CHEMICAL DATA

Electron microprobe (Cameca SX-100), WDS; acceleration voltage =15 kV; beam current = 10 nA, beam diameter = 5 μ m, Number of analyses = 6.

		, 0		
Constituent	Mean	Range	Stand. Dev.	Probe Standard
Na	22.67	22.12-23.36	0.47	Jadeite (NaSlSi ₂ O ₆)
C _{calc}	24.50			Added in ideal value
Ocalc	48.96			Added in ideal value
H _{calc}	3.09			Added in ideal value
Total	99.22			

 Table 1. Chemical data (in wt%) for glecklerite.

Note 1): There is insufficient material for the direct measurement of C or H content with the Elemental Combustion System, as we did for lazaraskeite (Yang et al. 2022a) or lianbinite (Yang et al. 2023b).

- 2): The six analysis data points were obtained from two different crystals because they were easily damaged by the electron beam, even with the moving stage and large electron beam size.
- 3): A trace amount of Mg was detected by EDS, but it was below the detection limits $(<3\sigma)$ by WDS.

The empirical formula, calculated based on 2 C *apfu* (from the structure determination) is: $Na_{0.97}(C_2H_3O_3)$.

The simplified formula is: $Na(C_2H_3O_3)$.

The ideal formula is: Na(C₂H₃O₃), which requires (wt.%) Na 23.35, C 24.50, O 48.96, and H 3.09. Total 100 wt.%.