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abstraCt

Mixed-layer compounds from the tetradymite group, in the range Bi2Te3-Bi8Te3, were studied by 
HRTEM. The formula S′(Bi2kX3)·L′[Bi2(k+1)X3] (X = chalcogen; S′, L′ = number of short and long 
modules, respectively) was introduced as a working model. Diffraction patterns show that all phases 
are N-fold (N = layers in the stacking sequence) superstructures of a rhombohedral subcell with c/3 
= d1 ~ 0.2 nm. The patterns, with two brightest reflections about the middle of d1*, are described by 
monotonic decrease of two modulations with increase in Bi: (1) q = γcsub* (q ~ homoatomic interval; 
γ = 1.8–1.64 for analytical range; csub ~ 3d1), based on displacive modulation between chalcogen and 
Bi atoms; and (2) qF = γFcsub*; qF = (i/N)d1* = idN*, i = S′ + L′, relating changes in module size and 
number to displacements in a basic substructure.

The qF model, besides underpinning the stacking sequences, was adapted to incorporate the homol-
ogy for S′, L′ modules related by k. The displacements are quantifiable by fractional shifts between 
reflections in the derived and basic structures. The condition for “the brightest two reflections about 
the middle of d1* to be separated by idN*” is fulfilled only if the shift at this position is minimal (equal 
to 1/Nb; Nb = layers in the basic structure). This model and accompanying program compiled to find 
suitable Nb and simulate intensity pattern(s) can be used to (1) constrain stacking sequences estimated 
from observation; (2) predict polysomes as larger building blocks; and (3) discriminate single-phases 
from random polysomes.

The formula nBi2·mBi2X3 describing the configuration for Bi2kX3 modules by n/m = k – 1 is proven 
by lattice fringes, but is not underpinned by qF and does not constrain assumed homology.

Keywords: HRTEM, tetradymite group, chemical-structural modularity, minimal shift condition, 
polysomatism

introDuCtion

The recent overview of minerals in the system Bi-Te-Se-S 
(BixXy, X = Te, Se, S) shows the system to include 19 species 
and several unnamed phases (Cook et al. 2007a). Phases in this 
system have rhombohedral- or trigonal-layered structures; ex-
ceptions include orthorhombic (Pbnm) bismuthinite (Bi2S3) and 
guanajuatite (Bi2Se3). In the layered structures, the “c” lattice 
parameter varies with composition in a non-linear way but the 
“a” parameter is constant at ~4 Å. Lind and Lidin (2003) used 
4-dimensional superspace formalism (4D) to derive a general 
model in which all structures are included within the 4D group 
P: R3:m11, with cell parameters a ~ 4.2 Å and csub ~ 5.7 Å. 

The non-systematic variation of the “c” parameter with 
composition is one of the characteristics of mixed-layer com-
pounds. These belong to the broad family of modulated struc-

tures, since they are built by one or several “modules” that can 
differ in size (thickness), chemistry, and, in some cases, in the 
internal structure (e.g., Amelinckx et al. 1989). Such modules 
can be mixed in a periodic or quasi-periodic manner to generate 
superstructures. 

In the tetradymite group, one of the modules is the X-Bi-
X-Bi-X [5-atom-thick layer (mod5) of which the tetradymite 
structure, Bi2X3 is the “archetype”]. The other is considered a 
two-layer thick module (Bi-Bi) or Bi2, (mod2) (e.g., Imamov 
and Semiletov 1971). Using mod2 and mod5 for band structure 
calculations, Gaudin et al. (1995) proposed an oxidation state 
balance as n(Bi0)2·m(Bi3+)2(X2–)3, where metallic Bi-Bi bonds 
occur within the zero-valent Bi2 layer and van der Waals gaps 
separate adjacent mod5-mod5 layers.

The general validity of the above “mod5 and mod2” model 
was questioned by Frangis et al. (1990) based on high-resolution 
transmission electron microscopy (HRTEM) studies of synthetic 
compounds of the type M2+δX3, (M = Bi, Sb, Ge; X = Te, Se); * E-mail: Cristiana.Ciobanu@adelaide.edu.au 
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0 ≤ δ ≤ 0.4. Considering the building modules to be formed by 
addition of M-X (instead of M-M layers) to the Bi2X3 archetype, 
then such modules can indeed account for the structures studied 
by Frangis et al. (1990). The series can be expanded toward δ → 
1, where the limiting phase (δ = 1) is considered a hypothetical 
BiTeccp (NaCl-type cubic closed packed structure).

In this study, we formalize a model with application to the 
entire tetradymite group by corroborating previous studies and 
expanding existing models to the Bi-rich part of the group that 
has not been studied previously. Additionally, the validity of this 
model is tested for samples in the compositional range Bi2X3-
Bi8X3, using electron diffraction and HRTEM imaging. The na-
noscale characterization relative to variation in the Bi/X ratio for 
the analyzed samples is then used for genetic considerations.

CrystaL-struCturaL ConsiDerations

Two homologous series can be derived from the Bi2X3 arche-
type (X-M-X-M-X) by using an accretional principle to obtain 
building modules with incremental width. Both series include 
structures built by a single type of module, as well as structures 
formed by various combinations of the two module types. Such 
“accretional” and “combinatorial” structural-building principles 
form the foundation for homologous series of sulfosalts (e.g., 
Makovicky 1997). The two series are (1) chalcogen-rich series: 
Mp+εXp+1 (p ≥ 2, integer; ε < 1), modules representing layers 
with symmetric M vs. X configuration (X-M-X-M-X-M-X…) 

obtained by addition of n(M-X) layers, and (2) metal-rich se-
ries: M2(k+δ)X3 (k ≥ 1, integer; δ < 2), modules resulting from 
layers with non-symmetric M vs. X arrangement (X-M-X-M-
X-M-M…) obtained by addition of n(M-M) layers.

The resulting building modules for both series are character-
ized by the same incremental width and odd number of single 
layers, i.e., N = 2p + 1 (p ≥ 2) and N = 2k + 3 (k ≥ 1), respectively, 
but with different compositions, e.g., the symmetric modules 
M3X4 (mod7), M4X5 (mod9), and M5X6 (mod11) in the first series 
correspond to the non-symmetric modules M4X3 (mod7′), M6X3 
(mod9′), and M8X3 (mod11′) in the second series. In the metal-
rich series, the building modules are zero-valent if the oxidation 
state of the metal is M3+ (M = Bi, Sb), but this can be achieved 
in the chalcogen-rich series only if a combination of M3+ (M = 
Bi, Sb) and M2+ (M = Ge, Pb) is considered.

Those phases with δ or ε = 0 are built by a single type of 
module consisting of N layers, whereas phases with δ or ε ≠ 0 
are built by intergrowths of two module types with consecutive 
k or p numbers (modules with incremental width). Values of k 
and p can be estimated by considering the structural formulae 
given above for each series and the types and the modules in the 
stacking sequence can be calculated using the formulae given 
in Table 1.

A consequence of homology in the tetradymite group is that 
the structural modules are able to adjust to incremental chemical 
changes across the compositional range. This fits with the Bi-

Table 1. Calculated γF, γ, and c values for the two series shown in Figure 1b 
MxXy; x, y = smallest integers           Metal-rich series: Tetradymite group 
M = Bi (Sb, Ge, Pb) at% X  Bi2k+δX3 k δ = 0 0 < δ ≤ 1 1 < δ < 2 γF γ c (Å)
X = Te, Se, S   k ≥ 1; δ < 2          Structural modules in the sequence  
         Bi2kX3 S′(Bi2kX3).L′[Bi2(k+1)X3]  
M14X3 17.7  Bi14X3 7 17’   0.0588 1.588 102
M8X3 27.3 * Bi8X3 4 11’   0.0909 1.636 66
M7X3

1 30.0 * Bi7X3 3  (1 × 9’)(1 × 11’)  0.1000 1.650 120
M2X  33.3 * Bi6X3 (H) 3 9’   0.1111 1.667 18
M11X6 35.3  Bi5.5X3 2   (1 × 7’)(3 × 9’) 0.1176 1.676 204
M5X3 37.5 * Bi5X3 2  (1 × 7’)(1 × 9’)  0.1250 1.688 96
M14X9 39.1 * Bi4.67X3 2  (2 × 7’)(1 × 9’)  0.1304 1.696 138
M23X15 39.5  Bi4.6X3 2  (7 × 7’)(3 × 9’)  0.1316 1.697 456
M3X2 40.0  Bi4.5X3 (H) 2  (3 × 7’)(1 × 9’)  0.1333 1.700 60
M22X15 40.5  Bi4.4X3 2  (4 × 7’)(1 × 9’)  0.1350 1.703 222
M17X12 41.4  Bi4.25X3 2  (7 × 7’)(1 × 9’)  0.1379 1.707 348
M4X3

1 42.9 * Bi4X3 2 7’   0.1429 1.714 42
M6X5

1 45.5  Bi3.6X3 (H) 1   (1 × 5)(4 × 7’) 0.1515 1.727 66
M7X6 46.1  Bi3.5X3 1   (1 × 5)(3 × 7’) 0.1538 1.730 156
M8X7

1  46.7  Bi3.42X3 (H) 1   (2 × 5)(5 × 7’) 0.1556 1.733 90
MX 1 50.0 * Bi3X3 (H) 1  (1 × 5)(1 × 7’)  0.1667 1.750 24
M8X9 52.9   Bi2.67X3 1  (2 × 5)(1 × 7’)  0.1765 1.765 102
M5X6 54.5   Bi2.5X3 1  (3 × 5)(1 × 7’)  0.1818 1.773 132
M4X5

2  55.6   Bi2.4X3 (H) 1  (4 × 5)(1 × 7’)  0.1852 1.777 54
M13X17  56.7   Bi2.29X3  1  (29 × 5)(5 × 7’)  0.1889 1.783 360
M3X4

2 57.1   Bi2.25X3 (H) 1  (7 × 5)(1 × 7’)  0.1905 1.786 84
M5X7  58.3   Bi2.14X3 1  (13 × 5)(1 × 7’)  0.1944 1.792 144
M19X27 58.7   Bi2.11X3 1  (17 × 5)(1 × 7’)  0.1957 1.793 552
M7X10 58.8   Bi2.1X3 (H) 1  (19 × 5)(1 × 7’)  0.1961 1.794 204
M9X13 59.1   Bi2.08X3 1  (26 × 5)(1 × 7’)  0.1971 1.796 822
M2X3

1,2  60.0 * Bi2X3  1 5     0.2000 1.800 30
Notes: 
* = Phases analyzed in this study.
S’, L’ = non-symemtric modules (X-Bi-X-Bi-X-Bi-Bi…); bold: module type.
S’ = (k + 1)(y/3) – x/2; L’ = x/2 – k(y/3); x, y = calculated as multiple of 2 and 3, respectively.
N1 = S’(2k + 3) + L’(2k + 5).
γF = (S’ + L’)/N1; γ = 3[S’(k + 2) + l’(k + 3)]/N1.
c = d1N1 = d1(s’ + l’)/γF (multiplied by 3 for R), d1 = 2 Å.
H = phases P3m1; all others are R3m.
1, 2 = Stoichiometries corresponding to known minerals in the tetradymite group and chalcogen-rich series, respectively (see Cook et al. 2007a, 2007b).
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Te and Bi-Se phase diagrams (e.g., Okamoto and Tanner 1990; 
Okamoto 1994) showing that an infinite number of stacking 
sequences can account for continuous compositional variation 
in the 0 to 60 at% X range (Bi-Bi2X3).

Tetradymite group: the “mod5 and mod2” model
The metal-rich series above represents a homologous 

description of the tetradymite group, i.e., Bi2(k+δ)X3, where k 
is the homologue number. The building module that changes 
from one compound to another is derived from the tetradymite 
archetype, i.e., Bi2kX3, (k ≥ 1) for homologues with δ = 0. Inter-
mediate phases (δ ≠ 0) can be written as intergrowths between 
two homologues built by modules with incremental width, i.e., 
S′(Bi2kX3)·L′ [Bi2(k+1)X3], where S′ and L′ are the numbers of 
short and long modules, respectively, with non-symmetric M to 
X arrangement along the c axis. 

In the model of Imamov and Semiletov (1971), the building 
units remain the same, i.e., “mod5” and “mod2.” The thicknesses 
of the Bi2 and Bi2X3 modules are ~0.4 and ~1 nm, respectively. 
The authors suggested the term “compositional polytypism” 
to underline the structural principles and modules common to 
all phases despite their variable compositions. Shelimova et al. 
(2000) considered that the structural formula nBi2·mBi2X3 could 
be used to describe homology in the series.

One-dimensional interface modulated superstructures

The series M2+δX3 (δ < 1) studied by Frangis et al. (1990) 
can also be expressed by the structural formula given for the 
chalcogen-rich series. The compositional range of this series 
overlaps with that of phases from the tetradymite group, i.e., 
with k = 1 and δ < 1. Pairs of compounds from the two series 
with the same composition will, however, have different stack-
ing sequences (Table 1) due to the chemical differences between 
the symmetric and non-symmetric modules. Phases from the 
chalcogen-rich series were found to be N-fold superstructures (N 
= number of single layers in the structure) of a csub/3 = d1 ~ 0.2 
nm. Considering this as an average interlayer spacing between 
two consecutive layers along the c axis, Frangis et al. (1990) 
used the fractional shift method of van Landuyt et al. (1970) to 

define a structural modulation qF = γFcsub* [γF, csub* and qF are 
our notations and correspond to γ, H0, and q used by Frangis 
et al. (1990)]. The γF value is (1) γF = 1/N for phases with ε = 0 
[structures with a single type of module: MpXp+1; i.e., (2p + 1)-
layers]; (2) γF = (S + L)/N for phases with ε ≠ 0 [intergrowths of 
two module types with consecutive p: S(MpXp+1)·L(Mp+1Xp+2); S, 
L = numbers of short and long modules with symmetric M to X 
arrangement along c]. In real space, the magnitude of qF is either 
c/3 or c (R or H symmetry) or a fraction (S + L) of this parameter 
for structures in categories 1 and 2, respectively (Table 1). 

Some of the structures in category 2 give incommensurate 
or pseudo-incommensurate electron diffraction patterns (EDPs), 
i.e., either streaks with weak elongated maxima instead of 
sharp superstructure reflections (Fig. 3f in Frangis et al. 1990) 
or EDPs that can be indexed as commensurate but imply large 
repeat distances (e.g., Fig. 4b in Frangis et al. 1990); in the lat-
ter case qF can be approximated by rational values rather than 
measured precisely.

Frangis et al. (1990) interpreted the physical meaning of the 
vector qF in terms of interface modulated structures based on the 
model of van Landuyt et al. (1970) to describe such structures. 
The basic cell, a hypothetical BiTeccp phase, consists of alternat-
ing Te and Bi layers along the c axis. If the cubic close packed 
cell is considered in a rhombohedral setting there are six sets 
of atoms with specific configurations in BiTeccp (Fig. 1a) Any 
of the stacking sequences in phases from either the Mp+εXp+1 or 
Bi2(k+δ)X3 series can be derived from the basic BiTeccp structure by 
modifying the layer sequence (extraction or insertion of layers) 
at P = 2(p + 1) and Pγ = 2k + 3 periodicities, respectively, e.g., 
Figure 1a for the 11 and 11′ modules. This can be obtained by 
closing or opening gaps (extraction or insertion of layers) along 
the P (P′) interface planes and shifting the layers above these 
planes up or down so that the net of atoms is rearranged into a 
rhombohedral matrix. The array of atoms forming a unit cell will 
be always repeated after three units of a stacking sequence.

Considering that the structural modulation is driven by 
the displacements along the interface planes, phases built by 
modules with the same width (or combinations thereof) should 
give identical γF, irrespective of composition, i.e., whether built 

Table 1.—Extended

           Chalcogen-rich series   
FN Mp+εXp+1 P ε = 0 0 < ε < 1 γF γ c (Å)
 P ≥ 2; ε < 1                               Structural modules in the sequence   
   MpXp+1 S(MpXp+1)·L(Mp+1Xp+2)     
  M8X9 (δ = 0.67) 8 17  0.0588 1.588 102
  M5X6 (δ = 0.5) 5 11  0.0909 1.636 66
9H M4X5 (δ = 0.4) 4 9  0.1111 1.667 18
30H M3.05X4 3  (3x7)(1x9) 0.1333 1.700 60
21R M3X4 (δ = 0.25) 3 7  0.1429 1.714 42
12H M2.14X3 2  (1x5)(1x7) 0.1667 1.750 24
138R M2.11X3 2  (5x5)(3x7) 0.1739 1.761 276
51R M2.1X3 2  (2x5)(1x7) 0.1765 1.765 102
66R M2.08X3 2  (3x5)(1x7) 0.1818 1.773 132
15R M2X3 2 5   0.2000 1.800 30
FN = notation used by Frangis et al. (1990); italics = analyzed phases not explicitely noted.
S, L = symemtric modules (X-Bi-X-Bi-X-Bi-X…); bold: layer type.
S = y(p + 1) – x(p + 2); L = x(p + 1)-py; x, y = calculated as multiple of 2 and 3, respectively.
N2 = S(2p + 1) + L(2p + 3).
γF = (S + L)/N2; γ = 3[S(p + 1) + L(p+2)]/N2.
c = d1N2 = d1(s + l)/γF (multiplied by 3 for R); d1 = 2 Å.
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by symmetric- or non-symmetric modules (Fig. 1b; Table 1). 
If this is true the two series are isoconfigurational (cf. Lima de 
Faria et al. 1990).

The general 4D model: One-dimensional sawtooth 
displacive modulation

Lind and Lidin (2003) investigated four structures from the 
Bi-Se system (Bi2Se3, Bi4Se3 and Bi8Se9, BiSe) by single-crystal 
X-ray diffraction and refinement of the data using two models 
that employed 4D formalism. Commensurate diffraction pat-
terns were obtained for Bi2Se3 and Bi4Se3, whereas Bi8Se9 and 
BiSe gave incommensurate diffraction patterns. A modulation 
vector was defined as q = γc* (i.e., csub*). The reported γ range 
(1.80–1.70) is extrapolated from phases in the studied interval 
(Bi2Se3-Bi4Se3) to the composition of Bi3Se2 phase; not including 
phases on the Bi-rich side of the system. 

To interpret this modulation, Lind and Lidin (2003) em-
ployed two modeling options involving wave functions that 
have converged in the refinement of the structures. Of these, the 
two-atom model based on a displacive sawtooth modulation of 
the Se atom is more relevant for the physical meaning of vector 
q. The sawtooth pattern formed by the homoatomic intervals (of 
Se and Bi) along the four-dimensional axis (x4) will remain the 
same for all structures, but the length of these intervals varies 
with composition from one compound to another (modulation 
q). We note that the model should also apply to the chalcogen-

rich series since the MpXp+1 modules were derived in the same 
accretional manner as the Bi2kX3 modules. This would lead to 
similar changes in homoatomic periodicities for the two atoms 
occupying the same rhombohedral lattice. 

The relative periodicities of the two atom types can be 
intuitively shown from projections of the structures onto (210) 
(Fig. 2). We observe that the homoatomic arrays (d4D) across the 
stacking sequence are straight (Figs. 2a and 2b; left side) only for 
structures built by a single type of module; they otherwise form 
zigzag lines (Fig. 2c) named “incommensurate periodicities” 
(Lind and Lidin 2003). Conversion into a (3 + 1)-dimensional 
model is made by taking d4D, the average interlayer interval along 
the x4 axis [d4D = (1/3)csub], equivalent to the interlayer distance 
along the 3-dimensional axis (x3) along which the distance 
between adjacent layers is d3D = (1/3)csub = d1. For example, for 
the isoconfigurational modules 11′ (Bi8X3) and 11 (M4X6), d4D 
corresponds to a third of the csub axis or 6/18 (Figs. 2a and 2b; 
right side). The q vector represents (3d4D/N)[001]*; translated 
into direct space this value is 1/γ = N/(3d4D). The γ value can be 
calculated by observing that d4D(Bi) = k + 2 and d4D(X) = p + 1 for 
any Bi2kX3, MpXp+1 modules, respectively, and substituting in 
the relation γ = 3d4D/N (formulae given in Table 1). Values were 
calculated up to M14X3 (γ to 1.588; Table 1). They show that γ 
decreases linearly with X at% (or Bi/X) and γ → 1.5 for X at% 
→ 0 (Bi/X → ∝) (Fig. 3).

Summary: Which model?
The two modulation vectors with application to structures 

from the tetradymite group have different meanings and have 
been defined using a conventional approach, a three-dimensional 
approach (3D; qF) as well as superspace formalism (4D; q). The 
questions to be addressed are as follows: (1) is the linear trend 
between γ and composition obtained from calculated values 
confirmed by measurements? (2) Will the diffraction patterns 
confirm that the two types of modules, i.e., Bi2kX3 and MpXp+1 
(where k = p – 1) are isoconfigurational? (3) Does vector qF 
describe the same trend as q? (4) Can the results constrain which 
of the two structural formulae, nBi2·mBi2X3 or S′(Bi2kX3)·L′ 
[Bi2(k+1)X3], is underpinned by the qF vector and which of these 
provides a homologous description of the series?
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samPLes anD exPerimentaL DetaiLs

Five samples from three localities were selected for study: 
(1) tellurobismuthite, found as millimeter-size nests in quartz 
within Cu-Au veins at Moberg, Norway (sample M1; Natural 
History Museum, University of Oslo); (2) pilsenite (sample 
U1); and (3) phase Bi17Te12 (sample U2), occurring as coarse, 
3–4 mm, hexagonal platelets embedded in clay minerals and 
collected from an area with hydrothermal alteration in basaltic 
lava from Ilkovtsy (Transcarpathians, Ukraine). Samples 4 and 
5 are bismuth tellurides found in association with native bismuth 
and gold in typical ore from the Au skarn at the Good Hope 
Mine, Hedley (B.C., Canada). In sample H1, joséite-B, with 
inclusions of hedleyite was studied from a centimeter-size patch 
within garnet-pyroxene skarn (Fig. 4b). Two millimeter-sized 
Bi-mineral patches in hedenbergite skarn (polished block H2) 
were labeled: H2a, comprises hedleyite and Bi8Te3 (Fig. 4c); 
sub-sample H2b consists of Bi2Te (Fig. 4d); joséite-B envelops 
both patches. 

Sample material was separated under the binocular micro-
scope, mounted, and prepared as polished blocks. In all cases, 
except the two Hedley samples (H1, H2a/b), the sample material 
consisted of grains that are apparently monomineralic on the 
micrometer-scale. The homogeneity of these grains was checked 
by scanning electron microscopy (SEM). Compositions were 
determined by electron probe microanalysis (EPMA) using a 
Cameca SX-51 instrument, Adelaide Microscopy Centre, oper-

ating at an accelerating voltage of 20 kV and a beam current of 
20 nA. Standards used were Bi2Se3 (Bi, Se), PbS (Pb, S), Ag2Te 
(Te), and Sb2S3 (Sb).

For HRTEM examination, both crushed and microtome 
cut-and-thinned grains were mounted on carbon grids. Both 
types were prepared from all samples except M1 from which 
mounts were only prepared from the crushed grains. Preparation 
of sample H2a/b was undertaken on patches extracted from a 
thin slice cut from the polished block H2 after it was subject to 
SEM/EPMA study. The instruments used for this study were 
a Philips 200CM transmission electron microscope, Adelaide 
Microscopy Centre, Australia, and the JEM 3010 transmission 
electron microscope at the Chemistry Department, Cambridge, 
U.K. The dual-beam focused ion beam (FIB) thinner at the Nova 
200 Nanolab, University of New South Wales, Sydney, was also 
employed to extract slices from two polished blocks for HRTEM 
investigation. Slices were cut from U2 (Fig. 4a) and across the 
hedleyite inclusions in H1 (Fig. 4b). 

Computer simulations based on the multislice method were 
performed for three phases (Bi2Te3, BiTe, and Bi2Te) using 
WinHREM 2.5 software. For the first two cases, the input data 
files used were ICSD 20289 (tellurobismuthite) and ICSD 
100654 (tsumoite) from the Mineralogical Society of America 
Crystal Structure Database. In the third case, the parameters 
obtained for synthetic Sb2Te (Agafonov et al. 1991) were intro-
duced. The optical parameters used are spherical aberration coef-
ficient: 1.3 mm; defocus spread: 83 Å; and beam convergence: 
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for EPMA ranges; for comparison formulae are also normalized to X = 3 and as BixXy (x, y, smallest integers; brackets).
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0.05 Å–1. The simulations were selected from series of images 
obtained at different defocus/thickness parameters.

ComPositionaL Data

The specimens have compositions representing six discrete 
Bi/Te ratios in the Bi2Te3-Bi8Te3 range (Table 2). Three of these 
are recognized minerals, tellurobismuthite (Bi2Te3), pilsenite 
(Bi4Te3), and hedleyite (Bi7Te3), and three correspond to unnamed 
species, i.e., Bi17Te12 (=Bi4.25Te3), Bi2Te (=Bi6Te3), and Bi8Te3. The 
composition Bi4X3 is also represented by joséite-B (Bi4Te2S), an 
S-bearing mineral that is relatively common in ore deposits.

Calculating each analysis on the total number of atoms in 
the formula corresponding to each mineral, a spread from ideal 
atomic Bi values is seen which is mostly within the range of ana-
lytical error (±2–3% relative; Figs. 4e–4g). Three of the 52 points 
from M1 shows a greater offset from ideal stoichiometry [up to 
2.09 apfu for a 5-atom unit corresponding to Bi2.14Te3 (=Bi5Te7)]. 

The unnamed phases are plotted on the same diagrams. The in-
ner part of sample H2a (Fig. 4c) gives different compositions 
depending on whether the measurements are performed along 
(Bi7Te3), or across the lamellae (Bi8Te3). The compositional 
variation in all samples relates to nano-scale inhomogeneity as 
will be shown in the following sections. 

eLeCtron DiffraCtion Patterns anD  
high-resoLution images

Measurements and calculations for characteristic values have 
been obtained from the [110]R ≡ [110]h zone axis on electron 
diffraction patterns (EDPs; Fig. 5) that are representative for all 
the phases in the analytical range, i.e., Bi2X3-Bi8X3, (X = Te, S). 
Three-integer indexation, corresponding to the subscript R, is 
with respect to a rhombohedral subcell and (3 + 1) integer (hklm) 
indexation, whereas subscript h is with respect to the hexagonal 
cell setting as given above. The EDPs show first the distance 

Table 2. Electron probe microanalytical data for bismuth tellurides
Location Moberg, Norway Transcarpathians, Ukraine    Hedley, B. C., Canada
  Orogenic Au Clay alteration in basalts    Auskarn
Sample M1  U2  U1   H1  H1, lamellae H2a/b
Mineral/phase Tellurobismuthite Pilsenite Unnamed Bi17Te12 Joseite-B  Hedleyite  Joseite-B
wt% Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
No. of points 51   14   15   59   4   44  
Pb  0.02 0.05 0.26 0.11 0.12 0.11 <mdl <mdl <mdl <mdl 0.10 0.09
Cd                0.23 0.13
Bi  52.52 0.75 68.20 0.55 70.35 0.68 75.24 0.63 79.96 41.69 75.39 0.60
Sb  0.33 0.05 0.21 0.05 0.20 0.05 0.21 0.06 0.38 0.09 0.16 0.04
Te  47.06 0.68 31.49 0.53 29.44 0.50 21.29 0.25 20.49 14.81 22.05 0.21
Se  0.93 0.06 0.11 0.04 0.42 0.07 0.04 0.03 0.01 0.19 0.09 0.06
S  0.02 0.02 0.07 0.02 0.17 0.02 3.09 0.06 0.04 1.50 2.78 0.07 
 Total 100.88   100.34   100.71   99.88   100.88   100.80  
Formulae  calc. to 5 apfu calc. to 7 apfu calc. to 29 apfu calc. to 7 apfu calc. to 10 apfu calc. to 7 apfu 
Pb  0.001 0.002 0.02 0.007 0.03 0.03 0 – 0 – 0.005 0.005
Bi  1.98 0.022 3.94 0.034 16.82 0.17 4.03 0.020 6.99 0.037 4.05 0.026
Sb  0.02 0.003 0.02 0.005 0.08 0.02 0.02 0.006 0.06 0.013 0.01 0.004
Sum M 2.00 0.022 3.98 0.032 16.94 0.16 4.05 0.018 7.04 0.036 4.07 0.022
Te  2.90 0.022 2.98 0.036 11.53 0.15 1.87 0.022 2.93 0.032 1.94 0.018
Se  0.09 0.006 0.02 0.006 0.27 0.05 0.01 0.004 0.00 0.004 0.01 0.009
S  0.00 0.004 0.03 0.009 0.27 0.03 1.08 0.020 0.02 0.020 0.97 0.021
Sum (Te + S + Se) 3.00 0.022 3.02 0.033 12.07 0.16 2.95 0.018 2.96 0.036 2.93 0.022

Location       Hedley, B. C., Canada     
        Auskarn   
Sample  H2b H2a H2a H2a H2 (3 other grains) H2 (6 other grains)
Mineral/phase Unnamed Bi2Te Hedleyite (along) Bi8Te3 (across) patch  Hedleyite Bi8Te3

wt% Mean S.D. Mean S.D. Mean S.D. Mean all Mean S.D. Mean S.D.
No. of points 28   12   12   24 30 55  
Pb  0.19 0.10 0.04 0.06 0.10 0.08 0.07 0.04 0.06 0.03 0.06
Cd  0.23 0.14 0.26 0.16 0.28 0.12 0.27 0.21 0.10 0.23 0.13
Bi  77.12 0.46 80.02 0.60 81.85 0.47 80.94 79.81 0.55 81.40 0.42
Sb  0.28 0.05 0.20 0.06 0.18 0.06 0.19 0.22 0.05 0.17 0.05
Te  22.76 0.41 20.54 0.22 18.59 0.21 19.56 20.42 0.23 18.84 0.29
Se  0.09 0.03 0.07 0.04 0.09 0.03 0.08 0.08 0.04 0.07 0.03
S  0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
 Total 100.68 101.14 101.09 101.12 100.80 100.74
Formulae  calc. to 3 apfu  calc. to 10 apfu calc. to 11 apfu  calc. to 10 apfu calc. to 11 apfu 
Pb  0.005 0.003 0.004 0.005 0.01 0.008 0.01 0.00 0.01 0.00 0.01
Bi  2.00 0.014 7.00 0.030 7.97 0.034 7.48 7.00 0.03 7.93 0.04
Sb  0.01 0.002 0.03 0.009 0.03 0.009 0.03 0.03 0.01 0.03 0.01
Sum M 2.02 0.014 7.03 0.029 8.01 0.028 7.52 7.04 0.03 7.97 0.04
Te  0.97 0.013 2.94 0.023 2.96 0.027 2.95 2.93 0.03 3.01 0.04
Se  0.01 0.002 0.02 0.009 0.02 0.007 0.02 0.02 0.01 0.02 0.01
S  0.005 0.004 0.01 0.009 0.00 0.007 0.01 0.01 0.01 0.01 0.01
Sum (Te + S + Se) 0.98 0.014 2.97 0.029 2.99 0.028 2.98 2.96 0.03 3.03 0.04
Note: Minor Cd contents not included in formula calculation.
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between rows parallel to c* (da*) varies little from one phase 
to another and consequently the “a” parameter, i.e., a = (1/da*) 
(1/cos30°), is very similar across the compositional interval, 
i.e., a = 0.434–0.441 nm. Second, the distance (d1*) between 
main subcell reflections along rows parallel to c* has relative 
constant values (1/d1* = d1 = 0.19–0.2 nm in real space). Finally 
the EDPs show the intensity of reflections varies across d1* and 
the brightest (first-order satellites) form a pair of reflections with 
equal intensity situated at the center of this interval.

Structures built by a single type of Bi2kX3 module
Electron diffraction patterns showing reflections situated at 

equal intervals within d1* where dN* = (1/N)d1* (Figs. 5a–5d), 
were obtained for all phases with bulk compositions correspond-
ing to Bi2kX3 (δ = 0) for the interval k = 1–4. According to the 
structural formulae given in Table 1 these are representative of 
the building modules in this k range as follows: (1) k = 1, module 
5: Bi2Te3, tellurobismuthite (M1; Fig. 5a; note the similarity 
with the EDP obtained for synthetic Bi2Te3 by Frangis et al. 
1990); (2) k = 2, module 7′: Bi4Te3, pilsenite (U1) and Bi4Te2S 
[joséite-B, H1; H2a (Fig. 5b) and H2b]; (3) k = 3, module 9′: 
Bi6Te3 [=Bi2Te; H2b (Fig. 5c), U1 and H1]; and (4) k = 4, module 
11′: Bi8Te3 (H2a; Fig. 5d). 

The number of reflections within the d1* interval increases 
by two for phases with consecutive k, i.e., 4, 6, 8, and 10 for k = 
1, 2, 3, and 4, respectively (Figs. 5a–5d), indicating that they are 
N = 2k + 3 superstructures. This proves the accretional principle 
(homology in the group) considered for module formation, as 
well as the isoconfigurational relationships with the building 
modules from the chalcogen-excess series studied by Frangis 
et al. (1990). The variation in the intensity of superstructure 
reflections is discussed in the next sections.

Lattice images illustrating all the above structures (Fig. 6) 
show the incremental width by 0.4 nm for the suite of four mod-
ules with k = 1 to 4, i.e., modules 5, 7′, 9′, and 11′ (Fig. 6a). It 
can also be seen that the modules can each be further subdivided 
into 5- and 2-units (Figs. 6b–6e) where the latter represents the 
double-Bi layer (Bi2) with metallic bonds as discussed above. 
Such subdivisions are illustrated by the differences between im-
ages showing a simple, regular sequence of 5-modules (Tbs; low-
er part of Fig. 6b; note the change in the image due to variation 
of thickness at the top of the same grain; computer simulation in 
the insets) and those containing 1-, 2-, or 3-Bi2 units (as separate 
rows; Figs. 6c–6e) between strips of width corresponding to the 
5-module, i.e., ~1 nm. The 5-modules appear as wider, brighter 
strips of the same width on all the images, whereas the increasing 
distance between them, corresponding to the incremental number 
of Bi2 units, is also marked by the presence of 1, 2, and 3 less 
bright rows (Figs. 6c, 6d, and 6e, respectively). Considering this 
interpretation, erratic addition/absence of individual Bi2 units in 
sequences that are otherwise ordered (e.g., Figs. 6d and 6e) was 
observed in all samples. 

One of the difficulties encountered for specimens containing 
phases with more than one Bi2 unit is to appreciate the number 
of Bi2 units relative to the 5-module. This is illustrated by the 
range of images obtained for the “same” phase, i.e., representing 
the unnamed Bi2Te (Bi6Te3); Figure 7. For example, Figures 7a 
and 7b illustrate the change in the width of brighter strips for the 

same image obtained by increasing the defocus. The variation 
in the width of the brighter strips can be seen at the same time 
across an image and can be attributed to the uneven thickness 
of a single grain (Fig. 7c). These aspects are often encountered 
when preparing TEM grids from very soft materials such as 
those analyzed here, due to the fact that they tend to bend and 
twist during preparation. Such deformational effects are shown 
in Figure 7d by the shift in the position of the brighter strips 
(lower left corner of the image) or by the swell in the central 
part of the image. The latter shows in what way this affects the 
defocus, and as a result the number of rows seen between the 
same strips can vary, i.e., from two (top right corner) to one 
(middle of the image). The best illustration for the fact that the 
internal configuration of Bi2kX3 structural modules consists of 
distinct, smaller, 5- and 2-units, as shown here and predicted 
from theoretical considerations (see above), was obtained on a 
very thin specimen (Fig. 7e, computer simulation in the inset). 
The sequence interpretation 9′ (=522) is confirmed by the fast 
Fourier transform (Fig. 7f).

Structures built by intergrowths of Bi2kX3 modules 
Electron diffraction patterns that show distribution of 

satellite reflections at variable spacing within the d1* interval 
(Figs. 5e–5h) were obtained from (1) sample M1, consisting 
of tellurobismuthite with small metal excess (Fig. 5e), and (2) 
samples with bulk compositions where δ ≠ 0, i.e., k = 3; δ = 1: 
hedleyite (Bi7Te3; H1FIB slice and H2a; Fig. 5h) and k = 2; δ = 
0.25: unnamed Bi4.25Te3 (=Bi17Te12; U2). The stacking sequences 
estimated from EDPs obtained from samples investigated by 
HRTEM (see following sections) give compositions U2: k = 2; 
δ = 0.67: Bi4.67Te3 (=Bi14Te9; Fig. 5f) and U2FIB: k = 2; δ = 1: 
Bi5Te3 (Fig. 5g), which do not correspond to the measured EPMA 
composition for sample U2 (see final section).

In the first case, the lattice images (Figs. 8a and 8b) that 
correspond to the EDP in Figure 5e are used to identify the 
stacking sequence. This shows alternating modules of 1 and 1.4 
nm widths (Fig. 8a). Marginal fringes display an alternation of 
single and double bright rows placed at intervals of 1 nm width 
(Fig. 8b; computer simulation in the inset). The above aspects 
are interpreted as a regular 7′5 (=525) sequence corresponding 
to tsumoite (Bi3Te3, Table 1); occasional stacking disorder is also 
observed (Fig. 8b, white rectangle inset).

Lattice images characteristic for hedleyite (Fig. 8c) show 
alternating fringes of 1.8 and 2.2 nm widths and correspond to the 
sequence 9′11′ considered for this mineral (Table 1). The associ-
ated EDP for this mineral is shown in Figure 5h. The sequence 
that can be calculated for unnamed Bi4.25Te3, i.e., 7′7′7′7′7′7′7′9 
(Table 1), has not been observed in TEM samples prepared from 
this material; lattice images corresponding to EDP in Figure 5f 
will be discussed in the next sections.

ChemiCaL-struCturaL moDuLarity in the 
tetraDymite grouP

Wave-modulation vector and compositional variation 
The wave-like variation in the intensity of satellite reflections 

across the d1* interval (Fig. 5) indicates that a primary wave-
modulation vector can be considered as q = γ[111]*R ≡ γ[003]*h. 
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Figure 5. [110]R ≡ [110]h zone axis 
on electron diffraction patterns (EDPs) 
that are representative for all the phases 
in the analytical range, i.e., Bi2X3 – Bi8X3, 
(X = Te, S). Three-integer indexation, 
corresponding to the subscript R, is with 
respect to rhombohedral subcell and (3 + 1) 
integer (hklm) indexation, whereas subscript 
h is with respect to the hexagonal cell setting 
(4D group P: R3:m11; Lind and Lidin 2003). 
The arrows indicate positions of q prime as 
given in text. (a) Tellurobismuthite (M1). 
(b) Joséite-B (H1). (c) Unnamed Bi2Te 
(H2b). (d) Unnamed Bi8X3 (H2a). (e) 
Phase with measured γ value corresponding 
to Bi/X = 1 interpreted as BiX (sequence 
57′); X = chalcogen (M1). (f) Phase with 
measured γ value (1.7) indicating Bi/X ~ 
Bi3X2 but for which the composition Bi14X9 
(calculated γ = 1.696; Table 1) is considered 
based on the stacking sequence (sequence 
7′7′9′; see text) (TEM sample U2). (g) 
phase with γ corresponding to Bi/X = 5/3; 
unnamed Bi5X3 (sequence 7′9′) (U2FIB). (h) 
Hedleyite (H2a).
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Figure 6. HRTEM images representative 
for stacking sequences in structures built by a 
single type of module (corresponding EDPs 
and samples are given in Figs. 5a–5d). (a) 
Incremental width for Bi2kX3 modules in the 
range k = 1–4; X = chalcogen (b to e) lattice 
images showing that the Bi2kX3 modules with 
incremental width (from k = 1 to 4) appear 
subdivided into “mod2” and “mod5”-layer 
units according to the formula: nBi2·mBi2X3, 
where n/m = k – 1; the 5 units are marked 
by white rectangles. Insets in b: Computer 
simulations for Bi2Te3 showing the changes in 
the image due to differences in defocus, i.e., 
thickness/defocus at: 10/600 and 10/3600 for 
the lower and upper insets, respectively.

The weaker reflections correspond to high-order harmonics of q 
(indexation of satellite reflections on EDPs in Fig. 5). As shown 
by Lind and Lidin (2003), q corresponds to the distance (D1*) 
between any of the main subcell reflections on the EDPs, as the 
origin, and the furthest away of the two satellite reflections in the 
middle of the d1 interval (the position referred to as q prime). The 
distance between the pair of first-order satellites decreases from 
Bi2X3 to Bi8X3 and accordingly the q vector decreases linearly 
with the increase in Bi content (or increase in the Bi/X ratio) (Fig. 
4, inset). Values obtained for γ = 3D1*/d1* by measurements on 
EDPs correspond within measurement error to the values given 
in Table 1, i.e., 1.8–1.64. The magnitude of q in real space (1/D1 
= D1*) increases from 0.33 to 0.35 nm and gives csub values [csub 
= (1/D1)γ] in the range 0.6 to 0.57 nm for Bi2Te3 to Bi8Te3. 

The present results confirm that the trend between γ and com-
position obtained for phases at the Bi-rich side of the system (Fig. 
4, inset) remains linear and preserves the same slope as obtained 
by Lind and Lidin (2003). The γ values estimated from EDPs 
allow, however, only a rough identification of phases (especially 
for Bi-richer compositions); this can be obtained instead by 
estimation of stacking sequences as shown below.

Displacement vector and stacking sequences 
Considering that all the investigated structures have the same 

rhombohedral subcell (d1 ~ 0.2 nm) as those from the chalcogen-
excess series, the displacement vector qF that links the structural 
modules to the chemistry according to the equation: 

qF = (i/N)d1* = idN* (1)

where i = S′ + L′ (number of modules in the sequence), can be 
also used to estimate the stacking sequences for phases in the 
tetradymite group. The phases built by a single type of Bi2kX3 
module (Fig. 9) have i = 1 and qF = (1/N)d1*, and thus the stacking 
sequences are easy to estimate directly from the number of super-
structure reflections, as discussed above. It should be noted that 
if the formula nBi2·mBi2X3 (e.g., Imamov et al. 1971) would be 
considered for the structural modules instead of Bi2kX3, the value 
of “i” would differ from one phase to another (i ≠ 1 for structures 
with Bi2 ≠ 0), contradicting the present observations.

Equation 1 is particularly useful for phases built by inter-
growths of two modules with consecutive values of k, i.e., 
S′(Bi2kX3)·L′[Bi2(k+1)X3] (Figs. 10a–10d). In this case, the shortest 
interval observed between reflections can be used as a measure 
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of 57′ and 57 that correspond to different compositions (BiTe 
and Bi5Te7, respectively; see Table 1 for γ). In this case (Fig. 
10e), the choice for the 7′ module is based on the interpretation 
of lattice images (Fig. 8b).

In cases where the number k is known from the chemical 
formula and N is calculated as given above, values for S′ and L′ 
can be calculated from the relationship: N = S′ (2k + 3) + L′[2(k 
+ 1) + 3] in which we substitute S′ = i – L′. After substitution we 
obtain: L′ = N/2 – (2k + 3)i/2 and S′ = (2k + 5)i/2 – N/2. This 
gives the stacking sequences as: (7′ + 9′) = 16, (9′ + 11′) = 20, 
and (7′ + 7′ + 9′) = 23, respectively, for the other three structures 
in Figures 10f–10h.

The significance of qF as a displacement vector becomes ap-
parent when this is considered as a component of the reciprocal 
lattice vector (gt,m) describing the superstructure reflections for 
an interface modulated structure (DS) relative to a basic structure 
(BS) (Van Landyut et al. 1970):

g(m,t) = Ht + (1/dN)(m – Ht·R)eu (2)

where Ht = position vector for reflections in BS, 1/dN = distance 
between superstructure reflections (DS), m = index representing 
the order of DS reflections relative to a given t, R = displacement 
vector along eu characterizing the structural shift in real space, 

Figure 7. (a–e) HRTEM images showing the variability in the 
appearance of “522” sequences (module 9′) for the unnamed Bi2Te 
phase as marked on the figures (a, b and e from sample H1; c and d from 
sample U1). The detail on image in e, obtained from a thin edge, clearly 
shows the different widths corresponding to the two types of units (mod2 
and mod5). Computer simulation (inset) is shown for thickness/defocus 
at 2/300. Scale bars: 5 nm. (f) Fast Fourier transform confirming this 
phase as Bi2Te (ninefold superstructure). Indexation for the hexagonal 
setting as in Figure 5.

Figure 8. HRTEM images showing stacking sequences (interpretation 
as marked) in the BiX phase (EDP in Figure 5e; sample M1) (a, b) and (c) 
hedleyite (EDP in Figure 5h; sample H2a). Computer simulation (inset 
in b) for thickness/defocus conditions at 10/300. Scale bars: 5 nm.
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(dN*) that gives the number of N intervals along d1*; e.g., 12-, 
16-, 20-, and 23-intervals for structures in Figures 10e–10h, 
respectively. Knowing that qF = idN* and the distance between 
the pair of brightest reflections in the middle of d1* is equal to 
the magnitude of qF, the value of “i” can be easily found from 
the number of dN* intervals within this distance, e.g., i = 2 in 
three of the investigated structures and i = 3 in the fourth case 
(Figs. 10e–10h). 

The module types in each structure can be graphically esti-
mated from the distance between the two first-order satellites 
in the center of d1*, i.e., this distance (qF = idN*) is shorter than 
the L′ module and longer than the S′ module. For example, the 
structure in Figure 10e has d5 < 2d12 < d7, and the fit for the ob-
served “i = 2” relative to N is 5 + 7′ = 12. This is in agreement 
with the Bi/X = 1 ratio corresponding to the measured γ = 1.75 
(Fig. 3, inset). It should be noted, however, that such parameters 
obtained from the EDP are not discriminative between sequences 
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and eu = unitary vector perpendicular to the interface.
Considering that qF = γFcsub* and csub* = d1*eu, we can write 

qF = (i/N)(1/d1)eu = i(1/dN)eu. Rewriting (1/dN)eu = (1/i)qF and 
substituting into Equation 2, we obtain:

g(m,t) = Ht + (1/i)(m – Ht·R)qF. (3)

This relation shows that the value of g(m,t) is equal to (Ht + qF) 
for the set of conditions t = 0 and m = i, meaning that qF can be 
identified with a displacement vector along the c* axis.

Fractional shifts and Bi2kX3 structural units (homology in 
the group)

The term (Ht·R)/dN in Equation 2 is a measure for the frac-
tional shift between BS and neighboring DS reflections at a given 
position “t.” This can be directly observed by superimposing 
the diffraction patterns for the two structures, e.g., Bi2Te3 and 
BiTeccp structures (Fig. 9e) as discussed by Frangis et al. (1990) 
(Table A1 in Appendix A1). Introducing the observed shifts into 
Equation 2, we obtain the position displacements for any “m” 
reflection in DS surrounding a “t” reflection in BS.

Based on the homology in the group, modules with con-
secutive k can be derived from one another, e.g., the 7′- from 5, 
the 9′- from 7-, the 11′ from 9′-modules. This is schematically 
represented (Figs. 9f–9h) by showing the overlap between reflec-
tions in an N- and (N – 2)-fold superstructure where the latter 
is considered as BS. In the case of phases built by two modules 
with consecutive k, and where i = 2, either of the two modules, 
S′ or L′, can be considered as BS. For the three phases with i = 
2 studied here (Figs. 10e–10g), the S′ modules are chosen as BS 
for simplicity. In cases where i > 2, however, the choice for BS 
is restricted to the dominant module in the stacking sequence, 
e.g., in 7′7′9′, i = 3 and BS is 7′ (Fig. 10h). The number of lay-
ers for BS is thus given by the general formulae (N – 2)/i and 
(N + 2)/i, dependent on whether S′ or L′, respectively, is the 
dominant module.

Considering the above, the fractional shift (Ht·R)/dN at posi-
tion t can be written as ∆d/dN* where ∆d is calculated as a differ-
ence of segments. For example, consider Figure 10e where ∆d 
= t[d(N–2)/i* – idN*]. After substituting d(N–2)/i* = (1/d1)[i/(N – 2)] 
and dN* = (1/d1)(1/N) into this equation we obtain:

∆d/dN* = 2ti/(N – 2). (4)

This equation is derived for structures where the S′ module 
is considered as BS. When the L′ module instead is taken as BS, 
the formula becomes:
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Figure 9. (a–d) Observed distribution of superstructure reflections 
and their intensities within d1* interval along (000l) central rows of EDPs 
in Figures 5a–5d [structures built by a single type of Bi2kX3 module (k = 
1–4; i = 1)]. They show the variation of qF with composition (decreasing 
with increasing Bi content) and the distance between the pair of brightest 
reflections about the center of d1* that is qF = idN*. (e–h) Derivation of 
stacking sequences for phases in a–d using the fractional shift method of 
Van Landuyt et al. (1970) for interface modulated structures (DS, circles) 
relative to a basic structure (BS, crosses), done by overlapping the two 
corresponding DS and BS patterns. Fractional shifts shown below each 
pattern. Indexation with respect to hexagonal setting (hkml). Right inset 
gives patterns for the same stacking sequences as represented on the left 
but with intensities drawn proportional to values calculated in Table 3, 
thus showing a precise relative variation in intensity of reflections. In e, 
the reciprocal lattice vector (gt,m) describing the superstructure reflections 
is shown for Bi2Te3 (DS) relative to BiTeccp (BS). In f–h, each DS pattern 
is derived from the one above considered as BS.

1 Deposit item AM-09-012, Appendix A with Appendix Tables 
and Appendix B, information about the MSCG for the simula-
tion program. Deposit items are available two ways: For a paper 
copy contact the Business Office of the Mineralogical Society of 
America (see inside front cover of recent issue) for price infor-
mation. For an electronic copy visit the MSA web site at http://
www.minsocam.org, go to the American Mineralogist Contents, 
find the table of contents for the specific volume/issue wanted, 
and then click on the deposit link there.

∆d/dN* = 2ti/(N + 2). (5)

Equations 4 and 5 are valid only for sequences where L′ = 1 
or S′ = 1, respectively. It should be also noted that they are not 
applicable to the derivation of Bi2Te3 from BiTeccp since the latter 
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Figure 10. (a–d) Observed distribution of superstructure reflections and their intensities within d1* (hexagonal subcell) interval along (000l) 
central rows of EDPs in Figures 5e, 5h, 5g, and 5f (structures built by two types of Bi2kX3 modules; i ≠ 1). They show the variation of qF with 
composition (decreasing with increasing Bi content) and the distance between the pair of brightest reflections about the center of d1* that is qF = 
idN*. (e–h) Derivation of stacking sequences for phases in a–d (see caption to Fig. 9). In e–h, the BS is chosen using idN measurements (see text). 
In e, the segments used to calculate ∆d are shown. The upper-right inset shows the derivation of stacking sequence for the structure in h using the 
measured value of qF and the strip method of Frangis et al. (1990).
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is not part of the homologous group considered here. Calculations 
of all fractional shifts for all the investigated structures are given 
in Table A2 Appendix A1. Introducing these values in Equation 
2 we obtain the displacements (m-Ht·R) for half the number 
of reflections across the d1* interval (the other half is a mirror 
image) for each structure (Tables A3–A8 in Appendix A). The 
calculated values correspond to the measured fractional shifts 
as indicated on Figures 9e–9h and 10e–10h.

The observed intensity variation in the patterns, as well as 
the absence of some reflections, can be explained if we consider 
the intensity of each reflection to be proportional to the equation 
obtained from the potential function Vg = VHsin(πud)/πud: 

sin2[π(m – HR)]/[π(m – HR)]2 (6)

where u = (1/d)(m – HR) (Van Landuyt et al. 1970). Using the 
shift values, it is thus possible to calculate the relative intensi-
ties at all (m, t) conditions (Tables A3–A8 in Appendix A1). The 
intensity at a given nr position is the sum of all contributions 
from all BS reflections. It can be seen, however, that for m > 1, 
the intensity contribution from a given t is at least an order of 
magnitude weaker than that for m = 0. This allows us to con-
sider as relevant only those contributions from the nearest BS 
reflections for a given nr. The expected diffraction pattern can 
then be drawn proportionally to the calculated intensity values 
(Table 3; Figs. 9 and 10, insets) and compared with the observed 
patterns (Figs. 9e–9h, 10e–10h). The missing reflections in those 
structures composed of two module types can now be seen to 
have intensities an order of magnitude lower than the observed 
reflections.

Other effects such as different types of atoms in the same 

structural arrangement can also affect the observed intensities. 
For example, the missing reflections predicted by calculation 
for 57′ using the basic structure 5 (Table A6, Appendix A1; 
Fig. 10e) are observable if the structure is doped with Ge (e.g., 
structure 12H = 57 shown in Fig. 3c in Frangis et al. 1990). We 
note that this is not observed when Se instead of Te is present in 
this structure, e.g., compare Figure 3g in Frangis et al. (1990) 
with our Figure 10e.

PoLysomatism

Minimal shift condition
The above results show that the shift condition that must be 

considered for a pattern to have the brightest two reflections 
located about the middle of d1* always separated by idN* is: ∆d 
= 1/Nb, (Nb is the number of layers in the basic structure). We 
call this the “minimal shift condition” (MSC) since 1/Nb is the 
smallest rational fraction that can be obtained for a given basic 
structure. 

Knowing that homology in the group relates the two building 
modules, S′ and L′, by the k number, and i = S′ + L′, a program 
(MSCG, Appendix B1) was compiled to check this condition 
for any structure for which S′, L′, and k are known. The MSCG 
program calculates the intensities for all reflections within 
the d1* interval and iterates such calculations for all possible 
substructures, finding those that obey the MSC as solutions for 
the basic structure (see introductory text to MSCG, Appendix 
B1). The numerical simulation for intensities within d1* can be 
compared with the observations thus constraining the stacking 
sequence estimated from a diffraction pattern. The example be-
low illustrates the applicability and necessity of this method.

Table 3. Sum of I(m,t) intensities for (N – i)/2 reflections at position nr (see Fig. 10), calculated for all the types of analyzed structures (Appendix 
A1, Tables A1, A3–A91), using the fractional shift method of van Landuyt et al. (1970) 

 Analytical values Computed value
BS BiTeccp Bi2X3 Bi4X3 Bi6X3 Bi2X3 Bi4X3 Bi6X3 Bi4X3 Bi10X6  Bi14X9

 na 5 7′ 9′ 5 7′ 9′ 7′ 7′9′  7′7′9′
DS Bi2X3 Bi4X3 Bi6X3 Bi8X3 Bi6X6 Bi10X6 Bi14X6 Bi14X9 Bi14X9  Bi186X120 
 5 9′ 9′ 11′ 57′ 7′9′ 9′11′ 7′7′9′ 7′7′9′  12 × 7′7′9′.7′7′7′9′
i (DS) 1 1 1 1 2 2 2 3 3  40
N 5 7 9 11 12 16 20 23 23  306
Nb na 5 7 9 5 7 9 7 (low) 16 (high)  23

Intensity (nr) = ΣI(m,t)

nr = 0 1.0162 1.0512 1.0533 1.0506 1.0174 1.0169 1.0153 1.0082 1.0580 nr = 0 1.0006
1 0.0450 0.5836 0.8000 0.9063 0.0492 0.0456 0.0389 0.0152 0.5267 13 0.7307
2 0.4053 0.3093 0.4219 0.5955 0.5773 0.7741 0.8679 0.0424 0.3500 27 0.5881
3 0.4053 0.9109 0.5714 0.5059 0.2654 0.1617 0.1223 0.7666 1.0447 40 0.9764
4  0.0243 0.9902 0.7450 0.0905 0.3183 0.5219 0.1365 0.7715 53 0.8548
5   0.0146 1.0208 0.8887 0.5383 0.3519 0.0609 0.2673 66 0.3711
6    0.0096 0.0314 0.0776 0.2159 0.3046 0.8826 67 0.4415
7     0.0072 0.9538 0.7041 0.5311 0.9775 80 0.9054
8      0.0247 0.0668 0.0555 0.3006 93 0.9463
9      0.0042 0.9796 0.0442 0.6604 106 0.5144
10       0.0203 0.9442 1.0972 107 0.3047
11       0.0027 0.0206 0.4454 120 0.7961
12        0.0082 0.4454 133 0.9949
13        0.0019 1.0972 146 0.6610
          160 0.6610
          173 0.9949
Notes: All values >0.1 are given in bold. BS = basic Structure; DS = Derived Structure; i = S′ + L′, where S′ is the number of short (Bi2kX3) modules and L′ is the number 
of long [Bi2(k+1)X3] modules; N = number of total layers in the structure. X = Te, Se, S; na: not applicable. Italics: sum of intensities for the first reflection situated after 
the middle of d1* interval considering the contribution of Ht vectors from the left side of this interval.  
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All the stacking sequences interpreted from the EDPs are 
consistent with the lattice images obtained (Figs. 6 and 8), except 
the structure 7′7′9′ (TEM sample U2). In this case, the fringes 
show polysomatic disorder, i.e., intergrowths of two sequences 
P1: 7′7′9 and P2: 7′7′7′9′, with variable periodicities; P1 appears 

more frequently (Fig. 11). To check whether the structure is 
indeed the P1 structure as calculated from measuring dN*, we 
also tried the “strip” method of Frangis et al. (1990). Measuring 
the qF vector on the diffraction image, which is a longer segment 
than dN*, and thus presumably carries a smaller measurement 
error, it is then possible to estimate a much longer sequence 
(12 × P1.P2), where N = 306, i = 40, S′ = 27, and L′ = 13 (Fig. 
10d, right side). 

Numerical simulations of the patterns expected for 12 × P1.P2 
when considering either 7′ or P1 as a basic structure show only 
P1 as a solution. However, in this case, the number of reflections 
with intensities higher than 0.1 is much greater (in excess of Nb 
= 23, which is the number of layers for P1; Table 3) than that 
observed. Instead, simulation of 7′7′9′ with base 7′ reproduced 
the number of reflections, as well as relative intensities observed 
(Table 3). We thus conclude that our structure is closer to a 7′7′9′ 
sequence rather than to 12 × P1.P2, despite the notable range of 
polysomatic disorder observed from the fringes (Fig. 11), which 
is reflected only as an elongation of the reflections observed in 
some of the diffractions for our structure.

orDereD PoLysomes as struCturaL bLoCks

From all the structures discussed here it appears that the MSC 
is always respected if the stacking sequence is composed of two 
types of blocks, one of which is repeated only once. This means 
that for a given number of S′(Bi2kX3) and L′[Bi2(k+1)X3] modules, 
two polysomes (larger blocks formed by ordered sequences of 
the two types of modules) can be arranged so that one of them is 
a subsequence of the other (see example below). The polysome 
with the higher number of repeats in the entire sequence can be 
considered as the basic structure. It can be shown by simula-
tion that there will always be only two solutions for Nb of the 
basic structure that satisfy the minimal shift condition. The two 
are not independent, however, since the sum of the two values 
obtained for Nb is equal to N of the entire sequence. In general, 
for i > 2, considering the basic structure with the smaller Nb will 
reproduce the observed pattern more accurately. For example, 
for structure 7′7′9′, taking the larger Nb = 16 (7′9′) will result 
in a pattern with more reflections than actually observed (Table 
3). For i = 1 or 2, however, the basic structure with the larger Nb 
can sometimes give a better prediction of the pattern, e.g., the 
Ge-doped structure 57 in Figure 3c from Frangis et al. (1990), 
which shows all 11 superstructure reflections that would be 
obtained when Nb = 7.

The following example illustrates how the MSC can be used 
to reduce the number of possible stacking sequences for a given 
composition. Taking S′ = 8 and L′ = 5 for k = 1 (i.e., using 5 and 
7′ modules), the simulation gives Nb = 29. This number repre-
sents a polysome in which there are 3 × 5 and 2 × 7′ modules. 
The number of ways to arrange these modules (5 and 7′) is 5!/
(3!2!) = 10. After comparing the ten variants, only two were 
found to represent different stacking sequences: 5557′7′ and 
557′57′. From these basic stacking sequences we can obtain 
two derived structures as follows: 5557′7′.5557′7′.557′ and 
557′57′.557′57′.557′ by extracting a 57′ sequence from each third 
unit cell of the basic structure. According to the model above 
we would expect that both structures have the same diffraction 
pattern (they are polytypes) and the actual stacking sequence can 
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Figure 11. HRTEM images showing polysomatic disorder in fringes 
along the edge of a grain for which EDP (Fig. 5f) and interpretation of 
7′7′9′ structure (Fig. 10h) were obtained (sample U2). (b–d) Positions 
marked on along the edge as in a, the sequences show two types of 
polysomes with variable repeats as indicated; calculated compositions 
are also given. Scale bars: 5 nm.
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only be found from lattice fringes. The value of this prediction 
can be seen if we consider that the number of possible stacking 
combinations for this compound would have otherwise been 
very large [i.e., 13!/(8!5!) = 1287 even though many of these 
would be equivalent].

Predictions and constraints on the homology in the 
tetradymite group

As shown here, both the q and qF vectors underpin structural 
modulations that relate chemical changes from one phase to 
another and describe a similar trend of variation: a monotonic 
decrease of modulations with increase in Bi. The subcell (~0.57 
nm) obtained by the 4D displacive model is 3× longer than the 
average interlayer d1 ~ 0.2 nm representing c/3 of the basic 
subcell in the 3D displacement model. 

The position of q prime (onto one of the two brightest re-
flections about the middle of the d1* interval) is always easy to 
observe on diffractions and thus the 4D indexation system is 
preferable. The 3D model for qF, adapted here to include the 
homology between the Bi2kX3 modules and the “minimal shift 
condition,” can be used not only to identify, but also to predict, 
stacking sequences for any composition. This allows for discrimi-
nation between polysomatic sequences corresponding to single 
phases in the group and those that are random. The “minimal shift 
condition” imposed on polysomatism as required by the model 
adds a hierarchical level of homology to the group: certain com-
binations of simple Bi2kX3 modules form larger building blocks. 
The same model applies to the chalcogen-rich series since the 
Bi2kX3 and MpXp+1 modules are equivalent for any k = p – 1. 

Incommensurability has a different significance in the two 
models. In the 4D model, the “incommensurate periodicities” 
along the homoatomic arrays (leading to variation in the mea-
sured atomic positions in the same structure; Lind and Lidin 
2003) are inherent to all the structures built by two types of 
modules. However, the effect this has on the general pattern 
obtained by electron diffraction is not measurable and thus can be 
ignored for the purpose of identifying the stacking sequences. All 
the diffractions obtained here for such phases are commensurate, 
even in the case where polysomatic disorder is notable—as seen 
for structure 7′7′9′.

In the 3D model, a consequence of the fact that fulfillment 
of the MSC requires polysomatism for certain Bi/X ratios is that 
incommensurability (aperiodic structures) should be predictable 
for the longer and/or highly disordered polysomes. Sequences 
formed by more than two types of Bi2kX3 modules (e.g., 11′9′55, 
11′9′7′), or two Bi2kX3 modules that do not have consecutive k 
(e.g., 11′55), are polysomatic intergrowths of different phases. It 
can be assumed that their diffraction would be incommensurate 
as well, whether the intergrowths are ordered or disordered. 
However, the check for MSC should indicate whether the incom-
mensurability observed on a given diffraction pattern relates to 
random intergrowths or, alternatively, one of the longer poly-
somes represents a single-phase in the group.

Although the structural formula nBi2·mBi2X3 constrains the 
internal configuration of Bi2kX3 modules by the relation n/m = 
k – 1, it does not explicitly show the homology for phases with 
n/m > 1. In particular it does not constrain the fact that the only 
way in which adjacent 5 (Bi2X3) units can occur in a sequence 

representing a single-phase is when they combine with 2 (Bi2) 
units to form repeats corresponding to only two Bi2kX3 mod-
ules with consecutive k. For example, for n = 5 and m = 4, the 
sequence 225.25.25.25 = 9′7′7′7′ corresponds to a single phase 
whereas 2225.522.55 = 11′.9′.55 does not. Both sequences give, 
however, the same composition (Bi3X2).

Genetic considerations
Recognizing which of the stacking sequences correspond to 

single phases is important for assessing equilibrium diagrams, 
e.g., for the systems Bi-Te or Bi-Se (Okamoto and Tanner 1990; 
Okamoto 1994), as much as for petrogenetic interpretations. 
Slower cooling rates, of advantage when studying mixed layer 
compounds where stabilization of certain stacking sequences is 
dependent upon time, are inherent to specific geologic environ-
ments. For example, the richest Bi-phase obtained experimentally 
in the system Bi-Te is Bi7Te3, whereas the results here predict the 
existence of Bi8Te3, a phase still richer in Bi and not previously 
identified. The skarn deposits at the Good Hope Mine, Hedley, 
from which the sample (H2a) originates is formed in a deep 
environment, thus increasing the efficiency of slow cooling rates 
in stabilizing Bi-rich phases.

The laboratory results are nonetheless paralleled by the fact 
that the mineral corresponding to Bi7Te3, hedleyite, is relatively 
common, whereas the nearest phases with i = 1, i.e., Bi2Te 
(=Bi6Te3) and Bi8Te3, are unnamed species, only occasionally 
reported (or inferred) from EPMA data (e.g., Cook et al. 2007a). 
This is despite the fact that both Bi2Te and Bi8Te3 have simpler 
stacking sequences (mods 9′ and 11′, respectively) than Bi7Te3 
(i = 2; 9′11′) and should, presumably, be more stable. Why then 
are Bi2Te and Bi8Te3 not more widely reported? Small chemical 
differences between Bi7Te3 and either Bi2Te or Bi8Te3 (3 at% or 
2 wt% Te) may make them difficult to recognize on the scale of 
the microprobe beam. In any case, inhomogeneous material, con-
taining intergrowths of Bi2Te, Bi8Te3 and Bi7Te3 will inevitably 
give a “bulk” composition approximating Bi7Te3. In fact, Cook 
et al. (2007a) noted that the variety of published microanalytical 
data for hedleyite reflected a broad field from Bi6Te3 to Bi8Te3 (or 
even Bi9Te3). Small chemical variations can be assumed to occur 
at a local scale during crystallization. For example, in mixed-
layer compounds, often occurring as lamellae stratified along c 
in a given package, compositional variation can be recognized 
from one lamella to another, e.g., hedleyite lamellae embedded 
within a patch of Bi8Te3 cut across the stratification (Fig. 4c). 
The inner part of the patch in sample H2a from which the TEM 
samples were prepared would give a bulk composition midway 
between Bi7Te3 and Bi8Te3 (Fig. 12) if the EPMA data obtained 
from profiles along and across the lamellar package were aver-
aged (Fig. 4c; Table 2).

The effect of compositional variation across interstratified 
lamellar packages has to be assumed for sample U2 since the 
two phases identified from TEM samples prepared from the 
same patch, i.e., U2: Bi14Te9 (=Bi6.66Te3) and U2FIB: Bi5Te3, 
are different from the one expected from EPMA, i.e., Bi17Te12 
(=Bi4.25Te3) (Fig. 12). This compositional difference is too high 
to be attributed to EPMA analytical error. The sequence 2 × 
(7′7′9′).7′7′7′9 (Bi23Te15 = Bi4.6Te3; Fig. 11b) observed among the 
polysomes at the edge of the grain in Figure 11a indicates that 
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the overall composition of this grain is metal-deficient relative to 
the composition inferred by the stacking sequence 7′7′9′ (Bi14Te9 
= Bi6.67Te3). The volcanic environment at Ilkovstsy provides for 
rapid cooling rates, converging on laboratory conditions. Both 
polysomatic disorder and formation of intermediate phases (with 
EPMA-scale compositions between two Bi2kX3 phases with con-
secutive k,) is thus predictable within and across interstratified 
lamellar packages where the Bi2kX3, Bi2(k+1)X3 phases are not 
necessarily found for k < 3.

In three cases (M1, U1, H1), the variation in Bi/X seen 
in the EPMA data, although indicative of some lattice-scale 
inhomogeneity (Figs. 4e and 4f), do not cover all those com-
positions inferred from the HRTEM investigation. Besides the 
phase corresponding to the average EPMA composition (in the 
majority of cases), a minority of grains investigated by HRTEM 
correspond to phases with stoichiometry well beyond the limits 
of the EPMA data—for example, BiX (sample M1) and unnamed 
Bi2X (samples U1 and H1). Although the composition of these 
phases cannot be precisely estimated [it may be either BiTe or 
Bi(Te,S) in M1], their stacking sequences are simpler than those 
of the phases neighboring the main component in each sample, 
e.g., 57′ (i = 2) for BiX instead of 13 × (5).7′ (i = 14) for Bi5X7 in 
M1 (Fig. 12). The compositional ranges for structures in single 
samples confirmed by HRTEM (as much as ~10 at% X) are 
compared with the ranges of compositions inferred by EPMA 
in Figure 12. At Moberg (M1), it is possible to suggest that for-

mation of a 57 structure (M5X7) would have been favored if Pb 
had been available. The observations would appear to indicate 
that the small metal excess measured for the Bi2kX3 phases with 
k = 1, 2 attract nucleation of nano-scale inclusions that have a 
higher Bi/X ratio than might be expected from the correspond-
ing EPMA data. Two-phase separation triggered by exsolution 
might be invoked in this case.
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Figure 12. The compositional ranges for structures in single 
samples confirmed by HRTEM (as much as ~10 at% X) are compared 
with the ranges of compositions inferred by EPMA. Besides the phase 
corresponding to the average EPMA composition (in the majority of 
cases), a minority of grains investigated by HRTEM correspond to phases 
well beyond the limits of the EPMA data, for example, BiX (sample M1) 
and unnamed Bi2X (samples U1 and H1).


