Lead-tellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb₂Cu²⁺Te⁶⁺O₁₀(OH)₂(SO₄)(H₂O), a new mineral with thick HCP layers

ANTHONY R. KAMPF,^{1,*} STUART J. MILLS,² ROBERT M. HOUSLEY,³ GEORGE R. ROSSMAN,³ JOSEPH MARTY,⁴ AND BRENT THORNE⁵

¹Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A. ²Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia

³Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

⁴5199 E. Silver Oak Road, Salt Lake City, Utah 84108, U.S.A.

53898 S. Newport Circle, Bountiful, Utah 84010, U.S.A.

ABSTRACT

Bairdite, $Pb_2Cu_4^{2+}Te_2^{6+}O_{10}(OH)_2(SO_4)(H_2O)$, is a new tellurate-sulfate from Otto Mountain near Baker, California, U.S.A. It occurs in vugs in quartz associated with khinite, cerussite, goethite, and hematite. It is interpreted as having formed from the partial oxidation of primary sulfides and tellurides during or following brecciation of quartz veins. Bairdite is monoclinic, space group $P2_1/c$, with unit-cell dimensions a = 14.3126(10), b = 5.2267(3), c = 9.4878(5) Å, $\beta = 106.815(7)^\circ$, V = 679.41(7) Å³, and Z = 2. Bairdite occurs as diamond-shaped tabular crystals up to about 250 μ m long and 5 μ m thick, in subparallel and fan-shaped aggregates. The color is lime green, the streak is pale lime green, and the luster is adamantine. The Mohs hardness is estimated at between 2 and 3. Bairdite is brittle with an irregular fracture and one perfect cleavage on {100}. The calculated density based on the empirical formula is 6.062 g/cm³. Bairdite is biaxial (+), with calculated indices of refraction of $\alpha = 1.953$, $\beta =$ 1.966, and $\gamma = 2.039$. The measured 2V is 47(2)°, dispersion is r < v, strong and the optical orientation is $Y = \mathbf{b}$; $Z \wedge \mathbf{a} = 34^{\circ}$ in obtuse angle β . The pleochroism is strong: Z (pale green) $\leq \leq X$ (green) $\leq Y$ (green). Electron microprobe analyses (average of 4) provided: PbO 34.22, CaO 0.06, CuO 23.80, TeO₃ 26.34, SO₃ 5.74, H₂O 2.81 (structure), total 92.97 wt%. The empirical formula (based on 17 O atoms pfu) is: $Pb_{2.05}Ca_{0.01}Cu_{3.99}^{+9}Te_{2.00}^{+0}S_{0.96}O_{17.00}H_{4.16}$. The eight strongest powder X-ray diffraction lines are [d_{obs} in Å (hkl) I]: 4.77 (110,102) 50, 4.522 (002,011,111) 66, 3.48 (multiple) 62, 2.999 (311,411) 97, 2.701 (502,113,213) 79, 2.614 (013,020) 100, 1.727 (multiple) 65, and 1.509 (911,033,324) 83. The crystal structure of bairdite ($R_1 = 0.072$ for 1406 reflections with $F_0 > 4\sigma F$) contains edge-sharing chains of Te⁶⁺O₆ and Cu²⁺O₆ octahedra parallel to **b** that are joined by corner-sharing in the **a** direction, forming thick stair-step-like hexagonal close packed layers parallel to {100}. The polyhedral sheet has similarities to those in the structures of timroseite and paratimroseite. The thick interlayer region contains PbO₁₀ polyhedra and half-occupied SO₄ groups. Raman and infrared spectral data are presented.

Keywords: Bairdite, new mineral, tellurate, crystal structure, Raman spectroscopy, infrared spectroscopy, HCP layers, timroseite, paratimroseite, Otto Mountain, California

INTRODUCTION

Bairdite, the new mineral described here, is the eleventh new Pb-Te oxysalt mineral (Table 1) to be described from the remarkable secondary mineral assemblage at Otto Mountain, near Baker, California, U.S.A. (Kampf et al. 2010a; Housley et al. 2011). Bairdite is named for Jerry A. Baird (b. 1940) of Lake Havasu City, Arizona. Baird, a mineral collector for 45 years, has collected extensively at Otto Mountain and has provided numerous samples for research. He provided one of the two co-type specimens of bairdite and provided one of the two co-types of the recently described mineral fuettererite (Kampf et al. 2013a). Baird has agreed to the naming of the mineral in his honor. The new mineral and name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2012-061).

TABLE 1. New minerals des	cribed from	n Otto Mountair
---------------------------	-------------	-----------------

Mineral	Ideal formula	Reference
Millerul	lacarionnala	herenee
Ottoite	Pb ₂ Te ⁶⁺ O ₅	Kampf et al. (2010a)
Housleyite	Pb ₆ Cu ²⁺ Te ⁶⁺ O ₁₈ (OH) ₂	Kampf et al. (2010b)
Thorneite	$Pb_{6}(Te_{2}^{6+}O_{10})(CO_{3})Cl_{2}(H_{2}O)$	Kampf et al. (2010c)
Markcooperite	$Pb_2(UO_2)Te^{4+}O_6$	Kampf et al. (2010d)
Timroseite	Pb ₂ Cu ₅ ²⁺ (Te ⁶⁺ O ₆) ₂ (OH) ₂	Kampf et al. (2010e)
Paratimroseite	$Pb_2Cu_4^{2+}(Te^{6+}O_6)_2(H_2O)_2$	Kampf et al. (2010e)
Telluroperite	Pb ₃ Te ⁴⁺ O ₄ Cl ₂	Kampf et al. (2010f)
Chromschieffelinite	Pb ₁₀ Te ₆ ⁶⁺ O ₂₀ (CrO ₄)(H ₂ O) ₅	Kampf et al. (2012)
Fuettererite	Pb ₃ Cu ₆ ²⁺ Te ⁶⁺ O ₆ (OH) ₇ Cl ₅	Kampf et al. (2013a)
Agaite	$Pb_3Cu^{2+}Te^{6+}O_5(OH)_2(CO_3)$	Kampf et al. (2013b)
Bairdite	$Pb_2Cu_4^{2+}Te_2^{6+}O_{10}(OH)_2(SO_4)(H_2O)$	This study

^{*} E-mail: akampf@nhm.org

Two co-type specimens, the second collected by one of the authors (B.T.), are deposited in the Natural History Museum of Los Angeles County, catalog numbers 64000 and 64001.

OCCURRENCE

Bairdite was found in the Bird Nest drift (35.27677°N, 116.09927°W) on the southwest flank of Otto Mountain, 0.4 miles northwest of the Aga mine, which is 1 mile northwest of Baker, San Bernardino County, California, U.S.A. Bairdite was also found in a quartz vein (designated NE3) northeast of the Bird Nest drift.

Bairdite is very rare and has been confirmed to occur on only four specimens, two of which were used in this study and have been designated co-types. Bairdite crystals occur in vugs in quartz in association with khinite, cerussite, goethite, and hematite. Other minerals found elsewhere on the specimens include wulfenite and galena. Other species identified in the mineral assemblages at Otto Mountain include acanthite, agaite, anglesite, anatacamite, atacamite, boleite, brochantite, burckhardtite, calcite, caledonite, celestine, cerussite, chalcopyrite, Br-rich chlorargyrite, chromschieffelinite, chrysocolla, devilline, diaboleite, eztlite, fluorite, fornacite, frankhawthorneite, fuettererite, gold, hessite, housleyite, iodargyrite, jarosite, khinite, kuranakhite, linarite, malachite, markcooperite, mattheddleite, mcalpineite, mimetite, mottramite, munakataite, murdochite, muscovite, ottoite, paratimroseite, perite, phosphohedyphane, plumbojarosite, plumbotsumite, pseudoboleite, pyrite, telluroperite, thorneite, timroseite, vanadinite, and vauquelinite.

Bairdite and most of the other secondary minerals in the quartz veins are interpreted as having formed from the partial oxidation of primary sulfides (e.g., galena and chalcopyrite) and tellurides (e.g., hessite) during or following brecciation of the quartz veins. Additional background on the occurrence is provided in Kampf et al. (2010a) and Housley et al. (2011).

PHYSICAL AND OPTICAL PROPERTIES

Bairdite occurs as diamond-shaped, tabular crystals up to about 250 µm long and 5 µm thick, in subparallel and fanshaped aggregates (Figs. 1 and 2). Tablets are flattened on {100} and bounded by the {011} form (Fig. 3). No twinning was observed optically under crossed polars or based upon singlecrystal X-ray diffraction. The color is lime green, the streak is pale lime green, and the luster is adamantine. Bairdite does not fluoresce under long-wave or short-wave ultraviolet light. The Mohs hardness could not be measured, but is estimated to be between 2 and 3, based upon the behavior of crystals when broken. The new mineral is brittle with irregular fracture and one perfect cleavage on {100}. The density could not be measured because it is greater than those of available high-density liquids and there is insufficient material for physical measurement. The calculated density based on the empirical formula and single-crystal cell is 6.062 g/cm3. In cold, dilute HCl, bairdite crystals rapidly turn opaque white, and then dissolve slowly.

The indices of refraction could not be measured because of the small amount of material available and the difficulty in working with liquids of sufficiently high index of refraction using a spindle stage. We have endeavored to provide optical properties based upon a combination of measurements and

FIGURE 1. Crystals of bairdite on quartz on co-type specimen NHMLAC 64000, FOV 1.5 mm. (Jerry Baird image; color online).

FIGURE 2. Bairdite crystal used in the morphological and optical studies (100 μm across; plane-polarized light; color online).

FIGURE 3. Crystal drawing of bairdite (clinographic projection).

calculations. Bairdite is biaxial (+), with indices of refraction $\alpha = 1.953$, $\beta = 1.966$, and $\gamma = 2.039$. These were calculated from the retardation, $\beta - \alpha = 0.013$, (measured with a Berek compensator), $2V_{\text{meas}} = 47(2)^{\circ}$ (measured directly on a spindle stage), and $n_{\text{av}} = 1.986$ (based upon the Gladstone-Dale relationship for the ideal composition; Mandarino 2007). The dispersion is strong, r < v. The optical orientation is: $Y = \mathbf{b}$, $Z \wedge \mathbf{a} = 34^{\circ}$ in obtuse angle β . Bairdite is strongly pleochroic: Z (pale green) <<< X (green) < Y (green).

INFRARED AND RAMAN SPECTROSCOPY

An infrared spectrum (Fig. 4) was obtained using a Nicolet Magna 860 FTIR with a KBr beamsplitter, DTGS detector, and a Nicolet Continuum infrared microscope operating with a 50 × 50 μ m aperture and without the use of a polarizer. The sample was a triangular half of a diamond-shaped platelet that varied between 9.1 and 9.6 μ m thick. The Raman spectrum (Fig. 5) was obtained on the same crystal using a Renishaw M-1000 spectrometer with 20 mW argon ion laser operating at 514.5 nm. The spot was about 1 μ m in diameter with about 5 mW at the sample when using a 100× objective lens at 100% laser power.

Prominent features visually apparent in the infrared spectrum are a set of broad bands at about 3356, 3117, 2638, 2351, 2021, 1723, and 1613 cm⁻¹. Sharper features occur at 1208 cm⁻¹ (medium), strong overlapping features at about 1281 and 1060 cm⁻¹, weaker features at 973 and 896 cm⁻¹, a stronger band at 716 cm⁻¹, and probably features near 681 and 666 cm⁻¹, where noise begins to dominate the spectrum. The absorption features

FIGURE 4. Transmission infrared spectrum through the (100) face of a crystal of bairdite.

FIGURE 5. Raman spectrum obtained from the (100) face of a crystal of bairdite.

in the 2400 to 3117 cm⁻¹ region (and possibly specifically the 2638 cm⁻¹ band) arise from OH stretching from either OH or H₂O. The broad band at 1613 cm⁻¹ is attributable to the H₂O bending modes. The band at 716 cm⁻¹ is assigned to TeO₆ and that at 1060 cm⁻¹ is assigned to SO₄.

The Raman spectrum is dominated by a feature at 721 cm^{-1} , with other significant features at 977, 634, 558, 518, 378, 336, 238, and 208 cm⁻¹. With the exceptions of the 977 cm⁻¹ sulfate and 721 cm⁻¹ tellurate features, there are comparatively few overlaps between the dominant IR and Raman features in the wavenumber region where the traces coincide. Other features in the Raman spectrum have not been definitely assigned, but it is likely that the 634 cm⁻¹ feature is from sulfate and the features between 300 and 400 cm⁻¹ are from tellurate.

CHEMICAL COMPOSITION

Quantitative chemical analyses (4) of bairdite were performed using a JEOL JXA-8200 electron microprobe at the Division of Geological and Planetary Sciences, California Institute of Technology. Analyses were conducted in WDS mode at 20 keV and 10 nA. A 10 µm beam diameter was used for the first analysis and a 1 µm beam diameter was used for three subsequent analyses. Crystals of bairdite proved very difficult to polish because of their fragile nature and perfect cleavage. The smaller beam diameter was used because flat areas on the sample were limited and generally very small. The sample was analyzed for As, Bi, Ca, Cu, Fe, P, Pb, S, Sb, Si, Te, V, and Zn, but only Ca, Cu, Pb, S, and Te were above the detection limits. The standards used were: anorthite (for Ca), cuprite (for Cu), galena (for Pb and S), and Sb₂Te₃ (for Te). Also, no other elements were detected in EDS analyses. Analytical results are given in Table 2. There was insufficient material for CHN analyses, so H₂O was calculated on the basis of 2 Te, charge balance and 17 total O atoms pfu, as determined by the crystal-structure analysis (see below). Infrared spectroscopy (see above) confirmed the presence of OH and H₂O and the absence of CO₃. Note that bairdite is prone to electron beam damage, which contributes to the low analytical total. This is a common feature observed in most secondary tellurate species (e.g., Kampf et al. 2010a, 2010b, 2010c, 2010d, 2010e, 2010f, 2012, 2013a, 2013b; Mills et al. 2009, 2010).

The empirical formula (based on 17 O atoms pfu) is

$$Pb_{2.05}Ca_{0.01}Cu_{3.99}^{2+}Te_{2.00}^{6+}S_{0.96}O_{17.00}H_{4.16}$$

The simplified formula is $Pb_2Cu_4^{2+}Te_2^{6+}O_{10}(OH)_2(SO_4)(H_2O)$, which requires PbO 36.24, CuO 25.83, TeO₃ 28.51, SO₃ 6.50, H_2O 2.92, total 100 wt%.

Constituent	Average	Range	St.dev.	Normalized wt%								
PbO	34.22	32.59-35.59	1.37	36.81								
CaO	0.06	0.03-0.09	0.03	0.06								
CuO	23.80	23.64-23.96	0.15	25.60								
TeO₃	26.34	25.88-26.69	0.35	28.33								
SO3	5.74	5.38-5.98	0.27	6.17								
H ₂ O*	2.81			3.02								
Total	92.97			99.99†								
* Based on the	crystal struct	ure (2 Te, charge b	alance and 1	7 O apfu).								
† Rounding error.												

1317

X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION

All powder and single-crystal X-ray diffraction data were obtained on a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer utilizing monochromatized MoK α radiation. Observed powder *d*-values (with standard deviations) and intensities were derived by profile fitting using JADE 2010 software. Data (in angstroms) are given in Table 3. Unit-cell parameters refined from the powder data using JADE 2010 with whole-pattern fitting are: a = 14.354(11), b = 5.223(11), c = 9.503(11) Å, $\beta = 107.04(2)^\circ$, and V = 681.2(1.7) Å³. The observed powder data fit well with those calculated from the structure, also using JADE 2010. The relatively low precision of the cell refined from the powder data are attributable to the use of MoK α radiation.

The Rigaku CrystalClear software package was used for processing of the diffraction data, including the application of an empirical multi-scan absorption correction using ABSCOR (Higashi 2001). The structure was solved by direct methods using SHELXS-97 software and was refined using SHELXL-97 (Sheldrick 2008).

The S site refined to approximately half occupancy and three of the four O sites (O8, O9, and O10) associated with the SO_4 group also refined to roughly half occupancy, while the fourth (O7) refined to full occupancy. In the final refinement these sites were assigned half and full occupancies, accordingly, and isotropic displacement parameters were used for the O8, O9, and O10 sites. The occupancies of these sites are consistent

TABLE 4. Data collection and structure refinement details for bairdite

Diffractometer	Rigaku R-Axis Rapid II
X-ray radiation	MoKα ($\lambda = 0.71075$ Å)
Temperature	298(2) K
Ideal formula	Pb ₂ Cu ²⁺ Te ⁶⁺ ₂ O ₁₀ (OH) ₂ (SO ₄)(H ₂ O)
Space group	P21/c
Unit-cell dimensions	a = 14. 3126(10) Å
	b = 5.2267(3) Å
	c = 9.4878(5) Å
	$\beta = 106.815(7)^{\circ}$
Ζ	2
Volume	679.41(7) ų
Density (for above formula)	6.021 g/cm ³
Absorption coefficient	35.303 mm ⁻¹
F(000)	1080
Crystal size	$40 \times 35 \times 5 \ \mu m$
θ range	4.1 to 27.48°
Index ranges	$-18 \le h \le 18, -6 \le k \le 6, -12 \le l \le 12$
Reflections collected/unique	$15177/1554 [R_{int} = 0.113]$
Reflections with $F_{o} > 4\sigma F$	1406
Completeness to $\theta = 25.01^{\circ}$	99.9%
Max. and min. transmission	0.8432 and 0.3325
Refinement method	Full-matrix least-squares on F ²
Parameters refined	138
GoF	1.173
Final R indices $[F_o > 4\sigma F]$	$R_1 = 0.0715, wR_2 = 0.1626$
R indices (all data)	$R_1 = 0.0774, wR_2 = 0.1656$
Extinction coefficient	0.0001(2)
Largest diff. peak/hole	+4.66/-2.38 e A ⁻³
* $R_{int} = \Sigma F_0^2 - F_0^2 (mean) / \Sigma [F_0^2]$. GoF = S	$= \{ \sum [w(F_0^2 - F_c^2)^2] / (n - p) \}^{1/2} \cdot R_1 = \sum F_0 - F_c $

* $R_{int} = \sum |F_o^{-} - F_o^{-}(mean)| / \sum |F_o^{-}|$. GoF = $S = \{ \sum |w(F_o^{-} - F_o^{-})^2 | / (n - p) \}^{1/2}$. $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. $wR_2 = \{ \sum |w(F_o^{-} - F_o^{-})^2 | / \sum |w(F_o^{+})^2 | \}^{1/2}$. $w = 1 / [\sigma^2(F_o^{-}) + (aP)^2 + bP]$ where *a* is 0.0161, *b* is 120.54, and *P* is $[2F_c^{-} + Max(F_o^{-}0)]/3$.

with one SO_4 group pfu, as is also indicated by the empirical formula. The full occupancy of the O7 site is consistent with it participating in the SO₄ group half of the time and being an H₂O

TABLE 3. X-ray powder diffraction data for bairdite

lobs	$d_{\rm obs}$	$d_{\rm calc}$	I _{calc}	hkl	I _{obs}	$d_{\rm obs}$	d_{calc}	I _{calc}	hkl
18	13.9(4)	13.7007	19	100			2.2650	5	213
34	6.90(4)	6.8503	75	200	26	2.10((122))	2.2078	11	511
50	4 77(0)	4.8834	9	110	26	2.196(132)	2.1866	5	513
50	4.77(9)	4.7393	20	102		(2.1582	5	214
		4.5411	12	002	19	2.150(14)	2.1568	9	322
66	4.522(13)	4.5301	10	011		l	2.1423	12	104
		4.4989	57	111		1	2.0777	10	420
15	4.13(18)	4.1272	9	111	17	2.072(22)	2.0665	6	504
21	3.98(10)	3.9803	18	102	17	2.072(33)	2.0636	7	222
17	3.85(4)	3.8196	24	302			2.0606	5	313
		3.5503	7	211	32	2.025(46)	2.0288	16	4 22
6 2	2.40(5)	3.4768	22	311		(1.9849	6	613
62	3.48(5)	3.4280	5	012	10	1.966(55)	1.9572	6	700
		3.4252	24	400		1	1.9522	7	421
14	3.35(3)	3.3633	38	202		(1.8993	11	711
39	3.241(15)	3.2185	50	402	29	1.879(19)	1.8844	8	522
07	2 000(0)	3.0066	100	311		1	1.8674	12	413
97	2.999(9)	2.9441	36	411	3	1.831(11)	1.8378	5	602
		2.8648	5	410	5	1.051(11) 1	1.8327	11	304
		2.8359	8	302	2	1.783(12)	1.7831	5	215
		2.7198	20	502		t	1.7384	16	622
79	2.701(5)	2.7008	27	113			1.7357	7	415
	(2.6810	67	213	65	1.727(5)	1.7195	6	620
100	2 (14/5)	2.6197	43	013			1.7158	9	015
100	2.614(5)	2.6134	30	020		L L	1.7092	14	711
		2.5665	9	313			1.7017	6	323
7	2.521(18)	2.5602	22	411			1.6936	5	513
	(2.5114	8	021		(1.6568	5	124
		2.4417	6	220	27	1.633(11)	1.6328	7	813
12	2 426/10)	2.4360	6	121		l	1.6266	7	032
13	2.430(10)	2.4214	6	221	39	1.600(11)	1.5972	27	615
		2.4188	7	402			1.5798	9	306
		2.3282	5	602			1.5743	5	331
		2.3179	5	304		(1.5103	9	911
24	2 202(10)	2.2834	13	600	83	1.509(4)	1.5100	11	033
54	2.282(18)	2.2790	12	321		(1.5005	7	324

Note: Only calculated lines with intensities of 5 or greater are listed.

TABLE 5. Occupancies, fractional coordinates, and atomic displacement parameters for bairdite

	Occ.	x/a	y/b	z/c	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pb	0.873(9)	0.34148(7)	0.0795(3)	0.39773(15)	0.0218(5)	0.0184(6)	0.0217(9)	0.0261(7)	0.0012(6)	0.0077(4)	-0.0008(4)
PbA	0.049(9)	0.3421(13)	0.965(7)	0.437(3)	0.016(8)						
PbB	0.076(7)	0.3415(11)	0.850(5)	0.4112(18)	0.033(6)						
Te	1.0	0.16195(10)	0.4933(3)	0.49077(15)	0.0156(5)	0.0155(8)	0.0209(8)	0.0114(7)	-0.0005(5)	0.0053(5)	-0.0003(5)
Cu1	1.0	0.7926(2)	0.4758(5)	0.8472(3)	0.0167(7)	0.0181(14)	0.0214(15)	0.0116(13)	-0.0001(10)	0.0059(10)	0.0001(10)
Cu2	1.0	0.9079(2)	0.5282(5)	0.1916(3)	0.0184(7)	0.0206(14)	0.0195(15)	0.0166(14)	0.0012(11)	0.0079(11)	0.0008(11)
S	0.5	0.5334(8)	0.087(3)	0.1993(13)	0.024(3)	0.013(5)	0.035(7)	0.023(6)	0.005(5)	0.003(4)	0.003(5)
01	1.0	0.8577(12)	0.144(3)	0.8362(15)	0.019(3)	0.036(9)	0.019(8)	0.007(7)	-0.001(6)	0.012(6)	0.008(7)
02	1.0	0.0766(12)	0.209(3)	0.4836(18)	0.023(4)	0.020(8)	0.026(9)	0.018(8)	-0.009(7)	-0.001(7)	-0.004(7)
O3	1.0	0.2700(12)	0.291(3)	0.6011(18)	0.020(3)	0.023(8)	0.016(8)	0.023(8)	0.001(7)	0.009(7)	-0.002(6)
04	1.0	0.0453(11)	0.696(3)	0.3687(16)	0.019(3)	0.017(8)	0.024(9)	0.011(7)	-0.005(6)	0.000(6)	-0.002(6)
05	1.0	0.1757(13)	0.156(3)	0.808(2)	0.026(4)	0.025(9)	0.026(9)	0.033(10)	0.003(8)	0.017(8)	0.003(7)
06	1.0	0.7648(12)	0.291(3)	0.012(2)	0.024(4)	0.021(8)	0.011(8)	0.040(10)	0.004(7)	0.008(7)	0.007(6)
07	1.0	0.6267(18)	0.091(5)	0.183(3)	0.055(7)	0.052(14)	0.077(18)	0.048(13)	0.033(13)	0.032(12)	0.023(13)
08	0.5	0.530(3)	0.032(7)	0.354(4)	0.030(8)						
09	0.5	0.493(3)	0.862(9)	0.115(5)	0.046(11)						
010	0.5	0.480(3)	0.329(8)	0.142(5)	0.038(9)						

half of the time, providing one H_2O pfu. It is also significant that O7 forms a long bond (2.46 Å) to Cu1, while O8, O9, and O10 bond to Pb and do not participate in either Cu or Te octahedra. The bond-valence sums (BVS) for O7 as half sulfate oxygen and half water oxygen support these assignments, although the BVS when it participates in the SO₄ group is rather high (2.36 v.u.). Because the complexities of the partial occupancies make a comprehensive assignment of hydrogen bonds from O7 acting as an H₂O problematic, we did not include those hydrogen bond contributions in our bond-valence analysis. The BVS for O4 (1.40 v.u.) is indicative of it being an OH group, although this value is somewhat high for an OH. The BVS for O2 (1.60 v.u.) is quite low for an O atom; however, the short distance between O4 and O2 (2.58 Å) is indicative of a strong hydrogen bond, which serves to balance the BVS for O4 and O2.

In the difference Fourier map, significant residual electron density (17.65 e/A^3) was noted, centered 1.04 Å from the Pb site. This was best modeled as two separate satellite Pb peaks

TABLE 6. Selected bond lengths (Å) in bairdite

Pb-O6	2.463(16)	Cu1-05	1.913(18)	Te-O6	1.880(16)								
Pb-08 (×½)	2.60(4)	Cu1-06	1.979(18)	Te-O2	1.912(17)								
Pb-O10 (×½)	2.62(3)	Cu1-01	1.984(16)	Te-O1	1.915(15)								
Pb-O5	2.665(18)	Cu1-O3	2.002(16)	Te-O3	1.916(16)								
Pb-O3	2.671(16)	Cu1-O2	2.415(17)	Te-O5	1.958(17)								
Pb-O7	2.74(3)	Cu1-07	2.46(2)	Te-O4	2.034(16)								
Pb-O3	2.785(16)	<cu-o></cu-o>	2.126	<te-0></te-0>	1.936								
Pb-O9 (×½)	2.82(4)												
Pb-O7	2.85(3)	Cu2-01	1.945(14)	S-07	1.39(2)								
Pb-08 (×½)	2.86(4)	Cu2-O2	1.980(16)	S-09	1.45(5)								
Pb-O10 (×½)	2.99(4)	Cu2-O4	2.002(17)	S-O10	1.50(4)								
Pb-O1	3.281(17)	Cu2-05	2.040(18)	S-08	1.51(4)								
Pb-O9 (×½)	3.42(5)	Cu2-04	2.355(15)	<s-0></s-0>	1.46								
<pb-o></pb-o>	2.811*	Cu2-06	2.572(18)										
		<cu-o></cu-o>	2.149	Hydrogen	bond								
				04…02	2.58(2)								
* Pacod upor	10 coordinat	ion with h	and longths to	half occupi	od O atomo								

* Based upon 10-coordination with bond lengths to half-occupied O atoms given 0.5 weight.

(PbA and PbB), which together with the main Pb peak have a total refined occupancy of almost exactly 1 Pb. The significance of these sites is not clear as their distances from the nearest O

FIGURE 6. The structures of bairdite and timroseite. Pb atoms are dark gray (blue online), SO_4 tetrahedra are very dark gray (red online), TeO_6 octahedra are light gray (yellow online), CuO_6 octahedra are gray (green online) and 5-coordinate Cu atoms and corresponding bonds (for timroseite) are gray (green online).

TABLE 7. Bond valence sums for bairdite (values are expressed in valence units)

					•							
	01	02	03	04	05	06	07s	07 _w	O8	09	O10	Σ
Pb	0.07		0.24 0.19		0.24	0.36	0.20 ^{×½→} 0.16 ^{×½→}	$\begin{array}{c} 0.20^{\times \%_2 \rightarrow} \\ 0.16^{\times \%_2 \rightarrow} \end{array}$	0.27 ^{×½→} 0.16 ^{×½→}	0.17 ^{×½→} 0.05 ^{×½→}	$\begin{array}{c} 0.26^{\times \%_2 \rightarrow} \\ 0.12^{\times \%_2 \rightarrow} \end{array}$	1.98
Cu1	0.44	0.14	0.42		0.53	0.44	0.12 ^{×½} →	$0.12^{\times \%_2 \rightarrow}$				2.09
Cu2	0.49	0.44		0.42 0.16	0.38	0.09						1.98
Те	1.01	1.02	1.01	0.82	0.94	1.08						5.76
S							1.88		1.36	1.60	1.40	6.24
н		0.26		0.74								1.00
Σ	2.01	1.86	1.86	2.14	2.09	1.97	2.36	0.48	1.79	1.82	1.78	

Notes: O7 is a sulfate oxygen half of the time (O7s) and an H₂O half of the time (O7w). Pb²⁺-O bond strengths are from Krivovichev and Brown (2001); Te⁶⁺-O bond strengths are from Mills and Christy (2013); Cu²⁺-O and S⁶⁺-O bond strengths are from Brown and Altermatt (1985) as is the hydrogen bond strength for O2--O4.

atoms are too short for Pb-O bonds and they do not appear to represent the $6s^2$ lone electron pair of the Pb^{2+} . Note that, because of the widely dispersed remaining residual electron density, it was not possible to locate the H atoms associated with the OH and H_2O groups.

Details concerning data collection and structure refinement are provided in Table 4. Fractional coordinates and atom displacement parameters are provided in Table 5, selected interatomic distances in Table 6 and bond valences in Table 7. Other data and a CIF are available on deposit¹.

DESCRIPTION OF THE STRUCTURE

In the structure of bairdite (Fig. 6), individual TeO₆ octahedra and pairs of edge-sharing Jahn-Teller distorted CuO₆ octahedra link by edge-sharing into chains along **b** (Fig. 7). The chains are linked to one another by corner-sharing to form stair-step-like layers parallel to {100}. The same corner-sharing joins two such layers into a thick double layer. The region between the double layers contains half-occupied SO₄ tetrahedra and Pb²⁺. The Pb²⁺ bonds to seven fully occupied O sites and six approximately half occupied O sites, yielding an effective coordination of 10 (Fig. 8). The Pb²⁺-O bonds cover a fairly broad range (2.46 to 3.42 Å); however, there is not a pronounced lopsided distribution of bond lengths typical of Pb²⁺ with stereoactive 6s² lone-pair electrons.

The same types of chains forming stair-step-like layers are found in the structures of timroseite and paratimroseite (Kampf et al. 2010b). The layer in bairdite is parallel to {100}, while those in timroseite and paratimroseite are parallel to {001}. As a consequence, the three minerals have two similar cell dimensions, those corresponding to the dimensions in these planes: for bairdite b = 5.2257 and c = 9.4848, for timroseite a = 5.2000and b = 9.6225 Å, and for paratimroseite a = 5.1943 and b =9.6198 Å. In the structures of timroseite and paratimroseite, the stair-step-like layers are assembled into frameworks by cornersharing with each successive layer reversed in orientation. This arrangement for timroseite can be seen in Figure 6. It should be noted that one of the two Cu²⁺ polyhedra participating in the chain in the paratimroseite structure is a Cu²⁺O₅ square pyramid, but the overall chain and layer topology is otherwise the same as in timroseite. Another difference between the structures of timroseite and paratimroseite is that in timroseite the stair-step

FIGURE 7. Stair-step-like layer of edge-sharing TeO_6 and CuO_6 octahedra, linked via shared corners in the structure of bairdite. Note that there are three stair-steps, increasing in elevation from left to right. (Color online.)

FIGURE 8. Pb coordination in bairdite showing Pb-O bond lengths in angstroms, Å. (Color online.)

layers are further linked to one another by an additional $\mathrm{Cu}^{2+}\mathrm{O}_5$ square pyramid.

An interesting feature of the stair-step-like layers in the structures of bairdite, timroseite, and paratimroseite is that they are based upon hexagonal close packing (HCP), not only in terms

¹ Deposit item AM-13-707, CIF and data. Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the American Mineralogist Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

of the individual steps (or chains), but even with respect to the continuous assembly of steps. In the timroseite and paratimroseite structures, the HCP nature is flipped in successive layers as described above, so it does not extend over the entire framework. In the structure of bairdite, the entire thick double layer exhibits HCP and successive layers are in the same orientation, so the structure can be described as a stacking of stepped HCP layers interrupted by thick interlayer regions containing PbO₁₀ polyhedra and SO₄ groups.

ACKNOWLEDGMENTS

The paper benefited from comments by reviewer Mark Cooper and Associate Editor Fernando Colombo. The Caltech EMP analyses were supported by a grant from the Northern California Mineralogical Association and the Caltech spectroscopic work by NSF Grant EAR-0947956. The remainder of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

REFERENCES CITED

- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–247.
- Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Housley, R.M., Kampf, A.R., Mills, S.J., Marty, J., and Thorne, B. (2011) The remarkable occurrence of rare secondary tellurium minerals at Otto Mountain near Baker, California—Including seven new species. Rocks and Minerals, 86, 132–142.
- Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J., and Thorne, B. (2010a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb₂TeO₅, a new mineral with chains of tellurate octahedra. American Mineralogist, 95, 1329–1336.
- Kampf, A.R., Marty, J., and Thorne, B. (2010b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: II. Housleyite, Pb₆CuTe₄TeO₁₈(OH)₂, a new mineral with Cu-Te octahedral sheets. American Mineralogist, 95, 1337–1342.
- Kampf, A.R., Housley, R.M., and Marty, J. (2010c) Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb₆(Te₂O₁₀)(CO₃) Cl₂(H₂O), the first mineral with edge-sharing octahedral dimers. American Mineralogist, 95, 1548–1553.

Kampf, A.R., Mills, S.J., Housley, R.M., Marty, J., and Thorne, B. (2010d)

Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, $Pb_2(UO_2)Te^{6+}O_6$, the first natural uranyl tellurate. American Mineralogist, 95, 1554–1559.

- (2010e) Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb₂Cu²₃⁻(Te⁶⁺O₆)₂(OH)₂, and paratimroseite, Pb₂Cu²₄⁻(Te⁶⁺O₆)₂(H₂O)₂, new minerals with edge-sharing Cu-Te octahedral chains. American Mineralogist, 95, 1560–1568.
- (2010f) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb₃Te⁴⁺O₄Cl₂, the Te analogue of perite and nadorite. American Mineralogist, 95, 1569–1573.
- Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S., and Spratt, J. (2012) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb₁₀Te₆O₂₀(CrO₄)(H₂O)₅, the chromate analogue of schieffelinite. American Mineralogist, 97, 212–219.
- Kampf, A.R., Mills, S.J., Housley, R.M., and Marty, J. (2013a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VIII. Fuettererite, Pb₃Cu²⁺₆Te⁶⁺O₆(OH)₇Cl₅, a new mineral with double spangolite–type sheets. American Mineralogist, 98, 506–511.
- (2013b) Lead-tellurium oxysalts from Otto Mountain near Baker, California: IX. Agaite, Pb₃Cu²·Te⁶·O₃(OH)₂(CO₃), a new mineral with CuO₅-TeO₆ polyhedral sheets. American Mineralogist, 98, 512–517.
- Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift f
 ür Kristallographie, 216, 245–247.
- Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 1307–1324.
- Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for Te^{IV}-O, Te^{VI}-O and Te^{IV}-Cl. Acta Crystallographica, B69, 145–149.
- Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A., and Poirier, G. (2009) Joëlbruggerite, Pb₃Zn₃(Sb⁵⁺,Te⁶⁺)As₂O₁₃(OH,O), the Sb⁵⁺ analogue of dugganite, from the Black Pine mine, Montana. American Mineralogist, 94, 1012–1017.
- Mills, S.J., Kampf, A.R., Kolitsch, U., Housley, R.M., and Raudsepp, M. (2010) The crystal chemistry and crystal structure of kuksite, Pb₂Zn₃Te⁶⁺P₂O₁₄, and a note on the crystal structure of yafsoanite, (Ca,Pb)₃Zn(TeO₆)₂. American Mineralogist. 95, 933–938.
- Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.

MANUSCRIPT RECEIVED OCTOBER 24, 2012 MANUSCRIPT ACCEPTED MARCH 5, 2013 MANUSCRIPT HANDLED BY FERNANDO COLOMBO

AM-13-707 – Kampf et al. Deposit in American Mineralogist July 2013.

Page 1

Observed and calculated structure factors for bairdite

h	k	1	10Fo	10Fc	10s	h	k	1 10Fc	o 10Fc	10s	h	k	1	10Fo 1	0Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s
3	0	0	938	677	20	8	5	0 412	2 426	35	-12	3	1	1076 1	092	30	-1	6	1	121	30	39	-9	2	2	1683	1705	22
4	0	0	2706	2646	50	9	5	0 235	5 214	40	-11	3	1	174	218	44	0	6	1	829	604	20	-8	2	2	395	389	11
5	0	0	397	364	19 71	10	5	0 909	J 49 5 755	1 31	-10	3	1	1082 1	151	26 22	1	6	1	663 52	4/3	20 51	- /	2	2	1301 3144	1307	15
7	0	0	2469	2354	52	12	5	0 274	1 315	60	-8	3	1	319	316	20	3	6	1	638	427	23	-5	2	2	2065	2043	23
8	0	0	966	913	27	0	6	0 373	3 191	44	-7	3	1	589	633	17	4	6	1	604	489	23	-4	2	2	2554	2616	30
9	0	0	1038	973	26	1	6	0 1080	965	29	-6	3	1	626	649	16	5	6	1	185	108	37	-3	2	2	1912	1849	20
10	0	0	1757	1614	39	2	6	0 98	3 73	97	-5	3	1	353	373	13	6	6	1	184	87	49	-2	2	2	366	212	13
12	0	0	2106	1893	53	4	6	0 133.	L 148	66	-3	3	1	182	214	12	-18	0	2	113	200	113	0	2	2	491	543	11
13	0	0	546	472	36	5	6	0 463	3 426	28	-2	3	1	246	145	12	-17	0	2	1459	1374	51	1	2	2	748	729	9
14	0	0	256	267	44	6	6	0 257	7 273	35	-1	3	1	219	168	14	-16	0	2	450	400	41	2	2	2	1663	1683	22
15 16	0	0	412	302	39	-7	6	0 756	5 643 I 146	30	0	3	1	521 603	475	17	-15	0	2	1000	972	32	3	2	2	208	247	14
17	0	0	113	77	113	-17	1	1 434	1 434	31	2	3	1	435	505	12	-13	0	2	1069	1032	30	5	2	2	475	444	10
1	1	0	843	822	9	-16	1	1 347	7 355	31	3	3	1	1744 1	842	40	-12	0	2	465	417	30	6	2	2	1347	1402	18
2	1	0	691	633	10	-15	1	1 806	5 796	24	4	3	1	1364 1	.515	35	-11	0	2	1964	1941	43	7	2	2	1104	1101	17
4	1	0	239 995	1026	10	-13	1	1 2544	1 2400	50	6	3	1	1182 1	310	25	-10	0	2	1770	1747	34	9	2	2	535	530	17
5	1	Ō	919	926	11	-12	1	1 926	5 848	20	7	3	1	1084 1	211	24	- 8	Õ	2	1585	1561	28	10	2	2	1282	1307	24
6	1	0	103	131	25	-11	1	1 1295	5 1271	22	8	3	1	125	54	58	-7	0	2	480	308	32	11	2	2	1023	1107	24
8	1	0	407	615	15	-10	1	1 2759	5 2687	44	10	3	1	462	480	24	- 5	0	2	3144	3112	29 57	13	2	2	918	920	20
9	1	0	139	165	35	-8	1	1 1048	3 985	15	11	3	1	230	282	39	-4	0	2	4197	4082	88	14	2	2	202	163	60
10	1	0	129	142	34	-7	1	1 2491	L 2413	35	12	3	1	567	545	31	-3	0	2	2532	2357	38	15	2	2	47	90	46
11 12	1	0	803 547	783	25	-6	1	1 404	1 376	10	13	3	1	236	236	51 48	-2	0	2	736	684 1735	20	-16	3	2	838	850	34
13	1	0	391	427	24	-4	1	1 2758	3 2734	33	15	3	1	469	528	41	0	0	2	1514	1413	17	-14	3	2	02	30	1
14	1	0	390	355	27	-3	1	1 1872	2 1796	26	-14	4	1	357	403	40	1	0	2	1959	1977	31	-13	3	2	969	953	30
15	1	0	358	368	26	-2	1	1 533	3 288	11	-13	4	1	79	49	79	2	0	2	3373	3408	66	-12	3	2	806	776	26
16 17	1	0	310	14/ 293	4/	-1	1	1 224	7 2213 5 938	25	-12	4	1	8/3 428	859 440	32 28	3	0	2	2101	1828	32 38	-11	3	2	194 572	182	35
0	2	0	3857	3861	82	1	1	1 892	2 914	17	-10	4	1	246	245	32	5	0	2	1816	1738	34	-9	3	2	1668	1689	30
1	2	0	579	527	15	2	1	1 1010	996	9	-9	4	1	1146 1	212	27	6	0	2	2364	2215	49	-8	3	2	523	495	17
2	2	0	1262	1285	16	3	1	1 4475	2 4356 1 2301	3.0	-8	4	1	1073 1	695	25	./	0	2	1924	1657	34	- 7	3	2	1396	1400	16
4	2	0	1943	1999	26	5	1	1 2062	2 2034	26	-6	4	1	585	654	17	9	0	2	312	174	33	-5	3	2	905	909	16
5	2	0	357	317	17	6	1	1 1034	1 837	15	-5	4	1	1015 1	049	20	10	0	2	1483	1300	38	-4	3	2	1134	1188	21
6	2	0	1921	1909	29	7	1	1 3009	9 2940	50	-4	4	1	355	329	17	11	0	2	2166	2058	59	-3	3	2	1032	976	15
8	2	0	905 751	743	20	9	1	1 2834	1 2741	51	-2	4	1	1548 1	430	35	13	0	2	1368	1225	43	-2	3	2	218	1492	26
9	2	0	513	518	19	10	1	1 613	3 504	20	-1	4	1	527	489	33	14	õ	2	450	408	44	0	3	2	2200	2247	40
10	2	0	384	446	15	11	1	1 1289	9 1225	26	0	4	1	1565 1	530	31	15	0	2	285	213	54	1	3	2	950	972	14
11 12	2	0	5/4	626 1108	20	12	1	1 629	9 585 I 674	22	2	4	1	991 I 858	843	1/ 29	16 -18	1	2	169	604 207	43 59	2	3	2	336 1349	293	19
13	2	Ő	128	126	62	14	1	1 327	7 256	30	3	4	1	218	192	17	-17	1	2	121	42	66	4	3	2	606	591	11
14	2	0	179	178	40	15	1	1 1650	1556	36	4	4	1	1525 1	546	37	-16	1	2	235	218	39	5	3	2	151	103	28
15	2	0	274	150	41	16	1	1 326	5 305	30	5	4	1	500	494	17	-15	1	2	459	422	25	6	3	2	895	898	20
17	2	0	205	225	205	-17	2	1 346	5 362	45	7	4	1	1002 1	.075	23	-13	1	2	492	472	19	8	3	2	61	48	61
1	3	0	1324	1307	15	-16	2	1 398	428	37	8	4	1	678	738	24	-12	1	2	597	604	17	9	3	2	638	610	26
2	3	0	1083	1079 572	13	-15	2	1 789	9 779	35	9	4	1	412	381	28	-11	1	2	176	120	26	10	3	2	809	817	28
4	3	0	1486	1600	20	-13	2	1 141	, 575 L 139	33	11	4	1	808	859	31	-10	1	2	42J 908	936	15	12	3	2	676	707	33
5	3	0	1583	1630	25	-12	2	1 661	L 657	18	12	4	1	0	91	1	- 8	1	2	371	303	12	13	3	2	792	829	37
6	3	0	372	314	18	-11	2	1 536	5 499	17	13	4	1	508	584	39	-7	1	2	416	397	11	14	3	2	387	435	43
8	3	0	1089	1143	23	-10	2	1 1305	5 1337	17	-12	5 5	1	310	378	39	-5	1	2	909 451	390	10	-13	4	2	396	396	36
9	3	0	413	415	22	- 8	2	1 1229	9 1264	16	-10	5	1	1411 1	391	36	-4	1	2	645	703	6	-12	4	2	698	678	36
10	3	0	566	598	23	-7	2	1 371	L 463	15	-9	5	1	348	445	30	- 3	1	2	762	700	7	-11	4	2	92	86	91
11 12	3	0	652	1400 658	34 28	-6	2	1 1329	3 1353	13	-8	э 5	1	326	329	45 26	-2	1	2	188	801 36	ь 11	-10	4	2	361 904	369 935	26
13	3	0	648	680	36	- 4	2	1 699	9 770	9	- 6	5	1	850	865	22	0	1	2	888	901	13	- 8	4	2	803	771	19
14	3	0	515	494	37	-3	2	1 1911	L 2046	20	-5	5	1	605	561	20	1	1	2	579	434	8	-7	4	2	1368	1485	26
15	3	0	446	495	40 39	-2	2	1 146	/ 1402 5 332	18	-4	5	1	911 489	890 458	16 17	2	1	2	280	273	9 16	-6	4	2	182	1519	29
1	4	Ő	1419	1400	19	Ū.	2	1 1438	3 1513	18	-2	5	1	76	92	75	4	1	2	1132	1209	14	-4	4	2	391	370	18
2	4	0	499	462	27	1	2	1 1361	L 1333	12	-1	5	1	650	609	20	5	1	2	116	80	26	-3	4	2	1570	1566	25
3	4	0	1656	1710	31	2	2	1 885	5 895	9	0	5	1	1252 1	.073	48	6	1	2	796	860	13	-2	4	2	1247	1179	33
5	4	0	497	488	24	4	2	1 1 6 9 1	5 347 1 1769	17	2	5 5	1	942	437 956	16	8	1	2	107	635	41	-1	4	2	636	997 594	22
6	4	0	236	259	23	5	2	1 758	658	12	3	5	1	118	153	32	9	1	2	523	568	17	1	4	2	352	345	11
7	4	0	368	348	23	6	2	1 309	9 185	18	4	5	1	820	835	21	10	1	2	324	172	23	2	4	2	413	387	12
8 9	4	0	339 749	360 757	24	8	2	1 1381	L 1548 R 837	20	5	5	1	1682 1	505 773	37	12	1	2	136 455	153 476	24	3	4	2	482 300	484 253	14
10	4	0	360	362	30	9	2	1 406	5 392	14	7	5	1	752	806	25	13	1	2	251	254	34	5	4	2	706	780	24
11	4	0	287	295	35	10	2	1 741	L 698	16	8	5	1	422	466	27	14	1	2	324	330	33	6	4	2	303	326	24
12 12	4	0	243	223	49 36	11	2	1 904	924	21	9 10	5	1	153	160	56	15	1	2	202	117	46	7	4	2	298	308	25
14	4	0	091	35	1	13	2 2	1 634	. 93 1 641	41 31	11	э 5	1	149	191	33 96	-17	⊥ 2	2 2	733	₩∠⊥ 757	35	9	4	2 2	918	491 1013	∠ø 28
1	5	0	657	617	21	14	2	1 604	1 604	31	-8	6	1	255	249	39	-16	2	2	338	346	36	10	4	2	936	1012	32
2	5 F	0	343	287	15	15	2	1 (1	-7	6	1	518	391	34	-15	2	2	846	841	25	11	4	2	83	77	83
3 4	э 5	0	/49 1023	630 911	∠⊃ 24	16 -16	∠ 3	1 467	o 046 7 484	39 40	-6 -5	ю 6	1	242 120	±70 67	зю 53	-14 -13	∠ 2	2 2	41 541	80 600	40 19	12 13	4	2	∠64 622	∠∠9 687	49 36
5	5	0	780	787	21	-15	3	1 626	5 668	34	-4	6	1	393	298	25	-12	2	2	286	317	22	-12	5	2	222	266	49
6	5	0	186	173	35	-14	3	1 180	135	59	- 3	6	1	170	203	30	-11	2	2	1019	1060	18	-11	5	2	150	19	71
/	5	0	182	T33	38	-13	3	1 1181	L 1243	33	-2	6	1	220	223	24	-10	2	2	1129	1212	⊥ /	-10	5	2	T23	T38	57

Ok	sei	rve	d and	calc	ulated	stru	ctur	e	facto	rs fo	or bai	rdite																Page	2
h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo 10)Fc 10:	s	h	k	1	10Fo	10Fc	10s
-9	5	2	904	859	32	1	2	3	150	122	18	1	5	3	1282	1362	27	12	1	4	371 3	328 3	4	8	4	4	271	257	35
-8	5	2	164	118	41 24	2	2	3	1153 1778	1178	14 21	2	5	3	620 839	665 924	22 43	13 14	1	4	135	87 8	3	9 10	4	4	297 811	358 868	37 42
-6	5	2	539	543	18	4	2	3	246	163	13	4	5	3	192	174	25	-17	2	4	297 3	343 4	8 3	11	4	4	235	263	55
-5	5	2	412	418	15 16	5	2	3	578 868	584	12	5	5	3	338	384	36	-16	2	4	0 1	85	1 -	12	5	4	290	95 332	1
-3	5	2	251	283	18	7	2	3	532	484	16	7	5	3	822	825	29	-14	2	4	207 2	232 3	1 -:	10	5	4	869	831	27
-2	5	2	627	517	18	8	2	3	576	597	17	8	5	3	779	814	47	-13	2	4	1344 13	339 2	4.	-9	5	4	428	385	22
0	5	2	1065	1011	31	10	2	3	633	662	22	-8	5	3	237 148	203 14	38 97	-12	2	4	615 6	559 1	ю. 5.	-0 -7	5	4	88	426	23 47
1	5	2	396	384	15	11	2	3	417	421	25	-7	6	3	92	35	92	-10	2	4	912 9	939 1	5 ·	-6	5	4	685 516	605	30
3	5	2	697	676	20	13	2	3	430	425	30	-5	6	3	256	219	41	-8	2	4	253 1	166 1	1 .	-4	5	4	835	826	22
4	5	2	89	143	54	14	2	3	114	63	113	-4	6	3	164	168	57	-7	2	4	798 7	751 1	0 ·	-3	5	4	233	196	33
6	5	2	167	182	40	-16	3	3	832	811	37	-2	6	3	346	232	28	-5	2	4	868 8	399 12	2.	-1	5	4	544	550	21
7	5	2	1242	275	34 37	-15	3	3	672	655 137	34	-1	6	3	254	242	45	-4	2	4	348 2	252	8 9	0	5	4	74	30	73
9	5	2	469	474	28	-13	3	3	441	405	27	1	6	3	72	35	71	-2	2	4	928 9	949 2	0	2	5	4	767	774	35
10	5	2	193 836	139 842	59 30	-12 -11	3	3	592 381	569 389	24 25	2	6	3	163 471	34 386	61 34	-1	2	4	340 2 374 1	228 1	1 2	3 4	5	4	402 409	427 415	34 51
-7	6	2	1026	1023	37	-10	3	3	152	131	20	4	6	3	344	325	40	1	2	4	1600 17	69 1	7	5	5	4	269	336	50
-6 -5	6	2	754	690 350	40 26	-9 -8	3	3	225 473	254 486	17 10	5 -18	6	3 4	67 242	48	66 95	2	2	4	300 3	817 1: 834 31	5	6 7	5	4	510 260	497 221	61 54
-4	6	2	275	259	26	-7	3	3	161	15	16	-17	0	4	534	571	99	4	2	4	990 9	969 1	6	8	5	4	287	287	54
-3	6	2	749 888	710 848	23	-6 -5	3	3	701 483	713	11 11	-16	0	4	129	164 2223	65 59	5	2	4	648 6 987 10	593 1	5. 0.	-7 -6	6	4	204	43 1039	70 41
-1	6	2	985	903	31	-4	3	3	523	554	18	-14	Ő	4	569	526	28	7	2	4	2299 23	382 4	0 ·	-5	6	4	353	340	39
0	6	2	231	175	41 25	-3 -2	3	3	1710 1348	1807	30 20	-13	0	4	2455 571	2445	61 21	8 9	2	4	234	87 2	9. 5.	-4	6	4	218 409	214 424	40
2	6	2	675	650	28	-1	3	3	765	834	24	-11	0	4	1313	1384	26	10	2	4	303 1	25 3	3 ·	-2	6	4	847	735	27
3	6	2	671 530	581 435	33 35	0	3 3	3 3	2679 1848	2740 1936	50 25	-10 -9	0	4 4	1138 3252	1069 3193	20 68	11 12	2 2	4	126 1 454 4	134 71 179 31	5. 2	-1 0	6 6	4	64 924	79 903	63 35
5	6	2	824	803	36	2	3	3	304	325	14	-8	0	4	668	582	22	13	2	4	493 5	505 4	1	1	6	4	239	256	47
ь -18	ь 1	2	1310	1313	38	3 4	3	3.	1437 781	875	13	- 6	0	4	889 1693	892 1685	23 32	-16	2 3	4	367 3	40 4. 394 4:	1 3	2	6	4	179 216	68 81	75 54
-17	1	3	968	1008	26	5	3	3	346	374	13	-5	0	4	2120	2171	43	-15	3	4	0	33	1 c	4	6	4	1288	1208	45
-15	1	3	210	144	33	7	3	3	139	127	33	-3	0	4	1871	1821	28	-13	3	4	785 7	72 2 739 2	5 –: 5 –:	10 17	1	5	792	781	37
-14	1	3	1029	1019	23	8	3	3	511 568	546	17	-2	0	4	1562	1600	42	-12	3	4	227 2	208 1	9 -	16	1	5	805	804 364	38
-12	1	3	1820	1766	31	10	3	3	358	318	32	Ū.	0	4	1276	1268	26	-10	3	4	1309 13	361 20	0 -:	14	1	5	406	479	28
-11 -10	1	3	735 686	776 696	17 13	11 12	3	3	285 491	287 520	38 37	1	0	4 4	2929 754	3062 620	64 15	-9 -8	3	4	172 1 1151 11	38 21 83 1	2 -: 9 -:	13 12	1	5 5	980 1330	1002 1425	21 25
-9	1	3	1247	1199	16	13	3	3	546	563	40	3	0	4	3298	3376	75	-7	3	4	979 9	967 1	4 -	11	1	5	754	755	15
-8 -7	1	3	2367	2311 544	31 13	14 -15	3	3	206 247	269 256	70	4	0	4 4	649 1015	415 1071	38 25	-6 -5	3	4	635 6 1027 10	54 13)21 23	5 –: 3 -	10 -9	1	5.	2119 637	2058	33 12
-6	1	3	1701	1661	17	-14	4	3	160	167	68	6	0	4	576	355	22	- 4	3	4	1585 15	581 2	3.	-8	1	5	1199	1206	15
-5 -4	1	3	300	268	16 7	-13 -12	4	3.	209	209	34 41	8	0	4	581	440	83 26	-3	3	4	412 3 1100 10	389 1)74 2:	/ · 1 ·	- / -6	1	5 5	658 4346	252 4500	21 94
-3	1	3	1739	1562	16	-11	4	3	460	464	26	9	0	4	1372	1353	40	-1	3	4	1568 15	518 2	8 ·	-5	1	5	1345	1348	13
-1	1	3	2522	2513	29	-9	4	3	879	876	22	11	0	4	449	459	50	1	3	4	368 3	337 1	6 ·	-3	1	5	554	347	18
0	1	3	3149 515	3286	47 23	-8	4	3	229 897	261 937	16 18	12	0	4	595 1305	434	45 49	2	3	4	1504 15	08 2	8 · 1 ·	-2	1	5	1633 742	1725 693	33
2	1	3	1203	1194	13	-6	4	3	1426	1418	33	14	Ő	4	1123	1024	48	4	3	4	796 8	395 2	1	Ō	1	5	2301	2344	30
3	1	3	1506 2390	1456 2446	18 32	-5 -4	4 4	3	607 1251	555 1293	19 20	15 -18	0 1	4 4	777 151	702 226	52 125	5	3	4	941 9 911 9	988 1 990 1	6 7	1 2	1	5 5	1323 1107	1297 1066	16 16
5	1	3	1782	1829	24	-3	4	3	502	446	20	-17	1	4	388	443	38	7	3	4	404 4	106 1	8	3	1	5	960	918	14
ю 7	1	3	1486	1409	24	-2	4	3	405 1245	1205	41	-16	1	4	162	215 30	4 / 65	8 9	3	4	684 6	61 2. 568 21	2	4 5	1	5	923 322	922 50	15 26
8	1	3	593	500	18	0	4	3	875 349	870 366	31	-14	1	4	426	423	18	10	3	4	244 2	258 3	5	6	1	5	2045	2035	33
10	1	3	761	765	23	2	4	3	752	746	26	-12	1	4	193	233	20	12	3	4	537 5	571 4:	1	8	1	5	374	270	26
11 12	1	3	1410	1390	31 28	3 4	4	3	1442	1577 40	40 30	-11 -10	1	4	483 650	449 663	14 10	13 -14	3 4	4	106 70 1	68 10 79 7	6 0 [.]	9 10	1 1	5	630 1949	245 1962	24 43
13	1	3	260	90	39	5	4	3	484	579	23	-9	1	4	145	170	10	-13	4	4	503 5	567 3	9	11	1	5	695	578	27
14 15	1	3	1163 689	1132 672	33 30	6 7	4 4	3 3	733 535	767 578	23 26	-8 -7	1	4 4	620 583	671 542	11 11	-12 -11	4	4	1408 14 169 1	105 3: 142 4-	2 : 4 :	12 13	1	5 5	967 412	905 227	34 39
-17	2	3	418	487	34	8	4	3	312	354	29	-6	1	4	404	458	9	-10	4	4	776 8	858 2	4 -	17	2	5	635	663	51
-⊥6 -15	2	3	5/4 288	520 304	36 25	9 10	4 4	3 3	ю91 722	805 826	эU 34	-5 -4	⊥ 1	4 4	420 633	395 584	/ 9	-9 -8	4 4	4 4	513 5 494 5	501 1 537 1	o – 5 –	⊥6 15	2	э 5	167 381	⊥/′/ 463	55 30
-14	2	3	302	267	21	11	4	3	588	594	34	-3	1	4	979	1116	10	-7	4	4	162	32 2	5 -:	14	2	5	748	783	17
-12	2 2	з З	609	1195 597	17	-12	5	3	54	124	54	-2	1 1	4	1068	1150	24 10	-0 -5	4	4	293 2	274 1	6 –:	12	2	5	384	102 386	15
-11	2	3 7	462	443 986	16 15	-11	5	3	814 100	830 115	29 100	0	1 1	4 4	244	83 49	10 18	-4	4	4 4	104 284 3	72 3	7 -	11 10	2	5	1064 691	1053 719	15 12
-9	2	3	419	303	11	-9	5	3	833	768	23	2	1	4	753	793	11	-2	4	4	537 5	520 1	7	-9	2	5	729	741	12
-8 -7	2	3	227 974	226 978	13 12	-8 -7	5 5	3 3	546 243	502 235	22 26	3 4	1 1	4 4	362 207	232 182	12 19	-1 0	4 4	4 4	219 2 1100 10	215 21 084 31	9. 2.	-8 -7	2 2	5 5	916 641	901 637	12 10
-6	2	3	1327	1380	15	-6	5	3	141	146	32	5	1	4	608	596	13	1	4	4	272 2	201 2	3.	-6	2	5	563	609	11
-5 -4	2	3 3	432 1391	4/2 1395	⊥/ 14	-5 -4	э 5	3	108/ 633	⊥⊥05 723	∠/ 17	6 7	⊥ 1	4 4	419 167	30/ 156	⊥6 31	2	4 4	4 4	146 1 602 6	579 2	э. 6.	- 5 - 4	2	э 5	±±37 644	⊥⊥45 629	10 10
-3	2	3	854	761	8	-3	5	3	1571	1568	25	8	1	4	553	544	20	4	4	4	1484 16	21 0	0 ·	-3	2	5	178	38	15
-2 -1	2 2	з З	1223	1194	23	-2	5	3	276	243 221	12	9 10	1	4	535 62	52	∠⊥ 61	5	4	4	90 1017 11	21 9 194 3	, . 3 ·	-1	2	5	953	1298 947	17
0	2	3	1238	1243	15	0	5	3	780	795	17	11	1	4	416	366	29	7	4	4	547 6	516 43	3	0	2	5	350	359	10

																										2	
h	k	1 1	LOFo 1	0Fc	10s	h	k	1 10Fo	10Fc	10s	h	k	1 10Fo	10Fc	10s	h	k	1 10)Fo 1	OFc	10s	h	k	1	10Fo	10Fc	10s
1	2	5	883	920	13	-5	6	5 159	126	57	2	2	6 702	673	1.5	-7	1	7 8	319	787	16	3	4	7	640	674	2.5
2	2	5	800	797	12	-4	6	5 260	226	44	3	2	6 1381	1477	22	-6	1	7 3	337	318	22	4	4	7	431	467	38
3	2	5	270	348	16	-3	6	5 425	344	47	4	2	6 678	634	17	-5	1	7 10	074 1	113	13	5	4	7	89	46	89
4	2	5	609	518	14	-2	6	5 368	352	49	5	2	6 763	782	20	-4	1	7 13	329 1 156	362	31	6	4	7	677	664 520	61
6	2	5	463 -	205 456	16	0	6	5 448	417	54	7	2	6 356	416	25	-2	1	7 10)93 1	232	15	-9	5	7	473	503	40
7	2	5	942 1	032	22	1	6	5 79	15	78	8	2	6 206	168	39	-1	1	7 8	318	814	15	-8	5	7	1091	984	37
8	2	5	515	417	21	-18	0	6 465	582	74	9	2	6 1014	996	28	0	1	7 10	053	987	36	-7	5	7	683	651	30
9	2	5	231	187	38	-17	0	6 706	773	81	10	2	6 191	58	48	1	1	7 18	329 1	872	29	-6	5	7	554	470	30
11	2	5	736	4/4 737	27	-15	0	6 1214	1208	54	12	2	6 187	482	102	2	1	7 5	587 587	510	20	- 3	5	7	394	433	35
12	2	5	279	329	37	-14	Ō	6 1160	1193	47	-16	3	6 202	182	105	4	1	7 13	326 1	249	25	-3	5	7	178	126	56
13	2	5	279	270	53	-13	0	6 1629	1579	58	-15	3	6 982	1032	35	5	1	7 14	153 1	540	28	-2	5	7	521	536	35
-16	3	5	84	75	84	-12	0	6 218	107	51	-14	3	6 586	636	34	6	1	7 11	L78 1	223	27	-1	5	7	539	632	58
-14	3	5	363	372	34	-10	0	6 2043	1996	55	-12	3	6 498	533	18	8	1	7 4	179 I	430	2.6	1	5	7	185	82	70
-13	3	5	116	124	55	- 9	0	6 938	849	30	-11	3	6 552	541	16	9	1	7 1	L47	89	62	2	5	7	648	659	63
-12	3	5	491	497	19	-8	0	6 754	771	23	-10	3	6 235	224	16	10	1	7 5	538	462	32	3	5	7	703	752	49
-11 -10	3	5	383 . 539 .	36∠ 571	19	- /	0	6 1481 6 290	158	33 53	-9	3	6 1043	955	22	-16	2	7 3	1/9	447 446	34 45	-17	0	8	314 270	248 123	100
-9	3	5 :	L187 1:	202	18	-5	Ő	6 477	200	20	-7	3	6 189	9	26	-15	2	7 6	547	658	34	-15	Ő	8	690	627	53
-8	3	5	601	611	13	-4	0	6 1337	1403	38	-6	3	6 1454	1428	24	-14	2	7 1	L09	113	108	-14	0	8	1106	1141	50
-7	3	5	621	738	17	-3	0	6 3728	3613	88	-5	3	6 884	867	18	-13	2	7 (566	699	26	-13	0	8	302	120	53
-6 -5	3	5. 5	813 I	5∠6 818	20 15	-2	0	6 2099	2165	38 29	-4	3	6 181	1/5	23	-12	2	7 1	/44 50	127	47	-12	0	8	1350 684	606	31 37
-4	3	5	468	506	16	0	Ō	6 1453	1298	41	-2	3	6 1287	1289	36	-10	2	7 9	907	974	25	-10	Õ	8	302	206	37
-3	3	5 3	L171 1	194	19	1	0	6 2347	2316	49	-1	3	6 117	56	48	-9	2	76	578	586	16	-9	0	8	976	557	41
-2	3	5	790	206	20	2	0	6 1482	1565	30	0	3	6 946	925	21	-8	2	7 5	02 557	548 225	24	-8	0	8	2447	2466	.70
0	3	5	614	602	17	4	0	6 947	956	25	2	3	6 478	541	23	-6	2	7 12	230 1	229	26	-6	0	8	1991	2319	81
1	3	5	65	32	65	5	0	6 1536	1496	37	3	3	6 628	662	19	-5	2	7 2	270	195	14	-5	0	8	477	169	40
2	3	5	413	388	16	6	0	6 835	701	30	4	3	6 628	612	19	-4	2	7 6	596	732	21	-4	0	8	300	431	30
3	3	5	207 1	214 186	20	8	0	6 207 6 349	297	4/	5	3	6 555	590 355	22	-3 -2	2	7 10	709 706	938 669	26 16	-3 -2	0	8	657 1899	381 1916	55 64
5	3	5	383	347	16	9	0	6 1639	1596	52	7	3	6 893	987	23	-1	2	7 2	235	148	16	-1	0	8	1157	1153	71
6	3	5	510	591	19	10	0	6 432	198	47	8	3	6 566	609	26	0	2	78	345	836	21	0	0	8	884	915	27
7	3	5	603	610	29	11	0	6 732	655	43	10	3	6 265	232	37	1	2	7	744	729	18	1	0	8	1093	207	28
9	3	5	526	249 578	23	-17	1	6 64	126	63	-14	4	6 94	51	93	2	2	7	±37 780	867	21	3	0	8	259	291	37
10	3	5	924	966	35	-16	1	6 171	113	72	-13	4	6 42	98	41	4	2	7 4	197	436	19	4	Ō	8	770	776	31
11	3	5	490	512	36	-15	1	6 453	482	34	-12	4	6 493	496	28	5	2	7	70	36	69	5	0	8	1098	1074	37
12 -14	3	5	309	334 653	52 72	-14	1	6 261 6 190	290	22	-11	4	6 514	540 337	20	6	2	7 4	/42 183	758 405	23	6 7	0	8	586 601	568 201	49 41
-13	4	5	168	56	49	-12	1	6 307	304	27	-9	4	6 158	141	24	8	2	7 2	219	220	37	8	0	8	1113	1140	44
-12	4	5	345	382	33	-11	1	6 394	369	18	-8	4	6 67	58	66	9	2	7 3	386	421	33	9	0	8	425	508	52
-11	4	5	886	926	23	-10	1	6 88	62	57	-7	4	6 430	429	21	10	2	7 5	524	606	34	10	0	8	1310	1294	68
-10	4	5	625 740	6∠3 758	19	-9	1	6 976 6 324	256	11 11	-6	4	6 710	656	25 21	-15	3	7 2	534 243	844 282	64 36	-16 -15	1 1	8	339 158	387	45 84
-8	4	5	612	640	19	-7	1	6 181	206	17	- 4	4	6 699	714	23	-13	3	7 8	356	884	31	-14	1	8	111	171	111
-7	4	5	484	476	18	-6	1	6 691	752	11	-3	4	6 751	680	30	-12	3	7 14	179 1	402	30	-13	1	8	346	351	33
-6 -5	4	5	4.77	474 141	18	-5	1	6 423 6 136	342 29	9 18	-2	4	6 879	880 352	28	-11	3	7 6	/00 531	640 678	21 16	-12	1	8	315	333	33
-4	4	5	523	518	22	-3	1	6 270	184	17	Ď	4	6 1392	1462	30	-9	3	7 10)43 1	114	29	-10	1	8	413	359	22
-3	4	5	421	358	23	-2	1	6 826	812	21	1	4	6 1153	1092	30	-8	3	7 4	133	467	14	-9	1	8	238	185	32
-2	4	5 1	L406 1:	287	26	-1	1	6 131	32	18	2	4	6 279	300	28	-7	3	7 1	L58	133	21	-8	1	8	166	183	21
0	4	5	524	521	19	1	1	6 1057	1143	16	4	4	6 336	389	32	-5	3	7 1	572 L96	115	27	-6	1	8	480	517	17
1	4	5	781	815	20	2	1	6 255	215	16	5	4	6 115	122	89	-4	3	7 2	238	150	27	-5	1	8	185	250	20
2	4	5	759	776	22	3	1	6 462	497	15	6	4	6 661	742	55	-3	3	7 3	379	290	21	-4	1	8	526	418	13
3	4	5	1/1	63 609	32	4	1	6 423 6 299	3/4 291	1/ 21	/	4	6 135 6 454	56 557	134	-2	3	7 2	253	193	25	-3 -2	1	8	532 279	498 305	24
5	4	5 1	L028 1:	118	33	6	1	6 288	316	23	-10	5	6 145	61	81	Ō	3	7 6	583	639	30	-1	1	8	474	474	16
6	4	5	139	156	35	7	1	6 426	409	23	-9	5	6 393	433	35	1	3	76	554	696	26	0	1	8	320	229	17
7	4	5	284	843 339	42	8	1	6 331 6 183	330	29	-8	5	6 618	606 29	22	2	3	7 1	L40 743	138	47 26	1	1	8	143	102	35
9	4	5	148	199	90	10	1	6 437	462	31	-6	5	6 977	938	31	4	3	7 11	L12 1	141	27	3	1	8	491	502	22
10	4	5	238	212	56	11	1	6 275	134	39	-5	5	6 206	85	44	5	3	7 4	153	459	23	4	1	8	135	134	52
-11	5	5	209	146	50	12	1	6 54	9	54	-4	5	6 95	70	95	6	3	7 5	572	583	26	5	1	8	316	338	27
-10	5	5	328 . 1306 11	309 254	34	-17	2	6 401 6 345	387 401	59 40	-3	5 5	6 220	98 849	38 28	8	3	7 2	304 272	804 256	28 31	6 7	1	8	308	257	29 29
-8	5	5	609	424	62	-15	2	6 768	797	36	-1	5	6 62	56	61	9	3	7 3	310	377	48	8	1	8	167	166	52
-7	5	5 3	L123 1	141	27	-14	2	6 709	661	21	0	5	6 225	287	40	-13	4	7 5	503	553	55	9	1	8	381	352	38
-6	5	5	718	552	38	-13	2	6 748	250	22	1	5	6 716	682	29	-12	4	7	717	699 156	35	-15	2	8	257	207	53
-4	5	5	210	121	38	-11	2	6 238	65	31	3	5	6 412	492	51	-10	4	7 8	390	917	26	-13	2	8	138	76	67
-3	5	5 3	L475 1	467	36	-10	2	6 850	860	17	4	5	6 109	130	109	-9	4	7 5	528	512	21	-12	2	8	881	913	29
-2	5	5	192	142	56	-9	2	6 418	476	15	5	5	6 359	286	49	-8	4	7 4	163	404	20	-11	2	8	173	83	36
-T	ວ 5	э 5	/ 33 546	0/6 549	∠/ 39	-8 -7	2	0 558 6 663	53/ 67∆	⊥3 1 २	-1/ -16	⊥ 1	/ 852 7 721	920 775	4U 37	- / - 6	4 4	7 11	10/ 182 1	∠∠8 142	29 27	-T0 -T0	2	8 8	3U1 854	335 883	20 30
1	5	5	347	374	40	-6	2	6 298	253	12	-15	1	7 1307	1339	42	-5	4	7 2	227	225	41	-8	2	8	1529	1593	26
2	5	5	166	73	53	-5	2	6 371	365	16	-14	1	7 686	649	31	-4	4	7 6	527	596	26	-7	2	8	602	732	17
3	5	5	979	981 147	34	- 4	2	6 489	431	11	-13	1	7 358	307	30	-3	4	7 11	L44 1	121	31 50	-6	2	8	2013	2106	32
4 5	5	5	284	14/ 338	49	-3 -2	2	0 2337 6 1775	2348	26	-12	1 1	7 1401	1460	30	-2	4	7 2	218	 99	36	- 5	2	8	144	57	∠⊥ 24
6	5	5	142	134	142	-1	2	6 759	724	11	-10	1	7 1403	1456	31	0	4	7 4	189	439	36	-3	2	8	857	865	20
7	5	5	843	808	39	0	2	6 1158	1176	18	-9	1	7 1627	1627	24	1	4	7 10	082 1	064	33	-2	2	8	1261	1238	20
- 6	6	5	224	∠⊥8	/4	1	2	6 1256	1367	19	-8	1	/ 580	545	14	2	4	/ 5	520	515	30	-1	2	8	621	607	27

Observed and calculated structure factors for bairdite

Ok	bser	ved	d and	calcu	alculated structure factors for bairdite														Page	e 4								
h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1 1	OFo	10Fc	10s	h	k	l 10Fc	10Fc	10s
0	2	8	515	480	15	-5	5	8	175	51	69	-13	3	9	268	196	50	4	0 1	0 1	223	1338	56	-2	3 1	0 545	425	33
1	2	8	622	626	18	-4	5	8	345	375	44	-12	3	9	352	312	52	5	0 1	0	775	808	39	-1	3 1	0 652	670	35
2	2	8	304	224	21	-3	5	8	784	661	32	-11	3	9	293	160	38	6	0 1	0	834	874	61	0	3 1	0 190	91	79
3	2	8	419	398	22	-2	5	8	284	300	48	-10	3	9	207	105	44	-14	1 1	0	231	272	48	1	3 1	0 952	902	32
4	2	8	714	696	21	-1	5	8	322	343	46	-9	3	9	101	16	100	-13	1 1	0	0	83	1	2	3 1	0 297	247	47
5	2	8	403	425	24	-15	1	9	1428	1461	51	-8	3	9	155	131	56	-12	1 1	0	343	393	35	-12	1 1	1 270	318	40
6	2	8	655	599	23	-14	1	9	252	125	42	-7	3	9	90	116	72	-11	1 1	0	365	333	32	-11	1 1	1 334	203	35
7	2	8	601	394	28	-13	1	9	562	523	31	-6	3	9	486	515	23	-10	1 1	0	112	113	79	-10	1 1	1 525	442	29
8	2	8	616	705	29	-12	1	9	605	502	26	-5	3	9	683	660	30	-9	1 1	0	38	111	38	-9	1 1	1 1424	1381	48
-14	3	8	390	429	36	-11	1	9	656	678	27	-4	3	9	226	9	40	-8	1 1	0	313	325	20	-8	1 1	1 1351	1405	45
-13	3	8	737	730	33	-10	1	9	529	429	24	-3	3	9	1024	1044	30	-7	1 1	0	152	135	23	- 7	1 1	1 540	583	32
-12	3	8	/63	/39	35	-9	1	9	809	825	23	-2	3	9	1264	1225	30	-6	1 1	0	221	227	32	-6	1 1	1 //6	923	29
-11	2	0	204	000	30	-0	1	9	300	330	32	-1	2	9	338	207	30	- 5	1 1	0	495	432	22	- 5	1 1	1 0 9 0	8/3	30
-10	2	0	102	903	24 10	= /	1	9	597	331	1.0	1	2	9	9/0	1116	30	-4	1 1	0	200	202	21	-4	1 1	1 1 1 2 0 G	1102	20
- 9	3	9	151	19/	21	-0	1	9	1/15	130/	30	2	3	9	274	226	35	-3	1 1	0	2/4	203	21	-3	1 1	1 1200 1 657	707	37
-7	3	8	1000	1083	29	-4	1	q	373	153	23	3	3	g	664	622	31	-1	1 1	0	328	370	23	-1	1 1	1 662	648	27
-6	3	8	548	496	30	-3	1	ģ	1964	2015	31	4	3	9	644	612	34	0	1 1	ő	64	25	63	0	1 1	1 232	121	40
-5	3	8	182	52	38	-2	1	9	833	749	20	5	3	9	203	103	63	1	1 1	ō	488	575	27	1	1 1	1 100	32	99
-4	3	8	910	796	28	-1	1	9	302	377	20	-10	4	9	701	698	32	2	1 1	0	200	98	38	2	1 1	1 242	135	48
-3	3	8	1183	1145	35	0	1	9	497	399	26	- 9	4	9	133	63	93	3	1 1	0	0	34	1	-10	2 1	1 221	247	58
-2	3	8	363	344	28	1	1	9	1884	1969	42	-8	4	9	714	667	34	4	1 1	0	268	326	37	-9	2 1	1 503	462	49
-1	3	8	759	801	24	2	1	9	316	215	27	-7	4	9	607	589	29	5	1 1	0	242	245	39	-8	2 1	1 638	549	59
0	3	8	634	633	26	3	1	9	1166	1238	28	-6	4	9	79	55	79	-13	2 1	0	248	187	39	-7	2 1	1 197	136	52
1	3	8	129	79	60	4	1	9	395	274	25	-5	4	9	299	144	42	-12	2 1	0 1	256	1314	41	-6	2 1	1 521	437	32
2	3	8	710	687	26	5	1	9	147	31	52	-4	4	9	887	816	33	-11	2 1	0	712	719	28	-5	2 1	1 747	682	36
3	3	8	881	889	29	6	1	9	314	261	36	-3	4	9	430	413	36	-10	2 1	0	673	677	26	-4	2 1	1 134	60	134
4	3	8	4/8	481	31	/	1	9	6/4	/42	30	-2	4	9	/43	/18	29	-9	2 1	0	450	4/5	22	- 3	2 1	1 5/8	601	37
5	3	8	/66	/51	32	-14	2	9	590	631	38	-1	4	9	5//	548	29	-8	2 1	0	534	51/	35	-2	2 1	1 350 1 100	319	36
7	2	0	161	5/5	32	-13	2	9	202	2/3	40	1	4	9	524	402	24	= /	2 1	0	310	221	25	-1	2 1	1 100	122	04
_12	1	0	210	162	15	-12	2	9	665	651	28	2	1	9	188	126	34	-0	2 1	0	202	100	25	1	2 1	1 40.	430	32
-11	4	8	782	750	34	-10	2	g	591	646	26	-14	0	10	298	420	97	-4	2 1	0	5.81	491	24	-6	3 1	1 814	867	55
-10	4	8	342	358	40	-9	2	9	202	162	30	-13	0	10	293	118	74	-3	2 1	0	264	202	34	-5	3 1	1 912	749	41
-9	4	8	1296	1242	35	-8	2	9	970	1005	32	-12	Ō	10	2132	2083	83	-2	2 1	ō	0	81	1	-4	3 1	1 18	32	18
-8	4	8	473	378	25	-7	2	9	695	759	26	-11	0	10	1126	1169	45	-1	2 1	0	314	62	38	-9	0 1	2 236	245	59
-7	4	8	204	190	37	-6	2	9	173	170	23	-10	0	10	1282	1216	45	0	2 1	0	822	813	29	-8	0 1	2 788	654	56
-6	4	8	921	917	30	-5	2	9	303	174	19	-9	0	10	454	302	33	1	2 1	0	503	488	29	-7	0 1	2 541	420	64
-5	4	8	1365	1245	34	-4	2	9	857	851	27	-8	0	10	797	673	41	2	2 1	0	264	197	44	- 6	0 1	2 651	410	88
-4	4	8	296	319	34	-3	2	9	267	223	17	-7	0	10	624	640	35	3	2 1	0	417	257	40	-5	0 1	2 1161	1237	74
-3	4	8	1126	1016	30	-2	2	9	690	707	19	-6	0	10	834	1077	58	4	2 1	0 1	260	1192	42	-4	0 1	2 480	335	68
-2	4	8	341	194	30	-1	2	9	749	741	18	-5	0	10	183	317	53	-11	3 1	0	794	711	38	-3	0 1	2 788	763	79
-1	4	8	207	157	46	0	2	9	379	414	17	-4	0	10	824	894	36	-10	3 1	0	268	169	48	-2	0 1	2 925	789	93
0	4	8	362	369	37	1	2	9	314	283	24	-3	0	10	640	559	28	-9	3 1	U	253	122	43	-8	1 1	2 115	107	115
1	4	8	575	540	51	2	2	9	577	593	21	-2	0	10	664	604	68	-8	31	U	873	836	33	- 7	1 1	2 151	177	62
2	4	8	460	4/1	29	3	2	9	287	293	28	-1	U	10	5/8	468	3/	- /	31	U	362	3/4	38	-6	1 1	2 210	304	/0
3	4	ŏ	54/ 210	433	29	4	2	9	105 610	180 610	49	1	0	10	122/	1002	19	- 6 F	3 L 2 1	0	200 725	583 720	34	-5	1 1	∠ 85 2 105	210	80 07
4	4	0 8	∠⊥0 g1	107	40 81	5	2	9 9	31.9	411	20	2	0	10	378	159	40	= 3 = 4	3 1	0	413	795	20	- 4	1 1	2 227	210	0 / 51
-6	4	8	165	203	01 67	07	2	9 9	J Q 1	202	56	2	0	10	561	255	37	- 4	3 1	0	305	266	32	-3	1 I	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	210	ĴΤ
0	J	0	TOD	203	07	/	4	2	191	202	50	2	0	τU	101	200	55	5	J Т	0	000	200	55					

AM-13-707 – Kampf et al. Deposit in American Mineralogist July 2013.

```
data bairdite
audit creation method
                               SHELXL-97
chemical name systematic
;
?
;
_chemical_name_common
                               ?
_chemical_melting point
                               ?
_chemical_formula_moiety
                               ?
_chemical formula sum
'H4 Cu4 O17 Pb2 S Te2'
                        1231.83
_chemical formula weight
loop
atom type symbol
_atom_type_description
_atom_type_scat_dispersion_real
 _atom_type_scat dispersion imag
 _atom_type scat source
 'Pb' 'Pb' -3.3944 10.1111
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Te' 'Te' -0.5308 1.6751
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'Cu' 'Cu' 0.3201 1.2651
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'S' 'S' 0.1246 0.1234
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0' 0.0106 0.0060
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 'H' 'H' 0.0000 0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                                ?
symmetry cell setting
symmetry space group name H-M P21/c
loop_
 symmetry equiv pos as xyz
 'x, y, z'
 '-x, y+1/2, -z+1/2'
 '-x, -y, -z'
 'x, -y-1/2, z-1/2'
_cell_length a
                               14.3126(10)
_cell length b
                                5.2267(3)
cell length c
                               9.4878(5)
cell angle alpha
                               90.00
_cell_angle_beta
                               106.815(7)
_cell_angle gamma
                               90.00
cell volume
                               679.41(7)
cell formula units Z
                                2
```

_cell_measurement temperature 293(2)cell measurement reflns used ? ? cell measurement theta min cell measurement theta max ? ? exptl crystal description exptl crystal colour ? exptl crystal size max 0.04 _exptl_crystal_size_mid 0.04 _exptl_crystal_size min 0.01 exptl crystal density meas ? _exptl_crystal_density_diffrn 6.021 _exptl_crystal_density method 'not measured' _exptl_crystal_F 000 1080 exptl absorpt coefficient mu 35.303 exptl absorpt correction type multi-scan _exptl_absorpt_correction_T_min 0.3325 exptl absorpt correction T max 0.8432 exptl absorpt process details ? _exptl_special details ; ? ; diffrn ambient temperature 293(2)diffrn radiation wavelength 0.71075 _diffrn_radiation_type MoK∖a _diffrn_radiation source 'fine-focus sealed tube' _diffrn_radiation monochromator graphite diffrn measurement device type ? diffrn measurement method ? ? diffrn detector area resol mean _diffrn_standards_number ? _diffrn_standards interval count ? diffrn standards interval time ? _diffrn_standards_decay % ? _diffrn_reflns number 15177 diffrn reflns av R equivalents 0.1126 _diffrn_reflns_av_sigmaI/netI 0.0549 _diffrn_reflns_limit_h_min -18 _diffrn_reflns limit h max 18 diffrn reflns limit k min -6 diffrn reflns limit k max 6 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit l max 12 diffrn reflns theta min 4.17 diffrn reflns theta max 27.48 _reflns_number total 1554 1406 reflns number gt reflns threshold expression >2sigma(I) _computing_data_collection ? computing cell refinement ?

```
_computing_data reduction
                                   ?
_computing_structure solution
                                   'SHELXS-97 (Sheldrick, 1990)'
                                   'SHELXL-97 (Sheldrick, 1997)'
computing structure refinement
computing molecular graphics
                                   ?
computing publication material
                                   ?
refine special details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR
and
 goodness of fit S are based on F^{2^{\prime}}, conventional R-factors R are based
 on F, with F set to zero for negative F^{2^{-1}}. The threshold expression of
 F^2 > 2 sigma (F^2) is used only for calculating R-factors (gt) etc. and
is
 not relevant to the choice of reflections for refinement. R-factors
based
 on F^{2^{-1}} are statistically about twice as large as those based on F, and
R-
 factors based on ALL data will be even larger.
;
refine ls structure factor coef Fsqd
refine ls matrix type
                                   full
refine ls weighting scheme
                                   calc
refine ls weighting details
'calc w=1/[\s^2^(Fo^2^)+(0.0161P)^2^+120.5399P] where
P = (Fo^2^+ 2Fc^2^) / 3'
atom sites solution primary
                                   direct
_atom_sites_solution secondary
                                   difmap
_atom_sites_solution_hydrogens
                                   geom
refine 1s hydrogen treatment
                                  mixed
refine ls extinction method
                                   SHELXL
_refine_ls_extinction coef
                                   0.0001(2)
_refine_ls_extinction_expression
'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'
_refine_ls_number_reflns
                                   1554
_refine_ls_number_parameters
                                   138
_refine_ls_number restraints
                                   0
refine ls R factor all
                                   0.0774
refine ls R factor gt
                                   0.0715
_refine_ls_wR_factor_ref
                                   0.1655
_refine_ls_wR_factor gt
                                   0.1625
refine ls goodness of fit ref
                                  1.173
_refine_ls_restrained S all
                                   1.173
_refine_ls_shift/su_max
                                   0.000
refine ls shift/su mean
                                  0.000
loop
 atom site label
 atom site type symbol
 _atom_site fract x
 _atom_site_fract y
 _atom_site_fract_z
 atom site U iso or equiv
```

```
_atom_site_adp type
 atom site occupancy
 atom site symmetry multiplicity
 atom site calc flag
 _atom_site_refinement flags
 atom site disorder assembly
 atom site disorder group
Pb Pb 0.34148(7) 0.0795(3) 0.39773(15) 0.0218(5) Uani 0.873(9) 1 d P . .
PbA Pb 0.3421(13) 0.965(7) 0.437(3) 0.016(8) Uiso 0.049(9) 1 d P . .
PbB Pb 0.3415(11) 0.850(5) 0.4112(18) 0.033(6) Uiso 0.076(7) 1 d P . .
Te Te 0.16195(10) 0.4933(3) 0.49077(15) 0.0156(5) Uani 1 1 d . .
Cul Cu 0.7926(2) 0.4758(5) 0.8472(3) 0.0167(7) Uani 1 1 d . . .
Cu2 Cu 0.9079(2) 0.5282(5) 0.1916(3) 0.0184(7) Uani 1 1 d .
S S 0.5334(8) 0.087(3) 0.1993(13) 0.024(3) Uani 0.50 1 d P . .
01 0 0.8577(12) 0.144(3) 0.8362(15) 0.019(3) Uani 1 1 d . . .
02 0 0.0766(12) 0.209(3) 0.4836(18) 0.023(4) Uani 1 1 d . . .
O3 O 0.2700(12) 0.291(3) 0.6011(18) 0.020(3) Uani 1 1 d . . .
04 0 0.0453(11) 0.696(3) 0.3687(16) 0.019(3) Uani 1 1 d . . .
05 0 0.1757(13) 0.156(3) 0.808(2) 0.026(4) Uani 1 1 d . . .
06 0 0.7648(12) 0.291(3) 0.012(2) 0.024(4) Uani 1 1 d . . .
07 0 0.6267(18) 0.091(5) 0.183(3) 0.055(7) Uani 1 1 d . .
08 0 0.530(3) 0.032(7) 0.354(4) 0.030(8) Uiso 0.50 1 d P . .
09 0 0.493(3) 0.862(9) 0.115(5) 0.046(11) Uiso 0.50 1 d P . .
010 0 0.480(3) 0.329(8) 0.142(5) 0.038(9) Uiso 0.50 1 d P . .
loop
 atom site aniso label
 _atom_site_aniso_U 11
 _atom_site_aniso U 22
 _atom_site_aniso U 33
 atom site aniso U 23
 atom site aniso U 13
 atom site aniso U 12
Pb 0.0184(6) 0.0217(9) 0.0261(7) 0.0012(6) 0.0077(4) -0.0008(4)
Te 0.0155(8) 0.0209(8) 0.0114(7) -0.0005(5) 0.0053(5) -0.0003(5)
Cul 0.0181(14) 0.0214(15) 0.0116(13) -0.0001(10) 0.0059(10) 0.0001(10)
Cu2 0.0206(14) 0.0195(15) 0.0166(14) 0.0012(11) 0.0079(11) 0.0008(11)
S 0.013(5) 0.035(7) 0.023(6) 0.005(5) 0.003(4) 0.003(5)
01 \ 0.036(9) \ 0.019(8) \ 0.007(7) \ -0.001(6) \ 0.012(6) \ 0.008(7)
02 0.020(8) 0.026(9) 0.018(8) -0.009(7) -0.001(7) -0.004(7)
03 0.023(8) 0.016(8) 0.023(8) 0.001(7) 0.009(7) -0.002(6)
04 0.017(8) 0.024(9) 0.011(7) -0.005(6) 0.000(6) -0.002(6)
05 0.025(9) 0.026(9) 0.033(10) 0.003(8) 0.017(8) 0.003(7)
06 0.021(8) 0.011(8) 0.040(10) 0.004(7) 0.008(7) 0.007(6)
07 0.052(14) 0.077(18) 0.048(13) 0.033(13) 0.032(12) 0.023(13)
```

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

```
used when they are defined by crystal symmetry. An approximate
(isotropic)
treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
 _geom_bond_atom_site label 1
 _geom_bond_atom_site label 2
_geom_bond_distance
_geom_bond_site_symmetry 2
 _geom_bond_publ_flag
Pb PbA 0.70(4) 1 545 ?
Pb PbB 1.21(2) 1 545 ?
Pb 06 2.463(16) 2 645 ?
Pb 08 2.60(4) 3 656 ?
Pb 010 2.62(4) 4 566 ?
Pb O5 2.665(18) 4 565 ?
Pb 03 2.671(16) . ?
Pb 07 2.74(3) 2 645 ?
Pb O3 2.785(17) 4 565 ?
Pb 09 2.82(5) 2 645 ?
Pb 07 2.85(3) 2 655 ?
Pb 08 2.86(4) . ?
Pb 010 2.99(4) 2 645 ?
Pb O1 3.281(17) 3 656 ?
Pb 09 3.42(5) 4 566 ?
PbA PbB 0.65(3) . ?
PbA 06 1.96(3) 2_655 ?
PbA 08 2.28(4) 3 666 ?
PbA 07 2.37(4) 2 655 ?
PbA 010 2.57(5) 4 576 ?
PbA 03 2.71(3) 1 565 ?
PbB 07 1.75(3) 2 655 ?
PbB 06 1.89(2) 2 655 ?
PbB 08 2.52(4) 3 666 ?
PbB 09 2.69(5) 4 576 ?
PbB 010 2.75(4) 2 655 ?
Te 06 1.880(16) 2 655 ?
Te O2 1.912(17) . ?
Te O1 1.915(15) 2 656 ?
Te O3 1.916(17) . ?
Te O5 1.958(17) 4 565 ?
Te 04 2.034(16) . ?
Cul 05 1.913(18) 2_656 ?
Cul 06 1.979(18) 1 556 ?
Cul Ol 1.984(16) . ?
Cul O3 2.002(16) 2 656 ?
Cu1 02 2.415(17) 2 656 ?
Cu1 07 2.46(2) 4 566 ?
Cu2 O1 1.945(14) 4 565 ?
Cu2 O2 1.980(16) 2 655 ?
Cu2 O4 2.002(17) 2 645 ?
Cu2 O5 2.040(18) 3 666 ?
```

```
Cu2 04 2.355(15) 1 655 ?
Cu2 06 2.572(18) . ?
S 07 1.39(2) . ?
S O9 1.45(5) 1 545 ?
S 010 1.50(4) . ?
S 08 1.51(4) . ?
S 010 2.07(4) 2 645 ?
O1 Te 1.915(15) 2 646 ?
O1 Cu2 1.945(14) 4 566 ?
O1 Pb 3.281(17) 3 656 ?
O1 Cu1 3.627(17) 1 545 ?
O1 Cu2 3.809(15) 1 556 ?
O1 Cu2 3.842(17) 3 766 ?
O2 Cu2 1.980(16) 2 645 ?
O2 Cu1 2.415(17) 2 646 ?
O3 Cu1 2.002(16) 2 646 ?
O3 PbA 2.71(3) 1 545 ?
O3 Pb 2.785(17) 4 566 ?
O4 Cu2 2.002(17) 2 655 ?
O4 Cu2 2.355(15) 1 455 ?
O5 Cu1 1.913(17) 2 646 ?
O5 Te 1.958(17) 4 566 ?
O5 Cu2 2.040(18) 3 666 ?
O5 Pb 2.665(18) 4 566 ?
O6 Te 1.880(16) 2 645 ?
O6 PbB 1.89(2) 2 645 ?
O6 PbA 1.96(3) 2 645 ?
O6 Cul 1.979(18) 1 554 ?
O6 Pb 2.463(16) 2 655 ?
O7 PbB 1.75(3) 2 645 ?
O7 PbA 2.37(4) 2 645 ?
O7 Cu1 2.46(2) 4 565 ?
O7 Pb 2.74(3) 2 655 ?
O7 Pb 2.85(3) 2 645 ?
O7 Pb 3.97(2) 3 656 ?
08 010 1.07(5) 2 645 ?
08 09 1.80(6) 2_645 ?
O8 PbA 2.28(4) 3 666 ?
O8 PbB 2.52(4) 3 666 ?
O8 Pb 2.60(4) 3 656 ?
O8 Cul 3.78(4) 4 565 ?
O9 S 1.45(5) 1 565 ?
09 08 1.80(6) 2 655 ?
O9 PbB 2.69(5) 4 575 ?
O9 Pb 2.82(5) 2_655 ?
O9 Pb 3.42(5) 4 565 ?
O9 Pb 3.86(5) 4 575 ?
010 08 1.07(5) 2 655 ?
010 S 2.07(4) 2 655 ?
010 PbA 2.57(5) 4 575 ?
O10 Pb 2.62(4) 4 565 ?
O10 PbB 2.75(4) 2 645 ?
O10 Pb 2.99(4) 2 655 ?
```

```
loop
 _geom_angle_atom_site_label 1
 geom angle atom site label 2
 geom angle atom site label 3
 _geom_angle
 _geom_angle_site_symmetry 1
 _geom_angle site symmetry 3
  geom angle publ flag
PbA Pb PbB 25(2) 1 545 1 545 ?
PbA Pb O6 37.8(16) 1 545 2 645 ?
PbB Pb O6 48.3(8) 1 545 2 645 ?
PbA Pb 08 56(2) 1 545 3 656 ?
PbB Pb 08 72.7(12) 1 545 3 656 ?
O6 Pb O8 84.0(9) 2 645 3 656 ?
PbA Pb 010 78(2) 1 545 4 566 ?
PbB Pb 010 96.4(12) 1 545 4 566 ?
O6 Pb O10 101.0(10) 2 645 4 566 ?
O8 Pb O10 23.7(12) 3 656 4 566 ?
PbA Pb 05 119.0(16) 1 545 4 565 ?
PbB Pb 05 121.6(8) 1 545 4 565 ?
06 Pb 05 81.2(5) 2_645 4_565 ?
O8 Pb O5 137.3(9) 3_656 4_565 ?
O10 Pb O5 124.1(10) 4 566 4 565 ?
PbA Pb O3 86(2) 1 545 . ?
PbB Pb 03 108.9(9) 1 545 . ?
O6 Pb O3 66.4(5) 2 645 . ?
O8 Pb O3 75.9(9) 3 656 . ?
O10 Pb O3 68.6(10) 4 566 .
                           ?
O5 Pb O3 61.5(5) 4 565 . ?
PbA Pb 07 51(2) 1 545 2 645 ?
PbB Pb 07 26.9(10) 1 545 2 645 ?
O6 Pb O7 72.2(6) 2 645 2 645 ?
08 Pb 07 85.1(10) 3_656 2_645 ?
O10 Pb 07 105.9(11) 4 566 2 645 ?
O5 Pb O7 126.8(6) 4 565 2 645 ?
O3 Pb O7 135.8(6) . 2 645 ?
PbA Pb O3 133(2) 1_545 4_565 ?
PbB Pb 03 109.7(9) 1 545 4 565 ?
O6 Pb O3 114.5(5) 2 645 4 565 ?
O8 Pb O3 157.9(9) 3 656 4 565 ?
O10 Pb O3 144.2(10) 4_566 4_565 ?
O5 Pb O3 61.3(5) 4 565 4 565 ?
O3 Pb O3 121.6(4) . 4 565 ?
O7 Pb O3 89.2(6) 2 645 4 565 ?
PbA Pb 09 125.8(18) 1 545 2 645 ?
PbB Pb 09 123.3(12) 1 545 2 645 ?
O6 Pb O9 160.8(10) 2 645 2 645 ?
O8 Pb O9 76.8(13) 3 656 2 645 ?
O10 Pb O9 60.8(13) 4 566 2 645 ?
O5 Pb O9 113.4(10) 4 565 2 645 ?
O3 Pb O9 108.4(10) . 2 645 ?
07 Pb 09 105.4(11) 2 645 2 645 ?
O3 Pb O9 84.2(10) 4_565 2_645 ?
PbA Pb 07 164(2) 1 545 2 655 ?
```

```
PbB Pb 07 164.8(9) 1 545 2 655 ?
O6 Pb O7 146.0(6) 2_645 2_655 ?
O8 Pb O7 109.1(10) 3 656 2 655 ?
O10 Pb O7 85.8(11) 4 566 2 655 ?
O5 Pb O7 67.9(6) 4_565 2_655 ?
O3 Pb O7 86.0(5) . 2 655 ?
O7 Pb O7 138.2(8) 2 645 2 655 ?
O3 Pb O7 62.7(6) 4 565 2 655 ?
09 Pb 07 45.4(11) 2 645 2 655 ?
PbA Pb 08 97.7(18) 1 545 . ?
PbB Pb 08 87.5(11) 1 545 . ?
O6 Pb O8 134.5(9) 2_645 . ?
O8 Pb O8 70.3(13) 3 656 . ?
010 Pb 08 69.0(11) 4 566 . ?
O5 Pb O8 142.2(8) 4 565 . ?
O3 Pb O8 135.8(8) . . ?
O7 Pb O8 68.8(9) 2 645 . ?
O3 Pb O8 87.7(8) 4 565 . ?
O9 Pb O8 36.9(12) 2 645 . ?
O7 Pb O8 79.2(9) 2 655 . ?
PbA Pb 010 79.1(19) 1 545 2 645 ?
PbB Pb 010 66.6(11) 1 545 2 645 ?
O6 Pb O10 114.2(9) 2 645 2 645 ?
O8 Pb O10 67.0(11) 3 656 2 645 ?
010 Pb 010 74.7(14) 4 566 2 645 ?
O5 Pb O10 154.5(9) 4 565 2 645 ?
O3 Pb O10 142.3(9) . 2 645 ?
O7 Pb O10 48.7(9) 2 645 2 645 ?
O3 Pb O10 93.3(9) 4_565 2_645 ?
09 Pb 010 57.7(13) 2 645 2 645 ?
07 Pb 010 99.7(10) 2 655 2 645 ?
08 Pb 010 21.0(10) . 2 645 ?
PbA Pb O1 85.8(18) 1 545 3 656 ?
PbB Pb 01 72.0(8) 1 545 3 656 ?
O6 Pb O1 60.8(5) 2 645 3 656 ?
O8 Pb O1 141.4(9) 3 656 3 656 ?
O10 Pb O1 161.8(10) 4_566 3_656 ?
O5 Pb O1 56.7(5) 4 565 3 656 ?
O3 Pb O1 101.4(4) . 3 656 ?
O7 Pb O1 70.2(6) 2 645 3 656 ?
O3 Pb O1 53.8(4) 4_565 3_656 ?
O9 Pb O1 137.2(10) 2 645 3 656 ?
O7 Pb O1 109.1(6) 2_655 3_656 ?
O8 Pb O1 122.9(8) . 3 656 ?
O10 Pb O1 111.5(9) 2_645 3_656 ?
PbA Pb S 65(2) 1 545 2 645 ?
PbB Pb S 45.1(8) 1 545 2 645 ?
O6 Pb S 93.2(4) 2 645 2 645 ?
O8 Pb S 77.7(8) 3_656 2_645 ?
010 Pb S 93.2(10) 4 566<sup>2</sup> 645 ?
O5 Pb S 142.7(4) 4_565 2_645 ?
O3 Pb S 148.0(4) . 2 645?
O7 Pb S 22.9(5) 2 645 2 645 ?
O3 Pb S 88.8(4) 4 565 2 645 ?
```

```
O9 Pb S 82.5(10) 2 645 2 645 ?
O7 Pb S 119.8(5) 2 655 2 645 ?
O8 Pb S 45.8(8) . 2 645 ?
O10 Pb S 26.0(8) 2_645 2 645 ?
O1 Pb S 88.3(3) 3 656 2 645 ?
PbA Pb 09 36.8(17) 1 545 4 566 ?
PbB Pb 09 44.3(11) 1 545 4 566 ?
06 Pb 09 74.1(9) 2 645 4 566 ?
08 Pb 09 31.1(11) 3 656 4 566 ?
O10 Pb O9 53.5(12) 4 566 4 566 ?
O5 Pb O9 153.3(9) 4 565 4 566 ?
O3 Pb O9 98.8(8) . 4 566 ?
O7 Pb O9 54.0(10) 2 645 4 566 ?
O3 Pb O9 139.1(8) 4 565 4 566 ?
O9 Pb O9 89.0(13) 2 645 4 566 ?
O7 Pb O9 132.2(9) 2 655 4 566 ?
O8 Pb O9 64.4(11) . 4 566 ?
O10 Pb O9 50.4(11) 2 645 4 566 ?
O1 Pb O9 116.3(8) 3 656 4 566 ?
S Pb O9 50.4(8) 2 645 4 566 ?
PbA Pb Cu2 85.2(15) 1 545 2 645 ?
PbB Pb Cu2 85.3(7) 1 545 2 645 ?
O6 Pb Cu2 48.4(4) 2 645 2 645 ?
O8 Pb Cu2 128.2(8) 3 656 2 645 ?
O10 Pb Cu2 134.3(9) 4 566 2 645 ?
O5 Pb Cu2 36.4(4) 4 565 2 645 ?
O3 Pb Cu2 67.8(4) . 2 645 ?
O7 Pb Cu2 95.9(5) 2 645 2 645 ?
O3 Pb Cu2 73.6(3) 4_565 2_645 ?
O9 Pb Cu2 148.9(10) 2 645 2 645 ?
07 Pb Cu2 104.0(5) 2 655 2 645 ?
08 Pb Cu2 156.3(7) . 2 645?
010 Pb Cu2 143.2(8) 2 645 2 645 ?
O1 Pb Cu2 33.6(3) 3 656 2 645 ?
S Pb Cu2 117.7(2) 2 645 2 645 ?
O9 Pb Cu2 122.0(8) 4_566 2_645 ?
PbA Pb Cul 148.0(15) 1_545 3 666 ?
PbB Pb Cul 136.4(8) 1 545 3 666 ?
O6 Pb Cu1 111.6(4) 2 645 3 666 ?
O8 Pb Cu1 150.5(8) 3 656 3 666 ?
O10 Pb Cu1 127.1(10) 4_566 3_666 ?
O5 Pb Cu1 33.4(4) 4 565 3 666 ?
O3 Pb Cu1 87.3(4) . 3 666 ?
07 Pb Cul 123.0(6) 2 645 3 666 ?
O3 Pb Cu1 35.5(3) 4 565 3 666 ?
09 Pb Cul 86.0(10) 2 645 3 666 ?
O7 Pb Cu1 44.7(5) 2 655 3 666 ?
O8 Pb Cul 109.0(8) . 3 666 ?
010 Pb Cul 122.7(8) 2 645 3 666 ?
O1 Pb Cu1 65.1(3) 3 656 3 666 ?
S Pb Cul 124.0(2) 2 645 3 666 ?
O9 Pb Cu1 173.1(8) 4 566 3 666 ?
Cu2 Pb Cu1 63.28(7) 2 645 3 666 ?
PbA Pb S 149.6(15) 1 545 2 655 ?
```

```
PbB Pb S 143.5(8) 1 545 2 655 ?
O6 Pb S 167.9(4) 2 645 2 655 ?
O8 Pb S 97.3(9) 3 656 2 655 ?
O10 Pb S 77.2(10) 4 566 2 655 ?
O5 Pb S 89.9(4) 4_565 2_655 ?
O3 Pb S 102.1(4) . 2 655 ?
O7 Pb S 119.9(5) 2 645 2 655 ?
O3 Pb S 67.2(4) 4 565 2 655 ?
09 Pb S 23.9(10) 2 645 2 655 ?
O7 Pb S 22.8(5) 2 655 2 655 ?
O8 Pb S 56.4(8) . 2 655 ?
O10 Pb S 77.1(9) 2_645 2 655 ?
O1 Pb S 120.5(3) 3 656 2 655 ?
S Pb S 98.9(3) 2_645 2_655 ?
O9 Pb S 112.9(8) 4 566 2 655 ?
Cu2 Pb S 125.0(2) 2 645 2 655 ?
Cul Pb S 62.3(2) 3 666 2 655 ?
PbA Pb Cu1 55.7(19) 1 545 2 646 ?
PbB Pb Cu1 76.1(8) 1 545 2 646 ?
O6 Pb Cu1 32.7(4) 2 645 2 646 ?
O8 Pb Cu1 74.2(8) 3 656 2 646 ?
010 Pb Cu1 81.0(9) 4 566 2 646 ?
O5 Pb Cu1 71.8(4) 4 565 2 646 ?
O3 Pb Cu1 34.1(3) . 2 646 ?
07 Pb Cu1 102.4(5) 2 645 2 646 ?
O3 Pb Cu1 127.9(3) 4 565 2 646 ?
O9 Pb Cu1 137.4(9) 2 645 2 646 ?
O7 Pb Cul 119.2(4) 2_655 2_646 ?
O8 Pb Cu1 143.9(7) . 2_646 ?
010 Pb Cul 132.1(8) 2 645 2 646 ?
O1 Pb Cu1 82.6(3) 3 656 2 646 ?
S Pb Cul 120.0(2) 2 645 2 646 ?
O9 Pb Cu1 81.9(8) 4_566 2_646 ?
Cu2 Pb Cu1 54.97(7) 2_645 2_646 ?
Cul Pb Cul 104.95(8) 3 666 2 646 ?
S Pb Cul 136.2(2) 2_655 2_646 ?
PbB PbA Pb 127(4) . 1 565 ?
PbB PbA 06 74(3) . 2 655 ?
Pb PbA 06 129(2) 1 565 2 655 ?
PbB PbA 08 105(3) . 3 666 ?
Pb PbA 08 110(3) 1_565 3_666 ?
O6 PbA O8 106.0(17) 2 655 3 666 ?
PbB PbA 07 16(2) . 2 655 ?
Pb PbA 07 115(2) 1 565 2 655 ?
O6 PbA O7 90.2(16) 2 655 2 655 ?
O8 PbA O7 102.0(16) 3 666 2 655 ?
PbB PbA 010 127(3) . 4 576 ?
Pb PbA 010 86(2) 1 565 4 576 ?
O6 PbA O10 119.4(16) 2 655 4 576 ?
O8 PbA 010 24.7(13) 3 666 4 576 ?
07 PbA 010 120.0(14) 2 655 4 576 ?
PbB PbA 03 146(4) . 1 565 ?
Pb PbA O3 80(2) 1_565<sup>-1</sup>_565 ?
O6 PbA O3 72.3(9) 2 655 1 565 ?
```

O8 PbA O3 80.6(13) 3 666 1 565 ? 07 PbA 03 162.2(16) 2 655 1 565 ? O10 PbA O3 68.6(12) 4 576 1 565 ? PbB PbA Cu1 108(3) . 2 656 ? Pb PbA Cu1 114(2) 1_565 2_656 ? O6 PbA Cu1 35.9(7) 2 655 2 656 ? O8 PbA Cu1 85.5(12) 3 666 2 656 ? O7 PbA Cu1 123.7(15) 2 655 2 656 ? 010 PbA Cu1 88.8(12) 4 576 2 656 ? O3 PbA Cu1 38.5(5) 1 565 2 656 ? PbB PbA Cu2 93(2) . 2 655 ? Pb PbA Cu2 83.1(16) 1 565 2 655 ? O6 PbA Cu2 47.6(7) 2_655 2_655 ? O8 PbA Cu2 142.9(13) 3 666 2 655 ? 07 PbA Cu2 103.3(10) 2 655 2 655 ? O10 PbA Cu2 135.8(14) 4 576 2 655 ? O3 PbA Cu2 67.3(6) 1 565 2 655 ? Cul PbA Cu2 57.8(3) 2 656 2 655 ? PbB PbA Cu1 36(2) . 3 666 ? Pb PbA Cu1 103(2) 1 565 3 666 ? O6 PbA Cu1 66.7(9) 2_655 3_666 ? O8 PbA Cu1 140.2(17) 3 666 3 666 ? O7 PbA Cu1 41.9(7) 2 655 3 666 ? O10 PbA Cu1 161.9(14) 4 576 3 666 ? O3 PbA Cu1 128.0(7) 1 565 3 666 ? Cul PbA Cul 101.4(7) 2 656 3 666 ? Cu2 PbA Cu1 61.7(4) 2 655 3 666 ? PbB PbA Cu1 118(3) . 3 676 ? Pb PbA Cu1 26.7(13) 1_565 3_676 ? O6 PbA Cu1 104.1(10) 2 655 3 676 ? O8 PbA Cu1 132.9(17) 3 666 3 676 ? O7 PbA Cul 113.3(11) 2 655 3 676 ? 010 PbA Cu1 108.2(15) 4 576 3 676 ? O3 PbA Cu1 75.1(8) 1 565 3 676 ? Cul PbA Cul 98.9(7) 2 656 3 676 ? Cu2 PbA Cu1 56.8(4) 2 655 3 676 ? Cul PbA Cul 85.2(5) 3 666 3 676 ? PbB PbA Pb 89(2) . 3 666 ? Pb PbA Pb 95.1(16) 1 565 3 666 ? O6 PbA Pb 133.8(14) 2 655 3 666 ? O8 PbA Pb 36.4(10) 3_666 3_666 ? O7 PbA Pb 78.9(8) 2_655 3_666 ? O10 PbA Pb 42.2(10) 4 576 3 666 ? O3 PbA Pb 110.8(8) 1 565 3 666 ? Cul PbA Pb 121.8(7) 2_656 3_666 ? Cu2 PbA Pb 177.5(11) 2 655 3 666 ? Cul PbA Pb 120.4(7) 3 666 3 666 ? Cul PbA Pb 121.5(8) 3 676 3 666 ? PbA PbB Pb 28(3) . 1 565 ? PbA PbB 07 158(3) . 2 655 ? Pb PbB 07 134.9(14) 1 565 2 655 ? PbA PbB O6 86(3) . 2 655 ? Pb PbB 06 103.1(13) 1 565 2 655 ? O7 PbB O6 115.2(15) 2 655 2 655 ?

PbA PbB 08 61(3) . 3_666 ? Pb PbB 08 80.1(13) 1_565 3_666 ? O7 PbB O8 114.2(14) 2 655 3 666 ? O6 PbB O8 99.4(12) 2 655 3 666 ? PbA PbB 09 101(3) . 4 576 ? Pb PbB 09 117.4(15) 1 565 4 576 ? O7 PbB O9 77.0(15) 2 655 4 576 ? O6 PbB O9 103.2(13) 2 655 4 576 ? 08 PbB 09 40.2(13) 3 666 4 576 ? PbA PbB S 133(3) . 2 655 ? Pb PbB S 116.4(10) 1 565 2 655 ? O7 PbB S 27.1(8) 2_655 2_655 ? O6 PbB S 139.8(13) 2_655 2_655 ? O8 PbB S 94.1(10) 3 666 2 655 ? O9 PbB S 65.3(11) 4 576 2 655 ? PbA PbB 010 101(3) . 2 655 ? Pb PbB 010 89.6(12) 1 565 2 655 ? O7 PbB O10 58.9(12) 2 655 2 655 ? O6 PbB O10 163.4(14) 2 655 2 655 ? O8 PbB 010 72.0(13) 3 666 2 655 ? 09 PbB 010 60.9(13) 4 576 2 655 ? S PbB 010 31.9(9) 2 655 2 655 ? PbA PbB Cul 137(3) . 3 666 ? Pb PbB Cul 118.3(9) 1 565 3 666 ? 07 PbB Cu1 51.2(10) 2 655 3 666 ? O6 PbB Cu1 80.4(8) 2 655 3 666 ? O8 PbB Cu1 161.3(12) 3 666 3 666 ? O9 PbB Cu1 121.4(13) 4 576 3 666 ? S PbB Cu1 75.2(6) 2 655 3 666 ? O10 PbB Cu1 103.1(11) 2 655 3 666 ? PbA PbB Te 111(3) . . ? Pb PbB Te 125.9(10) 1 565 . ? O7 PbB Te 90.8(11) 2 655 . ? O6 PbB Te 24.4(6) 2_655 . ? O8 PbB Te 109.9(10) 3 666 . ? O9 PbB Te 96.8(11) 4 576 . ? S PbB Te 115.6(8) 2_655 . ? O10 PbB Te 144.5(12) 2 655 . ? Cul PbB Te 63.3(4) 3 666 . ? PbA PbB Cu1 62(3) . 2 656 ? Pb PbB Cu1 84.1(10) 1 565 2 656 ? O7 PbB Cu1 139.7(12) 2 655 2 656 ? O6 PbB Cu1 27.5(6) 2 655 2 656 ? O8 PbB Cu1 76.7(10) 3 666 2 656 ? 09 PbB Cu1 95.1(11) 4 576 2 656 ? S PbB Cu1 156.1(7) 2 655 2 656 ? O10 PbB Cu1 148.7(11) 2 655 2 656 ? Cul PbB Cul 106.9(4) 3 666 2 656 ? Te PbB Cu1 50.3(2) . 2 656 ? PbA PbB Cu2 76(2) . 2_655 ? Pb PbB Cu2 74.9(7) 1 565 2 655 ? O7 PbB Cu2 116.9(11) 2 655 2 655 ? O6 PbB Cu2 44.8(6) 2_655 2_655 ? O8 PbB Cu2 126.7(11) 3 666 2 655 ?

```
O9 PbB Cu2 147.7(11) 4 576 2 655 ?
S PbB Cu2 139.1(7) 2 655 2 655 ?
O10 PbB Cu2 151.4(10) 2 655 2 655 ?
Cul PbB Cu2 65.7(3) 3 666 2 655 ?
Te PbB Cu2 56.2(2) . 2_655 ?
Cul PbB Cu2 54.8(3) 2 656 2 655 ?
O6 Te O2 174.5(7) 2 655 . ?
O6 Te O1 83.9(7) 2 655 2 656 ?
02 Te 01 95.8(7) . 2 656?
O6 Te O3 95.7(7) 2 655 . ?
O2 Te O3 89.8(7) . . ?
O1 Te O3 93.1(7) 2_656 . ?
O6 Te O5 96.6(7) 2_655 4_565 ?
O2 Te O5 83.5(7) . 4 565 ?
O1 Te O5 177.2(7) 2 656 4 565 ?
O3 Te O5 89.5(7) . 4 565 ?
O6 Te O4 86.0(7) 2 655 . ?
O2 Te O4 88.5(7) . . ?
O1 Te O4 88.4(7) 2 656 . ?
O3 Te O4 177.8(7) . . ?
O5 Te O4 88.9(7) 4_565 . ?
O6 Te Cu1 41.9(5) 2 655 2 656 ?
O2 Te Cul 137.0(5) . 2 656 ?
O1 Te Cu1 42.2(5) 2 656 2 656 ?
O3 Te Cul 99.6(5) . 2 656?
O5 Te Cul 137.9(5) 4 565 2 656 ?
O4 Te Cul 82.6(4) . 2 656 ?
O6 Te Cu2 139.4(6) 2 655 2 645 ?
O2 Te Cu2 40.8(5) . 2_645 ?
O1 Te Cu2 136.5(5) 2 656 2 645 ?
O3 Te Cu2 87.1(5) . 2 645 ?
O5 Te Cu2 42.8(5) 4 565 2 645 ?
O4 Te Cu2 90.7(4) . 2 645?
Cul Te Cu2 173.13(9) 2 656 2 645 ?
O6 Te Cul 134.0(5) 2 655 2 646 ?
O2 Te Cu1 51.5(5) . 2 646 ?
O1 Te Cu1 89.8(5) 2_656 2_646 ?
O3 Te Cu1 39.0(5) . 2 646 ?
O5 Te Cul 91.8(5) 4 565 2 646 ?
O4 Te Cul 139.6(5) . 2 646 ?
Cul Te Cul 120.71(10) 2 656 2 646 ?
Cu2 Te Cu1 64.02(8) 2 645 2 646 ?
O6 Te Cu2 51.3(5) 2 655 2 655 ?
O2 Te Cu2 123.2(5) . 2 655 ?
O1 Te Cu2 90.1(5) 2_656 2_655 ?
O3 Te Cu2 146.3(5) . 2 655 ?
O5 Te Cu2 88.1(5) 4 565 2 655 ?
O4 Te Cu2 35.1(5) . 2 655 ?
Cul Te Cu2 62.05(8) 2 656 2 655 ?
Cu2 Te Cu2 112.80(10) 2 645 2 655 ?
Cul Te Cu2 174.67(9) 2 646 2 655 ?
O6 Te PbB 24.6(7) 2 655 . ?
O2 Te PbB 157.8(6) . . ?
O1 Te PbB 105.7(6) 2 656 . ?
```

```
O3 Te PbB 83.3(6) . . ?
O5 Te PbB 75.4(6) 4 565
                        . ?
O4 Te PbB 97.8(5) . . ?
Cul Te PbB 65.2(4) 2 656 . ?
Cu2 Te PbB 117.5(4) 2 645 . ?
Cul Te PbB 121.5(3) 2 646 . ?
Cu2 Te PbB 63.6(3) 2 655 . ?
O6 Te Cu2 110.3(6) 2 655 3 666 ?
O2 Te Cu2 70.2(5) . 3 666 ?
O1 Te Cu2 27.2(5) 2 656 3 666 ?
O3 Te Cu2 84.1(5) . 3 666 ?
O5 Te Cu2 152.8(5) 4 565 3 666 ?
O4 Te Cu2 96.7(4) . 3 666 ?
Cul Te Cu2 69.21(8) 2 656 3 666 ?
Cu2 Te Cu2 110.35(7) 2 645 3 666 ?
Cul Te Cu2 66.92(7) 2 646 3 666 ?
Cu2 Te Cu2 111.56(7) 2 655 3 666 ?
PbB Te Cu2 129.5(4) . 3 666 ?
O5 Cu1 O6 177.9(8) 2 656 1 556 ?
O5 Cu1 O1 99.7(7) 2 656 . ?
06 Cul 01 79.6(6) 1 556 . ?
O5 Cu1 O3 90.4(7) 2 656 2 656 ?
O6 Cul O3 90.1(7) 1 556 2 656 ?
O1 Cu1 O3 168.9(6) . 2 656 ?
O5 Cu1 O2 87.3(7) 2 656 2 656 ?
O6 Cul O2 90.9(6) 1 556 2 656 ?
O1 Cu1 O2 100.9(6) . 2 656 ?
O3 Cu1 O2 74.8(6) 2 656 2 656 ?
O5 Cu1 O7 89.0(8) 2_656 4_566 ?
O6 Cu1 O7 93.1(8) 1 556 4 566 ?
O1 Cu1 O7 103.0(8) . 4 566 ?
O3 Cu1 O7 81.6(8) 2 656 4 566 ?
O2 Cul O7 156.1(8) 2 656 4 566 ?
O5 Cul Te 139.7(5) 2 656 2 646 ?
O6 Cul Te 39.4(5) 1 556 2 646 ?
O1 Cu1 Te 40.5(4) . 2 646 ?
O3 Cul Te 128.9(5) 2_656 2_646 ?
O2 Cul Te 94.2(4) 2 656 2 646 ?
07 Cul Te 103.7(7) 4 566 2 646 ?
O5 Cu1 Te 83.7(5) 2 656 2 656 ?
O6 Cul Te 95.5(5) 1_556 2_656 ?
O1 Cu1 Te 139.2(5) . 2 656 ?
O3 Cu1 Te 37.1(5) 2 656 2 656 ?
O2 Cul Te 38.3(4) 2 656 2 656 ?
O7 Cul Te 117.8(6) 4_566 2_656 ?
Te Cul Te 120.71(10) 2 646 2 656 ?
O1 Cu2 O2 165.4(7) 4 565 2 655 ?
O1 Cu2 O4 91.3(7) 4 565 2 645 ?
02 Cu2 O4 92.6(7) 2 655 2 645 ?
O1 Cu2 O5 92.3(7) 4 565 3 666 ?
O2 Cu2 O5 79.7(7) 2 655 3 666 ?
O4 Cu2 O5 161.2(7) 2 645 3 666 ?
O1 Cu2 O4 94.1(6) 4 565 1 655 ?
O2 Cu2 O4 98.5(6) 2 655 1 655 ?
```

```
O4 Cu2 O4 104.4(4) 2 645 1 655 ?
O5 Cu2 O4 93.8(7) 3 666 1 655 ?
O1 Cu2 O6 81.7(6) 4 565 . ?
O2 Cu2 O6 86.4(6) 2 655 . ?
O4 Cu2 O6 70.2(6) 2 645 . ?
O5 Cu2 O6 92.0(6) 3 666 . ?
O4 Cu2 O6 173.0(6) 1 655 . ?
O1 Cu2 Te 131.1(5) 4 565 2 655 ?
O2 Cu2 Te 39.1(5) 2 655 2 655 ?
O4 Cu2 Te 128.6(4) 2 645 2 655 ?
O5 Cu2 Te 40.7(5) 3 666 2 655 ?
O4 Cu2 Te 100.4(4) 1_655 2 655 ?
O6 Cu2 Te 86.6(4) . 2 655 ?
O1 Cu2 Cu1 119.4(5) 4 565 1 554 ?
O2 Cu2 Cu1 48.5(5) 2 655 1 554 ?
O4 Cu2 Cu1 75.6(4) 2 645 1 554 ?
O5 Cu2 Cu1 86.6(5) 3 666 1 554 ?
O4 Cu2 Cu1 146.4(4) 1 655 1 554 ?
O6 Cu2 Cu1 37.9(4) . 1 554 ?
Te Cu2 Cu1 59.53(8) 2 655 1 554 ?
07 S 09 101(2) . 1_545 ?
07 S 010 111(2) . . ?
O9 S O10 114(2) 1 545 . ?
07 S 08 114.5(19) . . ?
09 S 08 105(2) 1 545 . ?
010 S 08 111(2) . . ?
07 S 010 112.5(16) . 2 645 ?
O9 S O10 77(2) 1 545 2 645 ?
010 S 010 132.1(12) . 2 645 ?
O8 S 010 29.9(18) . 2 645 ?
O7 S PbB 35.0(11) . 2 645 ?
09 S PbB 113.7(19) 1 545 2 645 ?
O10 S PbB 76.0(17) . 2 645 ?
O8 S PbB 133.5(16) . 2_645 ?
O10 S PbB 145.5(13) 2 645 2 645 ?
O7 S Pb 50.3(11) . 2_655 ?
09 S Pb 128.4(19) 1_545 2_655 ?
O10 S Pb 61.3(16) . 2 655 ?
O8 S Pb 125.1(16) . 2 655 ?
010 S Pb 148.5(13) 2 645 2 655 ?
PbB S Pb 18.5(4) 2_645 2_655 ?
O7 S Pb 52.8(13) . 2 645 ?
09 S Pb 52.1(18) 1 545 2 645 ?
010 S Pb 142.9(17) . 2 645 ?
08 S Pb 106.0(15) . 2_645 ?
010 S Pb 81.8(12) 2 645 2 645 ?
PbB S Pb 80.5(5) 2 645 2 645 ?
Pb S Pb 98.9(3) 2 655 2 645 ?
O7 S Cul 28.9(10) . 4 565 ?
O9 S Cul 110.2(19) 1 545 4 565 ?
010 S Cu1 125.9(17) . 4 565 ?
O8 S Cu1 85.6(15) . 4 565 ?
O10 S Cu1 87.5(12) 2_645 4_565 ?
PbB S Cu1 58.0(4) 2 645 4 565 ?
```

```
Pb S Cu1 67.0(2) 2 655 4 565 ?
Pb S Cul 58.56(19) 2 645 4 565 ?
O7 S Pb 157.4(12) . . ?
09 S Pb 92.1(19) 1 545 . ?
010 S Pb 79.5(16) . . ?
O8 S Pb 43.6(14) . . ?
010 S Pb 52.8(12) 2 645 . ?
PbB S Pb 149.9(6) 2 645 . ?
Pb S Pb 131.4(4) 2 655 . ?
Pb S Pb 129.3(4) 2 645 . ?
Cul S Pb 128.9(3) 4 565 . ?
O7 S Pb 115.0(11) . 4_565 ?
O9 S Pb 82.5(19) 1 545 4 565 ?
O10 S Pb 31.6(16) . 4 565 ?
O8 S Pb 127.1(15) . 4 565 ?
O10 S Pb 130.8(12) 2 645 4 565 ?
PbB S Pb 83.7(5) 2_645 4 565 ?
Pb S Pb 76.8(3) 2 655 4 565 ?
Pb S Pb 118.1(3) 2 645 4 565 ?
Cul S Pb 141.7(4) 4 565 4 565 ?
Pb S Pb 84.7(2) . 4 565 ?
O7 S Pb 85.9(11) . 3_656 ?
O9 S Pb 111.4(19) 1 545 3 656 ?
O10 S Pb 126.9(17) . 3 656 ?
08 S Pb 28.7(14) . 3 656 ?
010 S Pb 40.4(12) 2 645 3 656 ?
PbB S Pb 109.5(5) 2 645 3 656 ?
Pb S Pb 108.1(3) 2_655 3_656 ?
Pb S Pb 87.9(3) 2_645 3_656 ?
Cul S Pb 56.97(18) 4 565 3 656 ?
Pb S Pb 72.2(2) . 3 656 ?
Pb S Pb 153.1(4) 4 565 3 656 ?
Te O1 Cu2 126.1(8) 2 646 4 566 ?
Te O1 Cu1 97.3(6) 2_646 . ?
Cu2 O1 Cu1 135.8(8) 4 566 . ?
Te O1 Pb 96.8(6) 2_646 3_656 ?
Cu2 O1 Pb 77.5(5) 4_566 3_656 ?
Cul Ol Pb 91.0(6) . 3 656 ?
Te O1 Cu1 58.3(4) 2 646 1 545 ?
Cu2 O1 Cu1 74.0(5) 4 566 1 545 ?
Cul Ol Cul 135.3(7) . 1_545 ?
Pb O1 Cu1 59.7(3) 3 656 1 545 ?
Te O1 Cu2 59.7(4) 2 646 1 556 ?
Cu2 O1 Cu2 148.8(7) 4 566 1 556 ?
Cu1 O1 Cu2 57.7(4) . 1_556 ?
Pb O1 Cu2 133.7(5) 3 656 1 556 ?
Cul Ol Cu2 117.8(4) 1 545 1 556 ?
Te O1 Cu2 126.2(7) 2 646 3 766 ?
Cu2 O1 Cu2 69.5(5) 4 566 3 766 ?
Cu1 O1 Cu2 92.8(6) . 3 766 ?
Pb O1 Cu2 135.9(4) 3 656 3 766 ?
Cul Ol Cu2 131.9(4) 1 545 3 766 ?
Cu2 O1 Cu2 83.2(3) 1 556 3 766 ?
Te O2 Cu2 100.1(8) . 2 645 ?
```

```
Te O2 Cu1 90.2(6) . 2 646 ?
Cu2 O2 Cu1 93.6(7) 2 645 2 646 ?
Te O2 Cu2 77.0(5) . 3 666 ?
Cu2 O2 Cu2 169.3(8) 2_645 3_666 ?
Cu1 O2 Cu2 76.2(4) 2_646 3_666 ?
Te O2 Cu2 86.9(6) . 1 455 ?
Cu2 O2 Cu2 77.5(5) 2 645 1 455 ?
Cul O2 Cu2 170.0(7) 2 646 1 455 ?
Cu2 O2 Cu2 112.4(5) 3 666 1 455 ?
Te O2 Cu2 137.8(7) . 4_466 ?
Cu2 O2 Cu2 122.0(7) 2 645 4 466 ?
Cu1 O2 Cu2 88.6(5) 2_646 4_466 ?
Cu2 O2 Cu2 61.8(3) 3 666 4 466 ?
Cu2 O2 Cu2 99.9(4) 1 455 4 466 ?
Te O2 Cu1 140.9(7) . 4 465 ?
Cu2 O2 Cu1 87.9(5) 2 645 4 465 ?
Cul O2 Cul 127.7(6) 2 646 4 465 ?
Cu2 O2 Cu1 100.8(4) 3 666 4 465 ?
Cu2 O2 Cu1 57.3(2) 1 455 4 465 ?
Cu2 O2 Cu1 48.9(2) 4 466 4 465 ?
Te O2 Pb 61.6(4) . . ?
Cu2 O2 Pb 55.1(4) 2 645 . ?
Cul O2 Pb 58.2(3) 2 646 . ?
Cu2 O2 Pb 115.4(4) 3 666 . ?
Cu2 O2 Pb 112.3(4) 1 455 . ?
Cu2 O2 Pb 144.4(5) 4 466 . ?
Cul O2 Pb 142.6(4) 4 465 . ?
Te O3 Cu1 103.9(7) . 2_646 ?
Te O3 Pb 104.5(7) . . ?
Cul O3 Pb 97.4(6) 2 646 . ?
Te O3 PbA 114.4(9) . 1 545 ?
Cul O3 PbA 84.0(9) 2 646 1 545 ?
Pb O3 PbA 15.0(8) . 1 545 ?
Te O3 Pb 114.9(7) . 4 566 ?
Cul O3 Pb 90.7(6) 2 646 4 566 ?
Pb O3 Pb 136.5(6) . 4 566 ?
PbA O3 Pb 130.2(8) 1_545 4_566 ?
Te O3 Cu2 59.4(4) . 2 645 ?
Cul O3 Cu2 66.0(4) 2 646 2 645 ?
Pb O3 Cu2 66.6(4) . 2 645 ?
PbA O3 Cu2 66.6(5) 1 545 2 645 ?
Pb O3 Cu2 151.2(6) 4 566 2 645 ?
Te O3 Cu1 50.2(4) . 2 656 ?
Cul O3 Cul 127.7(6) 2 646 2 656 ?
Pb O3 Cu1 130.1(5) . 2 656 ?
PbA O3 Cu1 145.0(10) 1 545 2 656 ?
Pb 03 Cu1 70.6(3) 4 566 2 656 ?
Cu2 O3 Cu1 109.6(4) 2 645 2 656 ?
Te O3 Cu2 65.5(4) . 3 666 ?
Cu1 O3 Cu2 70.1(4) 2 646 3 666 ?
Pb O3 Cu2 160.2(6) . 3 666 ?
PbA O3 Cu2 152.6(9) 1 545 3 666 ?
Pb O3 Cu2 61.1(3) 4_566 3_666 ?
Cu2 O3 Cu2 93.8(4) 2 645 3 666 ?
```

```
Cu1 O3 Cu2 57.9(2) 2 656 3 666 ?
Cu2 O4 Te 109.1(7) 2_655 . ?
Cu2 O4 Cu2 113.5(7) 2 655 1 455 ?
Te O4 Cu2 126.1(8) . 1 455 ?
Cu2 O4 Cu1 68.9(4) 2 655 2 656 ?
Te O4 Cu1 60.3(4) . 2 656 ?
Cu2 O4 Cu1 168.5(6) 1 455 2 656 ?
Cu2 O4 Cu1 74.4(5) 2 655 3 666 ?
Te O4 Cul 68.8(4) . 3 666 ?
Cu2 O4 Cu1 92.5(5) 1 455 3 666 ?
Cul O4 Cul 98.9(4) 2 656 3 666 ?
Cu2 O4 Cu2 134.1(6) 2_655 2 645 ?
Te O4 Cu2 55.2(4) . 2 645 ?
Cu2 O4 Cu2 71.5(4) 1 455 2 645 ?
Cul O4 Cu2 115.5(4) 2 656 2 645 ?
Cu1 O4 Cu2 59.7(3) 3 666 2 645 ?
Cu2 O4 Cu1 89.2(5) 2 655 4 475 ?
Te O4 Cu1 147.5(6) . 4 475 ?
Cu2 O4 Cu1 64.1(4) 1 455 4 475 ?
Cul O4 Cul 105.3(4) 2 656 4 475 ?
Cul O4 Cul 143.5(4) 3 666 4 475 ?
Cu2 O4 Cu1 128.0(4) 2 645 4 475 ?
Cul O5 Te 126.4(10) 2 646 4 566 ?
Cul 05 Cu2 131.9(10) 2 646 3 666 ?
Te O5 Cu2 96.5(7) 4 566 3 666 ?
Cul O5 Pb 96.5(6) 2 646 4 566 ?
Te O5 Pb 103.5(8) 4 566 4 566 ?
Cu2 O5 Pb 92.7(7) 3 666 4 566 ?
Cul 05 Cul 160.1(8) 2 646 3 667 ?
Te O5 Cu1 56.3(4) 4 566 3 667 ?
Cu2 O5 Cu1 60.1(4) 3 666 3 667 ?
Pb O5 Cu1 65.1(4) 4 566 3 667 ?
Cu1 O5 Cu2 71.3(5) 2 646 3 656 ?
Te O5 Cu2 60.7(5) 4_566 3_656 ?
Cu2 O5 Cu2 125.6(7) 3 666 3 656 ?
Pb 05 Cu2 138.3(6) 4_566 3_656 ?
Cu1 O5 Cu2 116.8(4) 3_667 3_656 ?
Cu1 O5 Cu2 95.5(7) 2 646 4 466 ?
Te O5 Cu2 78.8(5) 4 566 4 466 ?
Cu2 O5 Cu2 70.2(5) 3 666 4 466 ?
Pb O5 Cu2 163.0(6) 4_566 4_466 ?
Cul O5 Cu2 104.2(4) 3 667 4 466 ?
Cu2 O5 Cu2 57.7(3) 3 656 4 466 ?
Te O6 PbB 131.0(12) 2 645 2 645 ?
Te O6 PbA 150.3(14) 2 645 2 645 ?
PbB 06 PbA 19.3(7) 2 645 2 645 ?
Te O6 Cul 98.6(8) 2 645 1 554 ?
PbB 06 Cu1 126.3(11) 2 645 1 554 ?
PbA 06 Cul 108.6(11) 2 645 1 554 ?
Te O6 Pb 156.3(9) 2 645 2 655 ?
PbB 06 Pb 28.5(8) 2 645 2 655 ?
PbA 06 Pb 12.7(9) 2 645 2 655 ?
Cul O6 Pb 105.1(7) 1_554 2 655 ?
Te O6 Cu2 93.9(6) 2 645 . ?
```

PbB 06 Cu2 104.1(9) 2 645 . ? PbA 06 Cu2 98.1(11) 2 645 . ? Cul O6 Cu2 89.0(6) 1 554 . ? Pb 06 Cu2 85.9(5) 2 655 . ? Te 06 Cu1 76.1(5) 2 645 4 565 ? PbB 06 Cu1 66.2(8) 2 645 4 565 ? PbA 06 Cul 81.3(9) 2 645 4 565 ? Cul O6 Cul 161.6(8) 1 554 4 565 ? Pb 06 Cu1 81.0(5) 2 655 4 565 ? Cu2 O6 Cu1 73.9(4) . 4 565 ? S O7 PbB 117.9(17) . 2 645 ? S O7 PbA 112.7(15) . 2 645 ? PbB 07 PbA 5.8(10) 2_645 2_645 ? S O7 Cu1 135.3(14) . 4 565 ? PbB 07 Cu1 95.0(12) 2 645 4 565 ? PbA 07 Cul 98.0(11) 2 645 4 565 ? S 07 Pb 106.7(14) . 2 655 ? PbB 07 Pb 18.2(7) 2 645 2 655 ? PbA 07 Pb 13.4(8) 2 645 2 655 ? Cu1 O7 Pb 95.8(9) 4 565 2 655 ? S O7 Pb 104.4(16) . 2 645 ? PbB 07 Pb 120.1(12) 2 645 2 645 ? PbA 07 Pb 125.3(12) 2 645 2 645 ? Cul O7 Pb 80.6(7) 4 565 2 645 ? Pb 07 Pb 138.2(8) 2 655 2 645 ? S O7 Pb 73.8(10) . 3 656 ? PbB 07 Pb 135.5(14) 2 645 3 656 ? PbA 07 Pb 133.0(13) 2 645 3 656 ? Cul 07 Pb 61.5(5) 4_565 3_656 ? Pb 07 Pb 120.6(9) 2 655 3 656 ? Pb 07 Pb 94.4(6) 2 645 3 656 ? 010 08 S 106(4) 2 645 . ? 010 08 09 156(4) 2 645 2 645 ? S O8 O9 92(2) . 2 645 ? 010 08 PbA 93(3) 2 645 3 666 ? S O8 PbA 127(2) . 3 666 ? O9 O8 PbA 89(2) 2_645 3_666 ? O10 O8 PbB 106(3) 2 645 3 666 ? S O8 PbB 126(2) . 3 666 ? O9 O8 PbB 75(2) 2 645 3 666 ? PbA 08 PbB 14.4(8) 3_666 3_666 ? 010 08 Pb 79(3) 2 645 3 656 ? S O8 Pb 135(2) . 3 656 ? O9 O8 Pb 100(2) 2 645 3 656 ? PbA 08 Pb 14.7(10) 3 666 3 656 ? PbB 08 Pb 27.2(6) 3 666 3 656 ? 010 08 Pb 87(3) 2 645 . ? S O8 Pb 115.0(19) . . ? 09 08 Pb 70.5(19) 2 645 . ? PbA 08 Pb 115.2(15) 3_666 . ? PbB 08 Pb 109.1(13) 3 666 . ? Pb 08 Pb 109.7(13) 3 656 . ? 010 08 Cu1 97(3) 2 645 4 565 ? S O8 Cu1 70.9(14) . 4 565 ?

09 08 Cul 104(2) 2 645 4 565 ? PbA 08 Cu1 57.5(10) 3 666 4 565 ? PbB 08 Cu1 62.8(9) 3 666 4 565 ? Pb O8 Cu1 64.3(8) 3 656 4 565 ? Pb 08 Cul 171.6(13) . 4 565 ? O10 O8 Pb 63(3) 2_645 2 645 ? S O8 Pb 53.5(13) . 2 645 ? O9 O8 Pb 141(2) 2 645 2 645 ? PbA 08 Pb 97.3(13) 3_666 2_645 ? PbB 08 Pb 108.5(12) 3_666 2_645 ? Pb 08 Pb 94.5(10) 3 656 2 645 ? Pb 08 Pb 136.7(12) . 2_645 ? Cul O8 Pb 51.3(5) 4 565 2 645 ? S 09 08 139(3) 1 565 2 655 ? S O9 PbB 147(3) 1 565 4 575 ? O8 O9 PbB 65.0(19) 2 655 4 575 ? S 09 Pb 104(2) 1 565 2 655 ? 08 09 Pb 72.6(19) 2 655 2 655 ? PbB 09 Pb 105.5(16) 4 575 2 655 ? S O9 Pb 165(3) 1 565 4 565 ? 08 09 Pb 48.6(17) 2 655 4 565 ? PbB 09 Pb 18.3(6) 4 575 4 565 ? Pb 09 Pb 91.0(13) 2 655 4 565 ? S 09 Pb 75.7(19) 1 565 4 575 ? O8 O9 Pb 136(2) 2 655 4 575 ? PbB 09 Pb 73.5(11) 4 575 4 575 ? Pb O9 Pb 136.3(15) 2 655 4 575 ? Pb 09 Pb 91.7(10) 4 565 4 575 ? S 09 Pb 67.1(17) 1_565 1_565 ? O8 O9 Pb 90(2) 2 655 1 565 ? PbB 09 Pb 96.7(13) 4 575 1 565 ? Pb O9 Pb 141.9(15) 2 655 1 565 ? Pb 09 Pb 102.7(11) 4 565 1 565 ? Pb 09 Pb 79.4(9) 4 575 1 565 ? 08 010 S 151(4) 2 655 . ? 08 010 S 44(3) 2_655 2_655 ? S 010 S 115(2) . 2 655 ? 08 010 PbA 62(3) 2 655 4 575 ? S O10 PbA 146(3) . 4 575 ? S O10 PbA 93.8(18) 2 655 4 575 ? 08 010 Pb 77(3) 2_655 4_565 ? S 010 Pb 131(2) . 4 565 ? S 010 Pb 108.6(17) 2 655 4 565 ? PbA 010 Pb 15.5(9) 4 575 4 565 ? O8 O10 PbB 96(3) 2 655 2 645 ? S 010 PbB 72.1(17) . 2 645 ? S O10 PbB 113.0(18) 2 655 2 645 ? PbA 010 PbB 113.2(16) 4 575 2 645 ? Pb 010 PbB 109.7(15) 4 565 2 645 ? 08 010 Pb 72(3) 2 655 2 655 ? S O10 Pb 92.7(18) . 2 655 ? S O10 Pb 93.8(15) 2 655 2 655 ? PbA 010 Pb 102.5(15) 4_575 2_655 ? Pb 010 Pb 105.3(14) 4 565 2 655 ?

```
PbB 010 Pb 23.8(6) 2 645 2 655 ?
O8 O10 Pb 103(3) 2_655 . ?
S 010 Pb 77.5(17) . ?
S 010 Pb 65.3(11) 2 655 . ?
PbA 010 Pb 101.7(13) 4 575 . ?
Pb 010 Pb 103.3(12) 4 565 . ?
PbB 010 Pb 145.0(15) 2 645 . ?
Pb 010 Pb 148.9(14) 2 655 . ?
08 010 Cu1 67(3) 2_655 3_666 ?
S 010 Cu1 127(2) . 3 666 ?
S O10 Cu1 61.8(11) 2 655 3 666 ?
PbA 010 Cu1 51.9(9) 4_575 3_666 ?
Pb 010 Cu1 59.4(8) 4_565 3_666 ?
PbB 010 Cu1 161.1(16) 2_645 3 666 ?
Pb O10 Cu1 139.0(14) 2 655 3 666 ?
Pb 010 Cu1 52.1(5) . 3 666 ?
```

```
_diffrn_measured_fraction_theta_max 0.999
_diffrn_reflns_theta_full 27.48
_diffrn_measured_fraction_theta_full 0.999
_refine_diff_density_max 4.657
_refine_diff_density_min -2.377
_refine_diff_density_rms 0.581
```