Pauloabibite, trigonal NaNbO₃, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil

LUIZ A.D. MENEZES FILHO^{1,†}, DANIEL ATENCIO^{2,*}, MARCELO B. ANDRADE³, ROBERT T. DOWNS⁴, MÁRIO L.S.C. CHAVES¹, ANTÔNIO W. ROMANO¹, RICARDO SCHOLZ⁵ AND ABA I.C. PERSIANO⁶

¹Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil ²Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, São Paulo, São Paulo, Brazil

³Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, São Paulo, Brazil

⁴Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.

⁵Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 35400-000, Minas Gerais, Brazil

⁶Departamento de Física do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31279-901, Belo Horizonte, Minas Gerais, Brazil

ABSTRACT

Pauloabibite (IMA 2012-090), trigonal NaNbO3, occurs in the Jacupiranga carbonatite, in Cajati County, São Paulo State, Brazil, associated with dolomite, calcite, magnetite, phlogopite, pyrite, pyrrhotite, ancylite-(Ce), tochilinite, fluorapatite, "pyrochlore", vigezzite, and strontianite. Pauloabibite occurs as encrustations of platy crystals, up to 2 mm in size, partially intergrown with an unidentified Ca-Nb-oxide, embedded in dolomite crystals, which in this zone of the mine can reach centimeter sizes. Cleavage is perfect on {001}. Pauloabibite is transparent and displays a sub-adamatine luster; it is pinkish brown and the streak is white. The calculated density is 4.246 g/cm³. The mineral is uniaxial; $n(\text{mean})_{\text{calc}}$ is 2.078. Chemical composition (n = 17, WDS, wt%) is: Na₂O 16.36, MgO 0.04, CaO 1.36, MnO 0.82, FeO 0.11, SrO 0.02, BaO 0.16, SiO₂ 0.03, TiO₂ 0.86, Nb₂O₅ 78.66, Ta₂O₅ 0.34, total 98.76. The empirical formula is $(Na_{0.88}Ca_{0.04}Mn_{0.02}^{2+})_{\Sigma_{0.94}}(Nb_{0.98}Ti_{0.02})_{\Sigma_{1.00}}O_3$. X-ray powder-diffraction lines (calculated pattern) [d in Å(I)(hkl)] are: 5.2066(100)(003), 4.4257(82)(101), 3.9730(45)(012), 2.9809(54) (104), 2.3718(88)(213), 1.9865(28)(024), 1.8620(53)(216), and 1.5383(30)(300). It is trigonal, space group: $R\overline{3}$, a = 5.3287(5), c = 15.6197(17) Å, V = 384.10(7) Å³, Z = 6. The crystal structure was solved $(R_1 = 0.0285, wR_2 = 0.0636$ for 309 observed reflections). Pauloabibite is isostructural with ilmenite and is polymorphic with isolueshite (cubic) and lueshite (orthorhombic). The name is in honor of Paulo Abib Andery (1922-1976).

Keywords: Pauloabibite, new mineral, carbonatite, ilmenite structure, crystal structure, chemical composition, Jacupiranga mine, Cajati, Brazil

INTRODUCTION

Pauloabibite (IMA 2012-090), trigonal NaNbO₃, is polymorphic with isolueshite (cubic) and lueshite (orthorhombic) (Table 1). Natroniobite, a poorly described mineral (Bulakh et al. 1960), may be a monoclinic polymorph of NaNbO₃, or a mineral with formula NaNb₂O₅(OH), related to fersmite (Chakhmouradian et al. 1997; Chakhmouradian and Mitchell 1998). Chakhmouradian and Mitchell (1998) investigated a museum specimen labeled "natroniobite" (not the type specimen) and concluded that it is a "complex aggregate of lueshite and its replacement products, set in a matrix of dolomite and fluorapatite." Monoclinic synthetic compounds with formula NaNbO₃ are known (e.g., Solov'ev et al. 1961; Johnston et al. 2010), but the X-ray diffraction pattern of natroniobite does not match those of these other compounds.

Pauloabibite is trigonal, isostructural with ilmenite and other

 $R\overline{3}$ oxides that display a crystal structure formed by the hexagonal close packing of oxygen atoms, with two-thirds of the octahedral interstices occupied by two unique sites of di- and tetravalent or uni- and pentavalent cations. In corundum and other $R\overline{3}c$ oxides, two-thirds of the octahedral interstices are occupied by trivalent cations in one unique site. Data for these minerals are included in Table 2.

The synthetic analog of pauloabibite has been studied by several research groups. It was reported by Kinomura et al. (1984) and Kumata et al. (1990) from a two-step synthesis method, involving the preparation of Na₈Nb₆O₁₉·13H₂O followed by hydrothermal reaction with NaOH in a silver-lined vessel at 250 °C. It was also prepared directly in one step under mild hydrothermal conditions by lowering pH and using close-to-stoichiometric amounts of reagents at 240 °C (Modeshia et al. 2009; Johnston et al. 2011). The equivalent to lueshite (space group *Pbnm*) was not yet synthesized, but phase transitions in natural lueshite were observed in the sequence: *Cmcm* at 575 °C, *P4/mbm* at 625 °C, and *Pm*3*m*, equivalent to isolueshite, at

^{*} E-mail: datencio@usp.br

[†] Deceased 9 July 2014.

650 °C (Mitchell et al. 2014).

The name is in honor of Paulo Abib Andery (1922–1976), Department of Mining Engineering at the Polytechnic School, Universidade de São Paulo, who developed a flotation process for Serrana SA Mining, resulting in an apatite concentrate that is used as raw material for the production of phosphoric acid and a calcite tailing that is used for the manufacture of cement. He founded the mining research facility known as Paulo Abib Engenharia in the early 1970s, a pioneering institution in developing ore dressing technology in Brazil.

Type material (specimen number DR740) is deposited in the Museu de Geociências, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080, São Paulo, SP, Brazil.

TABLE 1. Comparative data for NaNbO₃ polymorphs

Mineral	Pauloabibite	Isolueshite	Lueshite	Natroniobite
Formula	NaNbO₃	NaNbO₃	NaNbO ₃	NaNbO₃ (?)
Crystal system	tr <u>i</u> gonal	cubic	orthorhombic	monoclinic (?)
Space group	<i>R</i> 3	Pm3m	Pbnm	n.d.
a (Å)	5.3287(5)	3.909(1)	5.5269(10)	
b (Å)			5.5269(10)	
c (Å)	15.6197(17)		7.8180(10)	
V (Å ³)	384.10(7)	59.73(3)	238.81	
Ζ	6	1	4	
Strongest				
lines in	5.2066 (100)	3.915 (30)	3.91 (100)	4.81 (70)
XRPD pattern;	4.4257 (82)	2.765 (100)	2.77 (70)	3.77 (20)
d in A (I _{rel})	3.9730 (45)	1.953 (50)	1.96 (70)	3.05 (100)
	2.9809 (54)	1.747 (10)	1.748 (20)	2.97 (20)
	2.3718 (88)	1.594 (30)	1.60 (30)	2.77 (20)
	1.9865 (28)	1.380 (20)	1.382 (10)	2.68 (50)
	1.8620 (53)	1.234 (10)	1.302 (10)	1.72 (30)
	1.5383 (30)	1.042 (10)	1.234 (10)	1.61 (30)
Calculated	4.246	4.57	4.559	4.4 (meas)
density (g/cm	1 ³)			
Color pir	nkish brown	brownish-black	black	yellowish, brownish, blackish
Luster	vitreous	adamantine		
Optical class	uniaxial	isotropic	biaxial (–)	biaxial (–)
n	2.078	2.200	2.29-2.30	
	(mean, calc)		(mean)	
α				2.10-2.13
β				2.19-2.21
γ				2.21-2.24
2 <i>V</i> (meas) (°)			46	10–30
Reference	this proposal,	а	b	c
	calculated			
	XRPD pattern			

^a Chakhmouradian et al. (1997), Krivovichev et al. (2000); ^b Safiannikoff (1959), Mitchell et al. (2014); ^c Kukharenko et al. (1965).

TABLE 2.	Chemica	l composition and	l crysta	llographic d	ata for I	pauloabibit	te and re	lated	minera	1
----------	---------	-------------------	----------	--------------	-----------	-------------	-----------	-------	--------	---

Mineral	Formula	Space	а	С	Reference
		group	(Å)	(Å)	
Corundum	Al ₂ O ₃	R3c	4.7570(6)	12.9877(35)	Kirfel and Eichhorn (1990)
Akimotoite	MgSiO₃	R3	4.78(5)	13.6(1)	Tomioka and Fujino (1999)
Eskolaite	Cr ₂ O ₃	R 3 c	4.9607(10)	13.599(5)	Newnham and de Haan (1962)
Karelianite	V_2O_3	R3c	4.99	13.98	Long et al. (1963)
Hematite	Fe ₂ ³⁺ O ₃	R3c	5.0355(5)	13.7471(7)	Maslen et al. (1994)
Geikielite	MgTi ⁴⁺ O ₃	R3	5.0567(0)	13.9034(2)	Liferovich and Mitchell (2006)
Ilmenite	Fe ²⁺ Ti ⁴⁺ O ₃	R3	5.070(1)	14.064(3)	Waerenborgh et al. (2002)
Ecandrewsite	ZnTi⁴+O₃	R3	5.090(1)	14.036(2)	Birch et al. (1988)
Pyrophanite	Mn ²⁺ Ti ⁴⁺ O ₃	R3	5.13948(7)	14.2829(4)	Kidoh et al. (1984)
Tistarite	Ti ₂ ³⁺ O ₃	R3c	5.158	13.611	Ma and Rossman (2009)
Melanostibite	Mn ²⁺	R3	5.226(5)	14.325(5)	Moore (1968)
	(Sb ⁵⁺ ,Fe ³⁺)O ₃				
Brizziite	NaSb ⁵⁺ O ₃	R3	5.301(1)	15.932(4)	Olmi and Sabelli (1994)
Pauloabibite	NaNbO₃	R3	5.3287(5)	15.6197(17)	This paper

OCCURRENCE

The mineral occurs in the Jacupiranga carbonatite (24°43′47″S, 48°06′37″W), Cajati County, São Paulo State, Brazil (Menezes and Martins 1984). This property is located near the Southern border of the Jacupiranga Igneous Complex, an alkaline intrusion that was formed in a continental-rift environment in the Early Cretaceous, with the age estimated at 130 Ma (Roden et al. 1985), that outcrops in an area of 65 km², and constitutes dunites and peridotites in its Northern part and jacupirangite, ijolite, and nepheline syenites in the Southern; the carbonatite plug is totally intruded into jacupirangite.

The carbonatite has been extensively mined since the late 1960s for the production of apatite and calcite; the average composition is 74% carbonates (calcite, dolomite, and ankerite); 12% fluorapatite, 8% magnetite 2% phlogopite, 2% olivine, 1% sulfides, and 1% of other accessory minerals (Alves 2008). It formed as a series of five successive intrusions. The oldest carbonatite, C1, was probably derived from a magma somewhat different chemically from those producing carbonatites C2 through C5. The precipitation of carbonatite C2 probably went to completion independently of C3 through C5, whereas carbonatites C3 through C5 probably were precipitated from successive batches of magma representing a continuum in time and magmatic evolution (Gaspar and Willye 1983). Paulobabite was found in the transition between the intrusions C2 and C3, where the carbonatite is coarser and a pyrochlore-group mineral is present as an accessory mineral; in this zone two other unique species were found: quintinite (Chao and Gault 1997) and menezesite (Atencio et al. 2008). Associated minerals are dolomite, calcite, magnetite, phlogopite, pyrite, pyrrhotite, ancylite-(Ce), tochilinite, fluorapatite, "pyrochlore", vigezzite, and strontianite. Pauloabibite occurs embedded in dolomite crystals, which in this zone of the mine can reach centimeter sizes.

HABIT AND PHYSICAL PROPERTIES

The mineral occurs as encrustations of platy crystals to 2 mm in size in dolomite. Crystals are partially intergrown with a still unidentified Ca-Nb oxide (Figs. 1 and 2). Cleavage is perfect on {001} and parting was not observed. Pauloabibite is transparent and displays a sub-adamantine luster; it is pinkish brown and the streak is white. It is non-fluorescent under short (254 nm) or long wavelength (366 nm) ultraviolet radiation. The Mohs hardness was not measured due to the small crystal size. Fracture is irregular and the grains are fragile due to perfect cleavage. Density

> was not measured due to the paucity of material but the calculated density is 4.246 g/cm³ (based on empirical formula). Optically the mineral is uniaxial; $n(mean)_{cale}$ is 2.078 using the Gladstone-Dale relationship (Mandarino 1979), higher than that of available immersion liquids.

MINERAL CHEMISTRY

Pauloabibite crystals were embedded in epoxy resin and polished. Chemical analyses (17) were completed with a JEOL JXA-8900

FIGURE 1. Pinkish-brown pauloabibite intergrown with an unidentified Ca-Nb oxide, with dolomite (white) and tochilinite (black), from the Jacupiranga mine, Cajati, São Paulo, Brazil. Field of view: 4 mm.

FIGURE 2. Backscattered electron image of pauloabibite (dark) intergrown with an unidentified Ca-Nb oxide (light).

TABLE 3. Analytical data for pauloabibite (mean of 17 point analyses)

	ing theat and the	a loi paaloabibile	(., point analyses,
Constituent	wt%	Range	St. dev.	Probe standard
Na ₂ O	16.36	13.39–19.40	1.60	jadeite
MgO	0.04	0.00-0.19	0.06	dolomite
CaO	1.36	0.16-5.38	1.52	anorthite
MnO	0.82	0.06-1.73	0.46	rhodonite
FeO	0.11	0.00-0.65	0.16	siderite
SrO	0.02	0.00-0.22	0.06	celestine
BaO	0.16	0.00-0.83	0.22	barite
SiO ₂	0.03	0.00-0.11	0.03	quartz
TiO ₂	0.86	0.06-1.98	0.74	rutile
Nb ₂ O ₅	78.66	72.10-84.32	3.84	Nb metal
Ta₂O₅	0.34	0.00-0.91	0.29	Ta metal
Total	98.76			

electron microprobe (WDS mode, 15 kV, 20 nA, ~1 μ m beam diameter). Analytical results are represented in Table 3. No elements with Z > 8 other than those reported were indicated by EDS. The empirical formula [based on 3 O apfu] is: (Na_{0.88}Ca_{0.04}Mn²⁺_{0.02})_{\$\substar{0.09}}(Nb_{0.98}Ti_{0.02})_{\$\substar{1.00}}O₃. The ideal formula NaNbO₃ yields the following wt% oxide values: Na₂O = 18.91, Nb₂O₅ = 81.09, Total 100.00.}

TABLE 4. X-ray powder diffraction data for pauloabibite

d _{calc} (Å)	I _{calc}	h k l
5.2066	100	003
1.4257	82	101
3.9730	45	012
2.9809	54	104
2.6644	13	1 1 0
2.6033	3	006
2.3718	88	2 1 3
2.3718	9	1 1 3
2.0089	4	107
1.9865	28	024
1.8620	53	2 1 6
1.8620	16	116
1.7981	8	0 1 8
1.7335	8	3 1 1
1.7023	5	132
1.6040	15	027
1.5926	3	2 1 4
1.5926	21	3 1 4
1.5383	30	300
1.4795	9	1 0 10
1.4752	5	033
1.4752	6	303
1.4542	14	119
1.3742	3	217
1.3322	4	220
1.2935	6	0 2 10
1.2906	6	223
1.2756	5	131
1.2631	5	312
1.2162	7	134
1.1859	5	226
1.1636	6	2 1 10

 TABLE 5.
 Summary of crystal data and refinement results for pauloabibite

Ideal chemical formula	NaNbO ₃
Crystal symmetry	trigonal
Space group	R 3 (no. 148)
a (Å)	5.3287(5)
c (Å)	15.6197(17)
V (Å ³)	384.10(7)
Z	6
ρ _{cal} (g/cm³)	4.251
λ (Å, Μο <i>Κ</i> α)	0.71073
μ (mm-1)	4.60
2θ range for data collection	≤65
No. of reflections collected	1155
No. of independent reflections	309
No. of reflections with $l > 2\sigma(l)$	275
No. of parameters refined	18
R(int)	0.044
Final R_1 , wR_2 factors $[l > 2\sigma(l)]$	0.029, 0.064
Goodness-of-fit	1.06

CRYSTAL-STRUCTURE DETERMINATION

Very strong preferential orientation effects were observed in the powder X-ray diffraction data (XRD) due to the perfect {001} cleavage. The observed pattern probably would be of little value due to a huge difference between calculated and observed intensities of reflections. We present only the model X-ray powder diffraction pattern (Table 4) calculated from the determined structure model using the XPOW program by Downs et al. (1993).

A single crystal $(0.09 \times 0.07 \times 0.06 \text{ mm})$ was selected for intensity measurements on a Bruker X8 APEX2 CCD diffractometer using graphite-monochromatized MoK α ($\lambda = 0.71073$ Å) radiation. Data were collected to a 2 θ value of 65° and the X-ray absorption correction was calculated by the MULTI-SCAN method using the Bruker program SADABS (Sheldrick 1996). The crystal structure was solved using direct methods and refined

TABLE 6. Atom coordinates and displacement parameters (Å²) for pauloabibite

	x/a	y/b	z/c	$U_{\rm eq}$	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Na	0	0	0.35846(17)	0.0136(5)	0.0147(8)	0.0147(8)	0.0113(12)	0.0000(0)	0.0000(0)	0.0073(4)
Nb	0	0	0.14867(3)	0.0068(2)	0.0064(2)	0.0064(2)	0.0075(3)	0.0000(0)	0.0000(0)	0.0032(1)
0	0.3239(5)	0.0532(6)	0.23828(16)	0.0095(5)	0.0089(12)	0.0099(12)	0.0098(11)	0.0014(9)	-0.0002(9)	0.0047(10)

 TABLE 7.
 Selected bond lengths, angles, and bond valence (BV)

 calculations in the refined nauloabilitie structure

	calculations in the re	inieu pauloabibite	structure				
Bond	Bond length	BV (v.u)	Σ				
Nb-O	1.881(3)	1.084 (x3)	3.252				
Nb-O	2.182(2)	0.481 (x3)	1.443				
			4.695				
Na-O	2.354(3)	0.226 (x3)	0.678				
Na-O	2.469(3)	0.165 (x3)	0.495				
			1.173				
Angles							
O-Nb-O	77.65(11), 81.4	77.65(11), 81.44(10), 99.23(14), 101.70(9)					
O-Na-O	68.45(11), 90.0	9(12), 97.69(8), 100.20	0(10)				

FIGURE 3. Crystal structure of pauloabibite. NaO₆ octahedra are green and NbO₆ octahedra are blue.

using SHELX97 (Sheldrick 2008). Due to the measured major element chemistry, for simplicity, the structure was refined using the ideal formula, NaNbO₃, as the overall effects of minor elements (Ca, Mn, and Ti) on the final structure results are negligible. Details about the data collection and structure refinement are summarized in Table 5. The final atom coordinates and anisotropic thermal displacement parameters are listed in Table 6. Selected bond distances, angles, and bond valence calculations using the parameters given by Brese and O'Keeffe (1991) are in Table 7. Structure factors for pauloabibite and the CIF file are provided as deposited material¹.

Pauloabibite (NaNbO₃) is isostructural with ilmenite. It has a layered structure in which NaO₆ and NbO₆ distorted octahedra share edges to form fully ordered Na and Nb layers that are stacked alternating along the **c** axis (Fig. 3). The mean Nb–O (2.004 Å) and Na–O (2.412 Å) distances are in agreement with those determined by Modeshia et al. (2009) in their work on synthetic NaNbO₃ isomorphic with ilmenite: Nb–O (2.01 Å) and Na–O (2.41 Å). Isolueshite, the cubic polymorph, and lueshite, the orthorhombic polymorph, display modified perovskite structures, with distorted NaO₁₂ cuboctahedral polyhedra and NbO₆ octahedra (Krivovichev et al. 2000; Mitchell et al. 2014).

IMPLICATIONS

Much work has been carried out on the synthesis of alkaline niobates because of their excellent nonlinear optical, ferroelectric, piezoelectric, electro-optic, ionic conductive, pyroelectric, photorefractive, selective ion exchange, and photocatalytic properties. For example, lead-free potassium and sodium niobates are potential substitutes for lead zirconium titanate (PZT, PbZr_xTi_{1-x}O₃, one of the world's most widely used highperformance piezoelectric ceramics). The high lead content in PZT introduces serious concerns about environment pollution during the fabrication, use, and disposal of the materials, and therefore, because increasing attention has been paid to environmental issues nowadays, potential substitutes are urgently being examined (Wu et al. 2010).

NaNbO₃ is known to exhibit a rich polymorphism based on the perovskite structure, with several displacive transition occurring over a range of temperatures, which may also be sensitive to both pressure and crystallite size. Doped forms of the material are currently the focus of much attention because of their piezoelectric properties (Modeshia et al. 2009).

ACKNOWLEDGMENTS

We acknowledge the Brazilian agencies FAPESP (processes 2013/03487-8, 2011/22407-0), CNPq, and Finep for financial support, and all members of the IMA Commission on New Minerals, Nomenclature and Classification, the Associate Editor Fernando Colombo, and the reviewers Stuart Mills and Cristian Biagioni for their helpful suggestions and comments.

REFERENCES CITED

- Alves, P.R. (2008) The carbonatite-hosted apatite deposit of Jacupiranga, SE Brazil: styles of mineralization, ore characterization and association with mineral processing. Master thesis, Missouri University of Science and Technology.
- Atencio, D., Coutinho, J.M.V., Doriguetto, A.C., Mascarenhas, Y.P., Ellena, J.A., and Ferrari, V.C. (2008) Menezesite, the first natural heteropolyniobate, from Cajati, São Paulo, Brazil: Description and crystal structure. American Mineralogist, 93, 81–87.
- Birch, W.D., Burke, E.A.J., Wall, V.J., and Etheridge, M.A. (1988) Ecandrewsite, the zinc analog of ilmenite, from Little Broken Hill, New South Wales, Australia, and the San Valentin Mine, Sierra de Cartegena, Spain. Mineralogical Magazine, 52, 237–240.
- Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B, 47, 192–197.
- Bulakh, A.G., Kukharenko, A.A., Knipovich, Yu. N., Kondrat'eva, V.V., Baklanova, K.A., and Baranova, E.N. (1960) Some new minerals in carbonatites of the Kola Peninsula. Materialy Vsesoíùznogo nauchno-issledovatel'skogo geologicheskogo instituta (VSEGEI) Ministerstva geologii i okhrany nedr SSSR, 1959, 114–116 (in Russian).
- Chakhmouradian, A.R., and Mitchell, R.H. (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineralogical Magazine, 62, 769–782.
- Chakhmouradian, A.R., Yakovenchuk, V.N., Mitchell, R.H., and Bogdanova, A.N. (1997) Isolueshite, a new mineral of the perovskite group from the Khibina alkaline complex. European Journal of Mineralogy, 9, 483–490.
- Chao, G.Y., and Gault, R.A. (1997) Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite-manasseite group. Canadian Mineralogist, 35, 1541–1549.

¹ Deposit item AM-15-24745, CIF and structure factors. Deposit items are stored on the MSA web site and available via the *American Mineralogist* Table of Contents. Find the article in the table of contents at GSW (ammin.geoscienceworld.org) or MSA (www.minsocam.org), and then click on the deposit link.

- Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104–1107.
- Gaspar, J.C., and Willye, P.J. (1983) Magnetite in carbonatites from the Jacupiranga Complex, Brazil. American Mineralogist, 68, 195–213.
- Johnston, K.E., Tang, C.C., Parker, J.E., Knight, K.S., Lightfoot, P., and Ashbrook, S.E. (2010) The polar phase of NaNbO₃: a combined study by powder diffraction, solid-state NMR, and first-principles calculations. Journal of the American Chemical Society, 132(25), 8732–8746.
- Johnston, K.E., Griffin, J.M., Walton, R.I., Dawson, D.M., Lightfoot, P., and Ashbrook, S.E. (2011) ⁹³Nb NMR and DFT investigation of the polymorphs of NaNbO₃. Physical Chemistry and Chemical Physics, 13, 7565–7576.
- Kidoh, K., Tanaka, K., Marumo, F., and Takei, H. (1984) Electron density distribution in ilmenite-type crystals. II. Manganese (II) titanium (IV) trioxide. Acta Crystallographica, B, 40, 329–332.
- Kinomura, N., Kumata, N., and Muto, F. (1984) A new allotropic form with ilmenite-type structure of NaNbO₃. Materials Research Bulletin, 19, 299–304.
- Kirfel, A., and Eichhorn, K. (1990) Accurate structure analysis with synchrotron radiation. The electron density in Al₂O₃ and Cu₂O. Acta Crystallographica, A, 46, 271–284.
- Krivovichev, S.V., Chakhmouradian, A.R., Mitchell, R.H., Filatov, S.K., and Chukanov, N.V. (2000) Crystal structure of isolueshite and its synthetic compositional analog. European Journal of Mineralogy, 12, 597–607.
- Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Il'inskii, G.A., Sergeev, A.S., and Abakumova, N.B. (1965) The Caledonian complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and Northern Karelia. Nedra Press, Leningrad, 772 pp. (in Russian).
- Kumata, N., Kinomura, N., and Muto, F. (1990) Crystal structure of ilmenite-type LiNbO₃ and NaNbO₃. Journal of the Ceramic Society of Japan, 98, 384–388.
- Liferovich, R.P., and Mitchell, R.H. (2006) The pyrophanite–geikielite solidsolution series: crystal structures of the Mn_{1-x}Mg_xTiO₃ series (0 < x < 0.7). Canadian Mineralogist, 44, 1099–1107.
- Long, J.V.P., Vuorelainen, Y., and Kouvo, O. (1963) Karelianite, a new vanadium mineral. American Mineralogist, 48, 33–41.
- Ma, C., and Rossman, G.R. (2009) Tistarite, Ti₂O₃, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841–844.
- Mandarino, J.A. (1979) The Gladstone-Dale relationship. III. Some general applications. Canadian Mineralogist, 19, 441–450.
- Maslen, E.N., Streltsov, V.A., Streltsova, N.R., and Ishizawa, N. (1994) Synchrotron X-ray study of the electron density in α-Fe₂O₃. Acta Crystallographica,

B, 50, 435–441.

- Menezes, L.A.D. Fo., and Martins, J.M. (1984) The Jacupiranga mine, São Paulo, Brazil. Mineralogical Record, 15, 261–270.
- Mitchell, R.H., Burns, P.C., Knight, K.S., Howard, C.J., and Chakhmouradian, A.R. (2014) Observations on the crystal structures of lueshite. Physics and Chemistry of Minerals, 41, 393–401.
- Modeshia, D.R., Darton, R.J., Ashbrook, S.E., and Walton, R.I. (2009) Control of polymorphism in NaNbO₃ by hydrothermal synthesis. Chemical Communications, 68–70.
- Moore, P.B. (1968) Substitutions of the type (Sb⁵⁺05Fe³⁺05)↔(Ti⁴⁺): the crystal structure of melanostibite. American Mineralogist, 53, 1104–1109.
- Newnham, R.E., and de Haan, Y.M. (1962) Refinement of the α Al₂O₃, Ti₂O₃, V₂O₃ and Cr₂O₃ structures. Zeitschrift für Kristallographie, 117, 235–237.
- Olmi, F., and Sabelli, C. (1994) Brizziite, NaSbO₃, a new mineral from the Cetine mine (Tuscany, Italy): description and crystal structure. European Journal of Mineralogy, 6, 667–672.
- Roden, M.F., Murthy, V.R., and Gaspar, J.C. (1985) Sr and Nd isotropic composition of the Jacupiranga carbonatite. Journal of Geology, 93(2), 212–220.
- Safiannikoff, A. (1959) Un noveau mineral de niobium, Académie Royal des Sciences d'Outre-Mer, Bulletin dês Séances, 5, 1251–1255.
- Sheldrick, G.M. (1996) SADABS, Absorption Correction Program. University of Göttingen, Germany.
- (2008) A short history of SHELX. Acta Crystallographica, A, 64, 112–122. Solov'ev, S.P., Venevtsev, Y.N., and Zhanov, G.S. (1961) An X-ray study of phase
- transitions in NaNbO₃. Soviet Physics Crystallography, 6, 171–175. Tomioka, N., and Fujino, K. (1999) Akimotoite, (Mg,Fe)SiO₃, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.
- Waerenborgh, J.C., Figueiras, J., Mateus, A., and Gonçalves, M. (2002) Nature and mechanism of ilmenite alteration: a Mössbauer and X-ray diffraction study of oxidized ilmenite from the Beja-Acebuches Ophiolite Complex (SE Portugal). Mineralogical Magazine, 66, 421–430.
- Wu, S.Y., Zhang, W., and Chen, X.M. (2010) Formation mechanism of NaNbO₃ powders during hydrothermal synthesis. Journal of Materials Science: Materials in Electronics, 21, 450–455.

MANUSCRIPT RECEIVED SEPTEMBER 14, 2013 MANUSCRIPT ACCEPTED AUGUST 18, 2014 MANUSCRIPT HANDLED BY FERNANDO COLOMBO