A comparison of the structures and geometric stabilities of stilpnomelane and parsettensite: A distance least-squares (DLS) study

STEPHEN GUGGENHEIM

Department of Geological Sciences, University of Illinois at Chicago, Chicago, Illinois 60680, U.S.A.

R. A. Eggleton

Department of Geology, Australian National University, Canberra, ACT 2601, Australia

Abstract

Structural models for the islandlike modulated phyllosilicates, stilpnomelane and parsettensite, were examined by distance least-squares (DLS) calculations. Parsettensite occurs naturally only near the Mn end-member, whereas stilpnomelane may be both Mn and Fe^{2+} rich. Models for compositions between Fe^{2+} and Mn^{2+} end-member stilpnomelane demonstrated that the stilpnomelane structure is geometrically stable across the composition range. In principle, therefore, stilpnomelane may occur at Mn end-member compositions. DLS calculations indicated also that Fe^{2+} and Mn^{2+} -rich stilpnomelane-cell edge lengths are geometrically controlled; c is fixed at approximately 17.835 Å ($d_{001} =$ 12.13 Å). DLS-derived atomic coordinates are given for stilpnomelane.

Misfit in stilpnomelane between the tetrahedral and octahedral sheets is relieved by warping of the octahedral sheet and by adjustments to the double six-membered ring interisland connectors. These adjustments include an in-plane tetrahedral rotation and out-of-plane tilting. In Mg- or Fe³⁺-rich stilpnomelane, Si to Si distances within the interisland connectors are reduced and Si to Si repulsions increase. Thus, tetrahedral tilting in the interisland connectors increases, along with the magnitude of the d_{001} value. In contrast to parsettensite, however, only limited tilting of the tetrahedra in these connectors may occur, which accounts for the different d_{001} values in the two model structures.

In parsettensite, double four-membered ring interisland connectors do not allow for tetrahedral rotation, and, therefore, parsettensite requires the nearly perfect alignment of islands. Thus, parsettensite probably cannot have a composition with smaller octahedral cations (e.g., Fe^{2+}).

INTRODUCTION

Stilpnomelane (Eggleton, 1972) and parsettensite (Eggleton and Guggenheim, 1994) are modulated layer silicates with continuous octahedral sheets coordinated by partial sheets of silicate tetrahedral rings. These rings form islands that are three tetrahedral rings wide, with islands connected by inverted tetrahedra. The two structures differ, however, by the topology of the island linkage. Parsettensite has partially tilted tetrahedra that form fourmembered interisland connectors, thereby producing double four-membered rings to connect adjacent layers and $d_{001} = 12.6$ Å. In contrast, stilpnomelane has sixmembered ring interisland connectors and, thus, double six-membered rings to connect adjacent layers, with a resulting $d_{001} = 12.1 - 12.6$ Å, depending on composition (see below). Figures depicting the geometry of the structures may be found in Eggleton (1972) and Eggleton and Guggenheim (1994).

The parsettensite structure is known to exist near Mn end-member compositions only (Eggleton and Guggenheim, 1994). Stilpnomelane, however, commonly occurs with Fe-rich compositions, although considerable Mg and

Mn substitutions are possible (Dunn et al., 1984, 1992). Where Mn is present, the amount of Mn substitution in stilpnomelane only approaches about half the possible octahedral sites. In addition, at least for the limited number of Mn-dominant stilpnomelane samples known, Mn is associated with a significant proportion of smaller cations, such as Mg and Zn. Guggenheim and Eggleton (1987, 1988), in a review of modulated phyllosilicate systematics, discussed the importance of misfit between the lateral dimensions of the octahedral and tetrahedral sheets in such structures. A major feature of such structures is a warping of the octahedral sheets, either wavelike or domelike, depending on the nature of the modulation. However, the relationships of the interisland connectors to misfit between the tetrahedral and octahedral sheets are not well understood.

A distance least-squares (DLS) investigation was made to establish geometric constraints on the stilpnomelane structure with Fe vs. Mn octahedral occupancy as the important variable. This study was made (1) to determine why parsettensite has a d_{001} value of near 12.6 Å, whereas a Mn-rich stilpnomelane has a value near 12.1 Å, and (2) to establish the role, if any, of the interisland connectors in relieving misfit between the tetrahedral and octahedral components. An investigation of the extent of cation substitutions in stilpnomelane is potentially more revealing petrologically than an alternate investigation regarding the extent of cation substitutions in parsettensite because stilpnomelane is a rock-forming mineral. In addition, however, data given below suggest that it may not be possible to predict accurately an appropriate set of cell parameters for a hypothetical Fe-rich parsettensite, which is a requirement for a successful DLS investigation of this type.

The DLS approach (Meier and Villiger, 1969) uses interatomic distances in a least-squares refinement. Atomic positional positions are adjusted so that the calculated distances match, as best as possible, the distances used as input. Because the distances may be given weights equal to interatomic forces, the modeling approach may be considered an analogy to a force model. The distances used for input are generally established by using interatomic distances from similar materials. In this study on parsettensite and stilpnomelane, the only parameters derived experimentally are those based on cell parameters and space group and, of course, the topology (polyhedral linkages) of the structure as derived in the structure determinations (Eggleton, 1972; Eggleton and Guggenheim, 1994). Thus, because the models utilize such limited observed data, the procedure confirms only that the linkages are dimensionally reasonable. However, even if the linkages are plausible, the technique cannot determine the correctness of the structure without ancillary techniques.

EXPERIMENTAL METHODS

Both the stilpnomelane and the parsettensite structures have interatomic distances at the Mn end-member in common. DLS input parameters for parsettensite included Mn-O distances (2.230 Å at 0.5 weight), T-O distances (1.625 Å at 1.0), O-O distances about the Mn sites (3.280 Å at 0.07), O-O distances about the T sites (2.655 Å at 0.07), and T-T distances (3.100 Å at 0.3). Because of differences in Al occupancy, the input for stilpnomelane was identical, except for T-O distances of 1.633 Å (wt = 1.0) and O-O distances about the tetrahedra of 2.665 Å (wt = 0.07). No attempt was made to model the positions of exchangeable cations for either structure. These cations do not represent an integral part of the structure, and first coordination spheres are difficult to locate. The DLS program (DLS-76) of Baerlocher et al. (1978) was used in the analysis, along with bond distances from Shannon (1976) and weights primarily from Baur (1977).

Parsettensite

DLS modeling was done in space group C2/m using a = 39.1, b = 22.84, c = 17.95 Å and $\beta = 135.6^{\circ}$ (Eggleton and Guggenheim, 1994). Because of the expected misfit between the tetrahedral and octahedral sheets, a small domed shape (± 0.2 Å) was imparted to the apical O plane associated with the Mn sheet, with the dome crest at the center of the islands. There were 98 independent

atoms, 267 variables, and 414 distances. Besides parameters held invariant by special positions, all z coordinates of the apical O atoms and O atoms at z = 0.5 were fixed for five cycles of refinement, after which only space group invariant coordinates and O z coordinates at z = 0.5 were fixed. This model, using the above input distances, assumes complete Al vs. Si disorder. Refinement converged in six additional cycles (R = 0.006), and atom positions are given in Table 3 of Eggleton and Guggenheim (1994).

Additional DLS models were made to determine ^[4]Al ordering, with Al being concentrated either in the island regions or in the interisland (double four-membered ring) connectors. The latter model would not converge; Al-rich tetrahedra expanded to unreasonable sizes (T-O distances of 1.82 Å). This result, therefore, suggests that this model is topologically impossible. The model, involving Al-rich tetrahedra within the islands, could not be distinguished by DLS refinement from the original model, with complete Si vs. Al disorder.

Stilpnomelane

Starting atomic coordinates were derived from figures in Eggleton (1972), which resulted in 168 independent atoms, 494 variables, and 767 observations (distances) in $P\overline{1}$ symmetry. The M1 site was held fixed, as were the six apical O z coordinates (z = 0.00) for the interisland tetrahedral connectors. Similar to parsettensite, a domelike shape was imparted to the apical O plane. Unlike in parsettensite, where only one composition is known, cell parameters from many stilpnomelane compositions may be used to extrapolate to a hypothetical Mn end-member composition based on Eggleton and Chappell (1978) and the ideal cell geometry (Eggleton, 1972).

The value for d_{001} for stilpnomelane varies from 12.6 to about 12.15 Å for compositions where the octahedral cation radius (r_o) is between about 0.66 and 0.70 Å, but it remains nearly constant (about 12.13 Å) for compositions between values for r_o of 0.71–0.76 Å. Thus d_{001} for Mn end-member stilpnomelane is expected to be similar upon extrapolation (12.13 Å), resulting in c = 17.835 Å. The *a* dimension varies linearly from r_o values of 0.65–0.76 Å (linear equation: a = 18.6345 + 4.5738r, R = 0.97). Therefore, the derived Mn end-member cell parameters are a = b = 22.43 Å, c = 17.835 Å, $\alpha = 125.125^\circ$, $\beta = 96.015^\circ$, $\gamma = 120.0^\circ$.

DLS calculations were made also for an Fe²⁺ endmember stilpnomelane and intermediate compositions at (Fe_{0.3}Mn_{0.7}), (Fe_{0.5}Mn_{0.5}), and (Fe_{0.7}Mn_{0.3}). Cell dimensions for an Fe²⁺ end-member stilpnomelane are a = b= 22.20 Å, c = 17.835 Å, $\alpha = 125.03^{\circ}$, $\beta = 95.98^{\circ}$, and $\gamma = 120.0^{\circ}$. The Fe-O distance was assigned at 2.180 Å, and O-O distances around the M sites were given values of 3.07 Å. Bond distances for intermediate compositions were assumed to be linear between the two end-members. The refinements converged within 18 cycles to an *R* value of 0.01. Because the atomic coordinates for stilpnomelane have not been published previously, they are listed for Fe end-member stilpnomelane in Table 1. Estimated

 TABLE 1. Derived atomic coordinates for stilpnomelane

Atom x y z Atom x y z Fe1 0.3038 0.5333 0.5300 Off 0.4199 0.0228 0.4015 Fe3 0.1335 0.5233 0.512 Off 0.4494 0.3971 Fe6 0.2163 0.5124 Off 0.5621 0.5791 0.4360 0.3997 Fe6 0.2163 0.1784 0.5180 O21 0.5231 0.6821 0.5891 0.3893 Fe6 0.2165 0.5084 0.5124 O22 0.5681 0.3836 Fe1 0.4618 0.4217 0.5153 O27 0.6624 0.7626 0.3383 Fe11 0.4521 0.5068 0.5035 O28 0.7459 0.4235 0.3897 Fe13 0.5417 0.5163 O277 0.2841 0.5061 O31 0.7529 0.1404 0.4035 Fe13 0.5417 0.504 O33 0.3370 0.4038 0.4005 Fe								
Fe2 0.2171 0.4317 0.5217 0.17 0.4963 0.4307 0.4015 Fe4 0.3803 0.5102 0.5144 019 0.5024 0.9361 0.4048 Fe6 0.1535 0.20 0.5013 0.1847 0.4048 Fe6 0.2153 0.1784 0.5175 0.22 0.5221 0.5281 0.3851 Fe7 0.4618 0.4217 0.5073 0.22 0.5281 0.8363 0.3991 Fe8 0.9644 0.5921 0.5125 0.2635 0.3991 0.3836 Fe10 0.9679 0.1768 0.5164 0.22 0.6624 0.7626 0.3932 Fe11 0.0452 0.6698 0.5035 0.29 0.7459 0.4225 0.3817 Fe13 0.5371 0.4912 0.5068 0.3307 0.3232 0.3837 Fe14 0.7931 0.5204 0.331 0.5204 0.332 0.3333 0.4003 Fe12 0.5732 0.7519	Atom	x	у	Z	Atom	x	у	z
Fa3 0.1335 0.2633 0.5144 O18 0.4945 0.6794 0.3978 Fe4 0.3803 0.5102 0.5115 0.2013 0.1847 0.4037 Fe5 0.4776 0.4349 0.5155 0.20 0.5013 0.1847 0.4043 Fe6 0.2153 0.5784 0.5124 0.2584 0.1301 0.4445 Fe7 0.4618 0.4217 0.5073 0.222 0.5732 0.5884 0.1016 0.4045 Fe9 0.1252 0.5084 0.5124 0.2664 0.1661 0.4045 Fe10 0.8280 0.5075 0.26 0.6683 0.2635 0.3932 Fe11 0.4271 0.5531 0.277 0.6624 0.7675 0.3847 Fe14 0.2077 0.5241 0.5061 031 0.7577 0.3302 0.4005 Fe16 0.8771 0.5036 0.320 0.7529 0.4105 0.3844 Fe21 0.4616 0.7111 0.	Fe1	0.3038	0.3533	0.5300	016	0.4199	0.0228	0.4077
Fe4 0.3803 0.5102 0.5144 O19 0.5024 0.3931 0.4037 Fe6 0.2153 0.1784 0.5185 C20 0.5013 0.1434 0.4037 Fe6 0.2964 0.5921 0.5125 0.232 0.5821 0.8809 0.3879 Fe7 0.4618 0.4217 0.5073 0.22 0.5621 0.800 0.4016 Fe8 0.2997 0.1766 0.5164 C22 0.6623 0.5019 0.3836 Fe10 0.6527 0.5153 C27 0.6624 0.7626 0.3932 Fe11 0.5161 0.311 0.7507 0.9349 0.4003 Fe13 0.5617 0.5061 C31 0.7507 0.3494 0.4038 Fe16 0.8717 0.5041 0.5004 0.533 0.5208 0.3837 0.5208 0.3817 Fe16 0.7171 0.5042 0.333 0.8202 0.5008 0.3850 Fe21 0.4106 0.5711 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Fe5 0.0476 0.3439 0.5155 C20 0.5013 0.1847 0.4037 Fe6 0.2153 0.7744 0.5173 C22 0.5732 0.5881 0.3851 Fe7 0.4618 0.4217 0.5073 C22 0.5732 0.5884 0.4016 Fe8 0.2954 0.5921 0.5124 C2864 0.1016 0.4045 Fe10 0.9679 0.1768 0.5164 C25 0.6683 0.5031 0.4886 Fe11 0.452 0.5836 0.5035 C27 0.6624 0.7626 0.3835 Fe13 0.5416 0.5035 C320 0.7440 0.6735 0.3817 Fe14 0.2027 0.2541 0.5061 C31 0.7577 0.3430 0.8864 Fe15 0.8727 0.2541 0.5014 0.3292 0.5020 0.4323 Fe16 0.8771 0.5028 C37 0.9233 0.2738 0.4125 Fe23 0.2905 0.8323								
Fe6 0.2153 0.1784 0.5173 0.221 0.5732 0.3830 0.3879 Fe7 0.4618 0.4217 0.5125 0.23 0.5521 0.5809 0.3879 Fe8 0.2964 0.5921 0.5125 0.23 0.5621 0.2635 0.3991 Fe11 0.452 0.0893 0.5095 0.26 0.6683 0.5019 0.3836 Fe12 0.3828 0.2617 0.5081 0.271 0.6844 0.7626 0.3932 Fe13 0.5371 0.5081 0.231 0.4759 0.4225 0.3891 Fe14 0.2877 0.6698 0.5016 0.31 0.7507 0.349 0.4003 Fe18 0.872 -0.021 0.4972 0.33 0.8387 0.3502 0.4038 Fe21 0.4751 0.504 0.33 0.8303 0.8302 0.4038 Fe21 0.2752 0.7519 0.5044 0.2733 0.2738 0.3850 Fe11 0.952								
Fe7 0.4618 0.4217 0.5732 0.2889 0.3879 Fe8 0.2964 0.5921 0.5125 0.23 0.5821 0.8800 0.4016 Fe9 0.1295 0.5084 0.5124 0.2564 0.1664 0.263 0.3836 Fe11 0.452 0.8808 0.5019 0.226 0.6583 0.5019 0.4235 0.3836 Fe12 0.3428 0.2617 0.5135 0.27 0.6624 0.7626 0.3835 Fe13 0.5416 0.3321 0.4894 0.28 0.770 0.3439 0.4005 Fe14 0.2087 0.6628 0.5035 0.22 0.7750 0.3430 0.3870 Fe15 0.877 0.4412 0.5064 0.383 0.3800 0.3836 Fe18 0.7371 0.4822 0.5075 0.34 0.8230 0.5034 0.8230 0.5036 0.3833 Fe21 0.4616 0.711 0.5043 0.3833 0.4125 F								
FeB 0.2964 0.5921 0.5124 C23 0.5821 0.5600 0.4015 Fe9 0.1295 0.5084 0.5164 C25 0.6673 0.2635 0.3991 Fe11 0.0452 0.0893 0.5095 C26 0.6673 0.2635 0.3991 Fe11 0.3828 0.2617 0.5624 0.7626 0.3932 Fe13 0.5416 0.3321 0.4944 C28 0.6708 0.213 0.4015 Fe14 0.2087 0.4212 0.5066 O31 0.7459 0.4235 0.3895 Fe16 0.8377 0.4212 0.5066 O33 0.7470 0.4038 Fe17 0.7391 0.8447 0.1116 0.4038 0.8392 0.4038 Fe19 0.2947 0.0099 0.5004 O32 0.7323 0.2730 0.231 0.2211 0.4116 Fe20 0.4740 0.0323 0.1729 0.4325 0.3803 Fe21 0.4204 0.2733 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Fe9 0.1255 0.5084 0.5124 C24 0.5854 0.1016 0.4045 Fe10 0.9679 0.1768 0.5164 C25 0.6673 0.2635 0.3991 Fe11 0.452 0.6898 0.5095 C26 0.6683 0.5019 0.3836 Fe11 0.452 0.4781 0.4921 0.5068 0.221 0.5068 0.301 0.7450 0.4225 0.3836 Fe11 0.731 0.841 0.5036 C32 0.7529 0.1440 0.4035 Fe11 0.731 0.8841 0.5036 C32 0.7529 0.1440 0.4038 Fe12 0.4761 0.711 0.5041 0.353 0.8330 0.3500 0.3836 Fe22 0.3747 0.8822 0.5004 C33 0.3837 0.4125 Fe23 0.5020 0.3323 0.4251 0.4116 0.4211 0.4105 Fe23 0.5020 0.3233 0.2561 0.4119 0.5369 0.42								
Fe10 0.9679 0.1768 0.5164 C25 0.6673 0.2835 0.3991 Fe11 0.452 0.693 0.5095 C26 0.6633 0.5019 0.3836 Fe12 0.3828 0.2617 0.5153 C27 0.6624 0.7626 0.3932 Fe13 0.2037 0.4212 0.5068 C30 0.7449 0.4235 0.3887 Fe16 0.8772 0.2541 0.5061 C31 0.7570 0.9349 0.4003 Fe18 0.2974 0.0882 0.5075 C34 0.8229 0.5980 0.3884 Fe21 0.4616 0.711 0.5043 C36 0.8447 0.1116 0.4125 Fe22 0.3752 0.7519 0.5028 C37 0.9231 0.2768 0.4125 Fe23 0.4204 0.8030 0.2914 0.0251 0.4375 0.4087 Si1 0.2630 0.2777 0.2876 C42 0.0000 0.6807 0.3947								
Fe11 0.0452 0.0893 0.5095 C26 0.6583 0.5019 0.3836 Fe12 0.3828 0.2617 0.5153 C27 0.6624 0.7626 0.3932 Fe13 0.5416 0.3321 0.5068 C280 0.7459 0.4235 0.3895 Fe14 0.2677 0.2541 0.5061 C31 0.7507 0.9349 0.4005 Fe17 0.7931 0.0841 0.5061 C33 0.8387 0.3502 0.4038 Fe18 0.7372 0.0082 0.5075 C34 0.8292 0.5908 0.3864 Fe20 0.3774 0.0090 0.5004 C35 0.8333 0.8500 0.3850 Fe23 0.2905 0.8323 0.4201 0.4068 0.3899 9.998 0.7599 0.3850 Si3 0.6300 0.2717 0.2876 C42 0.0005 0.4087 0.3947 Si4 0.5582 0.171 0.2876 0.441 0.0109 0.68								
Fe13 0.5416 0.3321 0.4984 C28 0.6708 0.0213 0.4071 Fe14 0.2067 0.6698 0.5035 C29 0.7459 0.4235 0.3895 Fe15 0.9637 0.4212 0.5068 C30 0.7440 0.6735 0.3817 Fe16 0.9731 0.0841 0.5036 C32 0.7529 0.1840 0.4038 Fe17 0.7931 0.0841 0.5036 C32 0.7529 0.1840 0.4038 Fe20 0.2747 0.0082 0.5004 C33 0.8330 0.8500 0.3850 Fe21 0.4616 0.1711 0.5028 C37 0.9233 0.2738 0.41125 Fe23 0.2905 0.8323 0.2901 0.400 0.3331 0.8500 0.3350 Si2 0.1911 0.5286 0.2801 0.401 0.0052 0.4375 0.4087 Si3 0.6300 0.2293 0.2114 0.2933 0.161 0.4215								
Fe14 0.2087 0.66698 0.5035 C29 0.7459 0.4235 0.3895 Fe15 0.9637 0.4212 0.5068 O30 0.7440 0.6735 0.3895 Fe16 0.8772 0.2541 0.5061 O31 0.7507 0.3349 0.4003 Fe18 0.8772 0.0882 0.5075 O34 0.8292 0.5908 0.3864 Fe21 0.4616 0.711 0.5043 O36 0.8333 0.8600 0.3990 Fe22 0.3752 0.7519 0.5028 O37 0.9233 0.2738 0.4125 Fe23 0.2905 0.8333 0.2661 0.4126 0.0652 0.4375 0.4087 Si2 0.1919 0.3526 0.2861 O44 0.0052 0.4375 0.4087 Si3 0.0360 0.2717 0.2876 O42 0.0007 0.9416 0.4064 Si4 0.2744 0.5075 0.271 O447 0.0109 1.9868 0.4313	Fe12	0.3828	0.2617	0.5153	027	0.6624	0.7626	0.3932
Fe15 0.9637 0.4212 0.5068 O31 0.7547 0.9349 0.4005 Fe16 0.8772 0.2541 0.5061 O31 0.7529 0.1840 0.4005 Fe18 0.2947 0.0882 0.5575 O34 0.8232 0.5908 0.3864 Fe19 0.2947 0.0802 0.5075 O34 0.8233 0.8308 0.3864 Fe20 0.3747 0.0009 0.5004 O35 0.8333 0.8500 0.3956 Fe21 0.3747 0.0032 0.5004 O39 0.9938 0.4176 0.4176 Fe22 0.3752 0.5104 O40 0.9231 0.2616 0.4108 Si2 0.1991 0.3526 0.2869 O41 0.0052 0.4375 0.4087 Si3 0.0380 0.2717 0.2876 O443 0.0057 0.3416 0.4064 Si4 0.9582 0.1107 0.2887 O443 0.5998 0.4013 Si6	Fe13	0.5416		0.4984		0.6708		0.4071
Fe16 0.8772 0.2541 0.5061 O31 0.7507 0.9349 0.4003 Fe18 0.8732 -0.0021 0.4972 O.333 0.8367 0.3502 0.4038 Fe19 0.2372 -0.0021 0.4972 O.8842 0.5075 O34 0.8292 0.5908 0.3864 Fe20 0.3747 0.0009 0.5004 O35 0.8333 0.8500 0.3950 Fe21 0.4616 0.1711 0.5043 O38 0.8147 0.1116 0.4175 Fe23 0.2905 0.8323 0.4902 O38 0.9198 0.7599 0.3850 Si1 0.2804 0.2733 0.2901 O40 0.9231 0.0261 0.4175 Si3 0.0380 0.2717 0.2876 O42 0.0000 0.6807 0.3947 Si4 0.9582 0.1107 0.2882 O433 0.3635 0.4215 Si6 0.3930 0.2274 0.2841 0.441 0.3635 0.4								
Fe17 0.7931 0.0841 0.5036 0.7529 0.1840 0.4038 Fe18 0.8732 -0.0021 0.4972 0.33 0.8387 0.3502 0.4038 Fe19 0.2947 0.0882 0.5075 034 0.8292 0.5908 0.3853 Fe21 0.4416 0.1711 0.5043 0.3633 0.8203 0.2738 0.41125 Fe22 0.3752 0.7519 0.5028 0.37 0.9233 0.2738 0.4125 Fe24 0.4804 0.2733 0.2901 040 0.9231 0.0261 0.4108 Si2 0.1991 0.3526 0.2869 0.41 0.0057 0.4471 Si3 0.0380 0.2717 0.2872 0.44 0.0063 0.4215 Si6 0.209 0.1141 0.2933 0.45 0.9931 0.1652 0.4371 Si6 0.2299 0.1414 0.2927 0.44 0.0933 0.1160 0.4211 Si7 0.432								
Fe18 0.8732 -0.0021 0.4972 O33 0.8387 0.3502 0.4038 Fe19 0.2947 0.0009 0.5004 O33 0.8333 0.8500 0.3986 Fe20 0.3752 0.7519 0.5028 O37 0.9233 0.2738 0.41178 Fe23 0.2905 0.8323 0.4992 O38 0.9139 0.5086 0.3899 Fe24 0.5400 0.0832 0.5004 O39 0.9098 0.7599 0.3850 Si1 0.2804 0.2733 0.2217 0.2876 O44 0.0052 0.4375 0.4087 Si2 0.1991 0.3526 0.2862 O44 0.0052 0.4375 0.4087 Si3 0.3380 0.2817 O444 0.0109 0.1986 0.4221 Si6 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3944 Si8 0.2744 0.5075 0.2722 O446 0.9333 0.1610 0.4261<								
Fe19 0.2947 0.0882 0.5075 O34 0.8292 0.5908 0.3950 Fe20 0.3747 0.0009 0.5004 O35 0.8333 0.8500 0.3950 Fe21 0.4752 0.7519 0.5028 O37 0.9233 0.2738 0.4178 Fe23 0.2905 0.8323 0.4992 O38 0.9119 0.5066 0.3895 Fe24 0.5420 0.0832 0.5004 O39 0.9098 0.7599 0.3850 Si1 0.0380 0.2717 0.2862 0.44 0.0052 0.4475 0.4067 Si3 0.0380 0.2717 0.2882 O44 0.00931 0.3635 0.4215 Si6 0.0209 0.1141 0.2933 O45 0.9931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 O46 0.0933 0.160 0.4211 Si10 0.2744 0.2575 O46 0.0933 0.1610 0.2247								
Fe20 0.3747 0.0009 0.5004 O35 0.8333 0.8500 0.3950 Fe21 0.4516 0.1711 0.5043 O36 0.8447 0.1116 0.4178 Fe22 0.3752 0.5123 0.4233 0.2933 0.2738 0.4125 Fe24 0.5420 0.0832 0.5004 O39 0.9098 0.7599 0.3850 Si1 0.2804 0.2733 0.2901 O40 0.0231 0.0261 0.4108 Si2 0.1991 0.3526 0.2869 O41 0.0057 0.4067 0.3947 Si4 0.9582 0.1107 0.2862 O43 0.0057 0.9416 0.4064 Si5 0.3030 0.2293 0.2841 O44 0.0193 0.1660 0.4221 Si6 0.2024 0.2841 O49 0.2221 0.1652 0.2497 Si10 0.7952 0.0274 0.2841 O49 0.2221 0.1620 2.2497 Si11								
Fe21 0.4616 0.1711 0.5043 O36 0.8447 0.1116 0.4178 Fe22 0.3752 0.7519 0.5028 O37 0.9233 0.2738 0.4125 Fe23 0.2905 0.8323 0.4902 O38 0.9119 0.5086 0.3890 Si1 0.2804 0.2733 0.2901 O44 0.9231 0.0261 0.4118 Si3 0.0380 0.2717 0.2876 O42 0.0005 0.3475 0.4408 Si4 0.9582 0.1107 0.2882 O44 0.0105 0.4375 0.4402 Si6 0.2029 0.1141 0.2933 O45 0.0931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 0.4043 0.5998 0.4013 Si8 0.2744 0.5051 0.2717 O47 0.0845 0.522 0.2477 Si10 0.7952 0.0274 0.2281 O51 0.1010 0.2826 0.2444								
Fe22 0.3752 0.7519 0.5028 O37 0.9233 0.2738 0.4125 Fe23 0.5204 0.8302 0.4992 O38 0.9119 0.5086 0.3899 Si1 0.2804 0.2733 0.2901 O40 0.9231 0.0261 0.4108 Si2 0.1991 0.3526 0.2869 O41 0.0057 0.4475 0.4067 Si3 0.0380 0.2717 0.2872 O44 0.0000 0.6807 0.3947 Si4 0.9582 0.1107 0.2872 O44 0.0199 0.1936 0.4221 Si6 0.2029 0.1141 0.2933 0.4160 0.4221 Si6 0.2029 0.1141 0.2933 0.1600 4.221 Si7 0.4320 0.3383 0.2681 O46 0.0843 0.5998 0.4013 Si8 0.7974 0.2681 O47 0.2846 0.533 0.1601 0.2446 Si10 0.7950 0.2714								
Fe23 0.2905 0.8323 0.4992 O38 0.9119 0.5086 0.3899 Fe24 0.5420 0.0832 0.5004 O239 0.9098 0.7599 0.3850 Si1 0.2804 0.2733 0.2901 O40 0.9231 0.0261 0.4108 Si2 0.1991 0.3526 0.2869 O41 0.0052 0.4375 0.4087 Si3 0.0380 0.2217 O.2876 O42 0.0000 0.6807 0.3947 Si6 0.0390 0.0298 0.2872 O44 0.0109 0.1986 0.4221 Si6 0.2029 0.1141 0.2933 0.455 0.8529 0.3994 Si8 0.2744 0.5075 0.2772 O47 0.845 0.8529 0.3994 Si10 0.7582 0.2744 0.4010 0.2525 O52 0.2648 0.53 0.9224 0.2847 0.2468 Si11 0.9530 0.8798 0.2648 O53 0.9255								
Si1 0.2804 0.2733 0.2901 O40 0.9231 0.0261 0.4108 Si2 0.1991 0.3526 0.2869 O41 0.0052 0.4375 0.4067 Si4 0.9582 0.1107 0.2882 O43 0.0057 0.9416 0.4064 Si5 0.0390 0.0298 0.2872 O44 0.0109 0.1986 0.4221 Si6 0.2029 0.1141 0.2933 O45 0.0931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 O46 0.0933 0.1160 0.4211 Si8 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3994 Si10 0.7592 0.2744 0.2821 O51 0.1610 0.2261 0.2447 Si11 0.9530 0.8591 0.2722 O54 0.1041 0.0438 0.2445 Si13 0.5596 0.4910 0.2552 O52 0.9801 0.2606 0.2703	Fe23	0.2905	0.8323	0.4992		0.9119	0.5086	0.3899
Si2 0.1991 0.3526 0.2869 0.41 0.0052 0.4375 0.4087 Si3 0.0380 0.2717 0.2876 0.42 0.0000 0.6807 0.3947 Si3 0.0390 0.0298 0.2872 0.44 0.0109 0.1986 0.4221 Si6 0.2029 0.1111 0.2933 0.45 0.0931 0.3635 0.4211 Si7 0.4320 0.3383 0.2681 0.464 0.0933 0.1160 0.4211 Si8 0.2744 0.5075 0.2772 0.47 0.0845 0.8529 0.3994 Si8 0.2744 0.5075 0.2724 0.2841 049 0.2221 0.1652 0.2497 Si11 0.7552 0.0274 0.2864 053 0.9224 0.2864 053 Si14 0.4366 0.5789 0.2648 055 0.3366 0.2757 0.2378 Si15 0.1940 0.5873 0.2722 0.564 0.1011 0.0438<	Fe24	0.5420	0.0832	0.5004	O39		0.7599	0.3850
Si3 0.0880 0.2717 0.2876 042 0.0000 0.6807 0.3947 Si4 0.9582 0.1107 0.2882 043 0.0057 0.9416 0.4064 Si5 0.0390 0.0298 0.2872 044 0.0109 0.1986 0.4221 Si6 0.2029 0.1141 0.2933 045 0.0931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 046 0.0843 0.5998 0.4013 Si8 0.2744 0.5075 0.2772 047 0.0845 0.8529 0.3994 Si10 0.7952 0.0274 0.2841 049 0.2221 0.1652 0.2454 Si11 0.9530 0.8591 0.2726 0.55 0.9801 0.1631 0.2464 Si12 0.2797 0.0268 0.2822 0.0437 0.2458 Si13 0.5059 0.4910 0.2552 0.52 0.9801 0.1631 0.2464 Si14								
Si4 0.9582 0.1107 0.2882 O43 0.0057 0.9416 0.4064 Si5 0.0390 0.0298 0.2872 O44 0.0109 0.1986 0.4221 Si6 0.2029 0.1141 0.2933 O45 0.0933 0.451 0.4215 Si8 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3994 Si10 0.752 0.2744 0.2841 O49 0.2221 0.1652 0.2447 Si11 0.9530 0.8591 0.2728 O50 0.2224 0.2847 0.2468 Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4300 0.5778 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.1900 0.5973 0.2722 O54 0.1041 0.2461 Si14 0.4300 0.5798 0.2664 O55 0.3266 0.2777 0.2378								
Si5 0.0390 0.0298 0.2872 O44 0.0109 0.1986 0.4221 Si6 0.2029 0.1141 0.2933 O45 0.0931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 O46 0.0843 0.5598 0.4013 Si8 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3994 Si9 0.9534 0.3451 0.2728 O50 0.2224 0.2647 0.2468 Si12 0.2797 0.0268 0.2821 O51 0.1010 0.2826 0.2454 Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4306 0.5798 0.2684 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.9993 0.2710 O57 0.9791 0.2800 0.2336								
Si6 0.2029 0.1141 0.2933 O45 0.0931 0.3635 0.4215 Si7 0.4320 0.3383 0.2681 O46 0.0845 0.5998 0.4013 Si8 0.2744 0.5075 0.2771 O47 0.0845 0.8529 0.3994 Si10 0.7952 0.0274 0.2841 O49 0.2221 0.1652 0.2447 Si11 0.9530 0.8591 0.2728 O50 0.2101 0.2824 0.2448 Si12 0.2797 0.0268 0.2821 O51 0.1010 0.2826 0.2448 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.437 0.2459 Si15 0.1940 0.5873 0.2712 O54 0.1041 0.0438 0.2484 Si16 0.0307 0.5022 0.2664 O55 0.3366 0.2770 0.2770 0.2800 0.2396 Si18 0.7066 0.8552 0.2673 O56 0.2184 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si7 0.4320 0.3383 0.2681 O46 0.0843 0.5998 0.4013 Si8 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3994 Si9 0.9534 0.3451 0.2751 O48 0.0933 0.1160 0.4211 Si10 0.7522 0.0274 0.2841 O49 0.2224 0.2847 0.2468 Si11 0.9530 0.8591 0.2728 O50 0.2224 0.2847 0.2468 Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2484 Si16 0.0307 0.5022 0.2648 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2444 Si20 0.7718 0.2663 O.598 0.8596 0.04020 0.2444								
Si8 0.2744 0.5075 0.2772 O47 0.0845 0.8529 0.3994 Si9 0.9534 0.3451 0.2751 O48 0.0933 0.1160 0.4211 Si10 0.7952 0.0274 0.2841 O49 0.2221 0.1652 0.2497 Si11 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2451 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.0307 0.5022 0.2684 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2495 Si18 0.7090 0.993 0.2710 O57 0.9794 0.9180 0.2382 Si21 0.7212 0.7728 0.2623 O59 0.9794 0.9180 0.2382 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si9 0.9534 0.3451 0.2751 O48 0.0933 0.1160 0.4211 Si10 0.7952 0.0274 0.2841 O49 0.2224 0.2847 0.2468 Si11 0.9530 0.8591 0.2728 O50 0.2224 0.2847 0.2468 Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2451 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.0307 0.5022 0.2684 O55 0.3366 0.2757 0.2376 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7766 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7772 0.7263 O560 0.2180 0.2382 Si21 0.0312 0.7741 0.2663 0.556 0.2246 0.4442 0.2462 Si22								
Si10 0.7952 0.0274 0.2841 O49 0.2221 0.1652 0.2487 Si11 0.9530 0.8591 0.2728 O50 0.2224 0.2847 0.2468 Si12 0.2797 0.0268 0.2821 O51 0.1010 0.2826 0.2454 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2459 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.7900 0.0993 0.2710 O56 0.2184 0.4012 0.2405 Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.4444 0.2462 Si22 0.4366 0.9994 0.2100 0.5130 0.2293 Si25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si12 0.2797 0.0268 0.2821 O51 0.1010 0.2826 0.2454 Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2459 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2386 Si21 0.0312 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.4444 0.2462 Si22 0.1950 0.8583 0.2710 O61 0.4505 0.5183 0.2240 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210								0.2497
Si13 0.5059 0.4910 0.2552 O52 0.9801 0.1631 0.2461 Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2489 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2386 Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.4444 0.2462 Si22 0.1950 0.8583 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2577 0.2630 O63 0.4505 0.5187 0.2293	Si11	0.9530		0.2728	O50	0.2224	0.2847	0.2468
Si14 0.4306 0.5798 0.2648 O53 0.9825 0.0437 0.2459 Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.0307 0.5022 0.2684 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7666 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O661 0.4506 0.2666 0.2240 Si22 0.4366 0.994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 0.630 0.4505 0.5187 0.22	Si12	0.2797		0.2821				
Si15 0.1940 0.5873 0.2722 O54 0.1041 0.0438 0.2484 Si16 0.0307 0.5022 0.2684 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7666 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2462 Si22 0.1950 0.8583 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5130 0.2299 Si26 0.7219 0.5600 0.1311 O64 0.3450 0.2722 0.2311								
Si16 0.0307 0.5022 0.2684 O55 0.3366 0.2757 0.2378 Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7721 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2442 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5183 0.2299 Si26 0.5819 0.2803 0.1301 O64 0.3340 0.5130 0.2293 Si26 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311								
Si17 0.7899 0.2606 0.2703 O56 0.2184 0.4012 0.2405 Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2462 Si22 0.1950 0.8583 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5083 0.2199 Si26 0.7219 0.5600 0.1311 O65 0.2133 0.5158 0.2399 Si26 0.7212 0.2791 0.1315 O66 0.9955 0.5187 0.2311 Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311								
Si18 0.7090 0.0993 0.2710 O57 0.9791 0.2800 0.2396 Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2462 Si22 0.1950 0.8583 0.2712 O62 0.4472 0.3860 0.2210 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5183 0.2190 Si26 0.7219 0.5600 0.1311 O65 0.2133 0.5158 0.2331 Si26 0.7219 0.2600 0.1311 O66 0.0955 0.5187 0.2293 Si26 0.5819 0.2803 0.1305 O76 0.7389 0.3957 0.2311								
Si19 0.7066 0.8552 0.2678 O58 0.8596 0.0402 0.2444 Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.246 0.0444 0.2462 Si22 0.1950 0.8583 0.2716 O61 0.4506 0.2666 0.2240 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5083 0.2190 Si26 0.7219 0.5600 0.1311 O64 0.3340 0.5130 0.2299 Si26 0.7219 0.5600 0.1311 O66 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1313 O66 0.79789 0.3957 0.2311 Si20 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297								
Si20 0.7872 0.7728 0.2623 O59 0.9794 0.9180 0.2382 Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2462 Si22 0.1950 0.8583 0.2712 O62 0.4472 0.3860 0.2240 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5083 0.2190 Si25 0.8615 0.5596 0.1301 O64 0.3340 0.5130 0.2299 Si26 0.7219 0.5600 0.1315 O66 0.0955 0.5187 0.2293 Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297								
Si21 0.0312 0.7741 0.2664 O60 0.2246 0.0444 0.2462 Si22 0.1950 0.8583 0.2716 O61 0.4506 0.2656 0.2240 Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5083 0.2190 Si25 0.8615 0.5596 0.1301 O64 0.3340 0.5130 0.2299 Si26 0.7212 0.5600 0.1311 O65 0.5187 0.22393 Si27 0.5821 0.4205 0.1315 O66 0.0955 0.5187 0.2293 Si28 0.5819 0.2030 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1302 O71 0.7398 0.0396 0.2371 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
Si23 0.4366 0.0994 0.2712 O62 0.4472 0.3860 0.2210 Si24 0.5120 0.2557 0.2630 O63 0.4505 0.5083 0.2190 Si25 0.8615 0.5596 0.1301 O64 0.3340 0.5130 0.2299 Si26 0.7219 0.5600 0.1311 O65 0.2133 0.5158 0.2393 Si27 0.5821 0.4205 0.1315 O66 0.0955 0.5187 0.2293 Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1313 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1306 O70 0.7398 0.0396 0.2371 Si32 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2268 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2268			0.7741	0.2664	O60	0.2246	0.0444	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si22	0.1950	0.8583	0.2716	O61	0.4506		
Si25 0.8615 0.5596 0.1301 O64 0.3340 0.5130 0.2299 Si26 0.7219 0.5600 0.1311 O65 0.2133 0.5158 0.2339 Si27 0.5821 0.4205 0.1315 O66 0.0955 0.5187 0.2239 Si28 0.5819 0.2203 0.3907 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1302 O71 0.7398 0.0396 0.2371 Si32 0.3867 0.8937 0.1302 O71 0.7398 0.7971 0.2388 Si33 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2288 Si36 0.5268 0.7543 0.1313 O76 0.964 0.783 0.2280 Si36 0.5263 0.4153<								
Si26 0.7219 0.5600 0.1311 O65 0.2133 0.5158 0.2339 Si27 0.5821 0.4205 0.1315 O66 0.0955 0.5187 0.2293 Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.6603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1308 O70 0.7398 0.0396 0.2371 Si32 0.3877 0.8937 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2460 0.6138 0.1305 O72 0.7298 0.7871 0.2283 Si35 0.3665 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O75 0.0964 0.7883 0.2280								
Si27 0.5821 0.4205 0.1315 O66 0.0955 0.5187 0.2293 Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1308 O70 0.7398 0.0396 0.2371 Si32 0.3877 0.8937 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2293 Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2268 Si35 0.3665 0.6149 0.1313 O74 0.9784 0.7933 0.2286 O1 0.1801 0.2865 0.4307 O76 0.2166 0.9163 0.2361 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si28 0.5819 0.2803 0.1309 O67 0.9789 0.3957 0.2311 Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8937 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2239 Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2288 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O75 0.964 0.7883 0.2280 O1 0.1801 0.2865 0.4307 O76 0.2166 0.9163 0.2361 O2 0.1737 0.0295 0.4153 O77 0.3399 0.3360 0.2361								
Si29 0.7212 0.2791 0.1311 O68 0.8550 0.2722 0.2316 Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2239 Si34 0.2460 0.6138 0.1305 O72 0.7298 0.7871 0.2238 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O76 0.2166 0.9163 0.2261 O1 0.1801 0.2865 0.4407 O76 0.2166 0.9163 0.2265 O4 0.1737 0.2295 0.4142 O79 0.5613 0.2572 0.2012 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si30 0.8603 0.4191 0.1303 O69 0.7323 0.1525 0.2297 Si31 0.5280 0.8945 0.1308 O70 0.7398 0.0396 0.2371 Si32 0.3877 0.8937 0.1302 O71 0.7398 0.9153 0.2348 Si33 0.2476 0.7543 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2239 Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2268 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O75 0.0964 0.7883 0.2280 O1 0.1801 0.2865 0.4107 O76 0.2166 0.9163 0.2361 O2 0.1723 0.5253 0.4153 O77 0.3399 0.0380 0.2357 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Si31 0.5280 0.8945 0.1308 O70 0.7398 0.0396 0.2371 Si32 0.3877 0.8937 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2238 Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2268 Si35 0.3655 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O75 0.0964 0.7883 0.2280 O1 0.1801 0.2865 0.4307 O76 0.2166 0.9163 0.2361 O2 0.1723 0.5253 0.4153 O77 0.3399 0.0380 0.2357 O3 0.1683 0.7695 0.4023 O78 0.4575 0.1496 0.2265 O4 0.1737 0.0295 0.4142 O79 0.5613 0.2572 0.2012								
Si32 0.3877 0.8937 0.1302 O71 0.7369 0.9153 0.2348 Si33 0.2476 0.7543 0.1305 O72 0.7298 0.7871 0.2298 Si34 0.2460 0.6138 0.1305 O72 0.7298 0.7871 0.2298 Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2268 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O76 0.2166 0.9163 0.2361 O2 0.1723 0.5253 0.4153 O77 0.3399 0.0380 0.2361 O2 0.1737 0.0295 0.4142 O79 0.5613 0.2572 0.2012 O5 0.2562 0.4452 0.4209 O80 0.5576 0.4843 0.1969 O6 0.2511 0.6855 0.4055 O81 0.4368 0.6137 0.2033								
Si34 0.2460 0.6138 0.1309 O73 0.8542 0.7927 0.2268 Si35 0.3865 0.6149 0.1313 O74 0.9784 0.7933 0.2288 Si36 0.5268 0.7543 0.1313 O75 0.0964 0.7833 0.2280 O1 0.1801 0.2865 0.4307 O76 0.2166 0.9163 0.2361 O2 0.1723 0.5253 0.4153 O77 0.3399 0.0380 0.2357 O3 0.1683 0.7695 0.4023 O78 0.4575 0.1496 0.2265 O4 0.1737 0.0295 0.4142 O79 0.5613 0.2572 0.2012 O5 0.2562 0.4452 0.4209 O80 0.5576 0.4843 0.1969 O6 0.2511 0.6855 0.4055 O81 0.4368 0.6137 0.2033 O7 0.2526 0.9391 0.4045 O82 0.2105 0.6185 0.2080 <td></td> <td></td> <td>0.8937</td> <td>0.1302</td> <td>071</td> <td>0.7369</td> <td>0.9153</td> <td>0.2348</td>			0.8937	0.1302	071	0.7369	0.9153	0.2348
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si33	0.2476	0.7543					
Si36 0.5268 0.7543 0.1313 O75 0.0964 0.7883 0.2280 O1 0.1801 0.2865 0.4307 O76 0.2166 0.9163 0.2361 O2 0.1723 0.5253 0.4153 O77 0.3399 0.0380 0.2357 O3 0.1683 0.7695 0.4023 O78 0.4575 0.1496 0.2265 O4 0.1737 0.0295 0.4142 O79 0.5613 0.2572 0.2012 O5 0.2562 0.4452 0.4209 O80 0.5576 0.4843 0.1969 O6 0.2511 0.6855 0.4055 O81 0.4368 0.6137 0.2033 O7 0.2526 0.9391 0.4045 O82 0.2105 0.6185 0.2080 O8 0.2607 0.2036 0.4273 O83 0.9605 0.4907 0.2054 O9 0.3383 0.3627 0.4241 O84 0.7324 0.2618 0.2071		0.2460						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
O5 0.2562 0.4452 0.4209 O80 0.5576 0.4843 0.1969 O6 0.2511 0.6855 0.4055 O81 0.4368 0.6137 0.2033 O7 0.2526 0.9391 0.4045 O82 0.2105 0.6185 0.2080 O8 0.2607 0.2036 0.4273 O83 0.9605 0.4907 0.2054 O9 0.3383 0.3627 0.4241 O84 0.7324 0.2618 0.2071 O10 0.3346 0.6048 0.4107 O85 0.6077 0.0133 0.2058 O11 0.3349 0.8538 0.4056 O86 0.6055 0.7811 0.2033 O12 0.3393 0.1123 0.4156 O87 0.7300 0.6563 0.2003 O13 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
O8 0.2607 0.2036 0.4273 O83 0.9605 0.4907 0.2054 O9 0.3383 0.3627 0.4241 O84 0.7324 0.2618 0.2071 O10 0.3346 0.6048 0.4107 O85 0.6077 0.0133 0.2058 O11 0.3349 0.8538 0.4056 O86 0.6075 0.7811 0.2033 O12 0.3393 0.1123 0.4156 O87 0.7300 0.6563 0.2005 O13 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070								
O9 0.3383 0.3627 0.4241 O84 0.7324 0.2618 0.2071 010 0.3346 0.6048 0.4107 O85 0.6077 0.0133 0.2058 011 0.3349 0.8538 0.4056 O86 0.6055 0.7811 0.2033 012 0.3393 0.1123 0.4156 O87 0.7300 0.6563 0.2005 013 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 014 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070							0.4907	
O11 0.3349 0.8538 0.4056 O86 0.6055 0.7811 0.2033 O12 0.3393 0.1123 0.4156 O87 0.7300 0.6563 0.2005 O13 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070				0.4241				
O12 0.3393 0.1123 0.4156 O87 0.7300 0.6563 0.2005 O13 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070								
O13 0.4188 0.2730 0.4115 O88 0.9616 0.6575 0.2044 O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070								
O14 0.4149 0.5193 0.4087 O89 0.2115 0.7845 0.2070								
				0.7070		0.1700		VL

TABLE 1	.—Cont	linued
---------	--------	--------

Atom	x	У	z	Atom	x	y	z
091	0.8454	0.4906	0.1493	0100	0.2782	0.7082	0.1495
O92	0.8134	0.5970	0.1667	0101	0.3249	0.6255	0.1671
O93	0.6728	0.4951	0.1548	O102	0.4546	0.7107	0.1531
O94	0.5846	0.3685	0.1677	O103	0.8241	0.4906	0.0000
O95	0.6718	0.3164	0.1519	0104	0.6683	0.4881	0.0000
O96	0.8124	0.3669	0.1665	0105	0.5125	0.3321	0.0000
097	0.5555	0.8551	0.1674	0106	0.5102	0.1776	0.0000
O98	0.4544	0.8839	0.1501	O107	0.6673	0.1761	0.0000
099	0.3266	0.8546	0.1665	O108	0.8230	0.3314	0.0000

standard deviations are not included because they have no physical meaning.

RESULTS

Stilpnomelane

The DLS calculations indicate that solid solution in stilpnomelane between Fe and Mn end-members is plausible on the basis of geometric connectivity. Comparisons between Fe²⁺ and Mn²⁺ end-members as derived by DLS indicate that both the islands and the interisland connectors adjust to compensate for the variation in octahedral cation size. Misfit is relieved between the tetrahedral and octahedral sheets in both Fe and Mn structures by the warping of the octahedral sheet (maximum variation in Δz for Fe cations of 0.28 vs. 0.32 Å for Mn) to form a dome and out-of-plane tilting of the attached tetrahedral sheets, with the Mn structure having greater curvature. In order to achieve interlayer connectivity, three island boundaries must meet at a six-membered silicate ring.

The tetrahedral rotation angle, α , involves an in-plane rotation of adjacent tetrahedra in opposite directions around the silicate ring. For ideal phyllosilicates, tetrahedral rotation is usually considered a measure of misfit between the octahedral sheet and the attached tetrahedral sheet, with a larger α value indicating greater misfit. For these phyllosilicates, the tetrahedral sheet is laterally larger than the octahedral sheet, and thus inplane rotation reduces a tetrahedral sheet that is too large. In the case of stilpnomelane, however, the tetrahedral sheet is laterally smaller than the octahedral sheet. Thus, the rotation angle is not a useful parameter for describing the silicate rings within the islands, since they are fully extended, but α can be used to describe the silicate rings that serve as interisland connectors.

The α values for the interisland connectors are 11° for the Mn end-member and 13.5° for Fe, which represent approximately a 1% change in lateral length for an idealized single tetrahedral ring. This result suggests that island boundary positions as they relate to island neighbors, in plan view, are only slightly affected by differences in the Mn and Fe²⁺ sizes. Thus, because the interisland connectors in stilpnomelane do not link directly to the octahedral sheets, α is determined for the most part by the remaining space available between island boundaries.

440

Interisland connectors are tilted out of plane, however, with greater tilt for the Fe end-member than for the Mn end-member (Mn: \sim 7°, Fe: \sim 13°). This result may indicate that the c cell edge is incorrect for the following reasons: (1) the tilt involves primarily the z coordinate of the ^[4]Si and O atoms, (2) atomic coordinates were constrained to fit within a fixed cell, and (3) the c edge length was extrapolated from samples that were compositionally quite Fe rich. In order to test the validity of the c edge length, the Mn end-member c edge length was arbitrarily increased in size by 1 and by 4% to determine if the interisland tetrahedral rings would be affected. Interestingly, unreasonable distortions in the interisland tetrahedral sites occur, with bond distances varying from 1.615 to 1.641 Å for the 1% increase in c and 1.633–1.652 Å for the 4% increase. In both cases, however, the tetrahedra within the connector rings did not increase their tilt. This result indicates that the derived c edge length for Mn end-member stilpnomelane is reasonable, that the length is geometrically controlled, and that the observed tetrahedral tilts from the analysis are a requirement for the geometric connectivity of the islands. Clearly, however, there is a geometric limit to the amount of tetrahedral tilting within the connector rings, which cannot be compensated by a change in cell dimensions. In addition, the result argues against a similar DLS treatment for a hypothetical Fe end-member analysis for parsettensite, unless cell-parameter data for more Fe-rich samples become available.

Application of DLS analysis of stilpnomelane to parsettensite

A fundamental difference between the stilpnomelane and parsettensite structures is that six-membered ring connectors serve to join three adjacent island boundaries in stilpnomelane, but four-membered ring connectors link only two adjacent islands in parsettensite. Because the results from the DLS analysis of stilpnomelane solid solutions suggest that misfit is relieved by adjustments to the islands and (to a lesser degree) the island connectors, and because the geometry of the connectors in parsettensite differs from that in stilpnomelane, it is difficult to assess in detail how the two geometries may relieve misfit between the tetrahedral and octahedral sheets. For example, in parsettensite, warping of the octahedral sheet $(\Delta z = 0.24 \text{ Å})$ is less than in stilpnomelane (Fe: 0.28 Å, Mn: 0.32 Å), but the significance of these differences cannot be easily evaluated.

Although the stilpnomelane d_{001} value is about 12.13 Å at Mn end-member compositions, this spacing is considerably less than that of parsettensite ($d_{001} = 12.6$ Å). The parsettensite model, as indicated by Fourier analysis (Eggleton and Guggenheim, 1994) and the DLS analysis, has considerable tetrahedral tilting associated with the four-membered ring interisland connector, which is clearly not a requirement in the six-membered ring tetrahedral connectors in stilpnomelane. The higher tetrahedral tilt in parsettensite may reduce Si-Si repulsion by placing the shared O atom of the four-membered ring more directly between the Si atoms than they would be if the bases of the tetrahedra were, as in the six-membered rings in stilpnomelane, parallel to (001). Thus, the difference in the d_{001} values between a Mn-rich stilpnomelane and parsettensite is the ability of the four-membered ring connectors in parsettensite to tilt so that a tetrahedral edge can be vertical; island curvature is not the major factor.

In stilpnomelane, the interisland connectors have the ability to reduce their lateral dimensions by tetrahedral rotation. In contrast, parsettensite connectors, which are four-membered rings, cannot accomplish such reductions. Thus, parsettensite requires the nearly perfect alignment of islands, since connections are made by rigid four-membered rings. For islands that are too small, neighboring islands are imperfectly aligned, and parsettensite cannot exist.

In Mg- or Fe³⁺-rich stilpnomelane with relatively small lateral dimensions of the islands, the six-membered ring connectors can pull the tetrahedra of neighboring islands closer to maintain registry. However, the interisland connectors approach a ditrigonal configuration with the reduction in size of the lateral axes. As tetrahedral rotation increases within the interisland connectors, Si to Si distances are reduced and Si-Si repulsions would increase, thereby causing tilting of tetrahedra and an increase in the d_{001} value.

The question of the possible coexistence of Mn-rich stilpnomelane and parsettensite remains. Perhaps, because the Mn-Si ratios differ for parsettensite and stilpnomelane, the apparent lack of parsettensite and Mn-rich stilpnomelane intergrowths, which are not yet known to exist, may simply be a result of bulk chemistry. Nothing is known about the stability relations of either Mn-rich stilpnomelane or parsettensite, and experimental studies are needed for a better understanding of their phase relations.

ACKNOWLEDGMENTS

We appreciate the efforts of the reviewers of this paper, H.R. Wenk, P. Heaney, G. Guthrie, and an anonymous reviewer. We gratefully acknowledge the Geochemistry Program and the U.S.-Australia Cooperative Science Program of the National Science Foundation for providing support under grant EAR-9003688, the Australian Research Council for support, and the University of Illinois at Chicago for providing a sabbatical leave for S.G.

References cited

- Baerlocher, C., Hepp, A., and Meier, W.M. (1978) DLS-76: A program for the simulation of crystal structures by geometric refinement. Institute of Crystallography and Petrography, ETH Zurich, Switzerland.
- Baur, W.H. (1977) Computer simulation of crystal structures. Physics and Chemistry of Minerals, 2, 3-20.
- Dunn, P.J., Peacor, D.R., and Simmons, W.B. (1984) Lennilenapeite, the Mg-analogue of stilpnomelane, and chemical data on other stilpnomelane species from Franklin, New Jersey. Canadian Mineralogist, 22, 259-263.
- Dunn, P.J., Peacor, D.R., and Su, S.-C. (1992) Franklinphilite, the manganese analog of stilpnomelane, from Franklin, New Jersey. Mineralogical Record, 23, 465–468.

GUGGENHEIM AND EGGLETON: MODULATED PHYLLOSILICATE DLS STUDY

- Eggleton, R.A. (1972) The crystal structure of stilpnomelane. II. The full cell. Mineralogical Magazine, 38, 693-711.
- Eggleton, R.A., and Chappell, B.W. (1978) The crystal structure of stilpnomelane. III. Chemistry and physical properties. Mineralogical Magazine, 42, 361-368.
- Eggleton, R.A., and Guggenheim, S. (1994) The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate: Parsettensite. American Mineralogist, 79, 426-437.
- Guggenheim, S., and Eggleton, R.A. (1987) Modulated 2:1 layer silicates: Review, systematics, and predictions. American Mineralogist, 72, 724– 738.

(1988) Crystal chemistry, classification, and identification of mod-

ulated layer silicates. In Mineralogical Society of America Reviews in Mineralogy, 19, 675-725.

- Meier, W.M., and Villiger, H. (1969) Die Methode der Abstandsverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen. Zeitschrift für Kristallographie, 129, 411–423.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.

MANUSCRIPT RECEIVED AUGUST 14, 1992 MANUSCRIPT ACCEPTED JANUARY 7, 1994