## Adalberto Notarpietro\*, Luciano Gorla\*\*

## CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE NELL'ALTA E MEDIA VALTELLINA. -VARIAZIONI PETROCHIMICHE NELLA FORMAZIONE DI VALLE GROSINA \*\*\*

RIASSUNTO. — La Formazione di Valle Grosina (Austroalpino Superiore) i cui litotipi affiorano estesamente nell'alta e media Valtellina, con caratteri metamorfico-migmatici, è stata analizzata chimicamente relativamente a 90 campioni, su cui si è determinato il contenuto dei seguenti elementi: Sr, Rb, Ba, Ni, Y, Zr, Cr, V, Co, Cu, Pb. Le variazioni nei contenuti di questi elementi sono state studiate ricercandone il significato attraverso opportuni diagrammi, rapporti e analisi statistiche multivarianti. Sono stati inoltre operati confronti con le percentuali di elementi maggiori precedentemente determinati. In generale il chimismo di queste rocce denota caratteristiche molto simili sia per gli elementi maggiori sia per gli elementi minori considerati: in entrambi i casi, infatti, la loro distribuzione è tale da discriminare tre gruppi principali cui corrispondono altrettanti litotipi ben distinti dal punto di vista petrografico.

ABSTRACT. — The rocktypes of the Formazione di Valle Grosina (upper Austroalpine) mainly occur in the high and middle Valtellina with metamorphic and migmatic features. A serie of 90 selected samples has been chemically analyzed by XRF for elements: Sr, Rb, Ba, Ni, Y, Zr, Cr, V, Co, Cu, Pb. The significance of the chemical variations has been interpreted by means discriminating diagrams and statistical multicomponent analyses. The variations trends of minor elements may be well compared with those previously determined from major elements. The distribution of chemical major and minor components allows the distinction of three main groups corresponding to three petrographically defined litothypes. Both major and minor components show similar caracthers in respect of their distribution.

#### Introduzione

In precedenti lavori (CORRADINI et al., 1973; GORLA e POTENZA, 1975) si è sottolineato come, in base a criteri di ordine strutturale e considerazioni di carattere petrografico, la Formazione di Valle Grosina, elemento sommitale dell'Austroalpino superiore nell'alta e media Valtellina, amplii i suoi limiti più di quanto considerato nei Fogli geologici Pizzo Bernina (7) - Sondrio (18), Tirano (19) e Bormio (8), assumendo, di conseguenza, una maggior importanza nell'ambito delle Alpi Centrali. Di fatto la nuova delimitazione di questa formazione, costituita principalmente da metamorfiti di medio e basso grado e da diffuse migmatiti, oltre che da corpi magmatici ben delimitati, comporta la revisione pressocchè

<sup>\*</sup> Centro di Studio per la Stratigrafia e Petrografia delle Alpi Centrali del C.N.R., Milano. \*\* Istituto di Mineralogia, Petrografia e Geochimica dell'Università di Milano. \*\*\* Lavoro eseguito nell'ambito delle ricerche del Centro di Studio per la Stratigrafia e Petrografia delle Alpi Centrali del C.N.R., Milano.

completa dal punto di vista litologico-petrografico-strutturale dei terreni ad essa ascritti.

Allo stato attuale sono state eseguite accurate indagini all'interno delle Valli Grosine, dove gli affioramenti sono meglio esposti e più estesi, mentre indagini più approfondite richiedono le zone situate sul versante sinistro dell'Adda, tra Grosio, il Mortirolo e la Val Grande. Più scarso è invece il grado di conoscenza delle aree di più bassa quota lungo l'asse valtellinese (fig. 1).

Dalle sintesi di queste ricerche si potrà ottenere un lavoro organico, dalla fase descrittiva a quella interpretativa, fino ad affrontarne il processo petrogenetico. Per il momento, accanto alle operazioni di campagna, si è ritenuto opportuno proce-



Fig. 1. — In grigio è indicata l'estensione della « Formazione di Valle Grosina » secondo GORLA e POTENZA (1975), che comprenderebbe la « F. di Valle Grosina » auct. (tratteggio verticale fitto) e la « F. della Púnta di Pietra Rossa » auct. (tratteggio verticale largo). L'area esaminata in questo lavoro è quella racchiusa nella linea tratteggiata.

dere con uno studio petrochimico e geochimico nel tentativo di individuare andamenti di particolare interesse o comunque utili a ricostruire l'evoluzione che queste rocce hanno subito.

In precedenza (BIANCHI-NOTARPIETRO, 1977; BIANCHI et al., 1978) sono stati presi in esame gli elementi maggiori all'interno della Formazione di Valle Grosina, definendone i tenori negli gneiss occhiadini, minuti e granitoidi, che di questa unità costituiscono i tre litotipi principali. Per la verità questa suddivisisone potrebbe apparire un po' riduttiva delle litofacies realmente presenti nell'ambito della formazione dove, da alcuni autori che si sono interessati di queste zone (DE MI- CHELE, 1963; CERIANI, 1964; BONSIGNORE, 1962), sono stati riconosciuti e descritti: embrechiti, epiboliti, gneiss d'iniezione, anatessiti, ecc.

La necessità di operare correlazioni su vasta scala ha però imposto, in via preliminare, una semplificazione dei tipi litologici, che si è poi rivelata di grande utilità, suggerendo l'uso di termini che non coinvolgano considerazioni di carattere genetico. I criteri di questa schematizzazione, sommariamente esposti in Notarpietro (1972) e Corradini et al. (1973), portano ad individuare l'esistenza di: gneiss occhiadini di base; gneiss biotitici a grana minuta, compatti e finemente scistosi; gneiss granitoidi, termine comprensvo per indicare l'insieme dei tipi da debolmente gneissici a granitici.

In merito a questi ultimi, alla luce di quanto osservato sul terreno, riteniamo sia più corretto parlare di graniti gneissici anzichè di gneiss granitoidi, proponendo perciò l'abbandono di questo termine.

La differenza tra gneiss occhiadini e graniti gneissici si basa più che altro su criteri petrografici (tessitura, in particolare continuità dei letti micacei) e geologici (diversa posizione strutturale apparente: gneiss occhiadini quasi costantemente in posizione inferiore). Con questo lavoro, in cui non verranno fatte distinzioni tra « graniti » della letteratura, graniti orientati e migmatiti più o meno omogenee di vario tipo, ci proponiamo di mettere in evidenza il comportamento di alcuni elementi minori, di ricercarne il grado di associazione all'interno dei vari litotipi e di individuare le relazioni con gli elementi maggiori già noti. Gli elementi determinati sono: Sr, Rb, Ba, Ni, Y, Zr, Cr, Co, V, Pb.

### Premessa

La Formazione di Valle Grosina è stata fino ad oggi studiata in modo parziale dal punto di vista petrografico-strutturale. Solo di recente sono state avviate indagini di carattere generale che comportano un notevole impegno sul terreno: d'altra parte riteniamo siano indispensabili rilievi di dettaglio per definire la completa estensione di questa unità strutturale. Si intende, cioè, l'ipotizzata annessione alla Formazione di Valle Grosina di una parte della Formazione della Punta Rossa auct., la cui esistenza è risultata, almeno per quanto riguarda alcune zone, poco verosimile (Gorla e Potenza, 1975). In questo modo la F. di Valle Grosina estenderebbe i suoi confini fin quasi a Colico, nella parte meridionale, mentre a nord sarebbe limitata dalla Val Viola, situata a circa metà strada tra Bormio e Livigno.

In generale la Formazione di Valle Grosina, strutturalmente corrispondente alle sub-Silvrettidi di Staub e facente parte dell'Austroalpino superiore, può essere considerata un complesso polimetamorfico prealpino, caratterizzato dalla presenza di una fascia di base, potente alcune centinaia di metri, costituita da gneiss occhiadini passanti gradualmente a gneiss minuti, con una progressiva riduzione degli occhi di feldspato, che talora raggiungono anche dimensione centimetrica.

I rapporti con i graniti gneissici sono più complessi: solitamente tra gneiss

Distribuzione dei minerali all'interno dei tre litotipi in cui è stata distinta la Formazione di Valle Grosina



Per maggiori dettagli sulle associazioni mineralogiche di queste rocce si vedano i lavori di BIANCHI et al., in: La «Formazione di Valle Grosina»: revisione dei suoi aspetti petrografici in un nuovo contesto geologico. I. Gli «Gneiss granitoidi », 1977; II. Gli «Gneiss minuti », 1978; III. Gli «Gneiss occhiadini », 1978.



occhiadini e graniti gneissici si interpongono gli gneiss minuti, ma per quanto questo sia l'assetto più frequente, verosimilmente non ne costituisce la regola. In alcuni affioramenti infatti pur non essendo stato osservato un contatto diretto, i due litotipi « granitici » risultano contigui e le differenze mesoscopiche tra gneiss occhiadini e graniti gneissici tendono via via a ridursi con una sovrapposizione di caratteri e successiva perdita di identità dei litotipi.

Di gran lunga più abbondanti degli gneiss occhiadini sono gli gneiss biotitici a grana minuta, o più semplicemente gneiss minuti. Questi sono metamorfiti di circa mille metri di spessore apparente, di aspetto compatto ed omogeneo, di colore grigio scuro e rossastro per alterazione; di grado da medio a medio-basso con associazioni mineralogiche caratterizzate in particolare dalla presenza di biotite e/o granato e/o staurolite. Associata pur se non costantemente, la presenza dei due polimorfi andalusite e cianite che si escludono vicendevolmente all'interno di questa Formazione (BIANCHI et al., 1978, II).

Caratteristici all'interno di questi gneiss sono grossi filoni aplitici subconcordanti e vene quarzose sotto forma di pieghe intrafoliali. Gneiss minuti e graniti gneissici mostrano rapporti di tipo tettonico, sottolineati da estese laminazioni, oppure lasciano riconoscere originarie relazioni; altrove sono sfumati graduali.

Le conoscenze petrografiche finora acquisite, a scala microscopica, nell'ambito della Formazione di Valle Grosina, non vanno oltre l'individuazione e la descrizione delle associazioni mineralogiche fondamentali (tabella 1), per cui riteniamo sia indispensabile approfondire questo tipo di studio prima di avanzare ipotesi sulla evoluzione di queste rocce. Le osservazioni di campagna consentono, ciò nonostante, di fare alcune considerazioni:

- gli gneiss minuti presentano un aspetto caratteristico di rocce paraderivate, interessate quasi certamente da più eventi metamorfici, di cui il principale precedente l'orogenesi alpina (« ercinico »?); le loro caratteristiche litologiche sono simili sotto molti aspetti a quelli delle altre rocce centroalpine;
- gli gneiss occhiadini per le loro caratteristiche petrografiche e geologiche rappresentano verosimilmente un elemento antico della Formazione. La loro genesi sembrerebbe essere antecedente il metamorfismo scistogeno principale degli gneiss minuti, che però sembra essere responsabile della loro scistosità;
- i graniti gneissici mostrano un carattere intrusivo molto marcato ed abbondantemente diffuso, presentano tipicamente una tessitura scistosa, meno pronunciata di quella degli gneiss occhiadini, parallela a quella della roccia incassante. Frequenti sono anche migmatiti discordanti rispetto ad una scistosità preesistente.

#### Studio petrochimico

Sono stati analizzati complessivamente 90 campioni di cui: 29 di gneiss occhiadini, 34 di gneiss minuti e 27 di graniti gneissici. Le zone di provenienza sono indicate nella figura 1, all'interno dell'area tratteggiata. Si è fatto uso dello

# F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS MINUTI

|            | NA23    | GC12  | GC19  | GC26  | GC34  | GC54  | GC64  | FM47  | FM08  | FM01   | FM48  | RT58  |
|------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
|            | 9820    | 9226  | 8990  | 9328  | 9414  | 9360  | 9410  | 9534  | 9623  | 9285   | 9521  | 9822  |
| Coord.     | 3270    | 3230  | 3258  | 3166  | 3134  | 3298  | 3428  | 3968  | 4093  | 3738   | 3941  | 3215  |
| SiOn       | 66 09   | 60 17 | 60.07 | 57 64 | 51 70 | FO 05 | 50 40 | 57 40 | 62.02 | 72 47  | 62.10 | 60 06 |
| A1000      | 12 76   | 16 25 | 16.04 | 57.61 | 51.79 | 59.95 | 59.42 | 17.00 | 15 37 | 12.4/  | 14 75 | 12 10 |
| RI203      | 13.70   | 10.35 | 16.04 | 18.12 | 19.31 | 16.42 | 17.50 | 17.09 | 15.37 | 12.75  | 14.75 | 13.10 |
| Fe203      | 3.43    | 4.75  | 4.50  | 6.30  | 5.98  | 5.08  | 5.24  | 4.34  | 3.94  | 3.00   | 3.07  | 3.21  |
| reo<br>Mao | 2.21    | 2.99  | 2.84  | 2.57  | 4.46  | 3.18  | 2.82  | 4.45  | 3.10  | 2.17   | 3.36  | 2.47  |
| Mag        | .08     | .08   | .08   | .09   | .09   | .10   | .09   | .10   | .09   | .08    | .10   | .07   |
| MgO        | 2.14    | 3.42  | 3.16  | 2.94  | 4.76  | 3.58  | 3.54  | 4.33  | 3.18  | 1.79   | 3.17  | 2.80  |
| Naco       | 2.65    | 1.60  | 1.81  | .95   | 1.23  | 2.32  | 1.52  | 1.53  | 1.96  | .93    | 2.41  | 1.5/  |
| Nazo       | 4.54    | 2.86  | 2.78  | 2.71  | 2.13  | 3.95  | 2.67  | 2.84  | 4.35  | 1.69   | 4.71  | 3.34  |
| K20        | 1.43    | 3.02  | 2.75  | 3.77  | 4.56  | 1.94  | 3.13  | 4.35  | 2.83  | 2.92   | 2.53  | 2.69  |
| 1102       | .84     | .94   | .92   | 1.02  | .98   | .97   | .93   | .95   | .83   | .82    | .87   | .84   |
| P205       | .24     | .13   | .16   | .12   | .11   | .14   | .13   | .14   | .14   | .07    | .15   | .14   |
| 820        | 2.17    | 4.09  | 2.99  | 4.75  | 4.44  | 3.72  | 3.87  | 2.78  | 2.43  | 2.20   | 2.28  | 2.16  |
| Sr         | 330     | 292   | 328   | 169   | 184   | 405   | 315   | 234   | 282   | 161    | 267   | 192   |
| Rb         | 67      | 110   | 111   | 139   | 132   | 78    | 101   | 133   | 113   | 111    | 103   | 99    |
| Ba         | 365     | 891   | 620   | 1007  | 1320  | 541   | 861   | 859   | 564   | 688    | 642   | 661   |
| Ni         | 23      | 25    | 19    | 15    | 25    | 32    | 9     | 38    | 30    | 20     | 32    | 21    |
| Y          | 31.     | 33    | 34    | 26    | 30    | 26    | 36    | 34    | 31    | 26     | 27    | 28    |
| Zr         | 278     | 215   | 235   | 224   | 155   | 221   | 224   | 197   | 182   | 384    | 204   | 254   |
| Cr         | 68      | 98    | 91    | 98    | 110   | 96    | 91    | 93    | 80    | 54     | 81    | 70    |
| V          | 107     | 155   | 132   | 158   | 179   | 157   | 158   | 144   | 150   | 82     | 128   | 106   |
| Co         | 41      | 36    | 51    | 7     | 16    | 32    | 28    | 26    | 38    | 69     | 44    | 50    |
| Cu         | 9       | 57    | 33    | 37    | 40    | 13    | 43    | 65    | 28    | 11     | 0     | 24    |
| Pb         | 36      | 31    | 27    | 17    | 42    | 37    | 33    | 27    | 35    | 34     | 33    | 30    |
| as loss    |         |       |       |       |       |       |       | 9     |       |        |       |       |
| K/RD       | 178     | 228   | 205   | 225   | 287   | 206   | 257   | 271   | 208   | 218    | 204   | 225   |
| K/Ba       | 33      | 28    | 37    | 31    | 29    | 30    | 30    | 42    | 42    | 35     | 33    | 34    |
| RD/Sr      | .20     | .38   | .34   | .82   | .72   | .19   | .32   | .57   | .40   | .69    | .39   | .52   |
| Ba/Sr      | 1.11    | 3.05  | 1.89  | 5.96  | 7.17  | 1.34  | 2.73  | 3.67  | 2.00  | 4.27   | 2.40  | 3.44  |
| Ba/RD      | 5.45    | 8.10  | 5.59  | 7.24  | 10.00 | 6.94  | 8.52  | 6.46  | 4.99  | 6.20   | 6.23  | 6.68  |
| Sr/Cax1    | 0, 17.5 | 25.6  | 25.4  | 24.9  | 20.9  | 24.4  | 28.9  | 21.5  | 20.1  | . 24.4 | 15.5  | 17.1  |
| K/Pb       | 331     | 810   | 844   | 1841  | 902   | 435   | 788   | 1337  | 671   | 712    | 636   | 743   |
| NORME C.   | I.P.W.  |       |       |       |       |       |       |       |       |        |       |       |
| ō.         | 25 09   | 23 72 | 27 36 | 21 32 | 11 69 | 19 51 | 23 73 | 13 46 | 17.66 | 46.85  | 15.45 | 30,92 |
| č          | 49      | 5 77  | 5 58  | 8 14  | 8 89  | 3 93  | 7 26  | 5.28  | 1.92  | 5.26   | .24   | 2.25  |
| 2          | .04     | .04   | .04   | .02   | .04   | .04   | .02   | .02   | .02   | .02    | .02   | .02   |
| Or         | 8.45    | 17.84 | 16.25 | 22 27 | 26.94 | 11.46 | 18.49 | 25.70 | 16.72 | 17.25  | 14.95 | 15.89 |
| Ab         | 38 41   | 24 20 | 23 52 | 22 93 | 18 02 | 33 42 | 22 59 | 24.03 | 36.80 | 14.30  | 39.85 | 28.26 |
| An         | 11 58   | 7 08  | 7 93  | 3 93  | 5 38  | 10 59 | 6 69  | 6.62  | 8.81  | 4.15   | 10.97 | 6.87  |
| En /Hu     | 6.82    | 8.51  | 7.86  | 7 32  | 11.85 | 8.91  | 8.81  | 10.78 | 7.91  | 4.45   | 7.89  | 6.97  |
| Fs/Hy      | 0.02    | 16    | 12    |       | 1 70  | 22    | 0.01  | 3 20  | 1.23  | .30    | 2.38  | .57   |
| Mt         | 4 94    | 6.89  | 6 52  | 5 62  | 8 67  | 7 36  | 6 68  | 6.29  | 5.71  | 4.34   | 4.45  | 4.74  |
| Hm         | 01      | 0.00  | 0.52  | 2 12  | 0.07  |       | 62    | 0.29  | 00    | .00    | .00   | - 00  |
| T1         | 1 50    | 1 79  | 1 74  | 1 92  | 1.86  | 1.84  | 1 76  | 1 80  | 1 57  | 1.55   | 1.65  | 1.59  |
| An         | 56      | 30    | 37    | 20    | 2.00  | 32    | 30    | 33    | 33    | .16    | .35   | .33   |
|            | .50     | .30   | .57   | .20   | .20   |       | .50   |       |       |        | .55   |       |
| D. I.      | 71.95   | 65.76 | 67.13 | 66.52 | 56.65 | 64.39 | 64.81 | 63.19 | 71.18 | 78.40  | 70.25 | 75.07 |

spettrometro per fluorescenza di raggi X, lavorando su pastiglie di polvere pressata con aggiunta di alcool polivinilico e usando come riferimento standards internazionali. Sono state determinate le percentuali dei seguenti elementi: Sr, Rb, Ba, Ni, Y, Zr, Cr, V, Co, Cu, Pb. Sugli stessi campioni si erano in precedenza deter-

#### CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE ETC.

### TABELLA 3

# F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS MINUTI

|                  | RT87    | DM72  | DM100 | GL16  | GL17  | GL29  | GL27  | GL30  | GL56  | GL62  | FT40  |
|------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                  | 0056    | 8834  | 9026  | 1138  | 1080  | 1050  | 1036  | 1042  | 0690  | 0650  | 9150  |
| Coord.           | 3753    | 3511  | 3691  | 3490  | 3434  | 3430  | 3448  | 3380  | 4000  | 3920  | 2756  |
| sio              | 62.70   | 65 74 | 62 42 | 66 26 | 71 45 | 67 39 | 55 96 | 56 14 | 62 04 | 54 67 | 67.55 |
| AlaOa            | 14.69   | 14.87 | 14.83 | 13 60 | 12 01 | 13 62 | 19 28 | 19.87 | 17.01 | 18.77 | 15.27 |
| FeeOs            | 3 12    | 2 90  | 3 17  | 3 62  | 3 27  | 3 07  | 5 31  | A 53  | A 72  | 5 71  | 2 70  |
| FeO              | 3 07    | 2 11  | 3 60  | 2.26  | 1 25  | 2.05  | 2.04  | 3.00  | 2 42  | 3.51  | 1 04  |
| MnO              | 09      | 06    | 0.09  | 2.20  | 1.55  | 2.05  | 10    | 3.50  | 2.42  | 3.51  | 1.54  |
| MaQ              | 3.46    | 1 96  | 3 25  | 2 72  | 2.00  | 2 44  | 4.00  | 2 90  | 2 00  | 2 50  | 2 04  |
| CaO              | 4 27    | 2 25  | 2 21  | 2.01  | 1 25  | 2.99  | 1.00  | 1.01  | 1 01  | 1 52  | 1 10  |
| Na-O             | 3 07    | 2.25  | 2.21  | 5.01  | 1.35  | 2.09  | 1.90  | 1.01  | 1.01  | 2.16  | 2 54  |
| K-O              | 2.66    | 3.09  | 2.91  | 0.96  | 3.47  | 4.35  | 2.00  | 1.9/  | 2.21  | Z.10  | 2 22  |
| T10-             | 2.00    | 3.70  | 2.00  | 0.86  | 2.02  | 1.68  | 3.57  | 5.21  | 3.74  | 1.00  | 3.33  |
| P.O.             | .55     | .12   | .05   |       | . / 2 | .93   | 1.08  | .96   | .00   | 1.08  | .00   |
| 1205             | 1.05    | 2.01  | .24   | .14   | .15   | .15   | .10   | .10   | 2.17  | 2.00  | 2.00  |
| H <sub>2</sub> 0 | 1.95    | 2.01  | 4.22  | 2.15  | 2.93  | 1.82  | 3.69  | 3.61  | 3.17  | 3.26  | 2.09  |
| Sr               | 261     | 158   | 351   | 287   | 206   | 217   | 234   | 408   | 207   | 160   | 119   |
| Rb               | 103     | 128   | 111   | 53    | 92    | 79    | 123   | 219   | 114   | 193   | 121   |
| Ba               | 585     | 681   | 481   | 235   | 444   | 533   | 981   | 1184  | 895   | 1181  | 622   |
| Ni               | 11      | 15    | 29    | 19    | 19    | 23    | 23    | 20    | 12    | 28    | 17    |
| Y                | 26      | 39    | 32    | 37    | 19    | 32    | 38    | 32    | 30    | 38    | 20    |
| Zr               | 141     | 218   | 224   | 302   | 240   | 300   | 184   | 162   | 232   | 198   | 182   |
| Cr               | 61      | 46    | 74    | 80    | 58    | 81    | 114   | 117   | 96    | 115   | 52    |
| V                | 135     | 83    | 116   | 106   | 80    | 105   | 192   | 162   | 123   | 143   | 78    |
| Co               | 30      | 56    | 40    | 60    | 83    | 70    | 19    | 43    | 36    | 39    | 56    |
| Cu               | 9       | 17    | 16    | 9     | 31    | 10    | 10    | 18    | 13    | 97    | 24    |
| Pb               | 25      | 27    | 42    | 39    | 35    | 29    | 31    | 33    | 28    | 35    | 19    |
| K/Rb             | 215     | 240   | 214   | 134   | 183   | 176   | 241   | 198   | 272   | 232   | 228   |
| K/Ba             | 38      | 45    | 49    | 30    | 38    | 30    | 30    | 37    | 35    | 38    | 44    |
| Rb/Sr            | .39     | .81   | .32   | .18   | .45   | .36   | .53   | .54   | .55   | 1.21  | 1.02  |
| Ba/Sr            | 2.24    | 4.31  | 1.37  | .82   | 2.16  | 2.46  | 4.19  | 2.90  | 4.32  | 7.38  | 5.23  |
| Ba/Rb            | 5.68    | 5.32  | 4.33  | 4.43  | 4.83  | 6.75  | 7.98  | 5.41  | 7:85  | 6.12  | 5.14  |
| Sr/Cax1          | 03 8.6  | 9.8   | 22.2  | 13.4  | 21.5  | 16.1  | 17.2  | 56.7  | 28.7  | 14.7  | 15.1  |
| K/Pb             | 884     | 1137  | 564   | 182   | 480   | 366   | 955   | 1312  | 1107  | 1280  | 1453  |
|                  |         |       |       |       |       |       |       |       |       |       |       |
| NORME C          | .I.P.W. |       |       |       |       |       |       |       |       |       |       |
| Q                | 15.64   | 21.21 | 23.95 | 23.64 | 37.94 | 27.95 | 17.86 | 17.55 | 29.00 | 13.35 | 29.00 |
| C                | .00     | .75   | 3.40  | .00   | 2.01  | 1.20  | 8.14  | 9.39  | 8.01  | 6.99  | 4.17  |
| Z                | .02     | .02   | .02   | .02   | .01   | .02   | .04   | .02   | .02   | .02   | .02   |
| Or               | 15.71   | 21.86 | 16.90 | 5.08  | 11.93 | 9.92  | 21.09 | 30.78 | 22.10 | 31.91 | 19.67 |
| Ab               | 33.59   | 32.91 | 25.13 | 43.15 | 29.36 | 36.80 | 21.57 | 16.66 | 18.70 | 18.27 | 29.95 |
| An               | 14.40   | 10.11 | 9.39  | 11.67 | 5.71  | 9.38  | 8.38  | 4.35  | 3.57  | 6.49  | 4.54  |
| Wo/Di            | 2.58    | .00   | .00   | .97   | .00   | .00   | .00   | .00   | .00   | .00   | .00   |
| En/Di            | 1.85    | .00   | .00   | .83   | .00   | .00   | .00   | .00   | .00   | .00   | .00   |
| Fs/Di            | .49     | .00   | .00   | .01   | .00   | .00   | .00   | .00   | .00   | .00   | .00   |
| En/Hy            | 6.76    | 4.88  | 8.09  | 5.93  | 5.20  | 6.07  | 9.96  | 7.19  | 7.19  | 8.71  | 5.08  |
| Fs/Hy            | 1.82    | .95   | 2.92  | .08   | .00   | .00   | .00   | 2.16  | .00   | .11   | .48   |
| Mt               | 4.52    | 4.20  | 4.59  | 5.24  | 2.52  | 4.17  | 6.67  | 6.56  | 5.50  | 8.27  | 3.91  |
| Hm               | .00     | .00   | .00   | .00   | 1.52  | 1.09  | .70   | .00   | .91-  | .00   | .00   |
| 11               | 1.04    | 1.36  | 1.61  | 1.46  | 1.36  | 1.76  | 2.05  | 1.82  | 1.67  | 2.05  | 1.13  |
| Ap               | .21     | .37   | .56   | .33   | .35   | .35   | .37   | .23   | .52   | .37   | .33   |
| D. I.            | 64.94   | 75.98 | 65.98 | 71.87 | 79.23 | 74.67 | 60.52 | 64.99 | 69,80 | 63.53 | 78.62 |

## F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS MINUTI

|          | FT41   | FT27             | FT38  | SF01              | SF13     | NA02  | NA04  | NA01  | NA08  | NA09  | NA17  |
|----------|--------|------------------|-------|-------------------|----------|-------|-------|-------|-------|-------|-------|
|          | 9174   | 9119             | 9162  | 8885              | 8733     | 9981  | 0026  | 9968  | 0012  | 9615  | 9858  |
| Coord.   | 2694   | 2840             | 2790  | 3053              | 3053     | 3081  | 3078  | 3098  | 3739  | 4040  | 3040  |
| CiO.     | 60 00  | 50 41            | 62 04 | 62 12             | co 00    | co 00 | c1 20 | EE 20 | 50 40 | 60.00 | 57 78 |
| A100     | 15 26  | 17 76            | 15 62 | 16 39             | 14 92    | 15 71 | 15 00 | 17 30 | 15 06 | 15 60 | 17 41 |
| FeeOs    | 2 49   | 3.06             | 4 10  | 2 92              | 1 04     | 2 01  | 13.90 | 17.30 | 3 57  | 4 65  | 6 30  |
| FeO      | 1 83   | 3.30             | 3 20  | 2 00              | 1 34     | 2.01  | 3 27  | 3 89  | 3.86  | 1 63  | 2.80  |
| MnO      | 1.05   | 3.30             | 10    | 2.99              | 1.34     | .03   | 3.27  | 11    | 0.00  | 08    | 08    |
| MaO      | 1 00   | 2.40             | 2.25  | 2.00              | 1 16     | .04   | 2 46  | 4 20  | 4 20  | 2 55  | 3 56  |
| CaO      | 60     | 1 42             | 1 47  | 1 00              | 1.10     | .07   | 1 00  | 1 63  | 5 18  | 3 47  | 54    |
| NacO     | 3 56   | 2 04             | 2 41  | 2 61              | .19      | .90   | 2 90  | 3 34  | 3 21  | 3.96  | 2 75  |
| KaO      | 3.50   | 2.94             | 3.41  | 3.01              | 4.0/     | 4.55  | 3.00  | 3.09  | 3.21  | 3.30  | 3 35  |
| TIO      | 3.00   | 3.29             | 2.99  | 2.45              | 3.50     | 4.40  | 3.05  | 1.02  | 5.04  | 3.30  | 00    |
| Pa Or    |        | .93              | .07   | .98               | .30      | .31   | .95   | 1.03  | .07   | .15   | . 99  |
| F205     | 2.22   | .12              | 2.00  | .13               | .14      | .08   | .10   | .15   | 2 21  | 2 40  | 1 60  |
| 120      | 2.22   | 4.00             | 3.06  | 2.57              | 1.78     | 1.0/  | 2.40* | 4.20  | 2.51  | 5.40  | 4.00  |
| Sr       | 82     | 339              | 319   | 316               | 115      | 92    | 343   | 141   | 200   | 270   | 131   |
| Rb       | 139    | 119              | 103   | 209               | 158      | 150   | 114   | 109   | 93    | 126   | 114   |
| Ba       | 558    | 872              | 597   | 666               | 419      | 470   | 734   | 840   | 604   | 743   | 951   |
| Ni       | 17     | 11               | 26    | 16                | 8        | 8     | 14    | 34    | 11    | 14    | 26    |
| Y        | 5      | 27               | 32    | 30                | 24       | 18    | 38    | 31    | 24    | 29    | 32    |
| Zr       | 158    | 181              | 232   | 286               | 143      | 159   | 217   | 190   | 139   | 226   | 197   |
| Cr       | 45     | 97               | 76    | 84                | 30       | 14    | 102   | 104   | 74    | 38    | 98    |
| v        | 69     | 149              | 117   | 146               | 51       | 37    | 259   | 170   | 171   | 116   | 182   |
| Co       | 56     | 30               | 42    | 32                | 54       | 71    | 35    | 22    | 30    | 36    | 20    |
| Cu       | 8      | 6                | 48    | 30                | 11       | 11    | 31    | 21    | 18    | 3     | 42    |
| Pb       | 35     | 30               | 31    | 28                | 39       | 40    | 31    | 19    | 23    | 30    | 30    |
| K/Rb     | 219    | 229              | 241   | 97                | 188      | 248   | 222   | 235   | 254   | 217   | 244   |
| K/Ba     | 54     | 31               | 42    | 30                | 71       | 79    | 34    | 30    | 39    | * 37  | 29    |
| Rb/Sr    | 1.70   | .35              | .32   | .66               | 1.37     | 1.63  | .33   | .77   | .47   | .47   | .87   |
| Ba/Sr    | 6.80   | 2.57             | 1.87  | 2.11              | 3.64     | 5.11  | 2.14  | 5.96  | 3.02  | 2.75  | 7.26  |
| Ba/Rb    | 4.01   | 7.33             | 5.80  | 3.19              | 2.65     | 3.13  | 6.44  | 7.71  | 6.49  | 5.90  | 8.34  |
| Sr/Cax10 | 3 15.1 | 33.6             | 30.4  | 23.6              | 20.5     | 14.4  | 25.2  | 12.2  | 5.4   | 10.9  | 33.6  |
| K/Pb     | 869    | 910              | 800   | 725               | 762      | 930   | 816   | 1347  | 1026  | 913   | 927   |
|          |        |                  |       |                   |          |       |       |       |       |       |       |
| NORME C. | I.P.W. | 11.000711-007201 |       | Per 02 1 4 22 5 2 | 344 (37) |       |       |       |       |       |       |
| Q        | 29.00  | 21.29            | 22.51 | 24.36             | 25.91    | 22.31 | 18.27 | 13.68 | 12.78 | 15.16 | 22.88 |
| с        | 4.47   | 7.06             | 4.41  | 4.68              | 2.16     | 1.96  | 3.27  | 5.81  | .00   | .00   | 8.61  |
| z        | .04    | .02              | .02   | .02               | .02      | .02   | .02   | .02   | .02   | .04   | .02   |
| Or       | 21.62  | 19.44            | 17.67 | 14.47             | 21.15    | 26.47 | 18.02 | 18.20 | 16.78 | 19.50 | 19.79 |
| Ab       | 30.12  | 24.87            | 28.85 | 30.54             | 39.51    | 38.33 | 32.15 | 28.26 | 27.16 | 32.66 | 23.26 |
| An       | 2.64   | 6.26             | 6.44  | 8.47              | 3.00     | 3.94  | 8.38  | 7.23  | 18.29 | 15.49 | 1.76  |
| Wo/Di    | .00    | .00              | .00   | .00               | .00      | .00   | .00   | .00   | 2.79  | .44   | .00   |
| En/Di    | .00    | .00              | .00   | .00               | .00      | .00   | .00   | .00   | 1.95  | .38   | .00   |
| Fs/Di    | .00    | .00              | .00   | .00               | .00      | .00   | .00   | .00   | .59   | .00   | .00   |
| En/Hy    | 4.93   | 8.46             | 8.09  | 7.22              | 2.88     | 2.16  | 8.61  | 10.93 | 8.50  | 5.96  | 8.86  |
| Fs/Hy    | .51    | 1.40             | 1.32  | .87               | .38      | .00   | 1.17  | 1.53  | 2.60  | .00   | .00   |
| Mt       | 3.59   | 5.74             | 6.07  | 5.55              | 2.66     | 1.97  | 5.97  | 7.22  | 5.17  | 3.39  | 6.41  |
| Hm       | .00    | .00              | .00   | .00               | .00      | .65   | .00   | .00   | .00   | 2.30  | 1.87  |
| 11       | 1.04   | 1.76             | 1.65  | 1.86              | .72      | .58   | 1.76  | 1.95  | 1.27  | 1.38  | 1.88  |
| Ap       | .28    | .28              | .30   | .30               | .33      | .18   | .37   | .30   | .26   | .23   | .33   |
| D. I.    | 80.74  | 65.60            | 69.03 | 69.37             | 86.57    | 87.11 | 68.44 | 60.14 | 56.72 | 67.32 | 65.90 |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GRANITI GNEISSICI

|                                | tinteret             | ar arper | c monuore | 111 1 1 1 | .) - OR. | TIAL TI | OTTLIC | JIGI       |             |
|--------------------------------|----------------------|----------|-----------|-----------|----------|---------|--------|------------|-------------|
|                                | GR86                 | GR326    | GR75      | GR300     | GR10     | GR350   | SF28   | GR196      | RT10        |
| -                              | 0253                 | 0339     | 0404      | 0406      | 0030     | 0488    | 9048   | 9930       | 9657        |
| Coord.                         | 2436                 | 2491     | 2570      | 2610      | 2651     | 2728    | 2653   | 2108       | 3982        |
|                                |                      |          | 2010      | 2010      | 0001     | 2.20    |        | 075.00.000 | ಾರ್ ಕುರ್ತನ್ |
| SiO <sub>2</sub>               | 72.54                | 66.45    | 72.11     | 75.08     | 75.32    | 73.98   | 71.29  | 68.97      | 68.35       |
| A1203                          | 15.27                | 17.41    | 15.56     | 14.51     | 16.30    | 15.01   | 14.60  | 16.09      | 15.50       |
| Fe <sub>2</sub> O <sub>3</sub> | 2.30                 | 2.80     | 2.39      | .92       | .55      | 1.39    | 3.35   | 2.49       | 3.48        |
| FeO                            | .44                  | .86      | .80       | .43       | .48      | .56     | .83    | 1.27       | 1.13        |
| MnO                            | .07                  | .07      | .07       | .08       | .06      | .06     | .11    | .09        | .11         |
| MgO                            | .64                  | 1.25     | .81       | .32       | .19      | .28     | 1.40   | 1.18       | 1.63        |
| CaO                            | 1.75                 | 3.26     | 1.54      | .44       | .40      | .91     | 2.10   | 2.60       | 2.54        |
| Na <sub>2</sub> O              | 2.93                 | 3.79     | 3.12      | 5.20      | 2.59     | 3.22    | 3.17   | 3.98       | 2.84        |
| K20                            | 4.36                 | 2.42     | 4.01      | 2.24      | 4.85     | 5.01    | 3.37   | 2.70       | 3.29        |
| TiO2                           | .29                  | .48      | .34       | .11       | .09      | .16     | .48    | .44        | .42         |
| P205                           | .04                  | .07      | .04       | .00       | .01      | .01     | .04    | .06        | .04         |
| H <sub>2</sub> O               | .49                  | .64      | .84       | .23       | .44      | .59     | .58    | .59        | .32         |
|                                |                      |          |           |           |          |         |        |            |             |
| Sr                             | 218                  | 376      | 183       | 80        | 85       | 80      | 144    | 238        | 219         |
| Rb                             | 173                  | 108      | 130       | 89        | 248      | 196     | 132    | 201        | 110         |
| Ba                             | 995                  | 594      | 822       | 171       | 323      | 339     | 618    | 654        | 718         |
| Ni                             | 3                    | 12       | 8         | 3         | 4        | 6       | 4      | 5          | 3           |
| Y                              | 27                   | 11       | 22        | 2         | 1        | 23      | 32     | 17         | 38          |
| Zr                             | 190                  | 243      | 210       | 118       | 75       | 132     | 192    | 259        | 148         |
| Cr                             | 15                   | 18       | 11        | 11        | 30       | 10      | 33     | 17         | 22          |
| v                              | 36                   | 54       | 33        | 21        | 22       | 21      | 78     | 42         | 73          |
| Co                             | 60                   | 63       | 76        | 34        | 36       | 94      | 89     | 51         | 67          |
| Cu                             | 7                    | 19       | 4         | 14        | 10       | 8       | n.d.   | 14         | n.d.        |
| Pb                             | 40                   | 33       | 36        | 32        | 51       | 47      | 47     | 31         | 38          |
|                                |                      |          |           |           |          |         |        |            |             |
| K/Rb                           | 209                  | 186      | 256       | 209       | 162      | 212     | 212    | 204        | 255         |
| K/Ba                           | 36                   | 34       | 40        | 109       | 125      | 123     | 45     | 34         | 38          |
| Rb/Sr                          | .79                  | .29      | .71       | 1.11      | 2.92     | 2.45    | .92    | .84        | .50         |
| Ba/Sr                          | 4.56                 | 1.58     | 4.49      | 2.14      | 3.80     | 4.24    | 4.29   | 2.75       | 3.28        |
| Ba/Rb                          | 5.75                 | 5.50     | 6.32      | 1.92      | 1.30     | 1.73    | 4.68   | 3.25       | 6.53        |
| Sr/Cax                         | 10 <sup>3</sup> 34.2 | 9.1      | 12.8      | 25.8      | 16.1     | 6.6     | 17.4   | 17.9       | 29.3        |
| K/Pb                           | 905                  | 609      | 925       | 581       | 790      | 885     | 875    | 723        | 718         |
| NORME O                        | C.I.P.W.             |          |           |           |          |         |        |            |             |
| 0                              | 34,20                | 26.47    | 34.20     | 34 82     | 40.39    | 33 54   | 33.46  | 28 31      | 31.46       |
| ĉ                              | 2.64                 | 2.79     | 3.38      | 2 73      | 6.08     | 3 94    | 2.01   | 2.03       | 2.74        |
| Z                              | .02                  | .04      | .02       | .02       | .02      | .02     | .04    | .02        | .02         |
| Or                             | 25.76                | 14.30    | 23.69     | 13.23     | 28.66    | 29.60   | 19.91  | 15.95      | 19.44       |
| Ab                             | 24.79                | 32.07    | 26.40     | 44.00     | 21.91    | 27.24   | 26.82  | 33.67      | 24.03       |
| An                             | 8 42                 | 15.71    | 7.37      | 2.18      | 1.91     | 4.44    | 10.15  | 12.50      | 12.34       |
| En/Hy                          | 1.59                 | 3.11     | 2.01      | .79       | .47      | .69     | 3.48   | 2.93       | 4.05        |
| Fs/Hy                          | .00                  | .00      | .00       | .00       | .39      | - 39    | .00    | .00        | .00         |
| Mt                             | .80                  | 1,60     | 1.82      | 1,32      | .79      | .79     | 1.64   | 3,11       | 2.78        |
| Hm                             | 1.74                 | 1.69     | 1.13      | .00       | 00       | .00     | 2.21   | .34        | 1.56        |
| 11                             | .55                  | .91      | .64       | .20       | .17      | .17     | . 91   | .83        | .79         |
| Ap                             | .09                  | .16      | .09       | .00       | .02      | .02     | .09    | .14        | .09         |
| 100                            | 0.05                 | 1000     |           |           |          | 1.1.1   |        |            | 1225        |
| D. I.                          | 84.75                | 72.84    | 84.29     | 92.05     | 90.96    | 90.38   | 80.19  | 77.93      | 74.93       |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapportati, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GRANITI GNEISSICI

|          | 196325374203      | D     |       | 1992 - <b>H</b> -222 (1992 | /     |       |       |       |       |
|----------|-------------------|-------|-------|----------------------------|-------|-------|-------|-------|-------|
|          | GC93              | GR342 | PB52  | DM113                      | RT99  | RT100 | NA25  | GR324 | GR24  |
|          | 8994              | 0236  | 2368  | 8728                       | 9664  | 9711  | 8682  | 0345  | 0594  |
| coord.   | 3644              | 2690  | 9024  | 3658                       | 4033  | 3853  | 3286  | 2532  | 2644  |
|          |                   |       | 2021  |                            |       |       |       | 0.00  |       |
| SiO      | 67.48             | 73.27 | 68.10 | 69.09                      | 66.48 | 68.97 | 68.20 | 71.56 | 69.36 |
| AlaOa    | 16.05             | 15.59 | 15.75 | 15.09                      | 15.40 | 15.59 | 15.92 | 15.64 | 16.16 |
| FeaOa    | 2.25              | 1.64  | 2.86  | 3.61                       | 3.89  | 3.41  | 3.05  | 2.06  | 2.72  |
| FeO      | 2.25              | - 86  | 1.13  | 1.34                       | 1.93  | .90   | 1.65  | 1.15  | .66   |
| MnO      | .11               | .07   | .11   | .11                        | .12   | .11   | .11   | .06   | - 08  |
| ΜαΟ      | 1.53              | .52   | 1 40  | 1.32                       | 2.15  | 1.45  | 1.57  | .88   | .81   |
| CaO      | 3.71              | 1.28  | 2 28  | 2.47                       | 4.14  | 3.37  | 3.69  | 1.88  | 2.38  |
| NagO     | 3.50              | 3.00  | 3.08  | 3.09                       | 2.44  | 3.54  | 2.92  | 3.06  | 3.63  |
| KaQ      | 2.83              | 4 52  | 3 68  | 3 33                       | 2 61  | 2 81  | 2.89  | 4.05  | 3.44  |
| TiOn     | 2.05              | 2.52  | 16    | 69                         | 63    | 12    | 2.05  | 37    | 38    |
| PaOr     |                   | 01    | .40   | .05                        | .05   | .42   | .40   | 03    | .04   |
| H205     | .00               | .01   | .04   | .05                        | .07   | .05   | .00   | .05   | .04   |
| 120      | .4/               | .30   | .52   | .45                        | .12   | .52   | • 47  | .50   | .50   |
| Sr       | 231               | 155   | 195   | 129                        | 196   | 185   | 194   | 227   | 241   |
| Rb       | 103               | 156   | 126   | 143                        | 99    | 121   | 110   | 146   | 129   |
| Ba       | 521               | 552   | 687   | 485                        | 467   | 431   | 499   | 860   | 792   |
| Ni       | 2                 | 7     | 3     | 405                        | 407   | 4.51  | 455   | 10    | 4     |
| v        | 22                | 16    | 11    | 13                         | 32    | 38    | 32    | 13    | 15    |
| 7r       | 164               | 190   | 102   | 172                        | 167   | 150   | 156   | 225   | 220   |
| Cr       | 20                | 109   | 192   | 1/3                        | 107   | 152   | 130   | 15    | 1 4   |
| VI VI    | 20                | 20    | 51    | 20                         | 20    | 24    | 22    | 13    | 14    |
| Co       | 75                | 29    | /1    | 00                         | 91    | 02    | 72    | 45    | 45    |
| Co       | 80                | 62    | 96    | 32                         | 12    | 80    | /0    | 6/    | 60    |
| Cu       | n.d.              | 10    | n.d.  | 2                          | 12    | n.d.  | 8     | 31    | 1/    |
| PD       | 28                | 43    | 38    | 31                         | 26    | 31    | 38    | 33    | 40    |
|          |                   |       |       |                            |       |       |       |       |       |
| K/Rb     | 228               | 240   | 243   | 193                        | 219   | 193   | 218   | 230   | 222   |
| K/Ba     | 45                | 68    | 45    | 57                         | 46    | 54    | 48    | 39    | 36    |
| Rb/Sr    | .45               | 1.01  | .65   | 1.11                       | .51   | .65   | .57   | .17   | .54   |
| Ba/Sr    | 2.26              | 3.56  | 3.52  | 3.76                       | 2.38  | 2.33  | 2.57  | 3.79  | 3.29  |
| Ba/Rb    | 5.06              | 3.54  | 5.45  | 3.39                       | 4.72  | 3.56  | 4.54  | 5.89  | 6.14  |
| Sr/Cax10 | <sup>3</sup> 11.6 | 7.4   | 12.3  | 14.2                       | 11.9  | 16.9  | 17.0  | 16.6  | 8.6   |
| K/Pb     | 839               | 872   | 805   | 890                        | 835   | 752   | 632   | 1018  | 715   |
| NORME C. | I.P.W.            |       |       |                            |       |       |       |       |       |
| Q        | 25.24             | 33.36 | 29.22 | 31.26                      | 30.40 | 28.37 | 30.06 | 32.98 | 28.87 |
| с        | .62               | .04   | 2.65  | 2.05                       | 1.20  | .71   | 1.42  | 2.87  | 2.23  |
| Z        | .02               | .04   | .04   | .02                        | .02   | .02   | .02   | .04   | .02   |
| Or       | 16.72             | 16.72 | 21.74 | 19.67                      | 15.42 | 16.60 | 17.07 | 23.93 | 20.32 |
| Ab       | 29.61             | 29.61 | 26.06 | 26.14                      | 20.64 | 29.95 | 24.70 | 25.89 | 30 71 |
| An       | 18.01             | 18.34 | 11.05 | 11.86                      | 20.08 | 16 39 | 17 91 | 9 13  | 11 54 |
| En/Hy    | 3.81              | 1.29  | 3 48  | 3 28                       | 5 35  | 3 61  | 3 90  | 2 19  | 2 01  |
| Fs/Hy    | 2.14              | .00   | 0.40  | 0.20                       | 0.00  | 0.01  | 0.90  | 2.19  | 2.01  |
| Mt       | 3.26              | 2 30  | 2 66  | 2 67                       | 1 70  | 2.04  | 1 27  | 2.00  | 1 20  |
| T1       | 37                | 45    | 2.00  | 1 31                       | 1 10  | 2.04  | 4.57  | 2.02  | 1.20  |
| Ap       | 14                | .40   | .07   | 1.51                       | 1.19  | . /9  | .05   | .70   | .72   |
| Hm       | .14               | .02   | 1 02  | 1 76                       | .10   | 2.00  | .14   | .07   | 1.02  |
| a aalii  | .00               | .05   | 1.02  | 1.76                       | .58   | 2.00  | .03   | .10   | 1.83  |
| D. I.    | 71.57             | 79.69 | 77.02 | 77.07                      | 66.46 | 74.92 | 71.83 | 82.80 | 79.90 |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GRANITI GNEISSICI

|                   | MP59   | GR323  | GR25  | GR142   | MM43  | MPA16 | NA03  | RT105 | SF42  |
|-------------------|--------|--------|-------|---------|-------|-------|-------|-------|-------|
| G                 | 9950   | 0376   | 0554  | 0034    | 9012  | 0034  | 9760  | 9780  | 9106  |
| Coord.            | 4244   | 2543   | 2659  | 2834    | 2523  | 4580  | 3006  | 3970  | 2615  |
|                   |        |        |       |         | 2020  | 1000  | 5000  | 5570  | 2015  |
| SiO2              | 67.97  | 70.13  | 73.66 | 68,62   | 67.62 | 68.48 | 71.14 | 67 46 | 67.38 |
| A1203             | 15.66  | 15.75  | 16.58 | 16.68   | 15.41 | 15.16 | 15.61 | 16 16 | 15 10 |
| Fe203             | 3.53   | 2.86   | 1.41  | -3.16   | 3.76  | 4.48  | 2.55  | 3.42  | 3 50  |
| FeO               | 1.42   | .96    | .48   | 1.26    | 1.11  | .52   | .47   | 1.44  | 99    |
| MnO               | .11    | .08    | .07   | .10     | .11   | .11   | .10   | .10   | .10   |
| MgO               | 1.82   | 1.08   | .79   | .90     | 1.93  | 1.79  | .64   | 1 60  | 1 56  |
| CaO               | 3.13   | 2.21   | 1.94  | 2.11    | 3.10  | 1.87  | 1.61  | 3 48  | 2 86  |
| Na <sub>2</sub> O | 2.65   | 2.93   | 3.57  | 3.22    | 3.09  | 2.84  | 3.62  | 2 76  | 3 69  |
| K20               | 3.35   | 3.49   | 2.26  | 3.68    | 3.55  | 3.74  | 3 89  | 3 26  | 3 40  |
| TiO <sub>2</sub>  | .50    | .44    | .27   | .50     | .56   | 68    | 30    | 50    | 10    |
| P205              | .05    | .05    | .04   | .04     | .05   | .03   | .03   | .05   | .45   |
| H <sub>2</sub> O  | .58    | .37    | .32   | .43     | .66   | .05   | .05   | .05   | - 58  |
| -                 |        | 6.5.69 |       | • • • • | .00   | .05   | .52   | •75   | .50   |
| Sr                | 102    | 262    | 170   | 074     |       | 1.5.0 |       |       | 12000 |
| Ph                | 193    | 262    | 476   | 271     | 203   | 172   | 133   | 209   | 244   |
| Ba                | 109    | 134    | 89    | 140     | 122   | 138   | 181   | 116   | 131   |
| Ni                | 201    | 846    | 869   | 879     | 619   | 609   | 368   | 534   | 597   |
| NT.               | 0      | 8      | 5     | 5       | 5     | 15    | 4     | 10    | 11    |
| 7                 | 42     | 1/     | 1/    | 23      | 36    | 42    | 21    | 31    | 42    |
| Cr.               | 144    | 244    | 223   | 271     | 183   | 213   | 171   | 148   | 198   |
| U U               | 24     | 18     | 16    | 15      | 31    | 32    | 15    | 25    | 37    |
| Co                | 69     | 41     | 41    | 44      | 99    | 69    | 32    | 74    | 91    |
| 0                 | 64     | 51     | 89    | 54      | 84    | 46    | 91    | 49    | 73    |
| Cu<br>Ph          | 6      | 8      | 6     | 1       | 1     | 7     | 9     | 2     | n.d.  |
| FD                | 24     | 34     | 41    | 36      | 19    | 31    | 41    | 27    | 28    |
|                   |        |        |       |         |       |       |       |       |       |
| K/Rb              | 255    | 216    | 211   | 219     | 242   | 225   | 178   | 234   | 215   |
| K/Ba              | 48     | 34     | 22    | 35      | 48    | 51    | 88    | 51    | 47    |
| Rb/Sr             | .56    | .51    | .19   | .52     | .60   | .80   | 1.36  | .56   | .54   |
| Ba/Sr             | 3.01   | 3.23   | 1.83  | 3.24    | 3.05  | 3.54  | 2.77  | 2.56  | 2.45  |
| Ba/Rb             | 5.33   | 6.31   | 9.76  | 6.28    | 5.07  | 4.41  | 2.03  | 4.60  | 4.56  |
| Sr/Cax103         | 7.3    | 16.6   | 8.7   | 12.8    | 7.7   | 8.4   | 12.3  | 9.6   | 12.9  |
| K/Pb              | 1158   | 853    | 459   | 850     | 1553  | 1000  | 788   | 1004  | 1007  |
| NORME C.          | I.P.W. |        |       |         |       |       |       |       |       |
| 0                 | 30.44  | 33,50  | 39.00 | 30.04   | 26.66 | 31.04 | 30,86 | 29.21 | 24.58 |
| ĉ                 | 2.10   | 3.25   | 4 82  | 3 65    | 20.00 | 3 11  | 2 58  | 1 88  | 24.50 |
| Z                 | .02    | .04    | 04    | 02      | .04   | 02    | 02    | 02    | .02   |
| Or                | 19.79  | 20.62  | 13 35 | 21 74   | 20.97 | 22.10 | 22.98 | 19.26 | 20.09 |
| Ab                | 22.42  | 24.79  | 30.20 | 27 24   | 26 14 | 24 03 | 30.63 | 23.35 | 31 22 |
| An                | 15.20  | 10.63  | 9.36  | 10 20   | 15 05 | 9 08  | 7.79  | 16 93 | 13.86 |
| En/Hy             | 4.53   | 2.68   | 1,96  | 2.24    | 4,80  | 4.45  | 1.59  | 3,98  | 3.88  |
| Mt                | 3,48   | 2.07   | .99   | 2.93    | 2.31  | .06   | .97   | 3.51  | 2.09  |
| Hm                | 1.12   | 1.42   | .72   | 1.13    | 2.16  | 4.43  | 1.87  | .99   | 2.05  |
| Il                | .94    | .83    | .51   | .94     | 1.06  | 1.29  | .56   | .94   | .93   |
| Ap                | .11    | .11    | .09   | .09     | .11   | .07   | .07   | .11   | .11   |
| -                 |        |        | .05   | .05     |       | ,     |       | •••   |       |
| D. I.             | 72.65  | 78.91  | 82.55 | 79.02   | 73.77 | 77.17 | 84.47 | 71.82 | 75.89 |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS OCCHIADINI

|                                | GR84    | GL59  | FT28  | GR13  | GR89  | GL61  | GR80  | GL35  | NA14  | GL18  |
|--------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                | 0354    | 0676  | 9045  | 0168  | 0256  | 0660  | 0327  | 0666  | 9764  | 1096  |
| Coord.                         | 2458    | 3856  | 2653  | 2536  | 2454  | 3916  | 2440  | 3180  | 3034  | 3456  |
|                                |         |       |       |       |       |       |       |       |       |       |
| SiO2                           | 68.35   | 71.67 | 72.74 | 66.38 | 68.95 | 70.94 | 66.57 | 69.09 | 68.47 | 70.73 |
| A1203                          | 15.83   | 15.76 | 15.58 | 17.61 | 16.57 | 15.31 | 16.33 | 15.99 | 17.43 | 15.58 |
| Fe <sub>2</sub> O <sub>3</sub> | 1.70    | .98   | .91   | 2.30  | 1.68  | 1.75  | 2.38  | 1.84  | 1.32  | .51   |
| FeO                            | 1.62    | 1.06  | .96   | 2.03  | 1.56  | 1.65  | 2.08  | 1.84  | 1.32  | 1.89  |
| MnO                            | .04     | .02   | .02   | .03   | .04   | .03   | .08   | .05   | .03   | .04   |
| MgO                            | 1.16    | .02   | .25   | .80   | 1.02  | .25   | 1.56  | 1.13  | .82   | .74   |
| CaO                            | 1.76    | .73   | .43   | 1.96  | 2.00  | 1.15  | 2.77  | 2.17  | .89   | 1.34  |
| Na <sub>2</sub> O              | 3.75    | 3.66  | 2.97  | 3.40  | 4.36  | 3.72  | 3.14  | 3.34  | 3.11  | 3.08  |
| K20                            | 3.24    | 5.45  | 4.95  | 4.04  | 2.35  | 4.24  | 2.87  | 3.54  | 4.46  | 4.71  |
| TiO                            | .31     | .10   | .17   | .41   | .43   | .18   | .68   | .39   | .29   | .27   |
| P2OF                           | .10     | .04   | .16   | .14   | .13   | .06   | .23   | .14   | .08   | .10   |
| HO                             | 1.76    | 1.29  | 1.28  | 1.42  | 1.69  | 1.62  | 1.40  | 1.14  | 1.40  | 1.36  |
| 2                              |         |       |       |       |       |       |       |       |       |       |
| Sr                             | 160     | 52    | n.d.  | 270   | 370   | 71    | 361   | 202   | 61    | 117   |
| Rb                             | 118     | 208   | 414   | 113   | 97    | 172-  | 102   | 114   | 220   | 194   |
| Ba                             | 811     | 349   | 32    | 1011  | 539   | 320   | 614   | 461   | 314   | 385   |
| Ni                             | 7       | 2     | 2     | 6     | 13    | 10    | 6     | 11    | 11    | 8     |
| Y                              | 35      | 27    | 19    | 11    | 32    | 27    | 26    | 14    | 20    | 15    |
| Zr                             | 149     | 95    | 90    | 291   | n. d. | 141   | 216   | 192   | 144   | 133   |
| Cr                             | 20      | 16    | 10    | 10    | 17    | 11    | 14    | 18    | 13    | 13    |
| v                              | 50      | 15    | 25    | 24    | 37    | 25    | 60    | 43    | 32    | 23    |
| Co                             | 35      | 69    | 53    | 29    | 46    | 55    | 42    | 57    | 34    | 49    |
| Cu                             | 8       | 4     | 11    | 7     | 12    | 36    | n. d. | 42    | 20    | 14    |
| Pb                             | 49      | 52    | 33    | 44    | 42    | 42    | 47    | 42    | 31    | 48    |
| K/Ph                           | 228     | 217   | 00    | 206   | 201   | 205   | 222   | 25.0  | 169   | 202   |
| K/Ba                           | 33      | 130   | 1294  | 290   | 201   | 110   | 20    | 230   | 110   | 102   |
| Rh/Sr                          | 74      | 4 00  | 1204  | 42    | 26    | 2 42  | 29    | 56    | 2 61  | 1 66  |
| Ba/Sr                          | 5.07    | 6 71  |       | 3 74  | 1 46  | 1 51  | 1 70  | 2 28  | 5 15  | 3 20  |
| Ba/Rh                          | 6.87    | 1 68  | 08    | 9.05  | 5 56  | 1.96  | 6.02  | 4 04  | 1 43  | 1 08  |
| Sr/Cav1                        | 13 12 7 | 10.0  | .00   | 10.35 | 25 0  | 9.7   | 18 2  | 12 0  | 0.5   | 12 2  |
| K/Pb                           | 549     | 869   | 1245  | 761   | 464   | 838   | 506   | 700   | 1194  | 815   |
|                                |         |       |       |       |       |       |       |       |       |       |
| NORME C                        | .I.P.W. |       |       | 22722 | 10000 |       |       |       |       |       |
| Q                              | 28.39   | 27.57 | 35.31 | 25.57 | 28.76 | 29.78 | 29.29 | 32.30 | 29.98 | 29.86 |
| С                              | 3.19    | 2.60  | 4.93  | 4.41  | 3.52  | 2.65  | 3.57  | 5.44  | 6.05  | 3.21  |
| z                              | .02     | .02   | .02   | .02   | .04   | .02   | .02   | .20   | .02   | .02   |
| Or                             | 19.14   | 32.20 | 29.25 | 23.87 | 13.88 | 25.05 | 16.96 | 20.92 | 26.35 | 27.83 |
| Ab                             | 31.73   | 30.97 | 25.13 | 28.77 | 36.89 | 31.47 | 26.57 | 28.26 | 26.31 | 26.06 |
| An                             | 8.07    | 3.36  | 1.08  | 8.81  | 9.07  | 5.31  | 12.24 | 3.32  | 3.89  | 5.99  |
| En/Hy                          | 2.88    | .04   | .62   | 1.99  | 2.54  | .62   | 3.88  | 2.81  | 2.04  | 1.84  |
| Fs/Hy                          | 1.13    | 1.00  | .76   | 1.20  | .84   | 1.34  | .87   | 1.34  | .91   | 2.67  |
| Mt                             | 2.46    | 1.42  | 1.31  | 3.33  | 2.43  | 2.53  | 3.45  | 2.59  | 1.91  | .73   |
| 11                             | .58     | .18   | .32   | .77   | .81   | .34   | 1.29  | .74   | .55   | .51   |
| Ap                             | .23     | .09   | .37   | .33   | .30   | .14   | .54   | 2.70  | .18   | .23   |
| D. I.                          | 79.26   | 90.74 | 89.69 | 78.21 | 79.53 | 86.30 | 72.82 | 81.48 | 82.64 | 83.75 |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS OCCHIADINI

|                       | GR147   | FT30  | GR110 | FT45  | FT19  | GR74  | FT23  | FT31  | NA24  |
|-----------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
|                       | 0054    | 9068  | 9920  | 9360  | 8889  | 0388  | 9142  | 8898  | 9766  |
| Coord.                | 3942    | 3043  | 2715  | 2880  | 2878  | 2576  | 2910  | 2918  | 3206  |
|                       |         |       |       | 2000  | 2010  | 2010  |       |       |       |
| SiO2                  | 67.23   | 71.69 | 68.42 | 68,60 | 72.61 | 70.10 | 71.62 | 72.13 | 67.50 |
| A1202                 | 16.17   | 15.50 | 16.12 | 17.57 | 15.11 | 15.42 | 16.10 | 15.09 | 16.61 |
| FeaOa                 | 1.71    | .90   | 1.63  | 1.67  | 1 15  | 1.87  | .55   | .90   | 1.11  |
| FeO                   | 1.89    | .72   | 1.69  | .67   | -58   | 1.41  | .63   | -86   | 1.82  |
| MnO                   | .04     | .00   | .05   | .02   | .02   | .03   | -01   | .00   | .04   |
| MgO                   | 1.01    | .12   | 1.63  | .14   | .09   | -86   | .02   | .24   | 1.05  |
| CaO                   | 1.98    | .34   | .72   | .36   | .23   | 1.36  | .43   | . 32  | 1.25  |
| Na <sub>2</sub> O     | 3.79    | 3.51  | 3.09  | 4.10  | 3.57  | 3.63  | 4.02  | 4.09  | 3.98  |
| K <sub>2</sub> O      | 4.15    | 5.40  | 4.65  | 5.27  | 4.94  | 4.20  | 5.00  | 4.88  | 4.61  |
| TiO                   | .38     | .15   | .36   | .21   | .11   | .35   | .07   | .11   | .27   |
| PaOs                  | .13     | .13   | .10   | .12   | 12    | .11   | .17   | .11   | .10   |
| HaO                   | 1.62    | 1.10  | .72   | 1.47  | .96   | 1.27  | 1.06  | .84   | .96   |
| -2-                   |         |       |       |       |       |       |       |       |       |
| Sr                    | 211     | 2     | 95    | 59    | n.d.  | 207   | n.d.  | n.đ.  | 53    |
| Rb                    | 144     | 305   | 117   | 232   | 331   | 108   | 427   | 281   | 190   |
| Ba                    | 482     | 108   | 346   | 367   | 49    | 790   | 83    | 48    | 322   |
| Ni                    | 6       | 5     | 4     | 2     | 4     | 11    | 5     | 9     | 5     |
| Y                     | 18      | 27    | 38    | 34    | 16    | 15    | 2     | 20    | 21    |
| Zr                    | 197     | 99    | 141   | 129   | 76    | 222   | 47    | 72    | 143   |
| Cr                    | 17      | 13    | 15    | 25    | 10    | 13    | 8     | . 7   | 13    |
| v                     | 44      | 23    | 31    | 27    | 24    | 31    | 16    | 22    | 35    |
| Co                    | 33      | 55    | 65    | 30    | 51    | 45    | 50    | 49    | 27    |
| Cu                    | 11      | 12    | 15    | 19    | 5     | 5     | 10    | 8     | 19    |
| Pb                    | 37      | 22    | 33    | 30    | 25    | 42    | 26    | 28    | 43    |
|                       | 15.51   |       |       |       |       |       |       |       | 1000  |
| K/Rb                  | 240     | 147   | 330   | 189   | 124   | 323   | 97    | 144   | 202   |
| K/Ba                  | 72      | 415   | 112   | 119   | 837   | 44    | 500   | 844   | 119   |
| Rb/Sr                 | .68     | 152   | 1.23  | 3.93  | ==    | .52   | ==    |       | 3.58  |
| Ba/Sr                 | 2.28    | 54    | 3.64  | 6.22  |       | 3.82  | ==    | ==    | 6.08  |
| Ba/Rb                 | 3.35    | .35   | 2.96  | 1.58  | .15   | 7.31  | .19   | .17   | 1.69  |
| Sr/Cax10 <sup>3</sup> | 14.9    | .83   | 18.6  | 22.7  |       | 21.3  | ==    | ==    | 5.9   |
| K/Pb                  | 932     | 2036  | 1170  | 1460  | 1640  | 831   | 1596  | 1446  | 891   |
| NORME C.I             | .P.W.   |       |       |       |       |       |       |       |       |
| 0                     | 23.22   | 33.73 | 28.38 | 23.93 | 38 49 | 28.78 | 28.34 | 28.62 | 21.80 |
| ĉ                     | 2.15    | 4.65  | 4.93  | 4.75  | 2.77  | 2.69  | 3.69  | 2.76  | 3.03  |
| Z                     | .02     | .01   | .01   | .01   | .17   | .01   | .01   | .01   | .01   |
| Or                    | 24.52   | 26.00 | 27.48 | 31.14 | .05   | 24.82 | 29.54 | 28.83 | 27.24 |
| Ab                    | 32.07   | 29.70 | 26.14 | 34.69 | 41.80 | 30.71 | 34.01 | 34.60 | 33.67 |
| An                    | 8.97    | .83   | 2.91  | 1.00  | 11.44 | 6.02  | 1.02  | .86   | 5.54  |
| En/Hy                 | 2.51    | .29   | 4.05  | .34   | .57   | 2.14  | .04   | .59   | 2.61  |
| Fs/Hy                 | 1.50    | .33   | 1,25  | .00   | .00   | . 52  | .60   | . 65  | 2.05  |
| Mt                    | 2.47    | 1.30  | 2,36  | 1.61  | .03   | 2.71  | .79   | 1.30  | 1.60  |
| Hm                    | .00     | .00   | .00   | .55   | .55   | .00   | .00   | .00   | .00   |
| 11                    | .72     | .28   | .68   | .39   | .20   | .66   | .13   | .20   | .51   |
| Ap                    | .30     | .30   | .23   | .28   | 2.27  | .26   | .40   | .26   | .23   |
|                       | 1217-31 |       |       |       |       |       |       | 199   |       |
| D. I.                 | 79.81   | 89.43 | 82.00 | 89.76 | 80.34 | 84.31 | 91.89 | 92.05 | 82.71 |

F. di Valle Grosina (Austr. sup.): coordinate chilometriche dei campioni, analisi chimiche di elementi maggiori e minori, rapporti, valori delle norme C.I.P.W., indice di differenziazione (D.I.) - GNEISS OCCHIADINI

|                   | NA20   | NA19  | CCB4  | CCA78 | GR318 | GL38  | NA12  | GL57  | FM05  | GR194 |
|-------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                   | 9962   | 9874  | 0733  | 0807  | 0542  | 0746  | 9511  | 0649  | 9643  | 0136  |
| Coord.            | 2966   | 3456  | 2966  | 3038  | 2593  | 3452  | 3984  | 3986  | 3814  | 2343  |
|                   |        | 5150  | 2500  | 5050  | 2000  | 5152  | 5501  | 5500  | 5014  | 2010  |
| SiO.              | 69.08  | 72.21 | 70.44 | 70.10 | 68.00 | 70,18 | 73.24 | 70.08 | 71.14 | 73.80 |
| A1.0.             | 16.26  | 16.46 | 15.95 | 15.88 | 16.19 | 15.65 | 15.19 | 15.96 | 16.27 | 13.29 |
| Fe Oo             | 1.00   | .46   | 1.48  | 1.28  | 1.94  | 1.41  | .35   | . 90  | .60   |       |
| FeO               | 2.31   | .71   | 1.29  | 1.00  | 2.04  | 1.31  | .85   | 1.56  | .63   | 1.19  |
| MnO               | .03    | .02   | .04   | .10   | .04   | .04   | .02   | .03   | .03   | .00   |
| MgO               | 2.45   | .04   | -84   | .70   | 1.36  | -58   | .00   | .80   | .43   | .21   |
| CaO               | .64    | .10   | 1.72  | 1.48  | 2.18  | 1.59  | .34   | .75   | .98   | .28   |
| Na <sub>2</sub> O | 2.61   | 3.47  | 3.15  | 2.80  | 3.23  | 3.60  | 3.72  | 3.98  | 4.35  | 2.28  |
| K.O               | 4.32   | .4.92 | 4.46  | 4.65  | 3.89  | 4.62  | 4.47  | 4.66  | 4.30  | 6.74  |
| Tio               | .39    | .04   | . 31  | . 25  | .46   | .29   | .07   | .27   | .18   | .16   |
| PaOr              | .09    | .05   | .11   | .10   | .19   | .10   | .18   | .08   | .09   | .17   |
| HaO               | .59    | .69   | 1.26  | 1.77  | 1.40  | 1.50  | .72   | 1.32  | .94   | .71   |
| -2-               |        |       |       |       | 1110  | 1.50  | .,    |       |       |       |
| Sr                | 62     | n d   | 175   | 140   | 225   | 204   | n d   | 160   | 100   | n d   |
| Ph                | 170    | 204   | 175   | 140   | 122   | 204   | n.d.  | 109   | 207   | 107   |
| Ba                | 327    | 204   | 421   | 204   | 132   | 200   | 404   | 220   | 100   | 19/   |
| Ni                | 327    | 21    | 421   | 204   | 124   | 300   | 20    | 339   | 100   | 2     |
| V                 | 21     | 7     | 10    | 15    | 2     | 10    |       | 11    |       | 10    |
| 22                | 164    | 61    | 160   | 140   | 210   | 150   | n.u.  | 150   | n.a.  | 10    |
| Cr                | 15     | 01    | 102   | 140   | 219   | 152   | 4/    | 152   | 14    | 72    |
| V                 | 30     | 17    | 20    | 15    | 14    | 20    | 15    | 20    | 22    | 21    |
| Co                | 22     | 25    | 30    | 55    | 4/    | 29    | 15    | 30    | 32    | 21    |
| Cu                | 2.5    | 2.2   | 45    | 10    | 12    | 00    | 34    | 4/    | 40    | 40    |
| Ph                | 1.0.   | n.u.  | 10    | 10    | 12    | 24    | 24    | 10    | n.a.  | n.a.  |
| rb                | 51     | 41    | 24    | 47    | 30    | 34    | 34    | 25    | 21    | 57    |
| K/Rb              | 211    | 144   | 237   | 214   | 245   | 242   | 92    | 214   | 116   | 284   |
| K/Ba              | 110    | 1511  | 88    | 100   | 45    | 99    | 976   | 114   | 215   | 789   |
| Rb/Sr             | 2.74   |       | .89   | 1.29  | .56   | .78   |       | 1.07  | 2.82  | ==    |
| Ba/Sr             | 5.27   | ==    | 2.41  | 2.74  | 3.08  | 1.90  |       | 2.01  | 1.52  | ==    |
| Ba/Rb             | 1.92   | .10   | 2.70  | 2.13  | 5.48  | 2.44  | .09   | 1.87  | .54   | .36   |
| Sr/Cax1           | 0313.5 | ==    | 14.2  | 13.2  | 15.1  | 17.9  |       | 31.3  | 15.6  | ==    |
| K/Pb              | 1158   | 995   | 1088  | 821   | 1077  | 1129  | 1091  | 1548  | 700   | 1514  |
| NORME C           | TDW    |       |       |       |       |       |       |       |       |       |
|                   |        | 20.51 |       |       | 0.0   |       |       | 05 55 | 00 00 |       |
| 2                 | 31,30  | 32,64 | 30.08 | 31.82 | 27.48 | 27.17 | 33.71 | 25.72 | 26.69 | 33.63 |
| C                 | 6.34   | 5.36  | 3.07  | 3.78  | 3.15  | 2.07  | 4.04  | 3.19  | 2.89  | 2.14  |
| Z                 | .01    | .02   | .02   | .02   | .02   | .02   | .02   | .02   | .02   | .02   |
| or                | 25.53  | 29.07 | 26.35 | 27.48 | 22.98 | 27.30 | 26.41 | 27.53 | 25.41 | 39.83 |
| Ab                | 22.08  | 29.36 | 26.65 | 23.69 | 27.33 | 30.46 | 31.47 | 33.67 | 36.80 | 19.29 |
| An                | 2.58   | .17   | 7.81  | 6.69  | 9.57  | 7.23  | .51   | 3.19  | 4.27  | .27   |
| En/Hy             | 6.10   | .09   | 2.09  | 1.74  | 3.38  | 1.44  | .00   | 1.99  | 1.07  | .52   |
| Fs/Hy             | 2.82   | .89   | .70   | .55   | 1.45  | .83   | 1.19  | 1.73  | .41   | 1.45  |
| Mt                | 1.44   | .66   | 2.14  | 1.85  | 2.81  | 2.04  | .50   | 1.30  | .86   | .82   |
| 11                | .74    | .07   | .58   | .47   | .87   | .55   | .13   | .51   | .34   | .30   |
| Ap                | .21    | .11   | .26   | .23   | .45   | .23   | .42   | .18   | .21   | .40   |
| D. I.             | 78.91  | 91.07 | 83.08 | 82.99 | 77.79 | 84.93 | 91.59 | 86,92 | 88.90 | 92.75 |

Medie dei valori determinati e calcolati, con deviazioni standards e coefficienti di variazione (C.V.)

|                                | C      | SNEISS |       | (     | INEISS |       | C     | GNEISS  |       |
|--------------------------------|--------|--------|-------|-------|--------|-------|-------|---------|-------|
|                                | MINUTI |        |       | (     | CCHIAD | INI   | (     | GRANITO | IDI   |
|                                | x      | d.st.  | c.v.  | x     | d.st.  | c.v.  | x     | d.st.   | c.v.  |
| SiO <sub>2</sub> Z             | 62.20  | 5.08   | 8.2   | 70.01 | 2.02   | 2.9   | 69,97 | 2.65    | 3.8   |
| A1203                          | 15.99  | 1.90   | 11.9  | 15.96 | .82    | 5.1   | 15.69 | .63     | 4.0   |
| Fe <sub>2</sub> O <sub>3</sub> | 4.06   | 1.17   | 28.8  | 1.28  | .55    | 43.0  | 2.73  | .95     | 34.8  |
| FeO                            | 2.82   | .87    | 30.9  | 1.39  | .55    | 39.6  | 1.01  | .47     | 46.5  |
| MnO                            | .08    | .02    | 25.0  | .03   | .02    | 66.7  | .09   | .02     | 22.2  |
| MgO                            | 3.03   | .89    | 29.4  | .72   | .59    | 81.9  | 1.16  | .53     | 45.7  |
| CaO                            | 1.82   | 1.01   | 55.5  | 1.12  | .73    | 65.2  | 2.34  | .97     | 41.4  |
| Na <sub>2</sub> O              | 3.34   | .87    | 26.1  | 3.48  | .51    | 14.7  | 3.24  | .55     | 16.9  |
| K20                            | 3.19   | .95    | 29.8  | 4.47  | .81    | 18.1  | 3.45  | .73     | 21.2  |
| TiO2                           | .83    | .19    | 22.9  | .27   | .15    | 55.6  | .41   | .15     | 36.6  |
| P205                           | .14    | .04    | 2.9   | .12   | .04    | 3.3   | .04   | .02     | 50.0  |
| H <sub>2</sub> O               | 3.04   | .90    | 29.6  | 1.23  | .35    | 28.5  | .51   | .16     | 31.4  |
| Sr ppm                         | 239    | 90.6   | 37.9  | 120   | 108.3  | 90.3  | 205   | 83.4    | 40.7  |
| Rb                             | 121    | 35.0   | 28.9  | 204   | 64.4   | 31.6  | 136   | 36.7    | 27.0  |
| Ba                             | 720    | 246.0  | 34.2  | 362   | 255.0  | 70.4  | 609   | 197.0   | 32.3  |
| Ni                             | 20     | 8.9    | 40.0  | 7     | 4.5    | 64.3  | 6     | 3.2     | 53.3  |
| Y                              | 29     | 6.9    | 23.8  | 19    | 9.3    | 48.9  | 26    | 12.5    | 48.1  |
| Zr                             | 211    | 51.0   | 24.2  | 144   | 60.9   | 42.3  | 185   | 44.9    | 24.3  |
| Cr                             | 79     | 25.9   | 32.8  | 15    | 13.2   | 88.0  | 21    | 7.9     | 37.6  |
| v                              | 133    | 45.0   | 33.8  | 33    | 17.3   | 52.4  | 55    | 22.9    | 41.6  |
| Co                             | 40     | 16.7   | 41.7  | 46    | 13.0   | 28.3  | 66    | 18.3    | 27.7  |
| Cu                             | 25     | 20.4   | 81.6  | 11    | 9.5    | 86.4  | 7     | 6.9     | 98.6  |
| Pb                             | 31     | 6.2    | 20.0  | 38    | 7.3    | 19.2  | 34    | 7.0     | 20.6  |
| K/Rb                           | 220    | 36.9   | 16.8  | 214   | 77.5   | 36.2  | 218   | 23.1    | 10.6  |
| K/Ba                           | 38     | 11.3   | 29.7  | 312   | 41.1   | 13.2  | 50    | 25.4    | 50.8  |
| Rb/Sr                          | .60    | .39    | 65.0  | 1.62  | 1.3    | 80.2  | .81   | .61     | 75.3  |
| Ba/Sr                          | 3.44   | 1.9    | 55.2  | 3.51  | 1.6    | 45.6  | 3.12  | .80     | 25.6  |
| Ba/Rb                          | 6.10   | 1.6    | 26.2  | 2.62  | 2.6    | 98.8  | 4.71  | 1.8     | 38.2  |
| Sr/Cax10 <sup>3</sup>          | 21.03  | 9.4    | 44.8  | 11.93 | 8.6    | 72.1  | 14.11 | 6.7     | 47.5  |
| K/Pb                           | 892    | 337    | 37.8  | 1071  | 377    | 35.2  | 853   | 206     | 24.1  |
| NORME C.I.                     | .P.W.  |        |       |       |        |       |       |         |       |
| Q                              | 22.41  | 7.42   | 33.1  | 29.39 | 3.69   | 12.6  | 31.55 | 3.58    | 11.3  |
| с                              | 4.16   | 2.99   | 71.9  | 3.69  | 1.18   | 31.9  | 2.40  | 1.35    | 56.2  |
| z                              | .02    | .01    | 50.0  | .03   | .04    | 133.3 | .03   | .01     | 33.3  |
| or                             | 18.60  | 5.75   | 30.9  | 25.27 | 6.78   | 26.8  | 19.99 | 4.17    | 20.9  |
| Ab                             | 28.45  | 7.34   | 25.8  | 30.01 | 4.83   | 16.1  | 27.57 | 4.66    | 16.9  |
| An                             | 7.47   | 3.96   | 53.0  | 4.90  | 3.57   | 72.9  | 11.76 | 4.79    | 40.7  |
| WO/D1                          | .20    | .66    | 330.0 |       | ==     |       |       | ==      | ==    |
| En/Di                          | .15    | .47    | 313.3 |       | ==     |       |       |         |       |
| FS/D1                          | .03    | .13    | 433.3 |       | ==     | ==    | ==    | ==      | ==    |
| En/Hy                          | 7.35   | 2.14   | 29.1  | 1.75  | 1.46   | 83.4  | 2.89  | 1.33    | 46.0  |
| FS/Hy                          | .83    | .96    | 115.7 | 1.07  | .67    | 62.6  | .11   | .42     | 381.0 |
| MC                             | 5.36   | 1.57   | 29.3  | 1.75  | .87    | 49.7  | 2.19  | 1.15    | 52.5  |
| HIM T                          | .36    | .70    | 194.4 | .04   | .14    | 350.0 | 1.18  | 1.01    | 40.0  |
| 11                             | 1.58   | .35    | 22.1  | .50   | .27    | 54.0  | . /6  | .31     | 40.8  |
| Ар                             | .33    | .09    | 27.3  | .43   | .58    | 134.9 | .09   | .04     | 44.4  |
| D. I.                          | 69.6   | 7.55   | 10.8  | 84.7  | 5.31   | 6.3   | 78.7  | 6.32    | 8.0   |

minate le percentuali dei dieci elementi maggiori più l'acqua, usando lo stesso metodo; ottenendo il ferro totale come Fe<sub>2</sub>O<sub>3</sub>, FeO con metodo potenziometrico ed H<sub>2</sub>O per perdita al fuoco.

I risultati delle analisi sono riportati nelle tabelle 2-10, dove abbiamo anche inserito alcuni rapporti relativi agli elementi minori, ed i valori della norma calcolata secondo C.I.P.W. Le tabelle 2, 3, 4, sono quelle relative agli gneiss minuti, le 5, 6, 7, quelle relative ai graniti gneissici e le 8, 9, 10, quelle relative agli gneiss occhiadini. Nella tabella 11 che riassume i valori medi abbiamo riportato le deviazioni standards ed i coefficienti di variazione, corrispondenti al rapporto tra la deviazione standard e la relativa media, moltiplicata poi per cento.

In generale, per quanto riguarda il chimismo degli elementi maggiori si può dire che gli gneiss minuti sono caratterizzati da una minor percentuale di SiO<sub>2</sub> e di K<sub>2</sub>O rispetto a gneiss occhiadini e graniti gneissici. Entrambi questi ultimi esprimono una composizione chimica molto simile: le differenze più rilevanti riguardano il contenuto di CaO, più scarso negli occhiadini e quello di P<sub>2</sub>O<sub>5</sub>, più scarso nei graniti gneissici.

Dai valori normativi, calcolati secondo la formula proposta da C.I.P.W., emerge la presenza costante di corindone, più abbondante negli gneiss minuti.

Per ogni campione è stato calcolato l'indice di differenziazione (D.I.) e con questo sono stati costruiti i diagrammi di variazione relativi agli ossidi degli elementi maggiori (fig. 2). I campioni analizzati si dispongono pressocchè interamente al di sopra della linea di separazione delle rocce soprassature, che in questo caso risultano avere carattere salico, come direttamente osservabile dal diagramma relativo a SiO<sub>2</sub>. In generale le rocce in esame tendono a costituire due gruppi distinti: l'uno composto da gneiss minuti (rocce paraderivate) e l'altro da gneiss occhiadini e graniti gneissici (rocce ortoderivate). All'interno di quest'ultimo gruppo è possibile operare un'ulteriore distinzione tra i due litotipi, come appare evidente dai diagrammi relativi a SiO<sub>2</sub>, FeO, Fe<sub>2</sub>O<sub>3</sub> e CaO. Di tutti gli ossidi quello che presenta la discriminazione più sensibile è il magnesio, rispetto al quale gli gneiss minuti occupano una posizione nettamente distinta da occhiadini e graniti gneissici.

Per quanto i diversi caratteri petrografici di gneiss occhiadini e graniti rispetto agli gneiss minuti lasciassero prevedere un comportamento petrochimico in parte già scontato, abbiamo ritenuto utile inserire ugualmente le parametamorfiti nei vari diagrammi sia per confronto sia per cercare di individuarne eventuali rapporti di parentela. I risultati di queste indagini, pur considerati nel loro valore parziale, sembrerebbero escludere condizioni di consanguineità con le rocce di tipo « orto » dimostrandosi per lo più in accordo con i caratteri di campagna.

 $SiO_{2}/(Na_{2}O + K_{2}O)$  (figura 3) - Si osserva una separazione abbastanza netta tra gneiss minuti rispetto a gneiss occhiadini e graniti considerati assieme, e tra questi due tra loro. È da rilevare il contenuto molto simile in alcali tra gneiss minuti  $(\bar{x} = 6,53 \%)$  e graniti gneissici  $(\bar{x} = 6,69 \%)$ ; questi ultimi, caratterizzati da un



tenore più elevato in SiO<sub>2</sub>, si separano nettamente dai precedenti. Agli gneiss occhiadini invece, per composizioni in SiO<sub>2</sub> simili ai graniti gneissici, corrispondono valori degli alcali più alti ( $\bar{x} = 7,95$ %). Per quanto concerne i graniti gneissici si può rilevare che i campioni rappresentativi di questi litotipi si dispongono al di sotto della linea B di Kuno (1969) lungo un « trend » ben definito con affinità calcalcalina.



Fig. 3. — Rapporto silice/alcali: A indica la curva di Irvine & Baragar (1971); B e B' le curve di Kuno (1969).





MgO/CaO (figura 4) - Questo diagramma costituisce un ottimo esempio di discriminazione fra i tre litotipi in cui è stata suddivisa la Formazione di Valle Grosina. Ad eccezione di qualche campione, la cui attrbuzione ad una facies anzichè a un'altra risulta in ogni caso difficile, in quanto provenienti da zone consi-

#### CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE ETC.

derate di «passaggio» tra un litotipo e l'altro, quindi con sovrapposizione di caratteri, si osserva una netta separazione tra gneiss minuti (MgO/CaO > 1) rispetto a graniti gneissici e gneiss e occhiadini (MgO/CaO < 1). In questo modo CaO ed MgO dimostrano di essere estremamente sensibili nell'operare distinzioni litologiche all'interno della formazione in esame: in particolare la linea equivalente al rapporto MgO/CaO = 1 separando gli gneiss minuti, che si considerano rocce paraderivate, da gneiss occhiadini e graniti gneissici, ne metterebbe in evidenza la diversa origine.





SiO<sub>2</sub>-Alk-FeM (figura 5) - Il chimismo molto affine tra graniti gneissici e gneiss occhiadini tende a concentrare in aree vicine i campioni rappresentativi di questi litotipi, inoltre il carattere notevolmente omogeneo riduce la dispersione. Dei due, gli occhiadini, più poveri nei componenti ferro-magnesiaci, si dispongono più vicini al lato SiO<sub>2</sub>-Alk. Gli gneiss minuti, caratterizzati da una più bassa percentuale di SiO<sub>2</sub> occupano una posizione più centrale nel triangolo, dovuta anche ai contenuti molto simili degli alcalini e dei femici. La loro distribuzione appare visibilmente più dispersa rispetto ad occhiadini e graniti. In questo diagramma inoltre è bene sottolineare come i rapporti tra silice, alcali e femici sono tali da portare ad una netta distinzione dei tre litotipi in aree indipendenti e molto ben delimitate.

773

A F M (figura 5) - Questo diagramma, dove per confronto sono riportati anche i campioni relativi agli gneiss minuti, visualizza con notevole efficacia le differenze nel chimismo dei tre litotipi relativamente agli alcali, ferro (considerato come FeO totale) e magnesio. La loro distribuzione complessivamente si dispone lungo una direttrice normale al lato FM, tipica di rocce eruttive con affinità calcalcalina, mentre evidente risulta la separazione fra i tre gruppi. Di questi gli gneiss minuti occupano un'area più spostata verso il centro, sottolineando il maggior contenuto in MgO + FeO totale; i graniti gneissici ricoprono una zona intermedia, mentre gli occhiadini sono maggiormente concentrati in prossimità del vertice A, avendo un contenuto medio in alcali più alto rispetto agli altri.

K2O-Na2O-CaO (figura 5) - I rapporti tra questi tre ossidi non portano ad



Fig. 6. — Rapporto K<sub>2</sub>O/Na<sub>2</sub>O. La diagonale esprime proporzionalità 1:1 tra i due ossidi.

una rappresentazione molto espressiva, risultando i campioni in posizioni reciprocamente disperse.

 $K_2O/Na_2O$  (figura 6) - Si può osservare una separazione abbastanza netta degli gneiss occhiadini rispetto a graniti gneissici e gneiss minuti. Si può dire inoltre che rispetto a questi due elementi gli gneiss occhiadini denotano un carattere abbastanza omogeneo: simile a questi è il comportamento dei graniti gneissici, mentre più dispersi sono gli gneiss minuti. Questi due litotipi però sono sempre associati tra loro manifestando una tendenza comune, in contrasto con gli gneiss occhiadini che sembrano costituire un insieme indipendente dagli altri.

### **Elementi** minori

In generale si osserva una diminuzione delle concentrazioni passando dagli gneiss minuti ai graniti gneissici, agli occhiadini, fatta eccezione solo per qualche elemento. Tra questi, i tenori che maggiormente si discostano da quelli teorici leggero eccesso. Non possiamo escludere che si siano manifestati effetti di contaleggero eccesso. Non possiamo escludere che si siano manifestati effetti di contaminazione durante la fase di preparazione delle pastiglie, derivanti soprattutto, riteniamo, dall'uso del mulino a carburo di tungsteno. Le analisi ripetute su altre pastiglie ricavate dagli stessi campioni, hanno sempre fornito risultati congruenti.

#### CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE ETC.

Invitiamo perciò a considerare con cautela i valori assoluti di Co, perchè potrebbero essere sovrastimati rispetto alla quantità realmente presente in queste rocce. Il comportamento di questo elemento, inoltre, si oppone agli altri: esso infatti tende ad aumentare di concentrazione passando dagli gneiss minuti agli occhiadini fino ai graniti gneissici.

Per quanto riguarda gli altri elementi, il nichel presenta tenori più bassi di quelli medi previsti da SHAW (1954) per sedimenti di tipo pelitico, ma in accordo con SAHAMA (1945) per rocce scistose, e con ENGEL (1956), con differenze maggiormente accentuate per gli gneiss minuti rispetto ad occhiadini e graniti, all'interno dei quali il contenuto di questo elemento è pressocchè identico. Il rame diminuisce di concentrazione passando dagli gneiss minuti agli occhiadini e da questi ai graniti. Il rubidio presenta invece un andamento opposto: il contenuto di questo elemento infatti aumenta nello stesso senso in cui gli altri diminuiscono; con 121 ppm negli gneiss minuti, 136 ppm nei graniti e 204 negli occhiadini. Analogo al comportamento del rubidio è quello del piombo.

Abbiamo voluto rendere esplicito l'andamento delle concentrazioni degli elementi determinati, con delle rette di variazione per ciascun litotipo, costruite sui valori medi; la sequenza dei dati è puramente di comodo. Come si può osservare dalla figura 7, i tenori maggiori si riferiscono agli gneiss minuti e quelli minori agli gneiss occhiadini, tranne che per Rb, Pb e Co per i quali la situazione si inverte.

Sono stati costruiti i diagrammi che mettono in relazione le variazioni di K rispetto a Rb e del rapporto K/Rb rispetto a Rb (fig. 8). Da questi si può osservare che:

— gli gneiss minuti e i graniti gneissici giacciono quasi completamente sulla linea corrispondente al rapporto K/Rb = 220; gli gneiss occhiadini, pur presentando un valor medio di questo rapporto del tutto simile (214) si distribuiscono ampiamente lungo un asse orizzontale. Questo sta a significare che negli gneiss occhiadini per percentuali costanti di K il valore di Rb aumenta.

Questa relazione diviene più espressiva nel diagramma che mette a confronto K/Rb su Rb. Si osserva infatti che alla concentrazione di punti corrispondenti ai campioni di gneiss minuti e graniti, fa riscontro una distribuzione di gneiss occhiadini lungo un asse inclinato in senso negativo verso Rb. Questo significa che per valori crescenti di Rb il rapporto K/Rb diminuisce progressivamente, stando a dimostrare che K è l'elemento invariante e che quindi queste rocce hanno subito una differenziazione sottolineata, appunto, dall'arricchimento in Rb.

I rapporti tra Sr, Rb e Ba sono stati indagati facendo uso di un diagramma triangolare all'interno del quale sono stati posizionati i campioni rappresentativi dei tre litotipi in cui è stata distinta la Formazione di Valle Grosina. Come si può osservare dalla figura 9 gli gneiss occhiadini appaiono più dispersi e più prossimi al vertice relativo a Rb. Gli gneiss minuti ed i graniti gnessici mostrano invece una maggior costanza composizionale nei confronti del rubidio, mentre più variabili appaiono le concentrazioni di Sr e Ba. La distribuzione dei campioni all'interno di questo diagramma mette in evidenza un andamento abbastanza tipico di rocce che hanno subito una differenziazione.

Si è voluto inoltre visualizzare la distribuzione dei campioni rispetto ai tenori di Sr e V. Come si può osservare dalla figura 10, c'è una prima grande



Fig. 7. — Curve di variazione delle medie dei contenuti degli elementi minori riferite ai singoli litotipi: pgn = gneiss minuti;  $ogn \ll o \gg =$  gneiss occhiadini;  $ogn \ll g \gg =$  graniti gneissici.



Fig. 8. — Variazioni tra K e Rb (elemento maggiore ed elemento minore isomorfo) considerati singolarmente o come rapporto.

separazione tra gneiss minuti e gli altri litotipi. Questi ultimi infatti tendono a concentrarsi in un unico gruppo, pur occupando i graniti gneissici una posizione all'incirca intermedia tra gneiss occhiadini e gneiss minuti. La situazione non subisce grossi mutamenti se si considera anche l'influenza del Cr. La distribuzione dei campioni all'interno del diagramma triangolare Sr, Cr e V infatti presenta caratteri molto simili al diagramma binario Sr, V. Ad eccezione dei campioni di gneiss occhiadini con percentuali trascurabili di Sr, si ha anche in questo caso una netta distinzione tra l'area relativa agli gneiss minuti e il gruppo costituito da gneiss occhiadini e graniti gneissici, i cui limiti, in questo caso, risultano difficilmente definibili.

L'andamento dei campioni all'interno di questi due diagrammi stabilisce perciò un diverso comportamento degli gneiss minuti (rocce paraderivate) rispetto



Fig. 9. — Diagramma Rb-Ba-Sr. Sono riportati anche i valori delle medie dei rapporti Sr/Rb, Ba/Sr, Rb/Ba, indicati da una linea intera per gli gneiss minuti, punteggiata per gli gneiss occhiadini e tratteggiata per i graniti gneissici.

a gneiss occhiadini dei contenuti di Sr, V e Cr. In particolare dal diagramma binario si rileva che la soglia di separazione tra rocce di origine «para» e «orto» corrisponde approssimativamente a 80 ppm di vanadio. Nel diagramma ternario invece l'area di separazione tra litotipi di genesi diversa è limitata da due lati paralleli alle congiungenti stronzio-vanadio e cromo-vanadio ed aventi come coordinate composizioni pari a circa Cr 13 e Sr 65.

Alle variazioni dei contenuti degli elementi determinati si è cercato di attribuire un preciso significato statistico ricorrendo a metodi di analisi multivariante, facendo uso dell'analisi fattoriale. Per comodità di lettura riportiamo i risultati ottenuti in precedenti elaborazioni (tab. 12), relativi alle fluttuazioni degli elementi maggiori (BIANCHI-NOTARPIETRO, 1977; BIANCHI-GORLA-NOTARPIETRO, 1978, II e III).

Nel presente lavoro abbiamo fatto riferimento alle variazioni che si verificano all'interno degli elementi minori e di questi associati agli elementi maggiori. Il



Fig. 10. — Campi di separazione tra Gneiss minuti (cerchietti vuoti) rispetto a Graniti gneissici e Gneiss occhiadini. Nel diagramma V-Sr il limite (linea tratteggiata) è dato da 80 ppm di vanadio; nel diagramma Cr-V-Sr i limiti corrispondono a Cr 13 e V 35.

quadro ottenuto da un'indicazione abbastanza precisa del peso esercitato da ogni elemento sulla variazione totale.

Nella tabella 13 è riportata la matrice di correlazione degli elementi minori, considerati allo stato metallico, nei tre litotipi in cui è stata distinta la Formazione di Valle Grosina e nell'ambito dell'intera formazione. Cercheremo qui di riassumere le varie associazioni rivelate dall'analisi statistica facendo riferimento agli elementi che, per le loro caratteristiche, vengono considerati degli indicatori sensibili nel campo della geochimica. Eviteremo così di addentrarci in una trattazione più

### CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE ETC.

## TABELLA 12

F. di Valle Grosina (Austr. sup.): matrice di correlazione degli elementi maggiori, calcolata per ciascuno dei litotipi principali e su tutti e tre assieme (Formazione completa)

|                   | GNEISS I | MINUTI   |                                |         |        |        |        |                   |                  |        |
|-------------------|----------|----------|--------------------------------|---------|--------|--------|--------|-------------------|------------------|--------|
|                   | S102     | Al203    | Fe203                          | Fe0     | MnO    | Mg0    | Ca0    | Na20              | K20              | Ti02   |
| A1-0-             | 871**    |          |                                |         |        |        |        |                   | -                |        |
| Feo0              | 923**    | 73100    |                                |         |        |        |        |                   |                  |        |
| Fel               | 3 793**  | 5400     | 02500                          |         |        |        |        |                   |                  |        |
| MaD               | 105      | 2009     | .025                           | 66200   |        |        |        |                   |                  |        |
| Ma                | 5/4      | .290     | .095                           | .003    | 21000  |        |        |                   |                  |        |
| Mgu               | 841      | .534     | .888                           | .8//    | ./16   |        |        |                   |                  |        |
| Cau               | 068      | 276      | .013                           | .187    | .314   | .288   |        |                   |                  |        |
| Na <sub>2</sub> 0 | .486     | 557      | 576*                           | 435     | 229    | 385**  | .357   |                   |                  |        |
| K20               | 460      | .693     | .284                           | .255    | 287°   | .072   | 430    | 573*              |                  |        |
| Ti02              | 673**    | .516°    | .849                           | 638*    | .683   | .703   | 118    | 518*              | .039             |        |
| P205              | .002     | 098      | .050                           | .058    | .048   | .102   | .003   | .092              | 255              | .252   |
|                   | GNEISS ( | OCCHIADI | NI                             |         |        |        |        |                   |                  |        |
|                   | Si02     | A1203    | Fe <sub>2</sub> 0 <sub>3</sub> | Fe0     | Mn0    | MgO    | Ca0    | Na <sub>2</sub> 0 | K20              | Ti02   |
| A1202             | 702**    | 1000     |                                |         |        |        |        | 0.00              | 22.0             | 070    |
| Feal              | 779**    | 41400    |                                |         |        |        |        |                   |                  |        |
| Fe0               | 720**    | 210      | 55400                          |         |        |        |        |                   |                  |        |
| MnO               | - 567**  | 291      | 50300                          | 44500   |        |        |        |                   |                  |        |
| Ma                | - 715**  | 296      | 50200                          | 02600   | 54000  |        |        |                   |                  |        |
| CaO               | - 738**  | 200      | 75000                          | .020    | .540   | 67200  |        |                   |                  |        |
| Na 0              | 730      | .300     | .759                           | .002    | .095   | .572   | 027    |                   |                  |        |
| 20                | 60700    | .209     | 017                            | 347     | 288    | 344    | 037    | 070               |                  |        |
| m:0               | .027     | 442      | 615                            | 505     | 555    | 555    | /62    | 272               | 100              |        |
| 1102              | 114      | 135      | .227                           | .121    | .088   | .108   | .303   | 183               | 190              | 2200   |
| P205              | 803      | .360     | .730                           | .815    | .587   | .810   | .119   | 255               | 665              | .370   |
|                   | GNEISS ( | GRANITOI | DI                             |         |        |        |        |                   |                  |        |
|                   | Si02     | A1203    | Fe203                          | FeO     | MnO    | Mg0    | Ca0    | Na20              | к <sub>2</sub> 0 | Ti02   |
| A1203             | 503°°    |          |                                |         |        |        |        |                   |                  |        |
| Fe <sub>2</sub> 0 | 3760**   | 031      |                                |         |        |        |        |                   |                  |        |
| Fe0               | 513**    | .008     | .390°°                         |         |        |        |        |                   |                  |        |
| MnO               | 789**    | .366°    | .633°°                         | .44800  |        |        |        |                   |                  |        |
| MgO               | 827**    | .079     | .870°°                         | .61500  | .706°° |        |        |                   |                  |        |
| Ca0               | 841**    | .291     | .690°°                         | .681 00 | .592°° | .852°° |        |                   |                  |        |
| Na <sub>2</sub> 0 | .085     | .118     | 341°                           | 326*    | .015   | 313°   | 197    |                   |                  |        |
| K20               | .060     | .278     | 174                            | 234     | .104   | 301    | 381*   | 255               |                  |        |
| Tio               | 682**    | 081      | .907°°                         | 51100   | 46600  | 83200  | 68400  | - 364*            | 348°             |        |
| P205              | 847**    | .479°°   | .623°°                         | .523°°  | .577°° | .74500 | .896°° | 116               | 273              | .639°° |
|                   | FORMAZIO | ONE COMP | LETA                           |         |        |        |        |                   |                  |        |
|                   | Si02     | A1203    | Fe203                          | Fe0     | Mn 0   | MgO    | Ca0    | Na <sub>2</sub> 0 | K20              | Ti02   |
| A1-0-             | - 569    | ~ 0      |                                |         |        |        |        | ~                 | -                |        |
| 203               | 840**    | 22000    |                                |         |        |        |        |                   |                  |        |
| Fel               | 975**    | .320     | 64000                          |         |        |        |        |                   |                  |        |
| MnO               | - 467**  | .330     | .040                           | 25.000  |        |        |        |                   |                  |        |
| Ma                | 1 005**  | .002     | .121                           | .352    | 50499  |        |        |                   |                  |        |
| ngo<br>Ga C       | 905      | .202     | .851                           | .892    | .594   |        |        |                   |                  |        |
| Cau               | 201      | 099      | .375                           | .213    | .641   | .352   |        |                   |                  |        |
| Na2U              | .254     | 320      | 333                            | 237     | 235*   | 239*   | .030   |                   |                  |        |
| ×20               | .246     | .257     | 448                            | 270**   | 611    | 472    | 613    | 308               |                  |        |
| 1102              | 866      | .255     | .908                           | .824    | .628   | .928   | .308   | 282               | 500              |        |
| P205              | 427      | .042     | .194                           | .532    | 197    | .404   | 103    | .047              | 102              | .432   |

779

### A. NOTARPIETRO, L. GORLA

### TABELLA 13

# F. di Valle Grosina (Austr. sup.): matrice di correlazione degli elementi maggiori, calcolata per ciascuno dei litotipi principali e su tutti e tre assieme (Formazione completa)

| (     | GNEISS MI | NUTI       |        |        |         |             |         |         |                |       |
|-------|-----------|------------|--------|--------|---------|-------------|---------|---------|----------------|-------|
|       | Sr        | Rb         | Ba     | Ni     | Y       | Zr          | Cr      | v       | Co             | Cu    |
| Rb    | 384°      |            |        |        |         |             |         |         |                |       |
| Ba    | .142      | .008       |        |        |         |             |         |         |                |       |
| Ni    | .285°     | 319°       | .279   |        |         |             |         |         |                |       |
| Y     | .51700    | 243        | 410°°  | .339°  |         |             |         |         |                |       |
| Zr    | .349°     | 473**      | 027    | .231   | .344°   |             |         |         |                |       |
| Cr    | 53100     | - 239      | 73200  | 52300  | 62300   | 161         |         |         |                |       |
| V     | 52000     | - 273      | 62500  | -340°  | 50700   | .101        | 85000   |         |                |       |
| × Co. | - 224     | 273        | .023   | .349   | .39/    | .047        | - 645** | - 735** |                |       |
| 00    | 234       | .022       | 50/    | 252    | 395     | .219        | 47300   | /35     | 255            |       |
| Cu    | .020      | .074       | .504   | .383   | .402    | .046        | .4/3    | . 331   | 255            | 051   |
| FD    | .250      | 14/        | 112    | .140   | .035    | .140        | 005     | 150     | .520           | 051   |
|       | GNEISS OC | CHIADINI   |        |        |         |             |         |         |                |       |
|       | Cr.       | Ph         | Ro     | N7.4   | v       | 7-          | Cr      | 17      | Co             | CII   |
| Db    | - 756**   | RD         | Ba     | IV1    | T       | 21          | CI      | v       | 00             | Cu    |
| RD    | 756       | 705**      |        |        |         |             |         |         |                |       |
| Ba    | .795      | 785        | 265    |        |         |             |         |         |                |       |
| NI    | .380      | 420        | .265   | 222    |         |             |         |         |                |       |
| Y     | .183      | 458        | .244   | .229   |         |             |         |         |                |       |
| Zr    | .528      | 654        | .734   | .358   | .151    | 10000       |         |         |                |       |
| Cr    | .274      | 386        | .265   | .671   | .422    | .493        | 07099   |         |                |       |
| v     | .561      | 563        | .457   | .643   | .354    | .625        | .850    | 1.00    |                |       |
| Co    | 002       | 062        | 158    | .170   | .278    | 028         | .307*   | .167    |                |       |
| Cu    | .007      | 138        | .050   | .203   | .218    | .119        | .062    | .052    | .178           |       |
| Pb    | .298      | 295        | .343°  | 098    | .001    | .026        | 103     | 004     | .019           | 072   |
| (     | GNEISS GE | ANITOIDI   |        |        |         |             |         |         |                |       |
|       | C.w       | Die        | De     | 114    |         | 7-          | 6-      | 17      | Co             | Cu    |
| Dh    | 432*      | RD         | Da     | NI     | I       | 21          | CI      | v       | 00             | cu    |
| RD    | 432       | 110        |        |        |         |             |         |         |                |       |
| ва    | .630      | 119        | 054    |        |         |             |         |         |                |       |
| NL    | .156      | 065        | .056   |        |         |             |         |         |                |       |
| Y     | 048       | 327        | .071   | .151   |         |             |         |         |                |       |
| Zr    | .644      | 136        | .724   | .301*  | 043     | Constant of |         |         |                |       |
| Cr    | 050       | 090        | 122    | .188   | .580    | 184         |         |         |                |       |
| V     | .151      | 510**      | .026   | .157   | .781 ** | .009        | .767**  |         |                |       |
| Co    | .184      | 168        | .107   | 259*   | .300°   | .060        | .098    | .233    | 22 - 3 - 3 - 3 |       |
| Cu    | .087      | .166       | .042   | .192   | 660**   | .200        | 426*    | 446**   | 247°           |       |
| Pb    | 136       | .568°°     | 008    | 281°   | 501°°   | 167         | 423°    | 737**   | .028           | .180  |
|       |           |            |        |        |         |             |         |         |                |       |
| 3     | FORMAZION | NE COMPLET | CA.    |        |         |             |         |         |                |       |
|       | Sr        | Rb         | Ba     | Ni     | Y       | Zr          | Cr      | v       | Co             | Cu    |
| Rb    | 650**     |            |        |        |         |             |         |         |                |       |
| Ba    | .595°°    | 529°°      |        |        |         |             |         |         |                |       |
| Ni    | .390°°    | 368**      | .403°° |        |         |             |         |         |                |       |
| Y     | .336°°    | 460**      | .384°° | .339°° |         |             |         |         |                |       |
| Zr    | .584 00   | 614**      | .551°° | .406°° | .295°°  |             |         |         |                |       |
| Cr    | .458 **   | 371**      | .568°° | .803°° | .477°°  | .408 **     |         |         |                |       |
| v     | .525°°    | 445**      | .587°° | .709°° | .547°°  | .401 00     | .933°°  |         |                |       |
| Co    | 021       | 076        | 188°   | 372**  | .080    | .052        | 421**   | 389**   |                |       |
| Cu    | .137      | 098        | .38400 | .546°° | .172    | 199°        | .55500  | .46000  | 328**          |       |
| Ph    | 005       | 054        | - 095  | - 227* | - 283** | - 137       | - 324** | - 391** | 148            | - 143 |

completa ed esauriente delle matrici che, per quanto interessante, potrebbe forse aggiungere poco a quanto ci è utile conoscere in questo specifico caso.

Si può osservare che lo stronzio è correlato positivamente col bario nei graniti gneissici e negli gneiss occhiadini, ma non nei minuti dove la correlazione è praticamente nulla.

Il rubidio si correla negativamente col bario negli occhiadini, in modo altamente significativo (indicato con due pallini secondo le usuali convenzioni), mentre non presenta correlazione alcuna, per lo stesso elemento, nei minuti e nei graniti.

Un'associazione che si è sempre rivelata altamente significativa in senso positivo, nell'ambito dei tre litotipi ed ancor di più nella Formazione completa è quella tra cromo e vanadio.

Per operare dei confronti tra elementi minori e maggiori considerati assieme, abbiamo prima trasformato i valori di questi ultimi, determinati come percentuali in ossido, in percentuali del metallo corrispondente.

Le tabelle 14, 15 e 16 riportano le matrici di correlazione relative ai tre litotipi.

L'analisi dei risultati ottenuti da questi confronti riveste un notevole interesse e richiede un esame attento e fortemente critico. Senza voler troppo insistere su questo aspetto, la cui discussione preferiamo lasciare volutamente libera, intendiamo riassumere brevemente il significato delle associazioni messe in evidenza con questa elaborazione.

Le matrici di correlazione sono costruite riportando su righe e colonne la stessa sequenza di elementi maggiori e minori, essendo matrici simmetriche. Le associazioni individuate tra elementi maggiori verso elementi maggiori e tra elementi minori verso elementi minori sono praticamente corrispondenti a quelle trovate operando separatamente su elementi maggiori e su elementi minori,

Osservando le tabelle si può notare che all'interno di ogni litotipo le correlazioni emerse tra elementi maggiori e minori risultano essere sensibilmente diverse, in particolare:

- negli gneiss minuti gli elementi maggiori, escluso Ca e K, mostrano quasi sempre correlazione positiva con Ba, Cr, Sr e negativa con Co;
- negli gneiss occhiadini gli elementi maggiori mostrano sempre, tranne che per Na e K, correlazione positiva con Ba, Sr, Zr e negativa con Rb. Tra K e Rb esiste invece correlazione positiva;
- nei graniti gneissici gli elementi maggiori sono sempre correlati positivamente con Y e V e negativamente con Pb e Rb. Per il sodio le associazioni si ribaltano, essendo correlate con Y e V in modo positivo.

Abbiamo ritenuto utile, per una lettura più immediata, sintetizzare tutte le correlazioni statisticamente significative per ciascuno dei tre litotipi in cui è stata distinta la Formazione di Valle Grosina (tab. 17).

Un altro interessante dato che emerge da questo quadro è l'univocità di variazione degli elementi femici. Come si può facilmente leggere infatti, Fe<sup>3+</sup>, Fe<sup>2+</sup>, Mg, Ti e Mn (quest'ultimo più limitatamente) si correlano sempre, con

| ٠ | 4 |  |
|---|---|--|
| ١ | - |  |
|   |   |  |
|   | 4 |  |
|   | з |  |
|   | B |  |
|   | 8 |  |
|   | < |  |

TABELLA 14 Matrice di correlazione di elementi maggiori ed elementi minori nella F. di Valle Grosina - GNEISS MINUTI

|       | 10     |                 | ×      | Pb    | ß     | Co     |         | Λ    | v<br>Cr | Cr<br>Zr        | 2r<br>Zr                  | Cr<br>Zr                      | Cr<br>Zr                                    | v<br>cr<br>zr<br>.029                        | v<br>cr<br>zr<br>.029<br>.509°°017                    | v<br>cr<br>zr<br>.029<br>.509°°017<br>.301° .058                                    | v<br>cr<br>zr<br>zr<br>.509°017<br>.301° .058                             | v<br>cr<br>zr<br>zr<br>.029<br>.017<br>.301° .017<br>.724°°017<br>.249025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v<br>cr<br>zr<br>zr<br>-017<br>-017<br>-301° -017<br>-301° -018<br>-301° -058<br>-3187° -062 | v<br>zr<br>zr<br>.029<br>.509°°017<br>.301° .058<br>301° .058<br>32490186<br>249058<br>249058<br>488°°171 | v cr<br>zr<br>2r<br>- 029<br>017<br>017<br>017<br>017<br>017<br>017<br>017<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>025<br>017<br>025<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>017<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>026<br>- | v cr<br>zr<br>2r<br>.509°°017<br>.509°°017<br>.301° .058<br>.724°°186<br>.249052<br>.249052<br>.287°062<br>.288°171<br>.222034<br>0.84 .005 | v<br>zr<br>zr<br>.029<br>.029<br>.174°°017<br>.174°°186<br>.174°°186<br>.174°°186<br>.249025<br>.249025<br>.249025<br>.222034<br>0.84 .005         |
|-------|--------|-----------------|--------|-------|-------|--------|---------|------|---------|-----------------|---------------------------|-------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| X     | 200    |                 | *00*   | .279  | .230  | ·321   | 196 -   | 103* | .818°   | .818°           | .81800                    | 229<br>229                    | 229<br>229.<br>.507°°                       | 229<br>229<br>.507°°                         | .507°°<br>.019<br>.016                                | 229<br>229<br>019<br>046                                                            | 229<br>229<br>.019<br>270<br>.046                                         | 229<br>229<br>.019<br>270<br>.105<br>029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 229<br>229<br>229<br>019<br>270<br>019<br>029<br>079                                         | 229<br>229<br>.019<br>.046<br>270<br>105<br>079<br>079<br>291°                                            | 229<br>229<br>219<br>019<br>270<br>.105<br>029<br>029<br>038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 229<br>229<br>.019<br>.046<br>270<br>.105<br>029<br>029<br>.013                                                                             | 229<br>229<br>219<br>019<br>019<br>019<br>019<br>079<br>079<br>038<br>038<br>.013                                                                  |
| Zr    | 007    | 800             | 070.   | .054  | 048   |        | .040    |      | 218     | 218             | 218                       | 218                           | 218<br>.131<br>.044                         | 218<br>.131<br>.044<br>.073                  | 218<br>.044<br>.073<br>.073                           | 218<br>.044<br>.073<br>.024<br>.214                                                 | 218<br>.044<br>.073<br>.073<br>.024<br>.214<br>.233                       | 218<br>.044<br>.073<br>.073<br>.073<br>.214<br>.214<br>.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 218<br>.131<br>.044<br>.073<br>.024<br>.214<br>.214<br>.213                                  | 218<br>.131<br>.044<br>.073<br>.024<br>.214<br>.214<br>.214<br>.213<br>.217<br>.217<br>.058               | 218<br>.131<br>.044<br>.073<br>.073<br>.024<br>.073<br>.214<br>.472°°<br>.217<br>.058<br>.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 218<br>.034<br>.073<br>.073<br>.024<br>.024<br>.024<br>.472<br>.233<br>.472<br>.233<br>.217<br>.165<br>.058                                 | 218<br>.131<br>.044<br>.073<br>.024<br>.024<br>.472<br>.217<br>.217<br>.217<br>.058<br>.058<br>.058<br>.011                                        |
| Cr    | 2005   |                 | 710.   | .064  | .388  | 589    | .189    |      |         |                 | 2300                      | 73°°                          | 73°°<br>56<br>36                            | 73°°<br>56<br>36                             | 73°°<br>56 -<br>36 -<br>13 -                          | 73°°<br>56 -<br>136 -<br>13 -<br>31 -                                               | 73°°<br>56 -<br>36<br>13<br>85<br>94°° .                                  | 73°°<br>56<br>36<br>13 .<br>94°° .<br>26°° .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73°°<br>56<br>36<br>13<br>13<br>88<br>26°<br>68*                                             | 73°°                                                                                                      | 73°°<br>56<br>36<br>13<br>94°° .<br>26° .<br>47<br>03 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73°°                                                                                                                                        | 73°°                                                                                                                                               |
| >     | 000    | 200             | C70.   | 406   | .194  | 564    |         |      |         |                 | .4.                       | .4.                           | .4.<br>11                                   | - 15<br>15<br>0                              | .4.<br>12<br>0                                        |                                                                                     | 74<br>                                                                    | 74.<br>11<br>22.<br>21.<br>21.<br>21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              | 74.<br>11<br>22.<br>11.<br>11.<br>14.<br>14.                                                              | 79.<br>11<br>11.<br>11.<br>11.<br>11.<br>14.<br>14.<br>14.<br>14.<br>14.<br>14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.<br>11<br>11.<br>11.<br>14.<br>14.<br>14.<br>14.<br>14.<br>11.                                                                           | 74.<br>21<br>21<br>21.1<br>24.<br>24.<br>24.<br>24.<br>24.<br>24.<br>20.                                                                           |
| 1     | 003    | 100             | con.   | .380° | 234   |        |         |      |         | . 089           | .089                      | .089                          | .089<br>.239<br>271                         | .089<br>.239<br>271<br>156                   | .089<br>.239<br>271<br>156<br>203                     | .089<br>.239<br>239<br>239<br>239<br>156<br>203<br>203                              | .089<br>.239<br>.156<br>.156<br>.156<br>.128<br>.178                      | .089<br>.239<br>.2371<br>.2371<br>.156<br>.203<br>.156<br>.101<br>.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .089<br>.239<br>.271<br>.275<br>.156<br>.178<br>.178<br>.178<br>.178                         | .089<br>.239<br>.271<br>.271<br>.273<br>.203<br>.203<br>.101<br>.101<br>.1178<br>.101<br>.1178            | .089<br>.233<br>.271<br>.271<br>.203<br>.203<br>.203<br>.178<br>.101<br>.1161<br>.1161<br>.104<br>.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .089<br>.271<br>.271<br>.156<br>.156<br>.178<br>.178<br>.178<br>.178<br>.178<br>.178<br>.178<br>.178                                        | .089<br>.239<br>.271<br>.156<br>.156<br>.203<br>.203<br>.1178<br>.1178<br>.1178<br>.1178<br>.1178<br>.017<br>.017                                  |
| 5     | 003    | 200             | con.   | 081   |       |        |         |      | .286°   | .286°<br>.662°° | .286°<br>.662°°<br>.433°° | .286°<br>.662°°<br>.433°°     | .286°<br>.662°°<br>.433°°<br>.071<br>.626°° | .286°<br>.662°°<br>.433°°<br>.071<br>.626°°  | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.626°°   | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.071<br>.071<br>.335°<br>.315°<br>.237 | .236°<br>.662°°<br>.433°°<br>.071<br>.071<br>.071<br>.071<br>.237<br>.237 | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.626°°<br>.315°<br>.315°<br>.315°<br>.315°<br>.315°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.071<br>.026<br>.315°<br>.711°°                 | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.626°<br>.315°<br>.315°<br>.315°<br>.594°°                   | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.626°<br>.315°<br>.315°<br>.315°<br>.594°°<br>.594°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .286°<br>.662°°<br>.433°°<br>.071<br>.071<br>.626°<br>.315°<br>.315°<br>.711°°<br>.594°°<br>.617**<br>.449°<br>.184                         | .286°<br>.662°°°<br>.433°°°<br>.071<br>.071<br>.626°°<br>.315°<br>.315°<br>.315°<br>.315°<br>.449°°<br>.594°°<br>.594°°<br>.594°°                  |
| Ρb    | 1001   | 200             | con.   |       |       |        | .078    |      | 273     | 273             | 273<br>184<br>341         | 273<br>184<br>341<br>.744°°   | 273<br>184<br>341<br>.744°°<br>.733°°       | 273<br>184<br>341<br>.744°°<br>.733°°        | 273<br>184<br>341<br>.744°°<br>.733°°<br>.018<br>.252 | 273<br>184<br>341*<br>.733°°<br>.018<br>.252<br>517*                                | 273<br>184<br>341<br>.744°<br>.733°<br>.018<br>.252<br>517*               | 273<br>184<br>341*<br>.744°°<br>.733°°<br>.018<br>.252<br>517*<br>087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 273<br>184<br>341*<br>.744°°<br>.733°°<br>.018<br>.252<br>517**<br>271<br>087                | 273<br>184<br>341*<br>.744°°°<br>.733°°<br>.018<br>.233°<br>.271<br>087<br>.271<br>196                    | 273<br>184<br>341*<br>.744°°<br>.733°°<br>.018<br>.271<br>517*<br>196<br>196<br>.416°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 273<br>184<br>341*<br>.744°°<br>.733°°<br>.018<br>.233°°<br>.252<br>517*<br>087<br>196<br>.416°°<br>.416°°<br>.255<br>.271<br>055           | 273<br>184<br>341*<br>.744°°°<br>.733°°<br>.018<br>.235<br>517*<br>.271<br>087<br>196<br>.416°°<br>.416°°<br>.255<br>055<br>.371<br>055<br>.2649   |
|       |        |                 |        |       |       | 553    | 184     |      | .059    | .059            | .059<br>.146<br>.195      | .059<br>.146<br>.195<br>452** | .059<br>.146<br>.195<br>539*                | .059<br>.146<br>.195<br>452*<br>539*         | .059<br>.146<br>.195<br>452*<br>.130<br>.130          | .059<br>.146<br>.195<br>452*<br>539*<br>.130<br>215                                 | .059<br>.146<br>.195<br>452<br>539<br>130<br>215<br>215                   | .059<br>.146<br>.195<br>452<br>539<br>539<br>215<br>215<br>215<br>290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .059<br>.146<br>.195<br>452*<br>539*<br>.130<br>215<br>215<br>215<br>215<br>.125<br>.125     | .059<br>.146<br>.195<br>452*<br>.539*<br>.130<br>215<br>215<br>215<br>290*                                | .059<br>.146<br>.195<br>452*<br>.130<br>.130<br>.125<br>215<br>.125<br>.125<br>.125<br>.125<br>.2167<br>.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .059<br>.146<br>.195<br>452<br>539<br>539<br>539<br>539<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>230<br>236<br>200               | .059<br>.146<br>.195<br>452<br>539<br>539<br>215<br>215<br>215<br>215<br>215<br>2167<br>2167<br>200<br>.167<br>383<br>2.383                        |
|       |        |                 |        |       | .363° | 308*   | 124     |      | 141     | 141             | 141<br>.330°<br>.246      | 141<br>.330°<br>.246<br>279   | 141<br>.330°<br>.246<br>279*<br>223         | 141<br>.330°<br>.246<br>279*<br>223<br>.297° | 141<br>.330°<br>.246<br>279°<br>.223<br>.297°         | 141<br>.330°<br>.246<br>279<br>223<br>.297°<br>048                                  | 141<br>.330°<br>.246<br>279<br>223<br>.297°<br>048<br>145<br>094          | 141<br>.330°<br>.246<br>279°<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>223<br>2276<br>223<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276<br>2276 | 141<br>.330°<br>.246<br>279°<br>237°<br>048<br>145<br>145<br>140                             | 141<br>.330°<br>.246<br>279*<br>297°<br>048<br>145<br>145<br>.251<br>140<br>140                           | 141<br>.330°<br>.246<br>279°<br>297°<br>297°<br>145<br>145<br>140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141<br>.330°<br>.246<br>279°<br>297°<br>048<br>145<br>145<br>145<br>145<br>145<br>145<br>185                                                | 141<br>.330°<br>.246<br>279°<br>287°<br>048<br>145<br>145<br>140<br>185<br>185<br>185<br>185<br>185                                                |
|       |        |                 |        | .316° | 057   | .043   | .72100  | 162  | CO.V *  | .70800          | .354°                     | .708°°<br>.354°<br>150        | .708°°<br>.354°<br>150<br>.517°°            |                                              | 708°°<br>354°<br>150<br>517°°<br>059<br>468°°         |                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              |                                                                                                           | .708°°<br>.354°<br>.150<br>.517°°<br>.517°°<br>.468°°<br>.237<br>.760°<br>.546°°<br>.359°<br>.369°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .708°°<br>.354°<br>.354°<br>.517°°<br>.517°°<br>.468°°<br>.468°°<br>.774°<br>.760°°<br>.546°°<br>.369°<br>.222                              |                                                                                                                                                    |
|       |        |                 | .87600 | .241  | 153   | .225   | .665 00 | .104 |         | .67900          | .41000                    | .679°°<br>.410°°              | .679°°<br>.410°°<br>.106                    | .679°°<br>.410°°<br>.106<br>.539°°           | .679°°<br>.410°°<br>.106<br>206<br>.453°°             | .679°°<br>.410°°<br>.539°°<br>206<br>.453°°                                         | .679°°<br>.410°°<br>.106<br>.539°°<br>206<br>.453°°                       | .679°°<br>.410°°<br>.106<br>.539°°<br>206<br>.453°°<br>.725°°<br>.454°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .679°°<br>.410°°<br>.539°°<br>.539°°<br>.453°°<br>.453°°<br>.453°°                           | .679°°<br>.410°°<br>.106<br>.539°°<br>206<br>.453°°<br>.725°°<br>.453°°<br>.453°°                         | .679°°<br>.410°°<br>.106<br>.539°°<br>206<br>.453°°<br>.725°°<br>.725°°<br>.453°°<br>.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .679°°<br>.410°°<br>.539°°<br>.539°°<br>206<br>.453°°<br>.725°°<br>.725°°<br>.453°<br>.379°<br>144                                          | .679°°<br>.410°°<br>.106<br>.539°°<br>206<br>.453°°<br>.725°°<br>.453°°<br>.453°°<br>245<br>.454°°<br>.454°°<br>.454°°<br>.454°°<br>.2197<br>2.197 |
|       |        | .50700          | .695°° | 083   | 257   | .249   | .81800  | .066 |         | .52500          | .201                      | .525°°<br>.201<br>.073        | .525°°<br>.201<br>.073<br>.735°°            | .525°°<br>.201<br>.073<br>.735°°             | .525°°<br>.201<br>.073<br>.735°°<br>.115              | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°                                  | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°              | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°<br>.726°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°<br>.735°°<br>.739°              | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°<br>.726°°<br>.726°°<br>.739*                 | .525°°<br>.201<br>.073<br>.073<br>.735°°<br>.115<br>.735°°<br>.421°°<br>.421°°<br>.485°°<br>.485°°<br>.512°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°<br>.485°°<br>218<br>.512°°<br>.512°°<br>.218                                   | .525°°<br>.201<br>.073<br>.735°°<br>.115<br>.421°°<br>.421°°<br>.485°°<br>.485°°<br>.739*<br>.512°°<br>.512°°<br>.512°°<br>.512°°<br>.512°°        |
|       | .71300 | .53500          | .52300 | 192   | 405   | .676°° | .56100  | 091  |         | .307°           | .307°                     | .307°<br>.114<br>.530°°       | .307°<br>.114<br>.530°°                     | .307°<br>.114<br>.530°°<br>.838°°            | .307°<br>.114<br>.530°°<br>.838°°<br>027<br>.391°°    | .307°<br>.114<br>.530°°<br>.838°°<br>.838°°<br>.391°°                               | .307°<br>.114<br>.530°°<br>.838°°<br>027<br>.391°°<br>469°                | .307°<br>.114<br>.530°°<br>.838°°<br>.391°°<br>.391°°<br>.658°°<br>.343°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .307°<br>.114<br>.530°°<br>.838°°<br>.838°°<br>.391°°<br>.558°°<br>.343°<br>656°             | .307°<br>.114<br>.530°°<br>.838°°<br>.391°°<br>.391°°<br>.658°°<br>343°<br>696°                           | .307°<br>.114<br>.530°<br>.838°<br>.391°°<br>.391°°<br>.343°<br>.343°<br>.343°<br>.343°<br>.343°<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .307°<br>.114<br>.530°°<br>.838°°<br>.391°°<br>.391°°<br>.343°<br>.658°°<br>.343°<br>.343°<br>.370°<br>.188                                 | .307°<br>.114<br>.530°°<br>.838°°<br>.391°°<br>.469•<br>.658°°<br>.343°<br>343°<br>188<br>B.464<br>1.007                                           |
| - 866 | 828    | 627             | 938    | 128   | .220  | 437    | 708     | 027  |         | 581             | 581 256                   | 581**<br>256<br>237           | 581**<br>256<br>237<br>775*                 | 581<br>256<br>237<br>775                     | 581<br>256<br>237<br>775<br>069                       | 581**<br>237<br>775*<br>775*<br>488*<br>488*                                        | 581**<br>256<br>237<br>775*<br>488*<br>488*                               | 581**<br>256<br>237<br>775*<br>488*<br>488*<br>492*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 581**<br>256<br>237<br>775*<br>488*<br>.4190°<br>772*<br>492*<br>492*                        | 581**<br>256<br>237<br>775*<br>488*<br>.4190°<br>772*<br>492*<br>.942°°                                   | 581**<br>256<br>237<br>775*<br>488*<br>.419°°<br>772*<br>492*<br>432*<br>432*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 581**<br>256<br>237<br>775*<br>488*<br>.419°°<br>772*<br>492*<br>492*<br>432*<br>432*<br>432*                                               | 581**<br>256<br>237<br>775*<br>498*<br>492*<br>492*<br>492*<br>432*<br>2942*<br>432*<br>215<br>2375                                                |
| AL    | Fe3    | Fe <sup>2</sup> | bW     | Ca    | Na    | м      | LI      | 0.   |         | Mn              | Mn<br>Sr                  | Mn<br>Sr<br>Rb                | Mn<br>Sr<br>Rb<br>Ba                        | Mn<br>Sr<br>Rb<br>Ba<br>Ni                   | Mn<br>Sz<br>Rb<br>Ba<br>Ni                            | Mn<br>Szr<br>Rb<br>Ni<br>Zr                                                         | Mn<br>Ssr<br>Rb<br>Vi<br>Sr<br>Cr                                         | Mn<br>Sz<br>Rb<br>Ba<br>Ni<br>Zz<br>Cz<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sr<br>Sr<br>NN1<br>Zr<br>Ccr<br>Ccr                                                          | Sr<br>Sr<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co                                                              | Sz<br>Sz<br>Zz<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A B B A A A A A A A A A A A A A A A A A                                                                                                     | MH<br>Ssr<br>Ni<br>Ssr<br>V<br>V<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                              |

# Matrice di correlazione di elementi maggiori ed elementi minori nella F. di Valle Grosina - GRANITI GNEISSICI

| AL              | 259     |        |                 |                 |        |        |       | Pb     | Cu     | Co   | v     | Cz         | Zr     | Y      |        |      |
|-----------------|---------|--------|-----------------|-----------------|--------|--------|-------|--------|--------|------|-------|------------|--------|--------|--------|------|
| Fe <sup>3</sup> | 830**   | 124    |                 |                 |        |        |       | 001    | 001    | 002  | 005   | 00         | 05 00  | 7 002  | A      |      |
| Fe <sup>2</sup> | 429°    | 087    | .55500          |                 |        |        |       | .004   | 001    | 008  | .005  | .00        | 14 02  | 4 003  | 5      |      |
| Mg              | 871**   | 042    | .873°°          | .539°°          |        |        |       | .004   | .001   | .000 | .010  | .00        | .02    | .005   | ^      |      |
| Ca              | 890**   | .266   | .691°°          | .269            | .85400 |        |       |        | .175   | .006 | 734** | .06        | 25     | 3521   | Pb     |      |
| Na              | .226    | 055    | 367°            | 281             | 359*   | 249    |       |        | 8      | 266  | 485** | .18        | 04     | 3631   | •• Cu  |      |
| к               | .436°   | 202    | 255             | 087             | 458**  | 558**  | 465** |        |        |      | .237  | 05         | .08    | 5.308  | Co     |      |
| TI.             | 851**   | .001   | .928°           | .60800          | .86900 | .72400 | 342°  | 346°   |        |      |       | -,19       | .23    | 4 .782 | v v    |      |
| Р               | 713**   | .365°  | .45600          | .080            | .62300 | .82500 | 003   | 681**  | .55500 |      |       |            | 60     | 9**032 | Cr     |      |
| Mn              | 687**   | 252    | .76000          | .46000          | .798°° | .61900 | 210   | 332°   | .71400 | .382 | 0     |            |        | .087   | Zr     |      |
| Sr              | 332°    | .655°° | .118            | 021             | .218   | .404°  | .071  | 508**  | .216   | .508 | ···12 | 0          |        |        |        |      |
| Rb              | .45200  | .007   | 394*            | 164             | 543**  | 542**  | 174   | .72400 | 408°   | 504  | 35    | 9 <b>•</b> | 414°   |        |        |      |
| ва              | 133     | .291   | .187            | 010             | .068   | .098   | 269   | .078   | .201   | .276 | 21    | 3          | .576°° | 117    |        |      |
| Ni              | 275     | .050   | .392°           | .50300          | .254   | .133   | 151   | .024   | .420°  | 103  | 05    | 9          | .116   | 073    | .043   |      |
| Y               | 657**   | 297    | .795°°          | .43800          | .77900 | .587°° | 352°  | 146    | .73100 | .350 | • .81 | 700        | 008    | 338°   | .078   | .138 |
| Zr              | 209     | .201   | .223            | .186            | .175   | .128   | 008   | 154    | .328   | .289 | 01    | 3          | .431°  | 081    | .45700 | .328 |
| Cr              | 152     | .106   | .118            | 027             | .012   | .096   | .067  | 026    | .076   | .070 | 00    | 5          | .088   | 060    | .159   | 109  |
| v               | 748**   | 158    | .75300          | .410°           | .91600 | .74600 | 333°  | 360°   | .75800 | .513 | .78   | 6°°        | .149   | 472**  | 023    | .191 |
| Co              | 102     | 056    | .074            | 202             | .155   | .224   | 045   | .015   | 034    | .116 | .16   | 9          | .152   | 174    | .078   | 230  |
| Cu              | .239    | .217   | 375°            | 094             | 347°   | 214    | .205  | .002   | 271    | 161  | 57    | 8**        | .104   | .161   | .040   | .198 |
| Pb              | .665°°  | .177   | 669**           | 345°            | 779**  | 658**  | 050   | .53700 | 705**  | 502  | ••58  | 5**        | 134    | .56400 | 002    | 282  |
| x               | 32.702  | 8.303  | 1.911           | .934            | .710   | 1.670  | 2.404 | 2.861  | .247   | .019 | .07   | 3          | .024   | .015   | .071   | .001 |
| d.st            | . 1.236 | .244   | .665            | .778            | .332   | .695   | .409  | .606   | .092   | .008 | .01   | 8          | .010   | .004   | .023   | .000 |
|                 | Si      | AL     | Fe <sup>3</sup> | Fe <sup>2</sup> | Mg     | Ca     | Na    | к      | Ti     | Р    | Mn    |            | Sr     | Rb     | ва     | Ni   |

783

Matrice di correlazione di elementi maggiori ed elementi minori nella F. di Valle Grosina - GNEISS OCCHIADINI

| AL | 694**              |       |                 |                 |        |         |       | Pb    | Cu     | Co   | v     | Cr     | Zr       | Y    |        |       |
|----|--------------------|-------|-----------------|-----------------|--------|---------|-------|-------|--------|------|-------|--------|----------|------|--------|-------|
| Fe | <sup>3</sup> 780** | .412° |                 |                 |        |         |       | 001   | 001    | 002  | 003   | 002    | 009      | 001  |        | i.st. |
| Fe | 724**              | .212  | .556°°          |                 |        |         |       | .001  | .001   | .002 | .005  | .002   | .009     | .001 | 8      | 5     |
| Mg | 714**              | .293  | .501°°          | .828 **         |        |         |       | .004  | .001   | .000 | .000  | .002   | .015     | .002 |        | ^     |
| Ca | 387*               | .077  | .418°           | .446 **         | .372°  |         |       |       | .002   | 001  | 106   | 079    | .059     | 043  |        | Pb    |
| Na | 025                | .289  | 020             | 348*            | 344*   | 172     |       |       |        | .138 | .183  | .078   | .136     | .140 |        | Cu    |
| к  | .198               | 038   | 335°            | 222             | 259    | 745**   | 000   |       |        |      | .205  | .306   | 055      | .205 |        | Co    |
| TI | 825**              | .345° | .773°°          | .828°°          | .816** | .539°°  | 247   | 396*  |        |      |       | .873°° | .523**   | .292 |        | v     |
| P  | 097                | 152   | .242            | .118            | .093   | .357°   | 141   | 215   | .356°  |      |       |        | .497**   | .434 | •      | Cr    |
| Mn | 447**              | .180  | .428°           | .324°           | .433°  | .446 ** | 278   | 267   | .522°° | .113 |       |        |          | .155 |        | Zr    |
| Sr | 712**              | .348° | .749°°          | .631 00         | .562** | .559°°  | .061  | 503** | .859°° | .284 | .513° | •      |          |      |        |       |
| Rb | .608°°             | 184   | 551**           | 600**           | 625**  | 351*    | .027  | .319° | 700**  | .164 | 418*  | 704    |          |      |        |       |
| ва | 787**              | .421° | .817°°          | .673°°          | .558°° | .491 ** | 022   | 353°  | .753°° | .103 | .354° | .803   | ···6     | 38** |        |       |
| Ni | 287                | .131  | .225            | .489°°          | .357°  | .110    | .037  | 226   | .455°° | 125  | 002   | .421   | ·4       | 69** | .305   |       |
| Y  | 377*               | .177  | .430°           | .287            | .308   | .128    | 002   | 178   | .343°  | 215  | .183  | .192   | 3        | 05   | .247   | .249  |
| Zr | 706**              | .317° | .683°°          | .742 **         | .562°° | .326°   | 339°  | 001   | .723°° | .100 | .315° | .544   | · · · .5 | ••00 | .743** | .381° |
| Cr | 345°               | .186  | .239            | .428°           | .292   | .101    | 138   | .032  | .443°° | 053  | .141  | .283   | 3        | 83*  | .278   | .676° |
| v  | 401°               | .134  | .275            | .514 **         | .411°  | .118    | 112   | 004   | .467°° | 082  | .170  | .342   | e°4      | 7400 | .369°  | .676° |
| Co | .344°              | 402°  | 102             | 142             | 286    | .082    | 117   | 024   | 129    | 159  | .210  | 034    | .0       | 13   | 185    | .172  |
| Cu | 165                | .158  | .248            | .165            | 043    | .125    | .142  | 084   | .035   | 080  | .075  | .041   | 0        | 38   | .074   | .247  |
| Pb | 164                | .066  | .149            | .147            | .032   | .360°   | .070  | 260   | .134   | 147  | .388° | .333   | 3°4      | 28*  | .370°  | 036   |
| x  | 32.718             | 8.448 | .893            | 1.080           | .434   | .830    | 2.583 | 3,696 | .164   | .051 | .026  | .014   | .0       | 22   | .042   | .001  |
| d. | st938              | .435  | .386            | .430            | .356   | .509    | .373  | .661  | .090   | .018 | .014  | . 013  | .0       | 11   | .030   | .001  |
|    | Si                 | Al    | Fe <sup>3</sup> | Fe <sup>2</sup> | Mg     | Ca      | Na    | к     | Ti     | Р    | Mn    | Sr     | R        | b    | ва     | Ni    |

784

F. di Valle Grosina (Austr. sup.): quadro delle associazioni statisticamente significative emerse dalla correlazione tra elementi maggiori ed elementi minori, all'interno di ogni litotipo

|                 |            | GNEISS<br>MINUTI             | GNEISS<br>OCCHIADINI         | GRANITI<br>GNEISSICI   |
|-----------------|------------|------------------------------|------------------------------|------------------------|
| Si              | ;          | + Sr,Ba,Y,Cr,V,Cu<br>- Zr,Co | + Sr,Ba,Y,Zr,Cr,V<br>- Rb,Co | + Sr,Y,V<br>- Rb,Pb    |
| ÂÌ              | ;          | + Ba,Cr,Rb<br>- Co,Zr        | + Ba,Sr,Zr<br>- Rb,Co        | - Sr                   |
| Fe <sup>3</sup> | +;         | + Cr,Ba,Cu,V,Y<br>- Co       | + Ba,Sr,Zr,Y<br>- Rb         | + Y,V,Ni<br>- Pb,Rb,Cu |
| Fe <sup>2</sup> | + <b>s</b> | + Cr,Ba,V,Y,Sr,Cu<br>- Co    | + Zr,Ba,Sr,V,Ni,Cr<br>- Rb   | + Ni,Y,V<br>- Pb       |
| Mg              | ;          | + Cr,V,Ba,Y,Cu,Sr<br>- Co    | + Sr,Zr,Ba,V,Ni<br>- Rb      | + V,Y<br>- Pb,Rb,Cu    |
| Ca              | :          | + Ni<br>- Rb                 | + Sr,Ba,Pb,Zr<br>- Rb        | + V,Y,Sr<br>- Pb,Rb    |
| Na              | ;          | - Ba,Rb,Cu,Cr                | - Zr                         | - Y,V                  |
| к               | ;          | + Rb,Ba,Cu<br>- Zr,Sr        | + Rb<br>- Sr,Ba              | + Sr,V<br>- Rb,Pb      |
| Ti              | ;          | + Cr,Ba,V,Cu,Sr,Y<br>- Co    | + Sr,Ba,Zr,V,Ni,Cr,Y<br>- Rb | + V,Y,Ni<br>- Pb,Rb    |
| Ρ               | ;          |                              |                              | + V,Sr,Y<br>- Rb,Pb    |
| Mn              | ;          | + Cr,Sr,V<br>- Co            | + Sr,Pb,Ba,Zr<br>- Rb        | + Y,V<br>- Pb.Cu.Rb    |

qualche piccola, lieve differenza, con il medesimo gruppo di elementi minori. All'interno di questo gruppo gli elementi variano in modo diverso a seconda che ci si trovi negli gneiss minuti, occhiadini o nei graniti gneissici.

Anche con l'elaborazione « modo Q » si sono ottenute risposte interessanti, evidenziate nella figura 11.

Perchè i confronti tra le diverse distribuzioni ottenute risultassero il più possibile congruenti tra loro, ci siamo riferiti sempre agli stessi fattori estratti dall'analisi fattoriale. I fattori dei tre diagrammi riportati in figura e relativi agli elementi maggiori, elementi minori ed elementi maggiori e minori insieme, ovviamente non rappresentano valori uguali, ma può essere comunque indicativo quantificare la dispersione attorno ai primi tre fattori estratti e osservare come si distribuiscono i campioni rispetto ad essi.

Il diagramma « a » della figura 11 si riferisce alla distribuzione dei campioni relativamente agli elementi maggiori. Appare chiara ed evidente la netta separa-





Fig. 11. — Distribuzione dei campioni analizzati secondo il modo «Q» dell'analisi fattoriale relativamente ai Fattori 2 e 3. Il diagramma «a» rappresenta l'elaborazione rispetto agli elementi maggiori (matrice ruotata), dove  $\sigma_{F_2} = 35,9$  e  $\sigma_{F_3} = 23,4$  con varianza cumulativa dei primi tre fattori ( $F_1$ ,  $F_2$ ,  $F_3$ ) pari a 97,7. Il diagramma «b» si riferisce agli elementi minori (matrice originale) con  $\sigma_{F_2} = 7,5$ ,  $\sigma_{F_3} = 2,7$  e  $\sigma_{F_1} = 83,7$ . Il diagramma «c»  $\aleph$  relativo agli elementi maggiori e minori considerati assieme (matrice originale) con  $\sigma_{F_2} = 6$ ,  $\sigma_{F_3} = 2,5$  e  $\sigma_{F_1} = 86$ .

zione dei litotipi, stando ad indicare che le differenze petrochimiche determinate nei campioni si rivelano già sufficienti a distinguere i tre litotipi in modo statisticamente significativo.

Il diagramma « b », della stessa figura, illustra la distribuzione dei campioni, rispetto agli stessi fattori, in uno spazio in cui le variabili sono rappresentate dagli elementi minori. I campioni appaiono più dispersi se confrontati con la distribuzione relativa agli elementi maggiori, ma occupano pur sempre aree ben definite mostrando un'individualità ben pronunciata.

Il diagramma « c » riguarda la dispersione dei campioni considerati, rispetto

#### CONTRIBUTO ALLA CONOSCENZA DELLE FORMAZIONI AUSTRIDICHE ETC.

allo stesso ordine di fattori, relativamente ad uno spazio dimensionato da variabili che rappresentano sia gli elementi minori sia gli elementi maggiori. Questa distribuzione logicamente « ricalca » con buona aderenza quella relativa agli elementi maggiori, essendo questi più « pesanti » percentualmente rispetto agli altri.

Dall'esame di questi diagrammi si può concludere che, per quanto concerne gli aspetti petrochimici delle rocce in esame, il contenuto degli elementi maggiori e minori all'interno dei tre litotipi: gneiss minuti, occhiadini e graniti gneissici, in cui è stata distinta la Formazione di Valle Grosina, è tale da attribuire ad ognuno una spiccata individualità, statisticamente significativa.

### Riepilogo dei caratteri petrochimici

Proseguendo le indagini geo-petrologiche sulla Formazione di Valle Grosina (media ed alta Valtellina), sono stati presi in considerazione in questo lavoro, gli aspetti petrochimici generali. Questo complesso litostratigrafico, strutturalmente appartenente al dominio austridico, viene ad assumere un importante ruolo nel contesto geologico centroalpino, dopo che ad esso sono stati attribuiti parte dei terreni in precedenza ascritti alla F. della Punta della Pietra Rossa (GORLA-POTENZA, 1975).

Secondo questi autori la F. di Valle Grosina amplierebbe notevolmente i suoi limiti estendendosi anche nella media e bassa Valtellina. Le revisioni finora effettuate sul terreno rendono del tutto verosimile questa situazione: la notevole ampiezza ed il complicato assetto strutturale dell'area in questione, richiedono ancora verifiche laboriose.

Lo studio petrochimico sviluppato nel presente lavoro ci ha consentito di fare alcune puntualizzazioni.

Le rocce analizzate comprendono tipi che, per composizione possono ritenersi o di origine sedimentaria o di origine magmatica s.l.

L'uso di alcuni termini della letteratura « magmatica » è pertanto improprio per i litotipi « para », tuttavia esso ci consente un raffronto più immediato dei caratteri petrochimici, e predispone gli elementi indispensabili per un successivo approccio genetico.

Le rocce analizzate presentano un carattere iperalluminifero (corindone normativo sempre presente) con affinità in gran parte calcalcalina. Il comportamento di alcuni elementi è risultato molto discriminante, individuando e condizionando sensibilmente le ipotesi genetiche.

Si è visto infatti nel diagramma MgO/CaO che, gli gneiss minuti (rocce paraderivate) occupano una posizione del tutto distinta dagli gneiss occhiadini e dai graniti gneissici (rocce verosimilmente ortoderivate). In particolare entrambi questi due litotipi sono caratterizzati da MgO < 1 mentre gli gneiss minuti da MgO > 1.

Un comportamento analogo è messo in evidenza da Sr, Cr e V con tenori più alti di V e Sr negli gneiss minuti.

Sul terreno gli gneiss occhiadini mostrano dei caratteri che inducono a ritenerli più antichi dei graniti gneissici, inoltre denotano di aver subito un processo di « differenziazione » più spinto (D.I. = 85).

Per quanto riguarda il comportamento degli elementi minori, questi appaiono maggiormente abbondanti negli gneiss minuti ad eccezione di Rb e Pb.

I valori ottenuti per gli elementi analizzati dimostrano di essere in buon accordo con determinazioni fatte per gli stessi elementi su rocce di composizione simile (ENGEL, BROWN, SHAW).

Le entità delle variazioni che si verificano tra gli elementi sia maggiori sia minori, sono state definite, attribuendo ad esse un preciso significato statistico, per mezzo dell'analisi fattoriale. Dalle matrici di correlazione si desume che per ogni litotipo, ad ogni elemento maggiore è quasi sempre associato il medesimo gruppo di elementi minori, con un coefficiente più o meno alto ma sempre statisticamente significativo.

L'elaborazione « modo Q » individua in modo netto tre aree ben distinte corrispondenti alla distribuzione dei campioni rappresentativi di gneiss minuti, occhiadini e graniti. La distinzione rimane sempre evidente, sia che ci si riferisca ai soli elementi maggiori sia ai soli elementi minori o ad elementi maggiori e minori assieme. Pertanto anche l'analisi statistica conferma dei caratteri distintivi per ciascuno dei tre gruppi di rocce considerati in questo lavoro.

### **Considerazioni** conclusive

Lo studio petrochimico condotto sulle rocce che costituiscono la F. di Valle Grosina, ha permesso di delinearne il carattere e di definirne il comportamento relativamente agli elementi maggiori e ad alcuni elementi minori. Lo stato di conoscenze di questa unità è comunque tuttora scarso e necessita di ulteriori approfondimenti. La mancanza di analisi micro e mesostrutturali, in particolare, non consente di comporre un quadro geo-petrologico esauriente, per cui riteniamo prematuro avanzare ipotesi in questo senso. Intendiamo solamente fare alcune considerazioni sulla base dei dati finora acquisiti in laboratorio e sul terreno, e dei caratteri geo-petrologici dominanti e comuni ad altre unità comprese nello stesso dominio strutturale.

- Nelle Alpi gli gneiss occhiadini del dominio Austridico, indicati anche come « ortogneiss » e/o « porfiroidi », sono generalmente connessi con un plutonismo acido datato radiometricamente attorno ai 450 m.a. (Anterselva, Silvretta, Oetzal, Stubai, Alto Adige). Sono solitamente caratterizzati da una scistosità concordante e presumibilmente coeva con quella degli scisti incassanti.
- Nell'ambito dell'unità Grosina gli gneiss occhiadini presentano una ben evidente scistosità concordante con gli gneiss minuti che sono situati in posizione generalmente superiore, talora laterale, con passaggi transizionali che fanno pensare a fenomeni migmatici.
- I «graniti gneissici» e migmatiti di vario genere, presentano dei rapporti

non sempre univoci e difficilmente interpretabili sia con le rocce paraderivate (gneiss minuti) sia con gli gneiss occhiadini. Sul terreno si possono trovare anche piccoli corpi foliati, ma in modo molto meno evidente degli gneiss occhiadini. Presentano un diametro massimo di qualche km, contengono numerosi inclusi per lo più discordanti.

Da questo quadro si possono trarre alcune conclusioni, certamente non definitive:

- gli gneiss occhiadini della F. di Valle Grosina hanno caratteri di campagna per i quali non si può escludere una derivazione da fusi analoga a quella ipotizzata per rocce simili di altre aree Austroalpine (evento termico di età « caledoniana »);
- gli gneiss minuti, che qui generalmente costituiscocno la roccia incassante degli altri due litotipi, presentano caratteristiche petrografiche che si inseriscono in modo ceorente in tutte le altre parametamorfiti austroalpine. L'evento tettonicometamorfico responsabile delle paragenesi e delle strutture osservate è caratterizzato da pressioni medie e da temperature comprese tra il basso e il medio grado. Procedendo dal basso verso le parti tettonicamente più alte della serie è possibile separare una zona a biotite da una zona a staurolite. Questa situazione, per quanto sia ancora da verificare più estesamente, porterebbe a supporre un innalzamento termico avvicinandosi ai graniti gneissici, solitamente affioranti in posizione superiore rispetto agli gneiss minuti;
- i graniti gneissici dimostrano di essere più recenti degli gneiss occhiadini, in quanto sul terreno si ha l'impressione che gli gneiss occhiadini abbiano risentito della messa in posto del granito; ed inoltre per la marcata differenza che esiste anche se non in modo ubiquitario, tra la tessitura scistosa degli uni e degli altri.

Ringraziamenti. — Gli Autori ringraziano il prof. ARRIGO GREGNANIN, Direttore del Centro di Studo per la Stratigrafia e Petrografia delle Alpi Centrali del C.N.R., e il prof. ATTILIO BORIANI, Direttore dell'Istituto di Mineralogia e Petrografia dell'Università di Milano, per le proficue e stimolanti discussioni oltre che per il valido e prezioso aiuto. Un ringraziamento ai dottori R. CRESPI ed R. POTENZA per la lettura critica del manoscritto.

#### BIBLIOGRAFIA

- ASHWORT J. R. (1976) Petrogenesis of migmatites in the Huntly-Portsoy area, north-east · Scotland. Mineral. Mag., vol. 40, n. 315.
- BIANCHI POTENZA B., NOTARPIETRO A. (1977) La «Formazione di Valle Grosina»: revisione dei suoi aspetti petrografici in un nuovo contesto geologico. I. Gli « gneiss granitoidi». Rend. Soc. It. Min. Petr., 33, 617-629.
- BIANCHI POTENZA B., GORLA L., NOTARPIETRO A. (1978) La « Formazione di Valle Grosina »: revisione dei suoi aspetti petrografici in un nuovo contesto geologico. II. Gli « gneiss minuti ». Rend. Soc. It. Min. Petr., 34 (2), 371-385.
- BIANCHI POTENZA B., GORLA L., NOTARPIETRO A. (1978) La « Formazione di Valle Grosina »: revisione dei suoi aspetti petrografici in un nuovo contesto geologico. III. Gli « gneiss occhiadini ». Rend. Soc. It. Min. Petr., 34 (2), 387-401.

- BONSIGNORE G., RAGNI U. (1968) Contributo alla conoscenza del Cristallino dell'alta Valtellina e dell'alta Valcamonica. Nota prima: la Formazione della Punta di Pietra Rossa. Fondaz. probl. montani arc oalpino, C.N.R., 73, 39 pp., 1 gm.
- BURRI C. (1964) Petrochemical Calculations. Silvan Press, Jerusalem.
- BROWN M. (1979) The Petrogenesis of the St. Malo Migmatite Belt Armorican Massif, France, with Particular Reference to the Diatexites. N. Jb. Min. Abh., 135, 48-74.
- CERIANI G. C. (1967) Metamorfiti e migmatiti dell'alta Valle Grosina (Sondrio). Rend. Ist. Lomb. Sc. Lett. cl. sc. (A) 101, 570-587.
- CARRADINI M., NOTARPIETRO A., POTENZA R. (1973) L'assetto geologico degli gneiss di Valle Grosina nell'alta Valtellina (Sondrio, Italia). Atti Soc. It. Sc. Nat., 114, 135-151.
- D'AMICO C., MOTTANA A. (1974) Hercynian Plutonism in the Alps. A report 1973-1974. Mem. Soc. Geol. It., Vol. XIII-1974, 49-118.
- DELEON G., AHRENS L. H. (1957) The distribution of Li, Rb, Cs and Pb in some Yugoslav granites. Geoch. Cosm. Acta, Vol. 12, 94-96.
- DE LONG E.S. (1974) Distribution of Rb, Sr and Ni in igneous rocks, central and western Aleutian Islanda, Alaska. Geoch. Cosm. Acta, Vol. 38, 245-266.
- DE MICHELE V. (1963) Migmatiti della Val di Sacco (Valle Grosina, Sondrio). Nota preliminare. Atti Soc. It. Sc. Nat., 102, 229-242.
- EL BOUSEILY A. M., EL SOKKARY A. A. (1975) The relations between Rb, Ba and Sr in granitic rocks. Chem. Geol., 16, 207-219.
- GORLA L., POTENZA R. (1975) La « Formazione della Punta di Pietra Rossa ». Auct.: revisione del suo significato nel contesto geologico delle Alpi Centrali. Boll. Soc. Geol. It., 94, 177-184.
- GREEN T.H., SASSI F.P. (1966) Genesi per differenziazione metamorfica degli gneiss a bande delle Alpi Breonie (Alto Adige). Soc. Min. It., Ann oXXII.
- GREGNANIN A., VISENTIN JUSTIN E., SASSI F. P. (1968) Petrologia delle Formazioni leucocratiche stratoidi nei paragneiss delle Alpi Breonie (Alto Adige). Nota I: Gneiss del Tumulo. Mem. Acc. Pat. SS.LL.AA., Vol. LXXX (1967-1968).
- GREGNANIN A., VISENTIN JUSTIN E., SASSI F. P. (1968) Petrologia delle Formazioni leucocratiche stratoidi nei paragneiss delle Alpi Breonie (Alto Adige). Nota seconda. Mem. Acc. Pat. SS.LL.AA., Vol. LXXXII (1969-1970).
- GREGNANIN A., PICCIRILLO E. M. (1972) Litostratigrafia, tettonica e petrologia negli scisti austridici di alta e bassa pressione dell'area Passiria-Venosta (Alto Adige). C.N.R. Centro di Studio per la Geologia e Petrologia delle Formazioni Cristalline. Mem. Ist. Geol. Univ., Padova, Vol. XXVIII.
- GREGNANIN A., SASSI F. P. (1969) Magmatismo, feldspatizzazione e metamorfismo nel Complesso gneissico-migmatico di Parcines (Alto Adige). Museo Trid. Sc. Nat., Vol. XVIII, Fasc. 2, 1970-1971.
- HANSON G.N. (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Pl. Sc. Letters, 38, 26-43.
- HEIER K.S., ADAMS J.A.S. (1964) The geochemistry of alkali metals. Fm Physics and Chemistry of the Earth, Vol. 5, 253-381.
- HOFFMANN CH. (1976) Natural granitic rocks and the granitic system Qz-Ab-Or-An-(H<sub>2</sub>O) and Qz-Ab-An-(H<sub>2</sub>O). N. Jb. Min. Mh., 1976, H. 7, 289-306.
- IRVINE T. H., BARAGAR W. R. H. (1971) A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sc., Ottawa, 8, 523-548.
- JAKES P., WHITE A. J. R. (1970) K/Rb ratios of rocks from island arcs. Geoch. Cosm. Acta, Vol. 34, 849-856.
- KOLBE P., TAYLOR S. T. (1966) Major and Trace Element Relationship in Granodiorites and granites from Australia and South Africa. Contr. Min. Petr., 12, 202-222.
- KUNO H. (1968) Differentiation of basalt magmas; Basalts 2. Wiley and Sons, New York.
- LEAKE et al. (1969) The chemical analysis of rock powder by automatic X ray fluorescence. Chem. Geol., 9, 7-86.
- Le Metour J. (1978) Petrogenesis of migmatites and associated granites in South Britany. N. Jb. Min. Mh., H. 8, 364-376.
- MEHNERT K. R. (1968) Migmatites and the origin of granitic rocks. Elsevier Publ. Comp.

ONDRICK C. W., SRIVASTAVA G.S. (1970) - « Corfan-Fortran IV » computer program for correlation, factor analysis (R and Q mode) and varimax rotation. State Geol. Survey Kansas, Comp. Contr., n. 42.

PACE F. (1966) - Studio petrografico dell'alta Val Viola (Sondrio). Atti Soc. It. Soc. Nat., 195, 43-60.

PROPACH G. (1978) - Granitization by mixing of crustal rocks and subduction-derived magma. N. Jb. Min. Mh., H. 12, 537-549.

RAPELA C. W., SHAW D. M. (1979) - Trace and major element models of granitoid genesis in the Pampean Ranges, Argentian. Geoch. Cosm. Acta, Vol. 43, 1117-1129.

SERVIZIO GEOLOGICO D'ITALIA (1971) - Foglio 4: « Merano ». Note illustrative della Carta Geologica d'Italia.

SERVIZIO GEOLOGICO D'ITALIA (1969) - Foglio 8: «Bormio». Note illustrative della Carta Geologica d'Italia.

SERVIZIO GEOLOGICO D'ITALIA (1971) - Foglio 19: «Tirano». Note illustrative della Carta Geologica d'Italia.

SERVIZIO GEOLOGICO D'ITALIA (1971) - Foglio 18: « Sondrio ». Note illustrative della Carta Geologica d'Italia.

SIGHINOLFI G. P. (1969) - K-Rb Ratio in High Grade Metamorphism: A Confirmation of the Hypothesis of a Continual Crustal Evolution. Contr. Min. Petr., 21, 346-356.

STAUB R. (1964) - Neuere geologische Studien zwischen Bunden und oberen Veltlin. Jahresbericht Natur f. Ges. Graubündens, n.f. 90, 113-216.

TAYLOR S. R., EMELEUS C. H., EXLEY C. S. (1956) - Some anomalous K/Rb ratios in igneous rocks and their petrological significance. Geoch. Cosm. Acta, Vol. 10, 224-229.

THORNTON C. P., TUTTLE O. F. (1960) - Chemistry of igneous rocks. I. Differentiation index. Am. J. Sc., Vol. 258, 664-684. TUREKIAN K.K., KULP J.L. (1956) - The geochemistry of Strontium. Geoch. Cosm. Acta,

Vol. 10, 245-296.

VLASOV K. A. (1966) - Geochemistry of Rare Elements. Vol. I in « Geochemistry and Mineralogy of Rare Elements and Genetic Types of Their Deposits ».

WHITE A. J. R. (1966) - Genesis of migmatites from the Palmer region of South Australia. Chem. Geol., 1, 165-200.

WHITE A. J. R., CHAPPEL B. W. (1977) - Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7-22.

WHITNEY P.R. (1969) - Variations of the K/Rb ratio in migmatitic paragneiss of the Northwest Adirondacks. Geoch. Cosm. Acta, Vol. 33, 1203-1211.

WINKLER H..G F., BOESE M., MARCOPOULUS T. (1975) - Low temperature granitic melts. N. Jb. Min. Mh., H. 6, 245-268.

WINKLER H.G.F. (1976) - Petrogenesis of Metamorphic Rocks. Springer-Verlag, Berlin-Heidelberg.

WINKLER H. G. F., BREITBART R. (1978) - New aspect of granitic magmas. N. Jb. Min. Mh., H. 10, 463-480.