Radiometric geochronology in the Calabrian Arc: a review

ANTONIO PAGLIONICO

Dipartimento Geomineralogico dell'Università, Piazza Umberto I 1, 70121 Bari

ABSTRACT. — This work is a review of otherwise dispersed geochronological data relative to the metamorphics and plutonics cropping out along the Calabrian Arc. The most significant geochronological events are evidentiated.

Key words: geochronology, prealpine, alpine, metamorphics, plutonics.

RIASSUNTO. — Viene presentata un'analisi critica delle datazioni radiometriche effettuate sino ad oggi su rocce affioranti nell'Arco calabro-peloritano e vengono messi in evidenza i principali eventi geocronologici registrati.

Parole chiave: geocronologia, prealpino, alpino, metamorfiti, plutoniti.

Introduction

The Calabrian arc is a complex structure made up of Palaeozoic, Mesozoic and Recent terrains. Geochronological data are relatively scarce; only in the last years they have been obtained to highlight geological problems and they concentrate essentially on palaeozoic metamorphics and plutonics.

Geological picture

The Calabrian arc is a « foreign » element connecting the Apenninic and Maghrebian chains which are formed essentially of nappes of Mesozoic and Tertiary sedimentary rocks. Two basic current opinions concern the formation of the belt: 1) it represents an Alpine s.l. structure (AMODIO MORELLI et al., 1976; BONARDI et al., 1980; HACCARD et al., 1972; SCANDONE, 1983) and 2) it results from the juxtaposition of Alpine and Hercynian ranges (LORENZONI et al., 1983; ZANETTIN LORENZONI, 1982) (fig. 1). According to the former, there are two sectors present in the Calabrian Arc, which behaved differently during the Alpine tectonism.

The first one (Northern sector) represented by 1) the calcareous apennines, 2) the eo-Alpine chain (ophiolitiferous and australpine units) and 3) the Longobucco Unit; the second one (Southern sector) is formed of 1) the crystalline nappes of the Southern Serre, Aspromonte and Mt. Peloritani, 2) the calcareous Maghrebian units and 3) the Longi-Taormina unit.

According to the latter hypothesis it is possible in the Calabrian Arc to distinguish an «Alpine chain» lying upon the Apennines cropping in central and northern Calabria, and a Hercynian chain cropping out on the Ionian side of Central Calabria and forming essentially the Serre, Aspromonte and Peloritani ranges.

Diversities relative to the significance and composition of some lower rank structural units, such as Mt. Gariglione Unit, Stilo Unit, ... exist too.

On the basis of both available and unpublished data, the present author thinks that a totally Alpine history of the Calabrian Arc also involving a pre-alpine basement, is more realistic.

Thus the geochronological data, which play a fundamental role in the restoration of the evolution of the Calabrian arc, will be arranged accordingly (fig. 2).

Fig. 1. — Structural sketch of the Calabrian Arc according to current opinions. Left: the Calabrian arc is a composite belt of Alpine 1.s. age. Right: the Calabrian arc is due to juxtaposition of Alpine 1.s. and Hercynian ranges.

Geochronological data

Most of the radiometric data concern Palaeozoic rocks. The earliest, scarce data were determined without a well-established geological frame. They are mineral ages (biotite and uraninite) from intrusives cropping out in Serre and Aspromonte (FERRARA et al., 1959; FERRARA & LONGINELLI, 1960). These data point to a palaeozoic magmatic activity.

A more comprehensive geochronological study was performed by BORSI & DUBOIS (1968) which investigated minerals from plutonics and metamorphics of Central and Northern Calabria. This study was based on a framework developed from geological

RADIOMETRIC GEOCHRONOLOGY IN THE CALABRIAN ARC: A REVIEW

Fig. 2. — Structural sketch map of the Calabrian arc and location of geochronologically investigated areas. Symbols as in fig. 1 (left).

and structural studies carried out by the Laboratoire de Geologie Dynamique de la Sorbonne. The major results were: 1) the confirmation of the Hercynian intrusion of huge masses of granitoides; 2) the occurrence of mesozoic and tertiary rejuvenation of minerals of crystalline palaeozoic basement; 3) the Eocene age for the alpine metamorphism.

An extensive study on whole rocks and minerals was carried out by CIVETTA et alii (1973) on tonalites and pegmatites from the Capo Vaticano area. These data show that the intrusions are Hercynian, and that there was a later rejuvenation of both biotite and muscovite. In particular the authors have pointed out two post-hercynian geochronological events dated at 181 ma and 116 ma respectively.

In 1975, Maastrichtian-Paleocene volcanics crosscutting a dolomitic sequence of the Apennines (Verbicaro Unit) affected by metamorphism were investigated.

The whole rock K/Ar isochron reveals

an upper Aquitanian age metamorphism (18 ma).

A comprehensive geochronological survey concerning metamorphics (fig. 3) and plutonics (fig. 4) of the Serre (Southern Calabria) appeared in 1976 (BORSI et alii). This was helpful in the restoration of the evolution of the Calabrian arc. The most important results were:

1) the occurrence of Hercynian and Mesozoic ages for biotites (from both plutonics and very high grade rocks), preferentially distributed, which have been related-taking into account also the geological data — to a first order tectonic contact between two different structural units (Stilo and Polia-Copanello Units);

 the proto-Alpine uplift of the former section of the Palaeozoic lower continental crust (i.e. the very high grade rocks cropping out in the northern Serre);

 the composite nature of the pluton of the Serre displaying Sr isotopic ratios which do not plot along an isochrone.

47

NORTHERN SECTOR OF THE CALABRIAN ARC cretaceous paleogenic alpine chain

Fig. 3. — Distribution of biotite ages (Rb/Sr) of metasediments of the former lower crust section of Northern Serre ($\bar{x} = 136$ ma; $\sigma = 12$ ma; n = 17) (BORSI et al., 1976).

In 1979 Wieland reported the results of radiometric data on muscovite and biotite of plutonics and metamorphics, as well as on whole rock of granites cropping out in the Sila.

Whole rock data give an age of $284-\pm$ 14 ma for the granitic intrusions. The values obtained for minerals, nothwithstanding the scattering, confirm also in Sila the effects of a Mesozoic rejuvenation at around 170-180 ma ago, as found in Southern Calabria.

SCHENK (1980) presents U/Pb and Rb/Sr radiometric data through a former section of lower crustal continuous sequence about 7 Km thick (Polia-Copanello auct).

On the basis of the radiometric ages of

various minerals and of the PT path — deduced petrologically — the author hypothesized that: 1) the primary crystallization of a metabasic rock happened 450 ma ago; 2) the granulite facies metamorphism ended at 295 ma and was followed by an uplift of the lower crustal rocks into intermediate crustal levels, and by synchronous plutonic intrusions.

Accordingly this restoration appears to the author to be very similar to that inferred for the Ivrea zone.

A contribution on the late alpine and apennine orogenic phases recorded in the Calabrian arc has been supplied by BECCA-LUVA et alii (1981).

On the basis of two K/Ar determinations on metabasites belonging to the ophiolitiferous units outcropping in Northern Calabria the authors postulated an isotopic re-equilibration event in the Oligocene-Miocene-

A Rb/Sr radiometric study (DEL MORO et al., 1982) was carried on three peraluminous granitoid masses outcropping in the Southern sector of the Calabrian Arc (fig. 4).

An age of 293 ± 9 ma was calculated by means of a whole rock isochron on samples of Capo Rasocolmo mass (Southern sector of the Calabrian Arc). Strontium isotopic data [(87 Sr/ 86 Sr)₁ $\simeq 0.708$] suggest a crustal origin for all the studied granitoids originating from an heterogeneous metasedimentary source with a high pelitic content. The ages of micas ranging from 282-291 ma are consistent with the calculated isochrone.

SOUTHERN SECTOR OF THE CALABRIAN ARC

GEOCHRONOLOGICAL EVENTS RECORDED IN THE CALABRIAN ARC

Fig. 5. - Geochronological events recorded in the Calabrian arc (references in the text).

Few data are available relating to metamorphic and plutonics dredged in the Tyrrhenian sea (SARTORI, 1982). The plutonics give an isochron (Rb/Sr whole-rock-mineral) of 302 ma; whereas metamorphics give an isochrone (Rb/Sr whole rock-mineral) of 69 ma. K/Ar (whole rock) of 47 ma and 97 ma have also been determined on metamorphics.

In 1983 the results of 40 K/Ar determinations on ophiolites and associated lower continental crust rocks outcropping at boundary between Calabria and Lucania were published (DELALOYE et al., 1983) in a summary. The main results are as follows: metabasalts with monophase orogenic metamorphism give total rock ages of 50 ma; metabasalts and metagabbros showing a multistage metamorphism give total rock ages from 26 to 57 ma; recrystallized amphibolites give ages of 55-90 ma and poorly recrystallized amphibolites give ages of 81-223 ma. Interestingly, an isochron of 210 ma has been calculated for amphiboles from amphibolites, and isochrons of 27-28 ma have been calculated for blue amphiboles, and chlorites from blue schist ophiolites.

Recently (1984) a geochronological study (ZUPPETTA et alii, 1984) on the metabasalts occurring in the Borghi Unit of the M. Peloritani area has been published. By means of K/Ar methods on seven samples an isochrone of 217 ± 3 ma was obtained. This age, according to the authors, points to a middle Triassic tectonic phase in the Peloritani range.

Concluding remarks

From the geochronological review, it appears that the data available relating to the Calabrian Arc are still very ambiguous. Palaeozoic, Mesozoic and Tertiary geochronological events are recorded (fig. 5).

Palaeozoic ages seem to indicate: 1) the existence of an Ordovician magmatic activity or of a pre- or eo-Hercynian metamorphism; 2) the end of Hercynian metamorphism at about 295 ma followed by intrusion of huge masses of granodiorite-granite-tonalite mostly between 295 and 275 ma. Some problems arise when we consider some mineral ages ranging from 238-250 ma, whose significance is still obscure.

A lot of Giurassic-Cretaceous Rb-Sr mineral ages have been determined both in plutonics and in metamorphics cropping out north of Capo Vaticano-Soverato line. Interestingly similar ages have been determined on rocks dredged on the floor of the Tyrrhenian sea. The significance of these ages is still in debate. They might be due to the cooling subsequent to the Hercynian uplift, otherwise they may reflect phenomena connected to Tethy's evolution.

Tertiary mineral ages have been determined in the Australpine nappes and in the ophiolitiferous units; the events recorded in the former are older than in the latter. Probably they reflect, on the whole, isotopic resetting consequent to the Alpine and Apennine orogeneses. It is worthy of note that Triassic ages have been also determined. Whether or not these are connected with Triassic continental thinning and/or rifting needs deeper analysis.

On the other hand, the mesozoic and tertiary geochronological events need to be better fitted into the geodynamic evolution of the Calabrian arc.

Acknowledgment. — This research was supported by M.P.I. (40 %).

DEOLOGICAL REFERENCES		ANALYZED	CONCEN	TRATIONS	OBSERV	ED ATOMI	RATIOS	A	GE MA		BIBL LOGRAPHI
AUSTRALPINE UNITS	SAMPLES	PHASE	U (PPM)	PB RAD (PPM)	205 _{PB} 204 _{PB}	207 _{Рв} 206 _{Рв}	208 _{Рв} 206 _{Рв}	206 _{PB} 238 _U	207 _{PB} 235 _ป	207 _{Рв} 206 _{Рв}	Sources
GRANOLITE **	K AL-808*	ZIRCONS	428	23.8	17100	0.06375	0.09937	349	400	706	22
· ·	K AL-808		425	23.8	16300	0.06494	0.09845	353	409	744	-
	K AL-808		761	42.6	38250	0.06513	0.10323	350	410	766	
	K AL-808		463	25.6	4004	0.06598	0.12115	289	392	687	-
GRANOBLASTITE	K AL-170		439	19.7	6030	0.05651	0.03986	302	311	376	~
META-MONZOGABBRO	K AL-420	-	220	12,4	632	0.75344	0.24380	303	302	294	
NORITE	K AL-420		211	11.1	1055	0.06630	0.19944	298	298	304	
RANOLITE	K AL-145		446	24.1	2490	0.05907	0.15113	324	326	337	*
ONALITIC	K AL-730		410	20.7	3670	0.05631	0.19483	293	294	299	-
GNE1SS											
	K AL-730		448	21.9	3600	0.05623	0.14855	295	295	293	×
UARZODIORITIC	K AL-887		1255	38.2	10410	0.05374	0.17441	183	192	300	#
GNE 1 S S											
	K AL-887	"	852	41.6	9960	0.05347	0.30051	264	266	286	
RANOL ITE	K AL-147	MONAZITES	2266	885.6	6950	0.05441	8.5353	296	296	298	"
"	K AL-85		906	443.1	4870	0.05509	11.0450	292	292	290	**
SNE ISSIC	K AL-90		2204	578.8	5310	0.05475	5.6870	283	283	286	M.
GRANOBLASTITES											
*	K AL-170	47	2140	639.5	12620	0.05321	6.4646	289	289	290	
	K AL-168	#	2555	717.6	11770	0.05363	5.8627	295	296	302	×
*	K AL-489	н	2136	587.7	8910	0.05362	5.8476	290	290	285	
	K AL-879		739	596.1	2240	0.05870	18,9018	291	291	293	

TABLE 1 U/Pb radiometric data

* Sieve fraction of the same sample. ** According to the nomenclature proposed by WINKLER & SEN (1973). *** According the order of the references.

TABLE 2K/Ar radiometric data

TABLE 3K/Ar radiometric data

	SEDLOGICAL	Contraction of the	ANALYZED	100	40 to an m /c	40 00 000	K-AR	BIBLIOGRAPHIC		600
	REFERENCES	SAMPLES	PHASE	KI	NA KO PLYS	HR RDA	AGE MA	SOURCES		GLOU
	AUSTROAL PINE UNITS									HEFE
	QUARZODIORITE	CV1	B1 ELD-Q2	1.48±0.05 5.97±0.12 0.409	0.0452 0.150±0.007 0.0185	65.6 65.5 57.6	164*7 136*5 238*8	6		<u>M. Ga</u>
	JUARZOD10R1TE	CV2	WR Br FELD-QZ	1.34 5.48 0.145	0.0493 0.136 0.0237	76.6 67.6 72.5	196#6 134±4 749±33	б		GRANC
	QUARZODIDRITE	CV3	MR Br FELD-WZ	2.22 6.10 0.198	0.0637 0.150 0.212	69.2 66.0 :65.2	1552.6 1332.4 5201.45	6		GRANC
	QUARZODIORITE	CV6	Mu	10.0	0.279	73.0	15114	6		
	QUARZODIDRITE	CV9	No	8.67	0.252	73.1	157±5	6		BORGH
	QUARZODIORITE	CV10	Ma	9.42	0.293	63.8	167±5	6		
NIN	QUARZODIORITE	CV11	WR Bi Feld-Qz	2.77 6.58 0.0654	0.0661 0.155 0.0262	71.6 86.9 61.2	13015 12815 J480140	6	CTOR	METAR
Ne CH	QUARZODIOBITE	CV13	WR B1	2.02 6.22	0.0615 0.150	65.2 71.6	16415 13114	6	SE	METAS
2	QUARZODIORITE	CV15	Bi	6.57	0.174	77.6	143:5	6	NR.	TETAL
2	QUARZODIORITE	CV16	Bt	6.57	0.172	90.9	142:4	6	Ē	TE TAS
i.	QUARZODIGRITE	CV17	Mu.	9.01	0.252	89.4	151±5	6	3	DETAL
9	QUARZODIORITE	CV18	Bt	7.42	0.171	95.4	125:4	6		100000
d	QUARZODIORITE	CV20	Nu	7.65	0.208	75.3	14714	6		VEWBI
5	QUARZODIORITE	CV23	Bi	8.04	0.272	90.0	181±6	6		METAR
2	QUARZODIORITE	CA10	WR	0.73	0.019	87.4	145±3	2		METAT
CHE IN	GRANOBLASTITIC GNC155	3#	Mu				187:6	4	CHAID	METAE
j,	GRANOBLASTITE	31	B1				117±4	9		METAT
ğ	UKTOGNEISS	40	Mu				159±5	4	ALC: N	METAR
N SEC	URTOGNEISS	-40	Br				65:3	4	PENNII	METAR
N N N	UNITS								×	1.00.00
2	METABASITE	CAB	WR	0.22	0.0019	56,9	48# 2	2		
	NETABASALT	EA3	MK.	1,46	0.0076	47,7	30#2	2		
	LONGOBUCCO									
	GRANITIC ROCKS	KAW1770	Mu	8.74			28119	25		
			Br	6.83			269±8	1925		
	GHANITIC ROCKS	KAW1771	Mu	8.85			270+8	25		
			Br	6.77			236*7	100		
	SPANITIC ROCKS	KAW1772	Br	1.08			16916	25		

GEOLOGICAL REFERENCES	SAMPLES	ANALYZED PHASE	ĸt	40 AR RD HL/G	40Am mož	K-AR Age ma	BIBL LOGRAPHIC
					-		
M. GARIGLIONE							
GRANOBLASTITES	KAW1765	Bt	7.95			188±6	25
GRANOBLASTITES	KAW1766	Br	7.79			161*5	25
GRANOBLASTITES	KAW1767	Br	7.76			161#5	25
GRANOBLASTITES	KAW1758	Bt	6.21			23117	25
GRANOBLASTITES	KAW1769	Bi	5.98			167*5	25
BORGHI UNIT							
METABASALT	P1-085	WR	0.258	0.012	78.6	24619	28
METABASALT	P1-086	WR	0.289	0.014	83.1	255:19	28
METABASALT	P1-087	WR	0,209	0.009	76.1	20019	28
METABASALT	P1-088	WB.	0.749	0.032	91.4	25227	28
METABASALT	P1-089	WR.	0.201	0.009	86.9	23819	28
METABASALT	P1-091	WR.	0.237	0.012	35.6	279±9	28
METABASALT	P1-216	WR.	0.837	0.035	77.9	22417	28
VERBICARO UNIT					- X		
METABASALT	0636	WR .	2.05	0.0069		19:0.7	18
METABASALT	0634-1	WR.	0.16	0.00056		20±0.8	18
METABASALT	0634-2	WR:	0.15	0.00054	1.1	20±0.6	18
METABASALT	1	WR.	1.94	0.0064		19±0.6	18
METABASALT	3	¥R.	2.05	0.0068		19*0.6	18
METABASALT	4	¥R.	1.86	0.0062		19±0.6	18
METABASALT	01191	¥R.	1.65	0.0055		19±0.6	18
METABASALT	01192	NR.	1.65	0.0055		19±0.7	18

TABLE 4 Rb/Sr radiometric data

GEOLOGICAL REFERENCES	SAMPLES	ANALYZED	RB (PPM)	SR (PPM)	87 _{RB} 86ca	87 _{SR} 86 _{SR}	87 _{SR} 86 _{SR}	Age ma	BIBLIOGRAPHIC
GRANITE	14	Bi	and the first of		SR	SR M	SR I	286±10	4
	1B 1C 1D 2A 2B 2C	B 1 B 1 B 1 B 1 B 1 B 1 B 1						288± 9 282± 8 251± 8 280± 9 287±10 283± 8	4 4 4 4 4 4
GNEISSIC	За	Bı						167± 6	4
GRANUBLASTITE	3в 3d 3e 3f 3g 3h 31	B1 B1 B1 Mu B1 Mu B1 B1						177± 6 205± 7 103± 3 181± 6 210± 6 122± 4 253± 8 114± 4	4 4 4 4 4 4 4 4 4
Ortogneiss	4a 4b 4c 4d 4d 4e 4f	Mu Mu WR Mu WR B1 B1						229± 7 246± 8 250± 8 250± 8 245± 8 271± 9 183± 6 56± 2	4 4 4 4 4 4 4 4 4 4 4 4

A. PAGLIONICO

TABLE 5 Rb/Sr radiometric data

Ge Re	OLOGICAL FERENCES	SAMPLES	ANALYZED PHASE	RB (ppm)	Sr (ppm)	87 _{RB} 86 _{SR}	87 _{Sr} 86 _{Sr} м	87 _{SR} 86 _{SR} 1	Age ma	BIBLIOGRAPHIC SOURCES
Lo	UNIT									
Gr	ANITE	KAW 1770	Mu Bi	137 151	16 7				285±14 424±17	25
GR	ANITE	KAW 1856	Mu Bi	149 79	17 11				264±14 142±15	25
GR	ANITE	KAW 1771	Mu Bi	127 181	13 7	-			284±13 302±12	25
GR	ANITE	KAW 1852	Mu Bi	180 265	4				275±11 285±11	25
Gr	ANITE	KAW 1857	Bı	174	7				270±11	25
GR	ANITE	KAW 1772	B1	12	97				800±750	25
GR	ANITE	KAW 1860	Bı	116	4				221± 9	25
GR	ANITE	KAW 1861	Bı	112	3				223± 9	25
1										

TABLE 6 Rb/Sr radiometric data

GEOLOGICAL REFERENCES	SAMPLES	ANALYZED PHASE	RB (PPM)	Sr (ppm)	87 _{RB} 86 _{SR}	87 _{SR} 86 _{SR} м	87 _{SR} 86 _{SR} 1	Age ma	BIBLIOGRAPHIC SOURCES
AUSTROALPINE UNITS (POLIA COPA- NELLO UNIT)	ė								
GNEISSIC GRANOBLASTITE	Ccz 111119	Bt	231	7.5				139±13	5
GNEISSIC GRANOBLASTITE	Ccz III 350	BI	561	6.5				147± 6	5
QUARZODIORITIC GNEISS	Ccz III 236	BI	304	12.6				131±16	5
QUARZODIORITIC GNEISS	Ccz []] 237	Bı	299	4.1				152± 7	5
Tonalitic gneiss	Ccz III 238	BI	355	1.6				142± 4	5
TONALITIC GNEISS	Ccz III 245	Br	395	3.1				134± 4	5
Tonalitic gneiss	Ccz III 247	Bı	425	3.2				137± 4	5
Tonalitic gneiss	LCIT 21	Bı	312	8.2				139±11	5
GRANITOID BIOTITIC GNEISS	Ccar 23	Bı	391	5.4				137± 6	5
GRANITOID BIOTITIC GNEISS	Ccz III 54	Bı	300	11.0				137±14	5
GRANITOID BIOTITIC GNEISS	LCIT 18	Bı	365	3.7				140± 5	5
TONALITE	LC1T 22	Br	318	5.1				149± 7	5
TONALITE	Ccz 111 217	Bı	431	9.5				149± 9	5

52

RADIOMETRIC GEOCHRONOLOGY IN THE CALABRIAN ARC: A REVIEW

GEOLOGICAL	SAMPLES	ANALYZED	RB	SR	87 _{RB}	87 _{SR}	87 _{SR}	Age	BIBL LOGRAPHIC
REFERENCES		PHASE	(PPM)	(PPM)	80 SR	80 SR M	SD SR 1	MA	SOURCES
STILO UNIT									
GRANODIORITE	Ccz 111251	Bı	378	1.9				289±5	5
GRANODIORITE	Ccz III X	Bı	465	8.4				268±9	5
GRANODIORITE	Ccz 111252	Br	330	4.5				278±8	5
GRANODIORITE	BD 11 121	Bı	390	1.1				281± 5	5
GRANODIORITE	Bo II 111	Bı	363	2.5				270±5	5
GRANODIORITE	Cc17 111 313	Bı	374	4.3				244±7	5
TONALITE	Cc1T 111312	Bı	348	4.3				238±7	5
TONALITE	Ccz 111 248	BI	695	2.6				271±4	5
TONALITE	Ccz 111 249	BI	697	1.6				276±4	5
BIOTITIC PORPHIRITE	Ccz 111 306	Bı	563	6.9				236±7	5
K-FELDSPAR- MEGACRYST GRANITE	Ccz III 240	Bı	524	2.6				203±4	5
K-FELDSPAR- megacryst granite	Cczlll 241	Bı	507	3.5				200±6	5
K-FELDSPAR- MEGACRYST GRANITE	Ccz111 258	Bı	434	6.3				230±8	5
(-FELDSPAR- MEGACRYST GRANITE	Ccit I 512	Bı	667	3.8				261±5	5
K-FELDSPAR- MEGACRYST GRANITE	Ccit 1 574	Bī	680	6.8	- 7			243±6	5

TABLE 7 Rb/Sr radiometric data

TABLE 8 Rb/Sr radiometric data

	GEOLOGICAL REFERENCES	SAMPLES	ANALYZED PHASE	RB (ppm)	Sr (ppm)	87 _{RB} 86 _{SR}	87 _{Sr} 86 _{Sr м}	87 _{SR} 86 _{SR} 1	Age ma	BIBLIOGRAPHIC SOURCES
LININ	AUSTROALPINE									
TUE	GRANOLITE	KAL-147	WR B1	97.6	167.5	1.69	0.72349	0.702107	108±1	22
L ALF			PL K-FELD	19.1 230.4	176.9 366.7	0.313 1.82	0.72091 0.72405	0.72026	147±7	22
DC N1	GRANOL I TE	KAL-808	WR B1	89.6 647.1	154.6	1.68	0.72140	0.71867	114±1	•22
ALEL			PL K-FELD	34.6 265.0	141.9 309.2	0.708 2.47	0.71980 0.72341	0,7183	144±9	22
SUU	GRANOL I TE	KAL-85	WR B1	72.1	167.9	1.25 198	0.71967	0.71769	112±1	22
THALE			PL . K-FELD	22.1 210.4	180.9 453.6	0.354	0.71815 0.72014	0.71744	141±9	22
- LK	GNEISSIC GRANDBLASTITE	KAL-370	WR B1	87.0 731.7	110.6 8.6	2.28 254	0.73078 1.04567	0.7279	88±1	22
CLUK	GNE1551C GRANOBLASTITE	KAL-657	WR B1	79.4 325.3	314.4 8.4	0.732 115	0.71645	0.7154	101±1	22
KN St	META-MONZO- GABBRO NO-	KAL-94	WR B1	77.6	199.0	1.13	0.71507	0.71290	135±1	22
VUK THE	RITE		PL K-FELD	4.6 273.8	299.4 393.7	0.0446 2.02	0.71239 0.71734	0.71227	176±5	22

A. PAGLIONICO

TABLE 9

Rb/Sr radiometric data

GEOLOGICAL REFERENCES	SAMPLES	Analyzed phase	Rb (ppm)	Sr (ppm)	87 _{Rв} 86 _{SR}	87 _{SR} 86 _{SR} м	87 _{SR} 86 _{SR}	Age ma	BIBLIOGRAPHIC SOURCES
AUSTROALPINE									
GNEISSIC GRANOBLASTITE	KAL-170	WR Bi	127.0 503.7	126.3 4.6	2,92 325	0.73046 1.35316	0.7250	132±1	22
GNEISSIC GRANOBLASTITE	KAL-168	WR B1	61.0 496.4	211.1 6.3	0.839 238	0.72261 1.17526	0.72101	134±1	22
APLITE	KAL-491	Mu P∟ Bī	154.3 8.3 371.4	140.4 648.6 5.5	3.18 0.036 203	0.71298 90.70390 1.03193	0.7038 0.7039	203±4 114±1	22 22
GNEISSIC GRANOBLASTITE	KAL-879	P∟ B1	1.3 309.4	613.5 8.2	0.006 112	10.71274 0.92657	0.71273	134±1	22
QUARZODIORITIC GNEISS	KAL-887	P∟ Bı	0.8 272.3	239.3 18.1	0.009 43.9	50.71136 0.76403	0.71135	85±1	22
TONALITE	KAL-730	WR B1	81.9 321.7	285.1 1.3	0.832 803	0.71346 2.22801	0.7119	133±1	22
Micaschist	KAL-42	Mu WR BI	532.0 623.3 1667.7	75.2 184.4 17.7	20.7 9.83 279	0.79609 0.75457 0.91987	0.7170 0.7485	268±4 43±1	22 22
GNEISS	KAL-51	WR Mu	194.5 604.6	69.9 26.8	8.09 66.7	0.75183 0.93003	0.7272	214±2	22

Table 10 Rb/Sr radiometric data

GEOLOGICAL REFERENCES	SAMPLES	ANALYZED PHASE	RB (ppm)	Sr (ppm)	87 _{RB} 86 _{SR}	87 _{SR} 86 _{SR м}	87 _{SR} 86 _{SR}	Age ma	BIBLIOGRAPHIC SOURCES
CAPO RASOCOL-	1								
LEUCOMONZO-	P 80-1	WR	109	277	1,14	0.7154			8
GRAN11E " "	P 80-2 P 80-2 P 80-2 P 80-2 P 80-2	WR Bi Kf PL	131 829 262 10	224 5.6 367 165	1.70 504.18 2.07 0.18	0.7174 2.5457 0.7190 0.7113		256±4	8 8 8
LEUCOTONALITE	P 80-3	WR	56	616	0.26	0.7111			8
н н	P 80-3 P 80-3	B1 Mu	374 160	5.0 55.7	232.98 8.35	1.5648 0.7441		258±4 287±6	8 8
LEUCOTONALITE	P 80-4	WR	66	528	0.36	0.7113			8
LEUCOMONZO-	P 80-5	WR	167	62	7.84	0.7420			8
GRANITE "	P 80-5 P 80-5	B I Mu	1011 398	2.7 7.8	1761.00 156.57	7.0209 1.3498		252±4 287±5	8 8
GRANODIORITE	P 80-6	WR	99	426	0.67	0.7124		SUPERIOR P	8
n =	P 80-8 P 80-8	WR Bi	110 697	327 3.5	0.97 736.98	0.7141 3.7186		287±5	8 8
LEUCOGRANODIO-	P 9	WR	98	361	0.78	0.7125			8
RITE "	P 84 P185 P194	WR WR WR	115 50 113	151 471 194	2.22 0.31 1.68	0.7198 0.7116 0.7169			8 8 8

RADIOMETRIC GEOCHRONOLOGY IN THE CALABRIAN ARC: A REVIEW

GEOLOGICAL		ANALYZED	RB	SR	87 _{RB}	87 _{SR}	87 _{SR}	Age	BIBLIOGRAPHIC
REFERENCES	SAMPLES	PHASE	(PPM)	(PPM)	86 _{SR}	86 _{SR M}	86 _{SR 1}	MA	SOURCES
CITTANOVA MASS		-							
GRANODIORITE	C 80-10	WR	95	379	0.73	0.7112			8
LEUCOGRANO- DIORITE	C 80-11	WR Bi Mu	161 956 484	349 5.9 22.5	1,34 574,46 63,70	0.7133 3.0896 0.9697	0.7077	291±4 289±5	8
Monzonitic Aplite	C 80-12	WR	147	261	1.63	0.7164	10.00 to association		8
GRANODIORITE	C 80-14	WR Bi KF PL	140 933 313 9.2	311 3.9 496 303	1.30 945.11 1.83 0.09	0.7149 4.5319 0.7169 0.7100	0.7096	284±5	8
Monzonitic aplite	C 80-15	WR Mu	180 724	66 4.5	7.90 569,53	0.7418 3.0463	0.7094	288±4	8
MONZOGRANITE	C 80-16	WR	151	215	2.03	0.7203			8
GRANODIORITE	C 80-17	WR	126	437	0.83	0.7116			8
LEUCOMONZO- GRANITE	C 80-18	WR	162	208	2,36	0.7214			8
MONZOGRANITE	C 80-19	WR	162	338	1.39	0.7138			8
GRANODIORITE	C 80-20	WR Bi	75 483	381 4.0	0.57 403.82	0.7103 2.3687	0.7080	289±5	8
LEUCOGRANO- DIORITE	C 80-21	WR	183	249	2.13	0.7202			8
LEUCOGRANO- DIORITE	CN 4	WR	210	138	4.43	0,7312		-	8
м	GE 72	WR	209	50	12.22	0.7609			8
**	CN120	WR	107	361	0.86	0.7115			8
**	CN176	WR	213	96	6.46	0.7439			8

TABLE 11 Rb/Sr radiometric data

TABLE 12Rb/Sr radiometric data

GEOLOGICAL REFERENCES	SAMPLES	ANALYZED PHASE	Rв (ррм)	Rв (ррм)	87 _{RB} 86 _{SB}	87 _{SR} 86 _{SR} M	87 _{SR} 86 _{SR}	Age ma	BIBLIOGRAPHIC SOURCES
VILLA SAN GIOVANNI MASS					UK	0.1			
LEUCOGRANODIO- RITE	C 80-1	WR B1	108 714	328 6.9	0.95 337.87	0.7142 2.0835	0.7103	286±4	8
Monzogranitic Aplite	C 80-2	WR Bi Mu	145 866 421	55 7.2 7.1	7.63 381.60 184.46	0.7429 1.7774 1.4621	0.7119	195±3 286±6	8
LEUCOGRANODIO-	C 80-3	WR	122	325	1.08	0.7148			8
RITE	C 80-4	WR B1 Mu KF PL	100 682 225 272 32	237 2.4 157 435 255	1.23 1240.56 4.15 1.81 0.36	0.7158 5.7064 0.7281 0.7282 0.7124	0.7108 0.7106	283±4 296±7	8
	C 80-5	WR	74	439	0.49	0.7118			8
	C 80-6	WR	119	319	1.08	0.7149			8
GRANODIORITE	C 80-7	WR	106	383	0.80	0.7138			8
2	C 80-8	WR	99	349	0.82	0.7132			8
MUSCOVITIC PEGMATITE	C 80-9	B1 Mu KF	794 456 350	5.9 17.3 743	458.28 78.70 1.36	2.5783 1.0350 0.7249	0.7193 0.7194	285±4 282±4	8
LEUCOGRANODIO-	CAT 43	WR	127	169	2.18	0.7205			8
RITE #	CAT 64	WR	156	171	2.65	0.7223			8
a a a a a a a a a a a a a a a a a a a	CAT131	WR	65	484	0.39	0.7119			8
	CAT261	WR	102	295	1.00	0.7143			8

SOUTHERN SECTOR

55

- AMODIO MORELLI L., BONARDI G., COLONNA V., DHETRICH D., GIUNTA G., IPPOLITO F., LIGUO-RI V., LORENZONI S., PAGLIONICO A., PERRONE V., PICCARRETA G., RUSSO M., SCANDONE P., ZANET TIN LORENZONI E., ZUPPETTA A. (1976) - L'Arco Calabro-Peloritano nell'orogene Appenninico-Maghrebide. Mem. Soc. Geol. It., 17, 1-60.
- BECCALUVA L., CHIESA S., DELALOYE M. (1981) -K/Ar age determinations on some Tethyan ophiolites. Rend. Soc. It. Miner. Petrol., 37, 869-880.
- BONARDI G., GIUNTA G., PERRONE V., RUSSO M., ZUPPETTA A., CIAMPO G. (1980) - Osservazioni sull'evoluzone dell'Arco Calabro-Peloritano nel Miocene inferiore: la formazione di Stilo-Capo d'Orlando. Boll. Soc. Geol. Ital., 89, 365-393.
 BORSI S., DUBOIS R. (1968) - Données geochrono-
- BORSI S., DUBOIS R. (1968) Données geochronologiques sur l'histoire hercynienne et alpine de la Calabre Centrale. Compt. Rend. Acad. Sci. Paris, D 266-72.
- BORSI S., HIEKE MERLIN O., LORENZONI S., PA-GLIONICO A., ZANETTIN LORENZONI E. (1976) -Stilo Unit and «dioritic-kinzigitic» unit in Le Serre (Calabria, Italy). Geological, petrological, geochronological characters. Boll. Soc. Geol. It., 95, 1-26.
- CIVETTA L., CORTINI M., GASPARINI P. (1973) -Interpretation of a discordant K-Ar age pattern (Capo Vaticano, Calabria). Earth and Planet. Sc. Lett., 20, 113-118.
- DELALOYE M., FONTIGNIE D., SPADEA P. (1983) -Radiometric dates of Calabria-Lucania ophiolites (Southern Italy) and associated continental rocks. Ophiolites, 8.
- DEL MORO A., PARDINI G., MACCARRONE E., ROT-TURA A. (1982) - Studio radiometrico Rb-Sr di granitoidi peraluminosi dell'arco calabro-peloritano. Rend. Soc. It. Miner. Petrol., 38, 1015-1026.
- DEL MORO A., PAGLIONICO A., PICCARRETA G., ROT-TURA A. (1985) - Tectonic structure and post-Hercynian evolution of the Serre, Calabrian Arc, Southern Italy. Geological, petrological and radiometric evidences (in prep.).
- FERLA P., LORENZONI S., ZANETTIN LORENZONI E. (1982) - Geological constitution and evolution of the Calabro-Peloritan Hercynian range. Rend. Soc. Miner. Petr., 38, 951-962.
- FERRARA G., IPPOLITO F., STAUFFER H., TONGIOR-GI E. (1959) - Determinazione con metodi del piombo dell'età di un filone pegmatitico presso Delianuova (Aspromonte, Calabria). Boll. Soc. Geol. It., 78, 215.
 FERRARA G., LONGINELLI A. (1960) - Età di due
- FERRARA G., LONGINELLI A. (1960) Età di due rocce granitiche della zona delle Serrein Calabria. Boll. Soc. Geol. It., 80, 25.
- HACCARD D., LORENZ C., GRANDJACQUET C. (1972) -Essai sur l'évolution tectogénètique de la liason

Alpes-Appennines (de la Ligurie à la Calabre). Mem. Soc. Geol. It., 11, 309-341.

- LORENZONI S., ZANETTIN LORENZONI E. (1983) -Note illustrative della carta geologica della Sila. Mem. Sc. Geol., XXXIV, 317-342.
- MORESI M., PAGLIONICO A., PICCARRETA G., ROT-TURA A. (1978) - The deep crust in Calabria (Polia-Copanello Unit): a comparison with the Ivrea-Verbano Zone. Mem. Soc. Geol. Padova, 33, 233-242.
- NICOLETTI M. (1970) Età di una roccia granitica di Capo Vaticano (Calabria) ottenuta con il metodo K-Ar. Per. Miner., pp. 39-159.
- PAGLIONICO A., ROTTURA A. (1979) Variscan magmatism in the Calabro-Peloritan Arc, in SASSI F.P. (ed.), IGCP Project 5, Newsletter, 1, 83-92.
- PIERATTINI D., SCANDONE P., CORTINI M. (1975) -Età di messa in posto ed età di metamorfismo delle « limburgiti » nord-calabresi. Boll. Soc. Geol. It., 94, 367-376.
- SARTORI R. (1982) L'Arco Calabro-Peloritano. Aspetti di geologia marina. Rend. Soc. Miner. Petr., 38, 941-950.
- SCANDONE P. (1979) Origin of the Tyrrhenian Sea and Calabrian Arc (Southern Italy). Boll. Soc. Geol. It., 98, 27-34.
- SCANDONE P. (1983) Structure and evolution of the Calabrian Arc. Earth Evolution Sciences, III.
- SCHENK V. (1980) U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, Southern Calabria (Italy). Contrib. Mineral. Petrol., 73, 23-38.
- Petrol., 73, 23-38. SCHENK V. (1981) - Synchronous uplift of the lower crust of the Ivrea zone and of Southern Calabria and its possible consequences for the Hercynian orogeny in Southern Europe. Earth Planet. Sci. Letters, 56, 305-320.
- TORTORICI L. (1982-1983) Lineamenti geologicostrutturali dell'Arco calabro-peloritano. Rend. Soc. It. Miner. Petrol., 38, 927-940.
- WIELAND B. (1979) Age determinations in the Longobucco unit, Calabria, Italy. Manuscript inedited.
- WINKLER H.G.F., SEN S.K. (1973) Nomenclature of granulites and other high grade rocks. N. Jb. Miner. Mh., 9, 393-401.
- ZANETTIN LORENZONI E. (1982) Relationships of main structural elements of Calabria (Southern Italy), N. Ib. Geol. Paläont, Mh., 7, 403-418.
- Italy). N. Jb. Geol. Paläont. Mh., 7, 403-418. ZUPPETTA A., RUSSO M., CAPALDI G., TUCCILLO L. (1984) - Evidenze di un evento tettonico triassico nell'Unità dei Borghi (Monti Peloritani -Sicilia). Boll. Soc. Geol. It., 103, 87-95.