Ringwoodite R070079



Name: Ringwoodite
RRUFF ID: R070079
Ideal Chemistry: SiMg2O4
Locality: Tenham meteorite, south Gregory, Queensland, Australia
Source: Michael Scott S105057 [view label]
Owner: RRUFF
Description: Colorless grains associated with kamacite, majorite and troilite, in a polished section embedded in epoxy
Status: The identification of this mineral has been confirmed only by chemical analysis
Mineral Group: [ Spinel (66) ]
Quick search: [ All Ringwoodite samples (2) ]
CHEMISTRY 
RRUFF ID: R070079.2
Sample Description: Microprobe Fragment
Measured Chemistry: (Mg1.50Fe0.49Mn0.01)Σ=2Si1.00O4
Microprobe Data File: [ Download Excel File ]
RAMAN SPECTRUM 
RRUFF ID:
Sample Description: Unoriented sample
DOWNLOADS:

  To download sample data,
  please select a specific
  orientation angle.

Direction of polarization of laser relative to fiducial mark:
X Min:    X Max:    X Sort:
BROAD SCAN WITH SPECTRAL ARTIFACTS
RRUFF ID: R070079
Wavelength:
Sample Description: Unoriented sample
Instrument settings: Thermo Almega XR 532nm @ 100% of 150mW
REFERENCES for Ringwoodite

American Mineralogist Crystal Structure Database Record: [view record]

Anthony J W, Bideaux R A, Bladh K W, and Nichols M C (1990) Handbook of Mineralogy, Mineral Data Publishing, Tucson Arizona, USA, by permission of the Mineralogical Society of America. [view file]

Binns R A, Davis R J, Reed S J B (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite, Nature, 221, 943-944

Fleischer M (1969) New mineral names, American Mineralogist, 54, 1218-1223   [view file]

Coleman L C (1977) Ringwoodite and majorite in the Catherwood meteorite, The Canadian Mineralogist, 15, 97-101   [view file]

Sasaki S, Prewitt C T, Sato Y, Ito E (1982) Single-crystal X-ray study of γ-Mg2SiO4, Journal of Geophysical Research, 87, 7829-7832

Men Y, Fei Y, Weidner D J, Gwanmesia G D, Hu J, (1994) Hydrostatic compression of ϒ-Mg2SiO4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties, Physics and Chemistry of Minerals, 21, 407-417   [view file]

Liu L, Lin C C, Mernagh T P, Inoue T (2002) Raman spectra of hydrous γ-Mg2SiO4 at various pressures and temperatures, Physics and Chemistry of Minerals, 29, 181-187   [link]

Keppler H, Smyth J R (2005) Optical and near infrared spectra of ringwoodite to 21.5 GPa: implications for radiative heat transport in the mantle, American Mineralogist, 90, 1209-1212   [view file]

Feng L, Lin Y, Hu S, Xu L, Miao B (2011) Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra, American Mineralogist, 96, 1480-1489   [view file]

Kojitani H, Oohata M, Inoue T, Akaogi M (2012) Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: Measurement and lattice vibrational model calculation, American Mineralogist, 97, 1314-1319   [view file]

Ye Y, Brown D A, Smyth J R, Panero W R, Jacobsen S D, Chang Y Y, Townsend J P, Thomas S M, Hauri E H, Dera P, Frost D J (2012) Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O, American Mineralogist, 97, 573-582   [view file]

Lyubutin I S, Lin J F, Gavriliuk A G, Mironovich A A, Ivanova A G, Roddatis V V, Vasiliev A L (2013) Spin transition of Fe2+ in ringwoodite (Mg,Fe)2SiO4 at high pressures, American Mineralogist, 98, 1803-1810

Yang X, Keppler H, Dubrovinsky L, Kurnosov A (2014) In-situ infrared spectra of hydroxyl in wadsleyite and ringwoodite at high pressure and high temperature, American Mineralogist, 99, 724-729

Bindi L, Tamarova A, Bobrov A V, Sirotkina E A, Tschauner O, Walter M J, Irifune T (2016) Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle, American Mineralogist, 101, 483-486

Ma C, Tschauner O, Beckett J R, Liu Y, Rossman G R, Sinogeikin S V, Smith J S, Taylor L A (2016) Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars, Geochimica et Cosmochimica Acta, 184, 240-256   [view file]

Bosi F, Biagioni C, Pasero M (2019) Nomenclature and classification of the spinel supergroup, European Journal of Mineralogy, 31, 183-192   [view file]

Tschauner O (2019) High-pressure minerals, American Mineralogist, 104, 1701-1731

Chen H, Leinenweber K, Kunz M, Bechtel H A, Liu Z, Shim S (2020) Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica, American Mineralogist, 105, 1342-1348

Belmonte D, La Fortezza M, Menescardi F (2022) Ab initio thermal expansion and thermoelastic properties of ringwoodite (γ-Mg2SiO4) at mantle transition zone conditions, European Journal of Mineralogy, 34, 167-182   [view file]