0
201.	021			240	420	0,0	0	233	323	0,1	0
211	121	0,1	0	232	322	2,4	2	252	522)	
220	220	28,0	> 12	241	421	0,0	0	204	024	z,7	4
221	221	4,8	5	203	023			214	124	0,5	0
202	022	19,8	12	213	123	0,0	0	243	423	0,0	0
230	320	0,1	0	223	223	1,9	2	260	620	4,8	5
212	122	1,5	2	242	422	40,8	40	224	224	مىرا	10
234	321	0,2	0	250	520	0,1	0	261	621	10,3	10

[010] 2. Schichtlinie.

[040] 3. Schichtlinie.

Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.
310	13 0	9,1	11	312	132	1,2	1	313	133	5,8	6
301	031	8,1	10	334	331	2,6	1,5	323	233	0,1	0
311	131	14,8	12	322	232	1,5	1	342	432	0,0	0
320	230	1,8	1	340	430	0,0	0	350	530	,0,2	0
324	231	0,3	0	332	332	9,0	6	351	534	1,5	0,5
302	032			341	431	1,9	0,5?	333	333	1,2	0,5
330	330	0,8	0.5?	303	033	2,8	1,5				

Index	Index	Ι	I	Index	Index	Ι	I	Index	Index	I	I
alt	neu	ber.	beob.	alt	neu	ber.	beob.	alt	neu	ber.	beob.
001	001			203	023		-	602	062	2,6	6
101	011	13,9	10	402	042	2,5	+3	404	044	0,1	0
200	020	1,4	1	500	050			005	005		
201	021		- 1	303	033	3,6	4	405	045	0,6	0
002	002	8,0	8	504	051	0,0	0	700	070		-
402	042			004	004	14,2	14	701	071	0,2	0
300	030	—	_	104	014			205	025		-
301	031	10,4	40	502	052	_	-	603	063		
202	022	25,5	>10	403	043			504	054	-	-
400	040	0,0	0	204	024	0,2	0	702	072		-
302	032		—	600	060	0,3	0	305	035	1,3	0
003	003			601	061	-	I —	405	045	—	-
401	041	-	i —	304	034	·		800	080	3,9	6
103	013	2,2	3	503	053	0,0	0				
									3	82*	

[100] Äquator.

H. Heritsch

[100] 1.	Schichtlinie.
----------	---------------

Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.	Index alt	Index neu	I ber.	I beob.
110	110	9,0	40	· 311	131	14,8	15	213	123	0,0	0
011	101	13,1	12	242	122	1,4	1	412	142	0,4	0
111	111	12,9	15	410	140	0,0	0	510	150	2,2	4
210	120	2,3	4	342	132			343	133	1	1.77
211	121	0,0	0	013	103	\$ 3,3	z	511	151	15,4	17
012	402		—*)	411	141	Í	_	014	104	_	
112	112).	. 17	113	113	5,7					
31 0	130	25,8	>17			ŕ					

*) Umweganregung.

[100] 2. Schichtlinie.

120 021 121 220 224	240 204 214 220 224	6,5 		324 222 420 322	231 222 240 232 202	0,3 0,0 0,1 1,5	0 0 0 1	223 422 520 323	223 242 250 233	1,9 20,0 1,6 0,1	
022 422 320	202 242 230	+,8 8,8 7,8	- 7 10	424 423	203 244 213	0,8 0,0	1 0	521	201	0,0	0.0

[400] 3. Schichtlinie.

					· · · · ·				,	1	
13 0	310	7,9	17	032	302		_	430	340	0,2	0
034	301	3,5	5	132	312]	9	332	332	9,0	8
131	311	19,1	17	33 0	330	$\left \right ^{2,1}$	Z	033	303)	
23 0	320	0,1	<0,5?	331	331	2,6	3	431	341	\$10,6	8
234	324	0,2	0	232	322	2,3	2	133	313	1	

[100] 4. Schichtlinie.

•											
14 0	440	0,6	0	342	432	0,0	0	542	452	0,0	0
041	401	—		043	403	'		443	443	0,0	0
141	411	2,3	3	441	441	0.0	0	244	424	0,0	<0,5?
24 0	420	0,0	0	143	413	1,0	0	640	460	0,1	0
241	421	0,0	0	243	423	0,0	0	641	461	0,0	0
042	402	6,0	3	442	442	6,1	6	344	434	0,0	0
142	412	0,1	0	540	450	0,0	0	543	453	0.8	1
340	430	0,0	0	343	433	0,9	0,5	642	462	9,2	8
341	431	1,9	1	541	451	1,1	3	444	444	11,7	8
242	422	10,8	7	044	404	0,8	1				
44 0	44 0	12,6	13	144	414	0,2	0				

Unterschiede in den Werten für x und y sind ja recht klein. Bessere Übereinstimmung liefert aber immerhin im allgemeinen die erstgenannte Verteilung, die auch in Tabelle I wiedergegeben ist; besonders die berechnete Intensität für den Reflex (241) würde in der anderen Verteilung viel zu niedrig ausfallen.

Zu den beobachteten Intensitäten ist zu bemerken, daß sie im allgemeinen zwar geschätzt sind, daß aber doch die stärkeren und besseren Reflexe durch Photometrierung kontrolliert sind. Benützt wurde ein Polarisationsphotometer, wie es M. Pestemer beschrieben hat (7) und das vom physikalisch-chemischen Institut der Universität Graz zur Verfügung gestellt wurde. Die Ermittlung der gerechneten Intensitäten erfolgte nach der schon von Taylor bzw. Kokkoros angegebenen Formel für den Strukturfaktor unter Berücksichtigung der anderen Faktoren: Flächenhäufigkeit, Lorentz- und Polarisationsfaktor, Streuvermögen nach James und Brindley bzw. Thomas-Fermi (8).

Zu den Drehaufnahmen um [400] und [040] ist außerdem noch zu bemerken, daß sie wesentlich schlechter ausgefallen sind als die Aufnahme um [004]. Die Entwicklung der Kristalle ist säulenförmig um [004]. So war die Aufnahme um [400] überhaupt nur durch eine große Anzahl von Probeaufnahmen möglich, weil keine kristallographische Justierung durchzuführen war, da in dieser Zone keine Flächen entwickelt waren. Deshalb sind an diesen beiden Aufnahmen viel weniger Reflexe gut zu beobachten gewesen.

Aus der Tabelle III über die Parameter an Olivenit im Vergleich mit den entsprechenden Werten aus den Strukturen von Andalusit (Taylor l. c.) und Adamin (Kokkoros l. c.) ist die völlige Analogie mit diesen Strukturen zu ersehen. As in einem deformierten Tetraeder von Sauerstoffatomen, die eine Cu-Lage in der Mitte eines deformierten Oktaeders von Sauerstoffatomen und die andere Cu-Lage in der Mitte einer »pseudotrigonalen Bipyramide«. In welcher von den drei vierzähligen Sauerstoff-

	Olivenit				Adamin				Andalusit			
	$2\pi x$	$2\pi y$	$2\pi z$		$2\pi x$	$2\pi y$	$2\pi z$		$2\pi x$	$2\pi y$	$2\pi z$	
$\overline{OH=O_A}$	35°	-43°	0°	OH	35°	-50°	0°	04	28°	-50°	0°	
O_B	3 8°	-53°	1 80°	O_B	35°	-50°	180°	O_B	15°	-60°	180°	
O_C	41°	135°	0°	O_A	38°	13 8°	0°	O_C	4 0°	145°	0°	
O_D	85°	50°	90°	O_C	85°	50°	90°	O_D	90°	50°	90°	
As	88°	95°	0°	As	88°	92°	0°	Si	100°	90°	0°	
Cu_I	0°	0°	90°	Zn_2	0°	0°	90°	Al_I	0°	0°	90°	
Cu_{II}	-44°	130°	0°	Zn_1	-47°	130°	0°	Al_{II}	-45°	13 0°	0°	

Tabelle III.

H. Heritsch

lagen die OH-Gruppe anzusetzen ist, ergibt sich aus der Anwendung der Paulingschen Regel (9). Die zugehörigen Zahlen sind natürlich dieselben, wie beim Adamin (Kokkoros 3), weil ja As in derselben Lage ist und Zn^{+2} nur durch Cu^{+2} zu ersetzen ist. So ergibt sich für die Lage $O_A \sim 1$; $O_B \sim 2$; $O_C \sim 2$; $O_D \sim 2$. Es ist also OH an die Position von O_A zu setzen.

In der nun folgenden Tabelle IV sind die Abstände der einzelnen Nachbaratome voneinander angegeben, diese Tabelle ist der von Kokkoros (3) ähnlich gehalten, um den Vergleich zu erleichtern.

Atomart	Nächste Nachbarn			Abstand			
As^{+5}	4 O _B ;	10 _C ;	20 _D	1,49;	1,45;	1,81	
Cu_{I}^{+2}	$2O_B;$	2 <i>0H</i> ;	2 O _D	2,42;	1,96;	2,34	
Cu_{II}^{+2}	$2O_D;$	1 <i>0H</i> ;	10 _C ; 10 _C	4,92;	1,99;	2,03; 2,16	
OH^{-1}	$\begin{array}{l} 1 \ Cu_{II};\\ 2 \ O_D;\\ 4 \ O_B; \end{array}$	2 Cu _I ; 4 OH; 2 O _D ;	4 O _C 1 As 2 O _D	1,99; 2,85; 2,97;	1,96; 2,56; 3,25;	2,78 3,17 2,85	
O_B^{-2}	1 As; 2 O _D ; 2 O _D ;	2 Cu _I ; 1 O _B ; 2 O _D	10 _C 10H	1,49; 2,67; 2,99;	2,42; 3,01; 3,30	2,43 2,98	
O_C^{-2}	1 As; 1 O _B ; 2 O _D ;	$\begin{array}{l} 4 \ Cu_{II}; \\ 4 \ O_C; \\ 2 \ O_D \end{array}$	1 Cu ₁₁ 1 OH	1,45; 2,43; 2,66;	2,02; 2,83; 2,92	2,46 2,78	
O_D^{-2}	4 As; 4 O _B ; 4 O _C ; 4 OH;	$\begin{array}{l} 1 \ C u_{I}; \\ 1 \ O_{C}; \\ 2 \ O_{D}; \\ 1 \ O_{B}; \end{array}$	1 Cu ₁₁ 1 OH 1 O _B 1 OH	1,81; 2,67; 2,92; 2,85;	2,34; 2,67; 2,97; 2,99;	4,92 2,86 3,30 3,25	

Tabelle IV.

Die Unterschiede in den Entfernungen As - O sind verhältnismäßig recht groß. Die kleineren Werte sind noch kleiner als die von Kokkoros gefundenen in Adamin, wobei auch schon diese im Verhältnis zu den, in anderen Strukturen gefundenen, Werten für As - O ziemlich klein sind. Der Abstand As - O ist nämlich im Adamin (Kokkoros l. c.) 4,59 und 4,81 Å, in $AlAsO_4$ (Machatschki 10) 4,66, in $BAsO_4$ (Schulze 11) 4,66, in Berzeliit (Machatschki 12) 1,68, in $YAsO_4$ (Strada 13) 4,73, in Durangit (Kokkoros 18) 4,68.

Der Abstand Cu = O, dessen kleinster Wert in der pseudotrigonalen Pyramide mit 1,92 Å erscheint, paßt in die bis jetzt beobachteten Abstände Cu = O recht gut hinein. So ist z. B. der genannte Abstand in Tenorit 1,95, allerdings ist das eine Viererkoordination des Sauerstoffes in einem ebenen Rechteck um Cu (Tunnel 14). In Sechserkoordination ist Cu beobachtet in $CuFeO_2$ (Soller 15) mit dem Abstand Cu - O= 1,98 Å.

Die »Kanten« der einzelnen Baumotive sind im folgenden zur Übersicht zusammengestellt.

AsO₄-Tetraeder: 2,67; 2,43; 2,66; 2,97.

Oktaeder um Cu: 2,59; 3,01; 2,98; 3,25; 3,30; 2,85; 2,98. Pseudotrigonale Bipyramide um Cu: 2,97; 3,59; 2,78; 2,87; 2,83; 2,92.

Ein wesentliches Ergebnis der Strukturbestimmung ist es, daß man die Achsen X und Y vertauschen muß, um eine Übereinstimmung mit der Andalusit- bzw. Adaminstruktur zu erzielen. Daß diese Übereinstimmung dann tatsächlich sehr eng ist, geht aus der Tabelle III hervor. Daher sind nun auch die kristallographischen Daten zu verändern. Das Achsenverhältnis, das bis jetzt, nach der alten Aufstellung, Geltung hatte, war etwa folgendes (sehr weit auseinandergehende Angaben, wohl wegen der schlechten Beschaffenheit der Flächen): a:b:c=0.93964:1:0.672606nach Hillebrandt und Washington (16). Entsprechend dieser alten Aufstellung bestimmte ich auch in meinem Vorbericht die Achsenlagen mit a = 8.20 Å, b = 8.62 Å, c = 5.94 Å und errechnete daraus ein kristallographisches Achsenverhältnis mit a:b:c=0.954:1:0.689. Auf Grund der röntgenographischen Erfahrungen ist nun die Länge der Kanten des Elementarkörpers folgendermaßen zu schreiben:

$$a = 8,62$$
 Å $b = 8,20$ Å $c = 5,94$ Å

Daraus errechnet sich das Achsenverhältnis:

$$a:b:c=4,05:1:0,724$$
.

Das Achsenverhältnis, das Hillebrand (l. c.) angibt, ist umgerechnet für die neue Aufstellung: a:b:c=1,064:1:0,716. Das Goldschmidtsche Achsenverhältnis (17) ergibt für die neue Aufstellung: a:b:c=1,054:1:0,718.

Die Indizes der bis jetzt beobachteten Flächen (17, 16) sind natürlich auch abzuändern und zwar nach folgender Tabelle V.

Tabelle V.

Buchstabe	alter Index	neuer Index	Buchstabe	alter Index	neuer Index
$a \leftarrow b$	040	100	e	011	101
$b \leftarrow a$	100	010	8	034	304
c	001	001	d	025	205
m	110	440	v	101	011
1	013	403	p	111	111

H. Heritsch

Mit der Vertauschung der Achsen lassen sich auch die physikalischen Eigenschaften besser mit Adamin vergleichen. Es seien noch einmal Adamin und Olivenit mit ihren Eigenschaften einander gegenübergestellt (vgl. Kokkoros 3), allerdings jetzt mit den vertauschten Achsen bei Olivenit.

$\begin{array}{c} {\rm Adamin} \\ Zn_2(OH)AsO_4 \end{array}$	Tabelle VI. Olivenit Cu ₂ (OH)AsO ₄	
0,9770:1:0,7124	1,05 : 1 : 0,724	Achsenverh.
$a = 8,31 ext{ \AA} \ b = 8,51 ext{ \AA} \ c = 6.06 ext{ \AA}$	$egin{array}{c} a &= 8,62 \ { m \AA} \ b &= 8,20 \ { m \AA} \ c &= 5,94 \ { m \AA} \end{array}$	Größe der Zelle
$3\frac{1}{2}$	3	Härte
(101) sehr gut	(101) unvoll- (110) kommen	Spaltung
(001)	(001)	Opt. Achsenebene
$n_{\gamma} = b$	$n_{\gamma} = b$	Spitze Bisec.
+ (auch –)	+ (auch)	Opt. Charakter
1,708	1,772	n_{lpha}
1,734	1,810	n_{eta}
1,758	1,863	n_{γ}

Man sieht, daß durch diese Achsenvertauschung eine wesentlich bessere Übersteinstimmung der Eigenschaften gegenüber Adamin zu erkennen ist, als sie in der Tabelle bei Kokkoros noch nach der alten Aufstellung ersichtlich ist. So ist die Übereinstimmung in den Achsenverhältnissen nicht wesentlich anders wegen des pseudotrigonalen Typus. Aber die Spaltbarkeit läßt viel bessere Analogien erkennen: jetzt bei beiden Mineralien (101) als Spaltfläche. Ferner ist auch jetzt die optische Orientierung gleich. Der Vergleich mit Libethenit und Andalusit ist schon von Kokkoros (3) durchgeführt und braucht hier nicht mehr wiederholt werden.

Eine Projektion auf (001) zeigt die Verteilung der Atome (Figur).

Alle Ergebnisse zusammengenommen lassen erkennen, daß die Struktur des Olivenites sich, unter der Voraussetzung der Vertauschung von X und Y, ohne weiteres auf die Struktur des Andalusites bzw. Adamins beziehen läßt und daß die von mir ausgesprochene Vermutung, Olivenit könnte der Raumgruppe D_{2h}^1 angehören (1), nicht zutrifft. Außerdem sind in der Tabelle über die Pulveraufnahmen in dieser Arbeit (1) einige Linien zu vervollständigen, die durch das Zusammenfallen von mehr Reflexen zustandekommen, als in dieser Tabelle angegeben ist. Damals war mir eben die wirkliche Stärke der Reflexe nicht bekannt,

 $\mathbf{476}$

Die Struktur des Olivenites $Cu_2(OH)(AsO_4)$.

sondern diese wurde nur aus den Drehaufnahmen ungefähr entnommen. Da aber auch noch ein Druckfehler unterlaufen ist, nämlich (044) statt (004), und die Indizes abzuändern sind, sei hier nochmals die Tabelle in vereinfachter Form wiedergegeben (siehe umstehende Tabelle VII).

Zusammenfassung.

Das Ergebnis der röntgenographischen Untersuchung an Olivenit ist folgendes: die kristallographische Aufstellung ist gegenüber der bis jetzt üblichen in der Weise zu ändern, daß die X- und Y-Richtung vertauscht wird, das neue Achsenverhältnis ist a:b:c=4,05:4:0,724, die Größen der Elementarzelle sind a=8,62 Å, b=8,20 Å, c=5,94 Å, die Raumgruppe ist D_{2h}^{12} , im Elementarkörper sind vier Formeleinheiten der Formel $Cu_2(OH)(AsO_4)$. Die Struktur ist der von Andalusit bzw. Adamin analog mit $[AsO_4]$ in deformierten Tetraedern, Baugruppen von $[CuO_4(OH)]$ in Form einer »pseudotrigonalen Bipyramide« und Baugruppen von

Stärke	$\sin^2 \vartheta$	Index	$\sin^2 \vartheta$	Mittel der
beob.		neu	ber.	ber. sm ⁻ v
2	0,0166	110	0,0467	0,0167
3	0,0250	011, 101	0,0255, 0,0246	0,0250
2	0,0333	111	0,0334	0,0334
1	0,0407	240	0,0406	0,0406
4	0,0670	002, 220	0,0670, 0,0670	0,0670
1	0,0805	340	0,0804	0,0804
2	0,0838	112, 221	0,0837, 0,0837	0,0837
<u>1</u> ?	0,0873	130, 301	0,0871, 0,0883	0,0877
4	0,0975	031, 311, 202	0,0959, 0,0971, 0,0988	0,0973
4	0,4034	022, 131	0,1022, 0,1038	0,4030
2	0,4079	242*)	0,4076	0,1076
1?	0,1684	331, 113, 141	0,1675, 0,1675, 0,1654	0,1668
$\frac{1}{2}?$	0,1777	232, 322	0,1780, 0,1738	0,1759
1?	0,1949	402	0,1943	0,1943
$\frac{1}{2}?$	0,2089	042, 510**)	0,2078, 0,2078	0,2078
1?	0.2480	332, 223	0,2178, 0,2178	0,2178
3	0 ,23 08	422, 033, 313, 150, 341	$\left\{\begin{array}{c}0,2295,\ 0,2300,\ 0,2312,\\0,2279,\ 0,2291\end{array}\right\}$	0,2296
5	0,2395	242, 433, (151)***)	0,2379, 0,2396	0,2388
5	0,2681	440, 004	0,2681, 0,2681	0,2684
1	0,3229	620, 243	0,3217, 0,3234	0,3225

Tabelle VII.

*) Sehr schwach könnten noch dazu beitragen: (122) und (230).

**) (430) ist viel zu schwach.

***) (151) wahrscheinlich als schwacher Schimmer hinter der starken Linie.

 $[CuO_4(OH)_2]$ in deformierten Oktaedern. Durch die Vertauschung der X- und Y-Richtung lassen sich einige physikalische Eigenschaften des Olivenites besser mit denen des Adamines vergleichen.

Ob der Eintritt des Kupfers in die Struktur die Ursache darstellt für die Veränderung der Achsenlängen, läßt sich wohl durch eine Strukturbestimmung an Libethenit überprüfen, die dann entscheidet, ob an Libethenit die Verhältnisse ebenso liegen wie an Olivenit.

Für die Anleitung zu dieser Arbeit möchte ich Herrn Prof. F. Machatschki, Tübingen, meinen Dank aussprechen.

Literatur.

4. H. Heritsch, Z. Kristallogr. 98 (1937) 351.

2. H. Strunz, Z. Kristallogr. 94 (1936) 60.

- 3. P. Kokkoros, Z. Kristallogr. 96 (1937) 417.
- 4. E. Brandenberger, Z. Kristallogr. 97 (1937) 476.
- 5. J. S. Hey und W. H. Taylor, Z. Kristallogr. 80 (1931) 428.

- 6. W. H. Taylor, Z. Kristallogr. 71 (1929) 205.
- 7. M. Pestemer und G. Schmidt, S.-B. Akad. d. Wiss. Wien, math.-naturw. Kl. 145 (1936) Heft 10.
- 8. Internationale Tabellen zur Bestimmung der Kristallstruktur Bd. II.
- 9. L. Pauling, J. Amer. chem. Soc. 51 (1929) 1010.
- 40. F. Machatschki, Z. Kristallogr. 94 (1936) 222.
- 44. G. E. R. Schulze, Zit. in Strukturber. III, S. 426 bzw. S. 93.
- 42. F. Machatschki, Z. Kristallogr. 90 (1935) 44.
- 43. M. Strada, G. Schwendimann, Zit. in Strukturber. III, S. 429 bzw. S. 91.
- 14. G. Tunnel, E. Posnjak, C. S. Ksanda, Z. Kristallogr. 90 (1935) 120.
- 45. W. Soller, A. J. Thompson, Zit. in Strukturber. III, S. 392 bzw. S. 75.
- 46. Hintze, Handb. d. Mineral. Bd. 1, IV, 1, S. 651.
- 47. V. Goldschmidt, Atlas der Kristallformen VI (1920).
- 18. P. Kokkoros, Z. Kristallogr. 99 (1938) 38.

Graz, Mai 1938.

Eingegangen den 23. Mai 1938.