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INTRODUCTION

During our study of specimens of dumortierite from Oreana, 
Nevada, we found that the associated muscovite in one specimen 
contained unusually high concentrations of Ba. It is the purpose 
of this paper to characterize this mica. Previously, Ba-containing 
muscovite has been reported from numerous localities with BaO 
concentrations ranging up to 12 wt% (Dunn 1984; Dymek et al. 
1983; Pan and Fleet 1991; Tracy 1991; Grapes 1993; Harlow 
1995; Jiang et al. 1996), and the recently described mineral, gan-
terite (Graeser et al. 2003) with BaO ranging up to 17.15 wt%.

METHODS

The hand specimen, Caltech reference collection number CIT 1547, comes from 
the Lincoln Hill dumortierite deposit in the Humboldt Range located near Oreana, 
Pershing County, Nevada (Kerr and Jenny 1935). It is an approximately 7 cm hand 
specimen that is composed of small crystals of light-blue dumortierite associated 
with veins of cream-white barite and local areas of pale-lavender dumortierite. 
Polished thin sections of the specimen showed that the dumortierite and barite are 
intimately intermixed with a Þ ne-grained micaceous mineral.

Back-scattered electron (BSE) images were obtained with a LEO 1550VP Þ eld 
emission SEM and a JEOL 733 electron microprobe. Regions enriched in heavy 
elements were subjected to detailed quantitative elemental microanalyses conducted 
with the JEOL 733 electron microprobe operated at 15 kV and 25 nA with a beam 
diameter of 1 µm. Standards for the analysis were albite (NaKα), microcline 
(KKα), anorthite (SiKα, AlKα, CaKα), rutile (TiKα), forsterite (MgKα), fayalite 
(FeKα), tephroite (MnKα), and benitoite (BaLα). Analyses were processed with 
the CITZAF correction procedure (Armstrong 1995). The electron microprobe 
data of the micas were carefully veriÞ ed to assure that no contamination from 
barite was present.

Electron-backscatter diffraction (ESBD) analyses at a sub-micrometer scale 
were preformed using an HKL EBSD system on the LEO 1550VP, operated at 20 
kV and 1 nA in a focused beam with a 70° tilted stage. The EBSD system was 
calibrated using a single crystal Si standard. Cell constants for the Ba mica were 
obtained by matching experimental EBSD pattern with modiÞ ed 2M1 muscovite 
structures.

Raman spectroscopic microanalysis was carried out using a Renishaw M1000 
micro-Raman spectrometer system on portions of the sample in thin section previ-
ously identiÞ ed as Ba-rich through BSE images. Approximately 1 mw of 514.5 
nm laser illumination (at the sample) focused with a 100× objective lens provided 
satisfactory spectra. The spot size was about 2 µm. Analyses were also conducted 
on regions identiÞ ed with a low-Ba content. Peak positions were calibrated against 
an Si standard. A dual-wedge polarization scrambler was used in the laser beam 
for all spectra.

RESULTS

The electron microscope images show that the muscovite 
occurs in polycrystalline masses of mica that are a few hundred 
micrometers in size. Individual mica crystals are up to 100 
micrometers in width. The mica is admixed with 50 to 400 µm 
dumortierite crystals, 10 to 400 µm blebs of barite, and trace 
amounts of 1 to 30 µm corundum crystals. Nano-sized barite 
crystals (down to 200 nm in thickness) also occur between 
muscovite layers. BSE imaging (Fig. 1) reveals that some re-
gions of the muscovite contain areas of high concentrations of 
a heavy element. 

Electron microprobe analyses of the micas (Table 1) show that 
the regions that contain barium have BaO concentrations ranging 
from 0.60 to 18.12 wt%. The mica with 18.12 wt% BaO shows 
an idealized mica composition corresponding to ganterite. The 
concentration of Na does not vary with Ba or K concentrations in 
the Oreana micas (Fig. 2). Aluminum dominates the octahedral 
sites where only traces of Ti and Fe are present. The ideal formula 
of Oreana ganterite, (Ba0.5K0.5)Al2(Si2.5Al1.5O10)(OH)2, does not 
have the Na found in the ideal formula of the Berisal ganterite, 
[Ba0.5(Na + K)0.5]Al2 (Si2.5Al1.5O10) (OH)2.

The EBSD patterns of the ganterite and the associated mus-
covite with very low Ba content are almost identical (Fig. 3). 
The patterns were obtained under the same SEM conditions. The 
improved sharpness of the ganterite pattern (Fig. 3a) is likely due 
to heavier Ba in the structure. The patterns were indexed to give * E-mail: chi@gps.caltech.edu
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a best Þ t based on 2M1 muscovite structure (Fig. 3c), showing a 
= 0.519 nm, b = 0.900 nm, c = 2.004 nm, β = 95.7°, all of which 
are consistent with ganterite (Graeser et al. 2003).

Electron microprobe analyses showed that F is absent from 
the mica. The Raman spectra (Fig. 4a) gave clear evidence for 
OH in the Ba-rich mica with a band at about 3627 cm�1 that had 
a higher-energy shoulder at about 3655 cm�1. An OH band with 
similar intensity was also observed in the Raman spectrum of 
the nearby muscovite.

Raman spectra (Fig. 4b) reveal that the most Ba-rich mica 
has the same features as the associated low-Ba muscovite and is 
effectively undistinguishable from muscovite in this wavenumber 
range. Both of these patterns correspond to standard muscovite 

patterns in commercial and in-house databases of Raman spec-
tra. The Berisal ganterite has a different Raman spectrum (Fig. 
5). Although it has the same features found in the spectrum of 
Figure 4, it displays other bands in addition that are not found 
in the spectrum of the Oreana mica. These include a series of 
bands in the 920 to 1020 cm�1 region and prominent bands near 
440 and 605 cm�1.

DISCUSSION

It is evident that ganterite is a dioctahedral layer silicate 
whose ideal composition is located halfway between the true 
micas and the brittle micas. The chemical formula suggests that 
this phase could be an ordered 1:1 interstratiÞ cation of muscovite 

TABLE 1. Representative electron microprobe analyses of the Oreana mica
  Ganterite  Barian-muscovite Muscovite
wt%
Na2O 0.36(1) 0.42(1) 0.37(1) 0.32(1) 0.30(1) 0.27(1) 0.31(1)
MgO 0.01(1) 0.00(1) 0.00(1) 0.00(1) 0.01(1) 0.07(1) 0.03(1)
Al2O3 40.20(8) 40.03(8) 38.95(8) 39.16(8) 38.19(8) 38.03(8) 38.42(8)
SiO2 33.53(7) 36.02(7) 37.75(8) 40.48(8) 41.49(8) 44.64(9) 45.76(9)
K2O 3.91(3) 4.91(3) 5.67(3) 7.00(4) 7.87(4) 9.36(5) 10.21(5)
CaO 0.04(1) 0.00(1) 0.00(1) 0.02(1) 0.01(1) 0.10(1) 0.01(1)
TiO2 0.14(5) 0.19(3) 0.16(3) 0.04(5) 0.21(5) 0.03(4) 0.05(4)
MnO 0.04(1) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.01(2) 0.01(2)
FeO 0.06(2) 0.05(2) 0.07(2) 0.09(2) 0.05(2) 0.13(2) 0.05(2)
BaO 18.12(51) 15.23(22) 12.85(22) 9.70(38) 7.37(33) 2.06(19) 0.60(13)
     Total 96.42 96.85 95.82 96.82 95.50 94.69 95.44
       
Formula based on 11 O atoms   
Ba 0.526 0.430 0.361 0.263 0.200 0.054 0.015
K 0.370 0.452 0.518 0.618 0.694 0.801 0.860
Na 0.052 0.058 0.051 0.043 0.040 0.035 0.040
Ca 0.003 0.000 0.000 0.001 0.001 0.007 0.001
       
Al(VI) 1.996 1.996 1.988 1.996 1.981 2.003 2.009
Mg 0.001 0.000 0.000 0.000 0.001 0.007 0.003
Ti 0.008 0.010 0.009 0.002 0.011 0.001 0.002
Mn 0.002 0.000 0.000 0.000 0.000 0.000 0.001
Fe 0.004 0.003 0.004 0.005 0.003 0.007 0.003
       
Si 2.485 2.596 2.702 2.802 2.869 2.996 3.020
Al(IV) 1.515 1.404 1.298 1.198 1.131 1.004 0.980
       
∑ cations 6.963 6.949 6.931 6.929 6.931 6.918 6.933 

FIGURE 1. (a) A typical back-scattered electron image of a thin section of the Oreana dumortierite. Pure white areas are barite, solid dark areas 
are dumortierite, and the patterned area consists of mica crystals. The lighter color corresponds to greater heavy element (Ba) contents. Scale bar 
= 0.01 mm. (b) A back-scattered electron image of a thin section of the Oreana dumortierite centered on mica. The brightest zone near the center 
of the image is a Ba-rich zone that was the focus of the analyses of this paper. Scale bar = 0.01 mm.
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and Ba brittle mica. Alternatively, because the ionic radii of K+ 
(164 pm) and Ba2+ (161 pm) are very close in 12-coordination 
(Shannon 1976), the K and Ba could be statistically distributed in 
the interlayers with corresponding substitutions in the tetrahedral 
layers. Further high-resolution TEM and selected-area electron 
diffraction examinations of specimens are required to establish 
the structural nature of this Ba mica. 

The Oreana ganterite formed by hydrothermal alteration, 
along with muscovite, dumortierite, and barite (Kerr and Jenny 
1935). It is different morphologically, chemically, and maybe 
even structurally, from the Berisal ganterite that formed by 
Alpine metamorphism. The Oreana mica is much smaller in 
size and its composition reaches almost a pure 50/50 mix of the 
hypothetical brittle mica, BaAl2(Si2Al2)O10(OH)2, and muscovite, 
KAl2(Si3Al)O10(OH)2. In contrast, the Berisal ganterite crystals 
are relatively much larger at a sub-millimeter to millimeter scale 
with high Na in the interlayer cation sites (Na/K atomic ratio ≈1) 
and signiÞ cant Mg, Fe, and Ti substitutions for Al in the octa-
hedral sites (Graeser et al. 2003). Brigatti et al. (1998) reported 
that the replacement of VIAl by Mg, Fe, and Ti in muscovite-2M1 
expands the octahedral sheet and gives rise to a more hexagonal 
tetrahedral ring and low corrugation of the basal O plane. Struc-
ture reÞ nements of barian muscovites from the Berisal Complex 
(Armbruster et al. 2002) showed that the Berisal barian muscovite 
with Ba contents between 0.05 and 0.35 pfu has a smaller cell 
volume than that of ideal muscovite because of its paragonite 
content (Na concentration between 0.13 and 0.2 pfu). It is obvious 
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FIGURE 2. Ternary plot of the interlayer cations in barian micas. 

Circles: Oreana micas (this study); squares: Berisal micas (Graeser et 
al. 2003; Hetherington et al. 2003).

FIGURE 3. EBSD patterns of (a) the Ba mica; (b) the adjacent 
mucscovite; (c) an indexed pattern of a. 

FIGURE 4. Raman spectra of the most Ba-rich mica (ganterite) and 
the adjacent low-Ba muscovite from Oreana, Nevada. (a) The OH region 
and (b) the lower wavenumber region. 
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that the Berisal ganterite with a phengitic substitution (near 10% 
Al octahedral sites Þ lled with Mg, Fe, and Ti) and a signiÞ cant 
paragonite component (near 25% interlayer sites occupied with 
Na) (Graeser et al. 2003) might have a slightly different struc-
ture, whereas the Oreana ganterite displays a structure almost 
identical to pure muscovite. These structural and compositional 
differences might be a reason that the Berisal ganterite exhibits 
a different Raman spectrum (Fig. 5).

Our compositional data show that Ba occupies more than 
50% of the interlayer cation sites, which suggests that the Oreana 
ganterite may be more a brittle mica than a true mica. This Þ nd-
ing also marks the Oreana ganterite as the most Ba-enriched 
dioctahedral mica reported to date. The results of Graeser et al. 
(2003) showed that the Berisal ganterite is chemically a true mica 
because Ba does not occupy more than 50% of the interlayer 
cation sites in the empirical formula. 

Graeser et al. (2003) concluded that the increasing concentra-
tions of Ba and Al in the mica are also correlated with increases 
in Na. Thus, they concluded that ganterite does not participate 
in a simple binary solid-solution with muscovite, but rather, it 
was involved with a more complicated ternary solid-solution 
that includes paragonite. Although our data do not rule out the 
ternary solid-solution that was evident in the Berisal ganterite, 
the low but constant Na contents of our data do suggest that a 
purely binary K-Ba solid-solution exists.

Barium muscovite is widely reported to be associated with 
metasomatic processes (Harlow 1995). Our results raise the pos-
sibility that ganterite may be present in those localities where 
Ba-rich muscovite has been found. Because ganterite may exist 

at micrometer to nanometer scales, as is the case for the Oreana 
locality, this phase can be easily missed during SEM and electron 
microprobe studies. The presence of barite along with Þ ne-
grained mica might be a key indicator of ganterite formation.
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FIGURE 5. Raman spectra of the Oreana and Berisal ganterites. The 
intensity of the Berisal spectrum (digitized from Graeser et al. 2003) was 
scaled to be similar to the Oreana pattern (this study).


