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Packing systematics of the silica polymorphs: The role played by O-O nonbonded 
interactions in the compression of quartz
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absTRacT

The anion skeleton of quartz is a distorted body-centered cubic (BCC) arrangement. A hypothetical 
ideal BCC crystal structure for quartz has been derived and used to locate and describe the unoccupied 
tetrahedral sites, quantify the distortion of the quartz anion arrangement from ideal BCC, and charac-
terize the role of tetrahedral distortion and O-O interactions in the compression of quartz. Quartz has 
eight crystallographically nonequivalent tetrahedra, one occupied by silicon and seven unoccupied. 
These tetrahedra completely fill space, something that cannot be done using only regular tetrahedra. In 
ideal BCC quartz, the nonequivalent tetrahedra are identical in size and shape with a unique geometry 
and are referred to as Sommerville tetrahedra. In reality, the unoccupied tetrahedra of quartz are very 
distorted from both regular and Sommerville tetrahedra. Changes in the unoccupied tetrahedra are 
responsible for most of the compression in quartz with pressure, as the volume of the Si tetrahedron 
decreases by <1% over 10.2 GPa, but the volume of the bulk structure decreases by almost 16%. The 
ideal BCC quartz has been used to quantify the distortion from ideal BCC of the O arrangement in 
quartz at several pressures up to 10.2 GPa. Distortion decreases by over 60% across this domain. Other 
parameters have been derived to quantify the distortion of the unoccupied and occupied tetrahedra in 
quartz from Sommerville tetrahedra, the characteristic tetrahedra of BCC. By all measures, the anion 
packing in quartz approaches ideal BCC as pressure increases. The compression mechanisms of quartz 
are compared to those of cristobalite and coesite. Si-O-Si angle-bending controls compression in each 
of these minerals. The bulk moduli of these minerals are shown to correlate with average nearest inter-
tetrahedral anion distances, consistent with the hypothesis that anion-anion interactions stiffen the 
Si-O-Si angle as inter-tetrahedral anion distances decrease. The tetrahedral distortion in quartz with 
pressure is attributed to anion-anion interaction, and is not considered a compression mechanism.
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inTRoducTion

Quartz is an important Earth material that may constitute 
approximately 20% of the upper continental crust (Taylor and 
McLennan 1985). The simple chemistry and well-characterized 
structure of this mineral make it an excellent material to experi-
ment on and theorize about, and the results can provide valuable 
insight into more complex materials. Quartz is composed solely 
of corner-sharing SiO4 silica tetrahedra, a primary building block 
of many of the Earth’s crustal and mantle minerals, lunar and mar-
tian minerals, and meteoritic minerals (Deer et al. 1978). Quartz 
is therefore an outstanding model material for investigating the 
response of this fundamental structural unit to changes in P, T, 
and x. These facts have spawned a vast literature of experimental 
and theoretical studies of quartz at ambient and non-ambient 
conditions. Investigations into the behavior of quartz at high 
pressure have revealed an anomalous distortion in the silica 
tetrahedra with pressure not typically seen in other silicates. The 
present study is motivated by the desire to understand the unusual 
changes in the silicate tetrahedra of quartz with pressure.

Jorgensen (1978) conducted the first high-pressure structure 
refinements on quartz using data collected by powder neutron 

diffraction to 2.8 GPa. He listed three possible compression 
mechanisms: Si-O-Si angle-bending, tetrahedral distortion, 
and Si-O bond compression, concluding that Si-O-Si angle-
bending makes the greatest contribution to the compression of 
quartz, tetrahedral distortion is also important, but the effect of 
bond compression is minimal. d’Amour et al. (1979) reported 
the first structure refinements from single-crystal X-ray dif-
fraction. Reaching pressures of 6.8 GPa, they concluded that 
the observed compression could be accounted for by Si-O-Si 
angle-bending alone. Levien et al. (1980) compressed quartz 
to 6.1 GPa, collecting much more precise data than the earlier 
studies. In addition to angle-bending, they determined that there 
was a small component of bond compression, the magnitude of 
which lay within the error of the less precise earlier studies, and 
they verified the tetrahedral distortion mechanism of Jorgensen 
(1978). They further noted that the rate of change of distortion 
increased with pressure, making this mechanism more impor-
tant at higher pressures. Ogata et al. (1987) saw similar trends 
at simultaneous high pressure and temperature. Hazen et al. 
(1989) compressed quartz to 15.3 GPa, interpreting irreversible 
crystal degradation as evidence of amorphization at the highest 
pressure. Discounting the role of bond compression in quartz, 
they attributed all volume decrease to angle-bending. They ob-
served extreme distortion of the tetrahedra, but did not consider * E-mail: rmthomps@email.arizona.edu 
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this to be a compression mechanism. They also suggested that 
the O atoms were moving toward a close-packed arrangement 
with pressure. Glinnemann et al. (1992) undertook a study of 
the compression of quartz to 10.2 GPa, reiterating the view that 
quartz is compressed mainly through angle-bending, with a 
smaller contribution from tetrahedral distortion. kim-zajonz et 
al. (1999) extended these structural observations to 13.1 GPa. 
Continuing diffraction up to 19.3 GPa did not produce evidence 
of amorphization. Compression of quartz and its homeotypes 
beyond 20 GPa by several investigators has produced evidence 
of amorphization and/or novel phase transitions (cf. Haines et 
al. 2001 and references therein).

Sowa (1988) attributed the distortion of the tetrahedra in quartz 
with pressure to the movement of the anions toward body-centered 
cubic (BCC) packing. She calculated Dirichlet domains for the 
anions in quartz and realized that these domains were distorted 
cuboctahedra (perfect cuboctahedra result from ideal BCC pack-
ing), and that these cuboctahedra became less distorted with pres-
sure. The Dirichlet domain for a given anion is the region of space 
containing every point that is closer to the given anion than to any 
other. The boundaries of the domain are equidistant between two 
anions. Sowa (1988) characterized the O packing of quartz and 
its changes with pressure, but did not relate her observations to 
O-O interactions or any other forcing mechanism.

Traditionally, crystal chemistry has considered the analysis of 
anion-cation interactions to be the key to understanding the chang-
es in crystal structure with pressure, temperature, and changes in 
composition (Pauling 1940; Bragg et al. 1965; Hazen and finger 
1982). Crystal structures typically are compressed or expanded 
by “first-order” mechanisms that include inter-polyhedral angle-
bending of cation-anion-cation angles (e.g., Si-O-Si bending in 
quartz), cation-anion bond compression (e.g., the Mg-O bond in 
MgO), intermolecular distance changes (e.g., in a layer structure 
such as graphite; Hazen 1999), and phase transitions. Addition-
ally, Hazen (1999) identified the following mechanisms as being 
of lesser significance but still important: polyhedral distortion, 
cation order-disorder reactions, electronic transitions, and second-
nearest neighbor cation-cation interactions.

However, theoretical work shows that anion-anion interac-
tions play an important role in crystal chemistry (cf. Cohen 
1994; Prencipe and nestola 2007). Most work on the geometry 
of anion arrangements in minerals is descriptive, i.e., identifying 
and classifying the packing schemes of the anions (cf. O’keeffe 
and Hyde 1996). Packing indices have been derived by several 
investigators to quantify the distortion of anion arrangements 
and their response to changes in P, T, and x (cf. Thompson and 
Downs 2001a). we have worked extensively on actual and hy-
pothetical packings in pyroxenes (Thompson and Downs 2001a, 
2001b, 2003, 2004, 2008; Origlieri et al. 2003; Thompson et al. 
2005; McCarthy et al. 2008; nestola et al. 2008). However, it is 
difficult to unambiguously ascribe pressure-induced changes in 
either packing or polyhedral distortion in many minerals, includ-
ing pyroxenes, to anion-anion interaction because many of the 
minerals whose packing arrangements have been described are 
based on distorted closest-packing of anions. In closest-packed 
structures, both anion-anion repulsion and volume reduction 
have the same effect of decreasing both packing and polyhedral 
distortion because tetrahedra and octahedra in ideal closest-

packing are perfectly regular. Despite this, Thompson and Downs 
(2008) used geometric models to derive evidence of anion-anion 
interaction in diopside. 

Using the conclusion of Sowa (1988), that quartz has a 
distorted BCC anion skeleton, as a starting point, in this paper 
we will derive and present some new crystallographic data on 
quartz including data sets for hypothetical ideal BCC quartz and 
the locations of all of the unoccupied tetrahedral voids in quartz, 
quantify the distortion of the quartz anion arrangement from 
ideal BCC, and characterize the role of tetrahedral distortion and 
O-O interactions in the compression of quartz. Because quartz 
is based on BCC packing of anions and the tetrahedra in ideal 
BCC have a distinctive non-regular geometry, it is possible to 
distinguish between the effects of anion-anion interaction and 
volume reduction in quartz, in contrast to minerals based on 
closest-packing of anions. In quartz, the need to reduce volume 
with pressure would tend to make the tetrahedra more regular, 
but anion-anion repulsion would make them more like the dis-
tinctive tetrahedra of ideal BCC. Here we define “compression 
mechanism” as an atomic behavior that reduces the volume of 
a crystal as pressure increases. This narrow definition is chosen 
to distinguish between atomic behaviors that reduce volume in 
response to increasing pressure and those that reflect other intra-
crystal processes such as electrostatic repulsion. The net atomic 
behavior of a crystal under increasing pressure is the result of 
competing forces, and we are attempting to isolate which forces 
are responsible for various observed atomic behaviors, to move 
from observation to explanation. for instance, it is clear that 
Si-O-Si angle-bending is a mechanism that reduces the volume 
of quartz as pressure increases and is therefore a compression 
mechanism by our definition. we will provide evidence that 
increasing tetrahedral distortion in quartz with pressure arises 
from anion-anion interaction and stiffens the structure, and there-
fore by our definition, should not be classified as a compression 
mechanism, but should be characterized in a manner that reflects 
the process that causes the distortion. If Si-O-Si angle-bending 
is called a “compression mechanism” because it reduces cell 
volume of the crystal under pressure, tetrahedral distortion might 
be called an “anion distancing mechanism” because it maximizes 
the shortest nearest neighbor O-O distance as pressure increases. 
There is no a priori reason to assume that Si-O-Si angle-bending 
will necessarily distort the silica tetrahedra in quartz. Rigid unit 
mode, RUM, analysis has demonstrated the existence of RUMs 
in quartz that allow Si-O-Si bending without tetrahedral distor-
tion (cf. Ross 2000 and references therein).

Because this paper is concerned with drawing conclusions 
about anion-anion interactions in quartz under pressure, we are 
specifically reporting about α-quartz and all instances of the word 
“quartz” could be replaced with “α-quartz” without changing our 
meaning. However, β-quartz is displacively related to α-quartz, is 
also based on BCC packing of anions, and could also be analyzed 
using the mathematical tools presented in this paper.

FundaMenTals oF bcc packing and quaRTz

Space cannot be completely filled by regular tetrahedra, but 
ideal BCC packing completely fills space with congruent (i.e., 
identical in size and shape) tetrahedra that are not regular (Table 
1, fig. 1) (Sommerville 1923a, 1923b). O’keeffe and Hyde 
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(1996) named these distinctive tetrahedra after D.M.y. Som-
merville, a mathematician who worked on the problem of space-
filling tetrahedra (1923a, 1923b). figure 1 shows two views of a 
Sommerville tetrahedron chosen to highlight its unusual geom-
etry. Table 1 is a comparison between a regular tetrahedron and a 
Sommerville tetrahedron. It also contains Cartesian coordinates 
for the two tetrahedral types so that the reader can easily create 
data files for crystal-drawing programs to make a more extensive 
visual examination. Each face of a Sommerville tetrahedron is 
an isosceles triangle with the long edge 15% longer than the 
short edges and an opposing angle of cos–1(1/3) ≈ 70.53°. This 
gives the tetrahedron two different dihedral (interfacial) angle 
values, 90 and 45°. A Sommerville tetrahedron has a 10% greater 
volume and a 6% longer centroid-vertex separation (i.e., bond 
length) than a regular tetrahedron with an edge length equal to 
the shortest Sommerville edge. Assuming that the shortest edge 
in a tetrahedron represents a limiting O-O distance at a given 
pressure, this means that regular tetrahedra are more volume ef-
ficient than Sommerville tetrahedra. This does not prove that the 
most efficient way to reduce volume in the bulk quartz crystal 
is to make the SiO4 tetrahedra more regular, but it is consistent 
with an alternative explanation for the increasing tetrahedral 
distortion in quartz with pressure. 

Each sphere in an ideal BCC arrangement is at the vertex of 
24 Sommerville tetrahedra, so each tetrahedron contains 1/24 of 
a sphere per vertex (fig. 1), for a total 1/6 sphere per tetrahedron. 
Therefore, an ideal BCC arrangement of equal-sized spheres has 
six tetrahedral sites for each sphere. The BCC unit cell contains 
two spheres (one at the center and 1/8 sphere at each of the eight 
corners of the cube) and therefore 12 tetrahedral sites. The unit 
cell of quartz comprises three unit cells of BCC, so there are 
36 tetrahedral sites in the unit cell of quartz, of which three are 
occupied by silicon and the rest are unoccupied. These 36 sites 
are divided into eight crystallographically non-equivalent sites 
in the symmetry of quartz, space group P3121. Table 2 lists the 
positions of these sites, with the unoccupied sites denoted V for 
void, and their multiplicities: 3 × Si + 3 ×  V1 + 3 × V2 + 3 × 
V3 + 6 × V4 + 6 × V5 + 6 × V6 + 6 × V7 = 36 T sites. figure 
2 shows four views of quartz along [210]: quartz at 0 and 10.2 
GPa, ideal BCC quartz, and the largest of the seven unoccupied 
symmetrically nonequivalent tetrahedral sites (V1 in Table 2) in 0 
GPa quartz with the silica tetrahedra rendered invisible. Data for 
quartz at 0 and 10.2 GPa used to make figure 2 are from Glin-
nemann et al. (1992). Table 2 contains the complete structural 

data for the ideal BCC quartz, with data collected from a synthetic 
quartz sample included for comparison (Glinnemann et al. 1992). 
figure 3 illustrates the relationship between the BCC unit cell 
and unit cell of quartz. The figure compares the perfect BCC cell 
of ideal BCC quartz with the distorted BCC cell of a synthetic 
quartz sample (Glinnemann et al. 1992). The coordinates of the 
corners of the perfect BCC cube are compared with those of 
synthetic quartz in Table 3. The faces of the perfect BCC cube 
are parallel to the planes (111), (011), and (101) in ideal quartz. 
In ideal BCC quartz, each of the eight non-equivalent tetrahedra 

Table 1.  A statistical comparison between a regular tetrahedron and a Sommerville tetrahedron
 Regular Sommerville Exact expressions with edge = 2r
  no.  no. Regular Sommerville
Edge length 2 6 2, 2.31 4,2 2r 2r, (4/√3)r
Tetrahedral angles 109.47° 6 101.54°, 126.87° 4,2 cos–1(–1/3) cos–1(–1/5), cos–1(–3/5)
Dihedral angles 70.53° 6 45°, 90° 4,2 cos–1(1/3) cos–1(√2/2), cos–1(0)
Intrafacial angles 60° 12 54.74°, 70.53° 8,4 cos–1(1/2) cos–1(1/√3), cos–1(1/3)
Facial median 1.73 3  1.63 1  √3r (4/√6)r
Height, h 1.63  1.63  (4/√6)r (4/√6)r
Volume 0.94  1.03  √(8/9)r3 (16/9√3)r3

Centroid height 0.41  0.41  h/4 h/4
R(centroid-vertex) 1.22  1.29  (3/√6)r √(5/3)r

Cartesian coordinates (0,0,0) (2r,0,0) (r,√3r,0) (r,√3r/3,4r/√6) (0,0,0) (4r/√3,0,0) (2r/√3,4r/√6,0) (2r/√3,0,4r/√6)
Centroid (r,√3r/3,r/√6) (2r/√3,r/√6,r/√6)
Note: Exact expressions are parameterized in terms of a hypothetical model O radius = r.

FiguRe 1. Two views of a Sommerville tetrahedron (O’keeffe and 
Hyde 1996) chosen to highlight its unusual geometry.

Table 2. Structural data for ideal BCC quartz
Atom Multiplicity  Ideal BCC   P = 0 GPa
  x y z x y z
Si 3 5/12 0 0 0.4698 0 0
V1 3 5/12 0 1/2 0.3593 0 1/2
V2 3 11/12 0 0 0.9700 0 0
V3 3 11/12 0 1/2 0.8593 0 1/2
V4 6 1/12 1/3 1/6 0.1407 0.3907 1/6
V5* 6 7/12 1/3 1/6 0.6407 0.3907 1/6
V6 6 1/4 2/3 1/3 1/4 0.7200 1/3
V7 6 3/4 2/3 1/3 3/4 0.7200 1/3
O 6 1/3 1/3 –1/12 0.4151 0.2675 –0.1194
Notes: Ideal BCC quartz is a hypothetical crystal with space group P3121, 
origin shift [0 0 1/3]. For model O radius r, a = 4√6r/3, c = 4r, c/a = √(3/2). V 
sites are tetrahedral sites that are unoccupied in quartz (tetrahedral voids). 
The P3221enantiomorph with origin shift [0 0 2/3] in the Levien and Prewitt 
(1980) setting can be derived from this data by reversing the sign of each 
atom’s z coordinate. Values for a synthetic quartz sample at room conditions 
from Glinnemann et al. (1992) have been included for comparison. V sites 
in synthetic quartz are the centroids of the unoccupied tetrahedral sites. 
* V5 in ambient condition quartz is so distorted that the four nearest O atoms 
to the centroid do not form the correct tetrahedron. Use (0.6,0.35,0.15) in a 
crystal-drawing program.
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figure 4 is a plot of UBCC vs. pressure for a synthetic quartz 
sample (Glinnemann et al. 1992). UBCC decreases from 0.72 to 
0.28 over 10.2 GPa. The fitted quadratic in figure 4 reaches 
its minimum value of 0.1 Å2 at 14 GPa, suggesting that forces 
within quartz may prevent it from ever becoming perfectly BCC 
as pressure increases, and that quartz must alter its compression 
pathway as pressure reaches and exceeds ~14 GPa. The rate of 
decrease of UBCC with pressure is two to three times greater than 
any of the analogous distortion parameter values reported for the 
pyroxenes, olivines, and other M2SiO4 polymorphs, and various 
other minerals examined by Thompson and Downs (2008) and 
references therein. The BCC packing efficiency of quartz dra-
matically improves with pressure. This necessarily means that the 

FiguRe 2. four views of quartz down [210]. Data for quartz at 0 and 10.2 GPa are from Glinnemann et al. (1992).

◄F i g u R e  3 .  T h e 
relationship between the 
BCC unit cell and the quartz 
unit cell. A comparison 
between the perfect BCC 
unit cell in hypothetical 
ideal BCC quartz and the 
distorted BCC unit cell in 
a synthetic quartz sample 
(Glinnemann et al. 1992).

(in quartz symmetry) are perfect Sommerville tetrahedra of the 
same size and shape, but are not equivalent under the operators 
of the space group of quartz, P3121. As the O skeleton of a 
natural or synthetic quartz sample gets closer to ideal BCC with 
pressure, the tetrahedra should become less regular, and more 
like Sommerville tetrahedra. These observations will be used to 
quantify the changes in the packing arrangement of quartz with 
pressure in several ways in the next section.

Response oF The oxide anion aRRay in quaRTz 
To pRessuRe

To look at the change in the bulk O arrangement of quartz with 
pressure, a parameter, UBCC, has been derived that quantifies the 
distortion of the anion skeleton of quartz from ideal BCC. It is a 
measure of the mean squared displacement, i.e., variance, of 600 
observed anions (a 5 × 5 × 4 block of unit cells) from their ideal 
equivalents: UBCC = Σi=1,600 [Ri

2(observed-ideal)/600], where Ri is 
the distance from the ith observed anion to its ideal equivalent. 
The fit between the observed and ideal arrangements is accom-
plished by rotating the ideal arrangement and varying its model O 
radius (i.e., the radius of the equal-sized spheres in the ideal BCC 
arrangement) until UBCC is minimized. A UBCC value of zero is 
perfectly BCC. A value of one is very distorted, so distortion from 
BCC increases as UBCC increases. Alternatively, one can think of 
packing efficiency as increasing as UBCC decreases. A similar pa-
rameter for cubic-closest packing and hexagonal closest-packing 
is described in detail in Thompson and Downs (2001a).

Table 3.  Coordinates of O atoms in quartz that form a BCC unit cell
 Ideal BCC P = 0 GPa
x y z x y z
1/3 1/3 11/12 0.4151 0.2675 0.8806
0 2/3 7/12 –0.1476 0.5849 0.54727
–1/3 0 1/4 0.2675 0.1476 0.2193
2/3 1 1/4 0.7325 1.1476 0.2193
1/3 1/3 –1/12 0.4151 0.2675 –0.1194
2/3 0 1/4 0.7325 0.1476 0.2193
1 2/3 7/12 0.8524 0.5849 0.54727
0 –1/3 7/12 –0.1476 –0.4151 0.54727
 Central sphere Central atom
x y z x y z
1/3 1/3 5/12 0.2675 0.4151 0.45273
Notes: The coordinates of the corners of the perfect BCC unit cell of hypothetical 
ideal BCC quartz and of the distorted BCC unit cell in a synthetic quartz sample 
(Glinnemann et al. 1992).
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tetrahedra in quartz become more like Sommerville tetrahedra.
To look at the change of the individual tetrahedra, unoccu-

pied or occupied, in quartz with pressure, the intrafacial angle 
variance was calculated for all of the tetrahedral sites in quartz 
at four pressures up to 10.2 GPa using the data of Glinnemann 
et al. (1992). we define the intrafacial angle variance from a 
regular tetrahedron as σ2

θR = Σi=1,12(θi – 60°)2/12 and from a 
Sommerville tetrahedron as σ2

θS = Σi=1,4(θi – 70.53°)2/12 + Σj=1,8(θj 
– 54.74°)2/12. Intrafacial angle variance was chosen over tetrahe-
dral angle variance (Robinson et al. 1971) to avoid dependence on 
fictive cations in the unoccupied sites. However, placing fictive 
cations at the centroids of the unoccupied sites and calculating 
tetrahedral angle variance produces parallel trends. figure 5a 
shows the change in angle variance with pressure for the silica 
tetrahedron. It becomes more distorted compared to regular tet-
rahedra and less distorted from Sommerville tetrahedra. figure 
5b illustrates the average change in angle variance with pres-
sure for the seven unoccupied tetrahedra. Distortion from both 
Sommerville and from perfectly regular tetrahedra decreases as 
pressure increases. This is because the unoccupied tetrahedra, 
while more like Sommerville than regular, are so distorted from 
both that measures of distortion from Sommerville and regular 

can decrease simultaneously. These two parameters show that the 
silica tetrahedron trends toward a BCC Sommerville tetrahedron 
with pressure, but the unoccupied tetrahedra are so distorted 
that it is only possible to say that the unoccupied tetrahedra are 
more like Sommerville tetrahedra than regular tetrahedra over 
this pressure domain. This obscures the fact that the decrease in 
distortion from Sommerville tetrahedra reflects the underlying 
process, but the decrease in distortion from regular tetrahedra 
is an artifact of the extreme initial distortion of the tetrahedra. 
Consistent with this, it is theoretically possible for the tetrahedra 
to become perfectly Sommerville if observed trends continue, 
but not perfectly regular, because it is impossible to completely 
fill space using only regular tetrahedra (Sommerville 1923a, 
1923b).

figure 5 shows that the change in the distortion in the un-
occupied tetrahedra with pressure is much greater than in the 
silicate tetrahedron, and figure 6 shows that the volumes of the 
unoccupied tetrahedra decrease much more than the volume of 
the occupied tetrahedron, which is nearly constant over 10.2 
GPa. Thus, most of the action in quartz as it is compressed is in 
the unoccupied tetrahedra. near neighbor anion-anion distances 
(fig. 7) were calculated for quartz up to 10.2 GPa using the data 
of Glinnemann et al. (1992). Each anion bridges two tetrahedra 
and has six intra-silicate tetrahedron near neighbor anions, three 
from one tetrahedron, and three from another. figure 7 plots the 
average of these distances [<R(O-O)>], which remains essen-
tially unchanged with pressure, and the individual distances to 
the next six closest anions. Among these six, there are two pairs 
of symmetrically equivalent distances, resulting in four curves 
representing six distances. These distances are short enough 
that it is reasonable to hypothesize that the anions interact in a 
nonbonded closed-shell manner, i.e., via electrostatic repulsion, 
especially in light of the fact that considerable electron density 
must be tied up in the short, strong Si-O bonds, reducing nuclear 
shielding. Anions that interact repulsively orient themselves so 
as to maximize their minimum near neighbor distances. This 
drives them toward the least dense regular packing that the ratio 
of the number of anions to volume allows, in this case BCC. As 
pressure forces the anions together, they interact repulsively with 
their inter-tetrahedral near neighbors, to the extent that the very 

FiguRe 4. UBCC quantifies the distortion of the anion skeleton of 
quartz from ideal BCC. The anion skeleton of quartz moves dramatically 
toward BCC with pressure.

FiguRe 5. Intrafacial angle variance for all of the tetrahedral sites in quartz at four pressures up to 10.2 GPa calculated using the data of 
Glinnemann et al. (1992). figure a shows the variance of the silica tetrahedron from both a Sommerville and a regular tetrahedron. figure b shows 
the average of these values for the seven unoccupied tetrahedral sites.
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stable (SiO4)4– groups distort away from regular tetrahedra toward 
BCC Sommerville tetrahedra. Thus, tetrahedral distortion is not a 
compression mechanism according to the definition of the intro-
duction (i.e., because it is not helping to reduce volume), rather a 
result of anion-anion interaction. This is further evidenced by the 
fact that the silica tetrahedral volume in quartz decreases by <1% 
over 10.2 GPa, but the volume of the bulk structure decreases 
by almost 16% (Glinnemann et al. 1992).

coMpaRison oF The coMpRessibiliTies oF 
quaRTz, cRisTobaliTe, and coesiTe

figure 8 is a plot reprinted from Prewitt and Downs (1998), 
itself modified from Downs and Palmer (1994), showing the 
fractional change in Si-O-Si angle with change in volume for 
quartz, coesite, and cristobalite (Glinnemann et al. 1992; Levien 
et al. 1980; Levien and Prewitt 1981; Downs and Palmer 1994; 
Hazen et al. 1989). The data points define an almost perfect 
straight line, demonstrating that compression in the tetrahedral 

silica polymorphs is correlated with Si-O-Si angle-bending. 
However, the bulk moduli of cristobalite, quartz, and coesite 
differ dramatically: 11.5, 37.1, and 96 GPa, respectively (Downs 
and Palmer 1994; Levien et al. 1980; Levien and Prewitt 1981). 
This is because the change in Si-O-Si angle per unit pressure var-
ies correspondingly: 6°/GPa in cristobalite, 1.4°/GPa in quartz, 
0.6°/GPa in coesite. That is, a given reduction in Si-O-Si angle 
creates the same volume reduction in quartz as in cristobalite and 
coesite, but it requires four times more pressure to reduce the 
angle in quartz than it does in cristobalite, and more than twice as 
much in coesite as in quartz. we have put forth the hypothesis that 
anion-anion repulsive interaction in quartz resists compression. 
figure 9 shows the average O-O separation for the six nearest 
inter-silica tetrahedron neighbor anions (i.e., anions that do not 
share a coordinating silicon) in cristobalite, quartz, and coesite 
(Downs and Palmer 1994; Angel et al. 2003; Levien and Prewitt 
1981). The non-Si sharing nearest neighbor anions are signifi-
cantly farther away in cristobalite than they are in quartz, 3.82 vs. 

FiguRe 6. The volume of the eight nonequivalent tetrahedral sites 
in quartz at four pressures up to 10.2 GPa calculated using the data of 
Glinnemann et al. (1992). This plot demonstrates that most of the action 
in quartz as it is compressed is happening in the unoccupied sites.

FiguRe 7. A comparison over 10.2 GPa (Glinnemann et al. 1992) of 
the average of the distances, <R(O-O)>, between the O atom in quartz 
and its six intra-tetrahedral near neighbor anions, and the individual 
distances to the next six closest anions.

FiguRe 8. A plot reprinted from Prewitt and Downs (1998) showing 
that Si-O-Si angle-bending controls compression in the tetrahedral silica 
polymorphs. 

FiguRe 9. A plot of the average O-O separation for the six nearest 
anions that do not share a coordinating silicon in cristobalite (Downs 
and Palmer 1994), quartz (Glinnemann et al. 1992), and coesite (Angel 
et al. 2003).
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3.49 Å, and are much closer in coesite, 3.10 Å, consistent with 
our hypothesis that inter-tetrahedral anions interact repulsively, 
so that the closer they are, the stiffer the structure.

There is an additional mechanism that stiffens the average 
Si-O-Si angle in coesite. Cristobalite and quartz have only one 
O atom in their asymmetric units, so there is only one crystallo-
graphically unique Si-O-Si angle, but the unit cell of coesite has 
five nonequivalent O atoms, so there are five different Si-O-Si 
angles that can behave differently. O1 lies on an inversion center, 
so as long as the forces inside coesite maintain this symmetry 
as pressure increases, then the Si1-O1-Si1 angle is constrained 
to the unusual value 180°, as illustrated in Figure 10b. Figure 
10a shows a portion of the bulk structure of coesite with O1 
illustrated as a sphere, emphasizing the importance of the Si1-
O1-Si1 angle. Recent work (Angel et al. 2003) concludes that the 
Si1-O1-Si1 angle is 180°, that it does not change with pressure, 
and that it is not an average value due to toroidal motion about 
an Si1-Si1 axis. Therefore, all angle-bending must occur at the 
other four Si-O-Si angles, reducing the decrease in <Si-O-Si> 
per unit pressure.

Because quartz is based on BCC packing of anions, it is 
the perfect material to analyze for evidence of anion-anion 
interactions, per the following explanation. In materials based 
on closest packing of anions, such as olivines or pyroxenes, 
volume reduction considerations and anion-anion repulsion 
both tend to make polyhedra more regular with pressure. This 
is because ideal closest-packed arrangements have perfectly 
regular tetrahedra and octahedra, and regular polyhedra are not 
only the most volume-efficient, but also maximize the minimum 
anion-anion distance (in the closest-packed case). This means 
that in closest-packed materials, the effects of volume reduction 
considerations and anion-anion repulsion cannot be distinguished 
on the basis of polyhedral behavior with pressure. However, in a 
BCC arrangement, volume-reduction considerations still favor 
regular polyhedra, but maximizing the minimum anion-anion 
distance favors Sommerville tetrahedra. In this case, volume 
reduction and anion-anion repulsion have competing, different 
effects on polyhedral behavior with pressure, and can therefore 
be distinguished. In quartz, the only significant compression 

mechanism is Si-O-Si angle-bending, anion-anion repulsion is 
an “anti-compression” mechanism, stiffening the structure rela-
tive to cristobalite, and tetrahedral morphology is responding to 
anion-anion repulsive interaction.

finally, a stabilizing bonded interaction between anions may 
play a role in the movement of the anions in quartz toward BCC 
with pressure. Properties of some O-O bond paths in silicates 
as determined by ab initio calculations suggest that these are 
stabilizing interactions (Gibbs et al. 2008). Calculations by Gibbs 
et al. (1999) showed a bond path forming between two of the 
anions in adjacent Si-tetrahedra in quartz above 2.5 GPa. This 
bond path is between O atoms that are BCC nearest neighbors, 
perhaps locally stabilizing the BCC arrangement and facilitating 
the move toward ideal BCC.
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