Lucabindiite, (K,NH₄)As₄O₆(Cl,Br), a new fumarole mineral from the "La Fossa" crater at Vulcano, Aeolian Islands, Italy

ANNA GARAVELLI,* DONATELLA MITOLO, DANIELA PINTO, AND FILIPPO VURRO

Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, via E. Orabona 4, I-70125 Bari, Italy

ABSTRACT

Lucabindiite, ideally (K,NH₄)As₄O₆(Cl,Br), is a new mineral found as a medium-temperature fumarole encrustation (T = 170 °C) at "La Fossa" crater of Vulcano, Aeolian Islands, Italy. The mineral deposited as aggregates of micrometer-sized hexagonal and platy crystals on the surface of the pyroclastic breccia in association with arsenolite, sal ammoniac, sulfur, and amorphous arsenic-rich sulfurite. The new mineral is colorless to white, transparent, non-fluorescent, has a vitreous luster and a white streak. The calculated density is 3.68 g/cm³. Lucabindiite is hexagonal, space group P6/mmm, with a = 5.2386(7)Å, c = 9.014(2) Å, V = 214.23(7) Å³, and Z = 1. The eight strongest reflections in the X-ray powderdiffraction data [d in Å (I) (hkl)] are: 3.20(100)(102), 2.62(67)(110), 4.51(52)(002), 4.54(30)(100),1.97 (28) (113), 1.49 (21) (115), 1.60 (21) (212), 2.26 (19) (112). Lucabindiite's average chemical composition is (wt%): K₂O 5.14, As₂O₃ 84.71, Cl 3.63, Br 6.92, F 0.77, (NH₄)₂O 2.73, O=F,Cl,Br-1.84, total 102.06. The empirical chemical formula, calculated on the basis of 7 anions pfu, is $[K_{0.51}(NH_4)_{0.49}]_{\Sigma_{1.00}}$ As_{4.00}O_{5.93}(Cl_{0.48}Br_{0.40}F_{0.19})_{£1.07}. According to chemical analyses and X-ray data, lucabindiite is the natural analog of synthetic phases with general formula MAs_4O_6X where M = K, NH_4 and X = Cl, Br, I. The crystal structure is characterized by neutral As_2O_3 sheets arranged parallel to (001). The As atoms of two neighboring sheets point at each other and the sheets are separated by interlayer $M (=K, NH_4)$ and $X (=Cl, NH_4)$ Br, F) atoms. The name is in honor of Luca Bindi (b. 1971), Professor of Mineralogy and former Head of the Division of Mineralogy of the Natural History Museum of the University of Florence. Both the mineral and the mineral name have been approved by the IMA-CNMNC Commission (IMA 2011-010).

Keywords: Lucabindiite, As-oxychlorides, new mineral, sublimates, fumaroles, crystal structure, Vulcano, Aeolian Islands, Italy

INTRODUCTION

The history of the discovery of lucabindiite began at the beginning of the nineties, during the years of the Ph.D. studies of one of us (Garavelli 1994). At that time Vulcano was in a thermal-increase period reflecting the increase in activity at the "La Fossa" crater (Garavelli et al. 1997 and references therein). Temperature values rose quickly and the maximum temperature of the fumaroles reached 700 °C in October 1992. To contribute to the understanding of the genesis and evolution both of fluids and depositional environments of sublimates at Vulcano, with the aim also to give a contribution to volcanic surveillance, the fumarolic products and encrustations at La Fossa crater have been studied systematically from a mineralogical and geochemical point of view (Garavelli 1994; Garavelli and Vurro 1994; Vurro et al. 1999; Cheynet et al. 2000; Borodaev et al. 1998, 2000, 2001, 2003; Garavelli et al. 2005; Pinto et al. 2006a, 2006b, 2006c, 2008, 2011; Mitolo et al. 2009, 2011). Sublimates and encrustations were collected directly from the ground, but also by means of quartz tubes inserted as deep as possible into the fumarolic vents (Cheynet et al. 2000; Garavelli et al. 1997). Volcanic fluids vented freely through the tubes and gradually deposited sublimates on the tube inner walls. In this way we could

et al. 1998, 2000, al. 2006a, 2006b, 1). Sublimates and he ground, but also as possible into the ground, but also as possible into the structures, incommensurate structures, superstructures, twinned structures), integrating together mineralogy and the most advanced

here it is; lucabindiite!

fields of crystallography. In the most recent years, he covered the field of quasicrystals. In this context of investigations, his recent discovery of the first natural quasicrystal, icosahedrite (Bindi et al. 2009, 2011, 2012; Bindi and Steinhardt 2012), is remarkable.

collect a large variety of volcanic sublimates, some of which are known as minerals, others not; the latter have been considered

new potential minerals. Of particular interest was the finding, in

the sampling tubes, of an unidentified compound containing As,

Cl, and S in typical rose-like aggregates of hexagonal crystals.

We suspected that the lack of this phase among sublimates col-

lected from the ground was due to its metastability. In any case,

we never stopped looking for this phase among sublimates from

the ground, with no success until the discovery of a similar phase

containing As and Cl, with no sulfur but with K, NH₄, and O:

mission on New Minerals, Nomenclature and Classification,

CNMNC (2011-010). It was named "lucabindiite" in honor of

The mineral and its name were approved by the IMA Com-

^{*} E-mail: a.garavelli@geomin.uniba.it

The holotype of lucabindiite is deposited in the mineral collection of the Museum "C.L. Garavelli". Dipartimento di Scienze della Terra e Geoambientali, Università di Bari, Italy, under the catalog number 11/nm-V28.

OCCURRENCE AND PHYSICAL PROPERTIES

Lucabindiite was found as a fumarole encrustation collected in 1998, during a sampling trip at the "La Fossa" crater (Vulcano island, Aeolian archipelago, Italy), from the fumarole F1 (T =170 °C), sited on the crater rim of the volcano (Fig. 1). The micrometer-sized, hexagonal, and platy crystals, were directly deposited on the surface of the pyroclastic breccia of the "La Fossa" cone, and were covered by a vitreous reddish crust containing mainly sulfur and arsenic. Associated minerals are sal ammoniac, sulfur, and an amorphous arsenic-rich sulfurite (Fig. 2). Arsenolite (Fig. 3), was found in the same sample in which lucabindiite occurs, but no clear paragenetic relation between the two arsenic minerals could be observed. Geological and metallogenic data for the "La Fossa" crater area are given in previous papers (Garavelli et al. 1997; Campostrini et al. 2011 and references therein). Individual single crystals of lucabindiite are very rare. Generally, the mineral occurs as aggregates of minute, hexagonal, and platy crystals (Figs. 4 and 5) up to $70 \times 70 \times 3 \,\mu\text{m}$ in size. The very small dimensions, as well as the softness and friability of the crystals, made it difficult to handle the crystals of the new phase and to measure some of its physical properties.

Lucabindiite is colorless to white in color, with a white streak and a vitreous luster. Minute crystals are transparent to translucent. Unfortunately, the direct measure of refractive index could not be done due to the minute size of the crystals available. The mean refractive index was calculated using the method proposed by Korotkov and Atuchin (2008). Taking into account the empirical chemical formula, the mean refractive index of lucabindiite should be 1.88. This is in good agreement with the value of 1.92 obtained using the method proposed by Mandarino (1981).

Density was not measured because of the scarcity of available material; the calculated density is 3.68 g/cm³.

Lucabindiite is brittle. No cleavage, parting or fracture could be observed. Mohs hardness could not be directly measured because of the small crystal size.

CHEMICAL AND SPECTROSCOPIC STUDIES

The presence of ammonium in lucabindiite was first suspected, and later proved by combining SEM-EDS chemical analysis, crystal structure solution and FTIR spectroscopy. At a first step, the chemical analyses showed the presence of K, As, Cl, Br, and F as the only significant elements. The crystal structure study then indicated a formula close to stoichiometric KAs₄O₆Cl, but with a deficit on the occupancy of the K site (and thus a deficit of positive charges), suggesting the additional presence of another monovalent cation. Ammonium was considered as the most probable candidate. At Vulcano island the abundance of ammonium minerals has been reported since the end of the last eruption in 1888-1890 (Panichi 1924 and references therein), and in more recent years a notable quantity of ammonium minerals have been investigated and/or identified (Garavelli and Vurro 1994; Coradossi et al. 1996; Demartin et al. FIGURE 1. Location of fumarole F1 at Vulcano: the sampling site

of lucabindiite.

FIGURE 2. SEM-BSD image of lucabindiite aggregates with well formed sulfur crystals on an amorphous arsenic-rich sulfurite.

FIGURE 3. SEM-BSD image of arsenolite crystals, As₂O₃, associated with rare plates of lucabindiite on a base of amorphous arsenic-rich sulfurite.

2009a, 2009b; Campostrini et al. 2010; Demartin et al. 2010a, 2010b, 2012; Mitolo et al. 2013). A subsequent FTIR study on lucabindiite confirmed qualitatively the presence of NH⁴₄ ions.

FIGURE 4. Microscope-optical image of transparent-white aggregates of lucabindiite crystals associated with a reddish arsenic-rich sulfurite. (Color online.)

FIGURE 5. SEM-BSD image of an aggregate of lucabindiite crystals.

SEM-EDS chemical analyses

Quantitative chemical analyses were obtained by SEM-EDS methods. The instrument used for this research was a S360 Cambridge scanning electron microscope coupled with an Oxford-Link Ge ISIS energy-dispersive spectrometer equipped with a Super Atmosphere Thin Window, since this allows better detection of light elements. An ED spectrometer was chosen for quantitative analyses of the small sized crystals instead of a WD detector. The investigated sample consisted of a lucabindiite crystal aggregate, 100 µm in size (Fig. 5), sputtered with a 30 nm thick carbon film. Operating conditions were: 15 kV accelerating potential, 500 pA probe current, 2500 cps as average count rate on the whole spectrum, typical counting time 100 s. X-ray intensities were converted to wt% by ZAF4/FLS quantitative analysis software support of Oxford-Link Analytical (U.K.). This allows to match the peaks (heights and areas) of the standards with the ones of the analyzed mineral, taking into account the relative contribution of the matrix and also partial or complete overlaps among peaks of different elements. The ED detector gives accurate analyses of small volumes of investigated sample also with a probe current lower than 1 nA. Moreover the ED

detector gives good results also when collecting X-rays emitted from a non perfectly flat surface of the specimen: this is due to its capability to give quantitative analytical data also with a "non-critical" working distance (Ruste 1979; Acquafredda and Paglionico 2004). The standards employed were: orthoclase (K), halite (Cl), synthetic InAs (As), synthetic KBr (Br), and synthetic LiF (F). The analytical results (mean of 12 analyses) are represented in Table 1. The empirical chemical formula, calculated on the basis of 7 anions per formula unit, is $[(K_{0.51}(NH_4)_{0.49}]_{\Sigma 1.00}$ $As_{4,00}O_{5,93}(Cl_{0,48}Br_{0,40}F_{0,19})_{\Sigma 1,07}$. The ammonium content was deduced from the K content, taking into account the (K,NH₄) $As_4O_6(Cl,Br)$ stoichiometry (K+NH₄ = 1 apfu). The presence of ammonium was confirmed by FTIR spectroscopy and from the structure refinement. The simplified formula of lucabindiite is (K,NH₄)As₄O₆(Cl,Br), which requires: K₂O 4.89, (NH₄)₂O 2.70 As₂O₃ 82.10, Cl 3.68, Br 8.29 O=Cl,Br 1.66, total 100.00 wt%.

FTIR spectroscopy

The infrared spectrum of lucabindiite was collected in the range of 4000–400 cm⁻¹ using a Nicolet Avatar FTIR spectrometer with a nominal resolution of 4 cm⁻¹, equipped with a Continuum microscope, a MCT nitrogen-cooled detector, and a KBr beamsplitter. The measurement was performed on a single crystal mounted on glass capillary. The observed IR-patterns resulted from the average of 400 scans. The single-crystal FTIR spectra provided evidence for the presence of ammonium in the lucabindiite structure (Farmer 1974). The NH⁴₄ stretching regions (3350–2750 and 1550–1250 cm⁻¹) were modeled using the program PeakFit (by Jandel Scientific), assuming Gaussian functions to describe the peak shape as $y = A \exp[-0.5(x - P/W)^2]$ where *A* is the amplitude, *P* is the peak centroid, and *W* is the full-width at half maximum (FWHM).

Figure 6 illustrates the FTIR spectra of the lucabindiite crystal in the range of 4000–800 cm⁻¹. Band position and FWHM were derived from the interactive optimization and least-squares refinement of the digitized IR absorption spectra.

Band assignments for vibrational features are given in Table 2. In the 3350–1250 cm⁻¹ region, a group of well-defined bands

 TABLE 1. SEM-EDS chemical data for lucabindiite (average of 12 point analyses)

Constituent	wt%	Range	St.dev
K ₂ O	5.14	3.67-6.70	0.70
As ₂ O ₃	84.71	80.52-88.84	2.90
CI	3.63	1.90-5.81	1.41
Br	6.92	3.70-10.31	2.24
F	0.77	0.27-1.21	0.27
(NH ₄) ₂ O*	2.73	1.72-3.13	0.35
	103.90		
O=F,Cl,Br	-1.84		
Total	102.06		

* The ammonium content was deduced from the K content, taking into account the $(K,NH_4)As_4O_6(Cl,Br)$ stoichiometry $(K+NH_4 = 1 \text{ apfu})$.

TABLE 2.Band position and assignment for the bands in the FTIR spectrum of the lucabindiite single crystal

Position (cm ⁻¹)	Absorbance (a.u.)	Assignment NH ₄
3257	0.608	V ₃
3159	0.434	2v ₂
3045	0.389	$V_2 + V_4$
2926	0.303	V ₁
2850	0.280	2v ₄
1417	0.716	V ₄

FIGURE 6. FTIR spectrum of lucabindiite in the range 4000–800 cm⁻¹.

at 3257, 3159, 3045, 2926, 2850, and 1417 cm⁻¹ were assigned to $v \text{ NH}_4^+$ vibrations (Fig. 7, Table 2, Farmer 1974). The additional band at 3375 cm⁻¹ could be related to a minor OH⁻ incorporation.

X-RAY DIFFRACTION STUDIES

X-ray powder diffraction

Gandolfi powder-pattern for lucabindiite (Table 3) was obtained using a CCD-equipped single-crystal diffractometer (CuK α radiation). Calculated powder pattern and indexing of the reflections was done on the basis of a = 5.2386(7) Å, c = 9.014(2) Å, and with the atomic coordinates and occupancies reported in Table 4. Intensities were calculated using XPOW software version 2.0 (Downs et al. 1993).

The refined unit-cell parameters, based on 15 reflections between 4.54 and 1.310 Å, are: a = 5.2372(2) Å, c = 9.0085(7) Å, V = 213.98(2) Å³.

Single-crystal X-ray diffraction

Single-crystal X-ray diffraction data were collected from a selected crystal fragment (110 × 150 × 50 µm) using a Bruker AXS X8 APEX2 CCD automated diffractometer equipped with a κ -geometry goniometer and graphite monocromated MoK α radiation (50 kV and 30 mA operating conditions). The *Miracol* fiber optics capillary *collimator* (0.3 mm size) was used to enhance the intensity of the MoK α radiation and to reduce X-ray beam divergence. Five sets of 19 frames were used for initial cell determination, whereas complete data collection was accomplished by several φ and ω scans with 0.5° frame width, 120 s exposure time per frame and a crystal-to-detector distance of 40 mm. The collection strategy was optimized by the Apex suite program (Bruker 2003a). Details about data collection and refinement are summarized in Table 5.

Data reduction, including intensity integration, correction for Lorentz, polarization, background effects, and scale variation, was done using the package SAINT-IRIX (Bruker 2003b). A semi-empirical absorption correction (Blessing 1995) was applied using the SADABS program (Sheldrick 2008). The minimum and maximum X-ray transmission-factors were 0.4136 and 0.7454, respectively.

The structure refinement was performed in the space group P6/mmm using the SHELX program (Sheldrick 2008), starting from the atomic coordinates of synthetic KAs₄O₆Cl (Pertlik 1988). Indeed the synthetic compounds MAs_4O_6X (M = K, NH₄; X = Cl, Br, I) described by Pertlik (1988) were ascribed to the acentric space group P622, although there was no clear reason

given as to why the crystal-structures of these compounds should be non-centrosymmetric.

Taking into account the results of chemical data, the two substitutions $K^+ \leftrightarrow NH_4^+$ and $Cl^- \leftrightarrow (Br^-, F^-)$ were considered during the structure refinement. The presence of NH_4^+ substituting for K^+ was confirmed by the refinement although it was not possible to locate the H atoms of the NH_4^+ group. Refinement of the occupancy of the *M* site gave 0.52(4) K and 0.48(4) NH₄, in good agreement with the chemical data. The occupancies for Cl, Br, and F were assigned in the anion site *X* on the basis of the

FIGURE 7. Detailed FTIR spectra of lucabindiite with absorption bands due to NH_4^* .

TABLE 3. X-ray powder diffraction pattern for lucabindiite

	.,			
hkl	d _{calc} (Å)	I _{calc}	d _{obs} (Å)	I _{meas}
001	9.0140	16.30	-	-
100	4.5368	30.49	4.54(1)	35
002	4.5070	51.64	4.50(1)	50
102	3.1974	100.00	3.200(3)	100
003	3.0047	4.33	-	-
110	2.6193	66.57	2.613(4)	60
111	2.5153	14.14	2.516(4)	10
103	2.5051	11.28	2.501(5)	10
112	2.2646	18.89	2.262(4)	20
004	2.2535	4.35	-	-
202	2.0262	8.78	2.021(3)	5
113	1.9744	28.01	1.973(2)	25
203	1.8104	15.97	1.809(3)	15
005	1.8028	3.45	-	-
210	1.7147	3.81	-	-
114	1.7083	9.42	1.707(3)	10
105	1.6754	3.13	-	-
212	1.6027	20.28	1.602(2)	20
300	1.5123	11.04	1.513(2)	10
213	1.4893	4.67	-	-
115	1.4850	20.99	1.486(1)	20
302	1.4337	4.65	-	-
205	1.4114	5.78	-	-
303	1.3508	6.93	-	-
220	1.3096	10.34	1.310(1)	10
222	1.2576	5.47	-	-
312	1.2119	6.81	-	-
305	1.1586	8.37	-	-
117	1.1556	4.69	-	-
225	1.0596	3.91	-	-
322	1.0141	3.89	-	-
410	0.9900	5.57	-	-
307	0.9804	3.05	-	-
218	0.9417	3.01	-	-
413	0.9403	4.77	-	-
415	0.8678	10.69	-	-
1.1.10	0.8523	5.64	-	-
318	0.8394	3.39	-	-

results of the chemical analysis as the simultaneous refinement of these three atoms in the same position is not expected to give any reliable result.

The refinement converged to the agreement *R* value of 0.0384 for 136 reflections with $F_0 > 4\sigma(F_0)$ [*R* = 0.0617 for all the 174 unique reflections]. Scattering factors for neutral atoms were taken from the *International Tables for X-ray Crystallography* (Ibers and Hamilton 1974). In the final refinement anisotropic displacement factors were used for all the atoms.

Fractional atomic coordinates, occupancies, and anisotropic displacement parameters are presented in Table 4, whereas selected interatomic distances are in Table 6.

The CIF file with structure data of lucabindiite can be download from the *Inorganic Crystal Structure Database* at FIZ Karlsruhde, Germany (CSD number 424826). (CIF is also available on deposit¹.)

DESCRIPTION OF THE STRUCTURE AND RELATION WITH SYNTHETIC SPECIES

The crystal structure of lucabindiite is topologically identical to that of the synthetic compounds MAs_4O_6X (M = K, NH₄; X

TABLE 4. Fractional atomic coordinates, anisotropic displacement parameters, and occupancies for lucabindiite

	parameters, and occupancies for fucuomante							
Site	x/a	y/b	z/c	U_{11}	U ₂₂	U ₃₃	U ₁₂	U_{eq}
М	0	0	1/2	0.041(5)	0.041(5)	0.047(9)	0.020(3)	0.043(5)
As	1/3	2/3	0.7969(2)	0.0078(4)	0.0078(4)	0.0278(8)	0.0039(2)	0.0145(4)
0	1/2	0	0.6894(9)	0.0165(5)	0.007(3)	0.031(4)	0.003(1)	0.019(2)
Χ	0	0	0	0.0206(16)	0.0206(16)	0.069(5)	0.0103(8)	0.037(2)
Notes: The anisotropic displacement parameters are defined as: exp $\left[-2\pi^{2}\Sigma_{i}^{3}\right]$								
$1 \sum_{j=1}^{3} =$	$_{1}\Sigma_{j}^{2} = _{1}U_{ij}a_{i}^{*}a_{j}^{*}h_{i}h_{j}$, U_{eq} according to Fischer and Tillmanns (1988). U_{23} and U_{13} are							
equal to 0. Sites scattering: $M = 0.52(4)$ K, 0.48(4) NH ₄ (from the refinement); $X =$								
0.5 (CI, 0.3	3 Br, C).2 F (fixed	on the basis	of the cher	nical data)).	

TABLE 5. Summary of parameters describing data collection and refinement for lucabindiite

	.
Empirical structural formula	[K _{0.52} (NH ₄) _{0.48}]As ₄ O ₆ (Cl _{0.5} Br _{0.3} F _{0.2})
Crystal dimensions (mm)	0.05 x 0.11 x 0.15
Crystal system, space group	Hexagonal, P6/mmm
a (Å)	5.2386
<i>c</i> (Å)	9.014(2)
V (Å ³)	214.23(7)
Z	1
Temperature (K)	293
$D_x(g/cm^3)$	3.645
X-ray conditions (kV, mA)	50, 30
Wavelength of radiation (Å)	0.71073
Detector to sample distance (mm)	40
Number of frames	1095
Rotation width per frame (°)	0.5
Measuring time (s)	120
Maximum covered 2θ (°)	61 (<i>d</i> = 0.70 Å)
Independent reflections	174
Reflections with $F_{o} > 4\sigma(F_{o})$	136
R _{int}	0.0998
R _σ	0.0392
Ranges of h, k, l	$-6 \le h \le 7$
	$-7 \le k \le 5$
	–12 ≤ / ≤ 12
$R[F_{o} > 4\sigma(F_{o})]$	0.0384
R (all data)	0.0617
$wR[F_o > 4\sigma(F_o)]$	0.0969
wR (all data)	0.1102
Goof	1.15
Refined parameters	13
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0608P)^2 + 1.0076P]$
	where $P = [\max(F_{o})^{2} + 2(F_{c})^{2}]/3$
$D\rho_{min}$, $D\rho_{max}$ (e/Å ³)	-1.58, 3.06

TABLE 6. Selected interatomic distances (Å) and angles (°) in lucabindiite

-						
	This study		P	ertlik (198	8)	
	lucabindiite	KAs ₄ O ₆ CI	KAs_4O_6Br	KAs ₄ O ₆ I	$NH_4As_4O_6Br$	NH ₄ As ₄ O ₆ I
M-O (12x)	3.127(5)	3.104(3)	3.097(2)	3.109(2)	3.158(1)	3.165(2)
As-O (3x)	1.796(5)	1.795(2)	1.805(2)	1.807(2)	1.801(1)	1.806(2)
O-O (3x)	2.619(1)	2.626(2)	2.629(2)	2.640(9)	2.632(1)	2.645(2)
X-As (12x)	3.535(1)	3.538(3)	3.561(2)	3.631(2)	3.564(1)	3.632(2)
O-As-O (3x) 93.6(3)	94.01(1)	93.45(9)	93.86(9)	93.87(9)	94.15(8)

= Cl, Br, I) reported by Pertlik (1988). The structure (Fig. 8) is characterized by (001) layers consisting of neutral As₂O₃ sheets. Each As₂O₃ sheet is formed by AsO₃ pyramids connected by shared oxygen atoms. The As atoms of two neighboring sheets point at each other and the sheets are connected by interlayer M(=K, NH₄) and X (=Cl, Br, F) atoms. The M atoms are coordinated to 12 O atoms in the form of a regular hexagonal prism, with M-O distances almost intermediate between K-O and NH₄-O distances (Table 6) in the synthetic phases described by Pertlik (1988). As the symmetry of the M site is higher than the symmetry of an NH₄ molecule, Pertlik (1988) suggested that each H atom is statistically distributed over at least three symmetry equivalent sites in the structure framework of the NH₄As₄O₆X (X = Cl, Br,

¹ Deposit item AM-13-018, data set and CIF. Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the American Mineralogist Contents, find the table of contents for the specific volume/ issue wanted, and then click on the deposit link there.

FIGURE 8. The crystal structure of lucabindiite. In order of decreasing size : X (light blue), O (dark), M (orange), and As (red) atoms. Dashed bonds indicate long As-(Cl,Br) contacts. (Color online.)

I) compounds. This explains the impossibility to locate the H atoms of the NH_4^+ group by X-ray diffraction.

The apices of the As₂O₃ sheets, the As atoms, point toward the X atoms, and 12 As atoms form the first coordination sphere around the X atoms (hexagonal prisms). The coordination of As atoms is thus characterized by three typical short As-O distances [1.796(5)] against three opposite long As-X contacts [3.536(1)]. According to Pertlik (1988) the As-O and O-O first-neighbor distances in the MAs_4O_6X compounds (Table 6) are greatly influenced by the site occupancy of X. As a matter of fact, Pertlik noticed that both the As-O and O-O distances increase systematically from Cl through Br to I containing compounds, whereas they are equal within limits of error for the compounds containing the same halogen (the two Br in respect to the two I compounds) and independent of the occupancy of the M site [note that synthetic NH₄As₄O₆Cl could not be synthesized by Pertlik (1988) and therefore no structural data are known for it]. The above evidence suggests that the values of the As-O and O-O distances observed in the structure of lucabindiite, which are practically equal to those of the compound KAs₄O₆Cl (Table 6), are related to the simultaneous occurrence of F and Br, in addition to Cl, in the X site. The same is also true for the X-As bond lengths (Table 6). As expected, in the MAs_4O_6X compounds the X-As distances increase systematically from Cl through Br to I containing compounds and are not influenced by the occupancy of M (Pertlik 1988). The values of X-As distances in the structure of lucabindiite are very close to those of the compound KAs₄O₆Cl.

GENETIC FEATURES AND DISCUSSION

Lucabindiite, ideally (K,NH₄)As₄O₆(Cl,Br), is an arsenic oxychloride, which was found as a sublimate phase at "La Fossa" crater, Vulcano islands, Aeolian archipelago, Italy. It corresponds to the synthetic phase with general formula MAs_4O_6X (Pertlik 1988), where M = K, NH₄ and X = Cl, Br, I. In Table 7, chemical and crystallographic data of lucabindiite are compared with those of the related synthetic phases (Pertlik 1988).

In laboratory, the synthetic analogues of lucabindiite were obtained by thermal treatments of cubic As_2O_3 and potassium or ammonium halides in a saturated aqueous solution of potassium acetate or ammonia (Pertlik 1988). Although both arsenolite and K and NH_4 halides are present at Vulcano, it is not probable that lucabindiite formed by a similar reaction, for which an earlier formation of arsenolite, As_2O_3 , is required. As a matter of fact, arsenolite was found in association with lucabindiite (Fig. 3), but it was not in a clear paragenetic sequence with the new mineral. On the contrary, their mode of appearance suggests a simultaneous deposition of the two arsenic phases.

At Vulcano, the lucabindiite and arsenolite occurrence is most probably due to the simultaneous presence in the steam of hydrogen halogenides and arsenic, whose transport as AsCl₃ has been hypothesized to happen in the La Fossa crater fumaroles (Garavelli et al. 1997). In this context, possible reactions explaining their formation in the cooling of the halogen-rich volcanic gases are:

$$4AsX_3 + MX + 6H_2O \rightarrow MAs_4O_6X + 12HX$$

or

$$AsX_3 + 3H_2O \rightarrow As(OH)_3 + 3HX$$

 $2As(OH)_3 \rightarrow As_2O_3 + 3H_2O$ and $4As(OH)_3 + MX \rightarrow MAs_4O_6X + 6H_2O$ with M = K, NH_4 and X = Cl, Br, F, I.

 TABLE 7. Crystal lattice parameters of lucabindiite and the strongest powder diffraction lines compared with those of the related synthetic phases

	This study	Pertlik (1988)					
Chemical formula	$[K_{0.51}(NH_4)_{0.45}]_{\Sigma 0.96}As_{4.01}O_{5.95}(CI_{0.48},Br_{0.41},F_{0.19})_{\Sigma 1.08}$	KAs₄O ₆ Cl	KAs₄O ₆ Br	KAs₄O ₆ I	$NH_4As_4O_6Br$	NH ₄ As ₄ O ₆ I	
Space group	P6/mmm	P622	P622	P622	P622	P622	
Unit-cell parameters (Å)	a = 5.2386(7) c = 9.014(2)	a = 5.252(1) c = 8.880(2)	a = 5.257(1) c = 8.955(2)	a = 5.281(1) c = 9.169(2)	a = 5.265(1) c = 9.148(2)	a = 5.290(1) c = 9.338(2)	
	9.014/2 4.537/3	4.548/3	8.955/2	9.169/2	9.148/5	9.338/6	
d(Å)/l (related to 10)	4.507/5 3.197/10 2.619/7	4.440/5 3.177/10 2.626/6	4.477/3 3.192/10 2.628/5	2.640/5 2.537/2	4.574/5 4.560/5 3.230/10	4.669/2 4.113/2 3.270/10	
	2.265/2 1.974/3 1.603/2	2.260/2 1.964/3	1.606/2	1.617/2	2.632/6 2.530/3 1.826/2	2.645/5 2.575/2 2.545/2	

Arsenic minerals at Vulcano are relatively abundant. The occurrence of orpiment, As_2S_3 , and realgar, As_4S_4 , has been reported for the area by several authors throughout the nineteenth and the first 20 yr of the twentieth century (Stromeyer 1824; Sainte-Claire Deville 1856; Jervis 1873; Bellini 1918; Panichi 1924), but modern investigations (Campostrini et al. 2011 and references therein) do not confirm their presence. On the contrary, an amorphous arsenic-rich sulfurite, often containing selenium and/or tellurium, is still very abundant today around medium temperature fumaroles and has been often described (Garavelli 1958, 1994; Campostrini et al. 2011). Solid phases containing As-S-Cl that look morphologically very similar to lucabindiite have been found as sublimates collected in silica sampling tubes deeply inserted in high-temperature fumarole vents at Vulcano (Garavelli 1994; Garavelli et al. 1997). It is not excluded that such phases could be related to lucabindiite by a substitution of S-O in the structure and the total substitution of NH₄ in place of K. This hypothesis is also supported by our recent finding of several "lucabindiites" from the ground around fumarole F5AT (sampling year 2009) containing As, but no traces of K, I, and Br substituting for Cl, and/or S partially substituting for O. Investigations on these phases are still in progress. Around high-temperature fumaroles of Vulcano, further minerals containing arsenic are represented by sulfosalts like kirkiite, Pb10(Bi,As)6(S,Se)19 (Borodaev et al. 1998) and vurroite $Pb_{20}Sn_2(Bi,As)_{22}S_{54}C_{16}$ (Garavelli et al. 2005), whose occurrence is related both to the high fugacity of sulfur and to the high activity of hydrogen halogenides in fumarolic fluids discharging from fumaroles (Borodaev et al. 1998; Garavelli et al. 1997).

ACKNOWLEDGMENTS

The paper benefited by the official reviews made by Tonci Balić-Žunić and Francesco Demartin. Associate Editor Andrew McDonald is thanked for his efficient handling of the manuscript. Thanks are also due to Maria Lacalamita for assistance in the FTIR measurements. This work has been financially supported by M.I.U.R. (Ministero dell'Istruzione, Università e Ricerca, Italy) PRIN 2008 and PRIN 2010-2011.

REFERENCES CITED

- Acquafredda, P. and Paglionico, A. (2004) SEM-EDS microanalyses of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. European Journal of Mineralogy, 16, 419–429.
- Bellini, R. (1918) Alcuni sublimati di Vulcano. Bollettino della Società dei Naturalisti di Napoli, 31, 71–74 (in Italian).
- Bindi, L. and Steinhardt, P.J. (2012) A new era for mineralogy? The discovery of the first natural quasicrystal. Elements, 8, 13–14.
- Bindi, L., Steinhardt, P.J., Yao, N., and Lu, P.J. (2009) Natural quasicrystals. Science, 324, 1306–1309.
- ——(2011) Icosahedrite, Al6₃Cu₂₄Fe₁₃, the first natural quasicrystal. American Mineralogist, 96, 928–931.
- Bindi, L., Eiler, J.M., Guan, Y., Hollister, L., MacPherson, G.J., Steinhardt, P.J., and Yao, N. (2012) Evidence for the extra-terrestrial origin of a natural quasicrystal. Proceedings of the National Academy of Sciences, 109, 1396–1401.
- Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 33–38.
- Borodaev, Y.S., Garavelli, A., Kuzmina, O.V., Mozgova, N.N., Organova, N.I., Trubkin, N.V., and Vurro, F. (1998) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. I. Se-bearing kirkiite, Pb₁₀(Bi,As)₆(S,Se)₁₉. Canadian Mineralogist, 36, 1105–1114.
- Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Organova, N.I., Trubkin, N.V., and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aelian Islands, Italy. III. Wittite and Cannizzarite. Canadian Mineralogist, 38, 23–34.
- Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Uspenskaya, T.Y., and Vurro, F. (2001) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. IV. Lillianite. Canadian Mineralogist, 39, 1203–1215.
- Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Paar,

W.H., Topa, D., and Vurro, F. (2003) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. V. Selenian Heyrovskýite. Canadian Mineralogist, 41, 429–440. Bruker (2003a) SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin.

- Campostrini, I., Demartin, F., and Gramaccioli, C.M. (2010) Vulcano: ein aussergewohnlicher Fundpunkt von neuen und seltenen Mineralien. MineralienWelt, 21(3), 40–57 (in German).
- Campostrini, I., Demartin, F., Gramaccioli, C.M., and Russo, M. (2011) Vulcano: tre secoli di mineralogia. Associazione Micro-mineralogica Italiana (ed.), Cremona (Italy), p. 1–343 (in Italian).
- Cheynet, B., Dall'aglio, M., Garavelli, A., Grasso, M.F., and Vurro, F. (2000) Trace elements from fumaroles at Vulcano Island, Italy: rates of transport and a thermochemical model. Journal of Volcanology and Geothermal Research, 95, 273–283.
- Coradossi, N., Garavelli, A., Salamida, M., and Vurro, F. (1996) Evolution of Br/ Cl ratios in fumarolic salammoniac from Vulcano (Aeolian Islands, Italy). Bulletin of Volcanology, 58, 310–316.
- Demartin, F., Campostrini, I., and Gramaccioli, C.M. (2009a) Panichiite, natural ammonium hexachlorostannate(IV), (NH₄)₂SnCl₆, from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 47, 367–372.
- Demartin, F., Gramaccioli, C.M., and Campostrini, I. (2009b) Brontesite, (NH₄)₃PbCl₅, a new product of fumarolic activity from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 47, 1237–1243.
- Demartin, F., Gramaccioli, C.M., and Campostrini, I. (2010a) Pyracmonite, (NH₄)₃Fe(SO₄)₃, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 48, 307–313.
- (2010b) Adranosite, (NH₄)₄NaAl₂(SO₄)Cl(OH)₂, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 48, 315–321.
- Demartin, F., Campostrini, I., Castellano, C., and Gramaccioli, C.M. (2012) Argesite, (NH₄),Bi₅Cl₁₆, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. A first example of the [Bi₂Cl₁₀]⁴ anion. American Mineralogist, 97, 1446–1451.
- Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B. Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104–1107.
- Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London, U.K.
- Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Acta Crystallographica, C44, 775–776.
- Garavelli, A. (1994) Mineralogia e geochimica di fasi vulcaniche condensate: i sublimati dell'isola di Vulcano tra il 1990 ed il 1993. Tesi di Dottorato (VI Ciclo 1990–1993), Dip. Geomineralogico, Università di Bari, 1–171 (in Italian).
- Garavelli, C.L. (1958) Sulla natura del cosiddetto solfoselenio dell'Isola di Vulcano. Periodico di Mineralogia, 27, 159–178 (in Italian).
- Garavelli, A. and Vurro, F. (1994) Barberiite, NH₄BF₄, a new mineral from Vulcano, Aeolian Islands, Italy. American Mineralogist, 79, 381–384.
- Garavelli, A., Laviano, R., and Vurro, F. (1997) Sublimate deposition from hydrothermal fluids at the Fossa crater—Vulcano, Italy. European Journal of Mineralogy, 9, 423–432.
- Garavelli, A., Mozgova, N.N., Orlandi, P., Bonaccorsi, E., Pinto, D., Moëlo, Y., and Borodaev, Y. (2005) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb₂₀Sn₂(Bi,As)₂₂S₅₄C₁₆, a new mineral species. Canadian Mineralogist, 43, 703–711.
- Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography, vol. 4. The Kynoch Press, Birmingham.
- Jervis, G. (1873) I tesori sotterranei d'Italia. Loescher (Ed.), Torino (Italy), 1–539 (in Italian).
- Korotkov, A.S. and Atuchin, V.V. (2008) Prediction of refractive index of inorganic compounds by chemical formula. Optics Communications, 281, 2132–2138.
- Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. Canadian Mineralogist, 19, 441–450.
- Mitolo, D., Pinto, D., Garavelli, A., Bindi, L., and Vurro, F. (2009) The role of the minor substitutions in the crystal structure of natural challacolloite, KPb₂Cl₅, and hephaistosite, TlPb₂Cl₅, from Vulcano (Aeolian Archipelago, Italy). Mineralogy and Petrology, 96, 121–128.
- Mitolo, D., Capitani, G.C., Garavelli, A., and Pinto, D. (2011) Transmission electron microscopy investigation of Ag-free lillianite and heyrovskýite from Vulcano, Aeolian Islands, Italy. American Mineralogist, 96, 288–300.
- Mitolo, D., Demartin, F., Garavelli, A., Campostrini, I., Pinto, D., Gramaccioli, C. M., Acquafredda, P., and Kolitsch, U. (2013) Adranosite-(Fe), (NH₄)₄NaFe₂(SO₄)₄Cl(OH)₂, a new ammonium sulfate chloride from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, in press.
- Panichi, U. (1924) Contributo allo studio dei minerali dell'Isola di Vulcano. Memorie della Società Italiana delle Scienze (detta dei XL), serie III, 19, 3-55 (in Italian).

Pertlik, F. (1988) KAs₄O₆X (X = CI, Br, I) and NH₄As₄O₆X (X = Br, I): hydrothermal syntheses and structure determinations. Monatshefte für Chemie, 119, 451–456.

Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E., and Vurro, F. (2006a)

Comparative crystal-structure study of Ag-free lillianite and galenobismutite from Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 44, 159–175.

- Pinto, D., Balić-Žunić, T., Garavelli, A., Garbarino, C., Makovický, E., and Vurro, F. (2006b) First occurrence of close-to-ideal kirkiite at Vulcano (Aeolian Islands, Italy): chemical data and single crystal X-ray study. European Journal of Mineralogy, 18, 393–401.
- Pinto, D., Balić-Žunić, T., Bonaccorsi, E., Borodaev, Y.S., Garavelli, A., Garbarino, C., Makovicky, E., Mozgova, N.N., and Vurro, F. (2006c) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. VII. Cl-bearing galenobismutite. Canadian Mineralogist, 44, 443–457.
- Pinto, D., Bonaccorsi, E., Balić-Žunić, T., and Makovicky, E. (2008) The crystal structure of vurroite, Pb₂₀Sn₂(Bi,As)₂₂S₅₄Cl₆: OD-character, polytypism, twinning, and modular description. American Mineralogist, 93, 719–727.
- Pinto, D., Balić-Žunić, T., Garavelli, A., and Vurro, F. (2011) Structure refinement of Ag-free heyrovskýite from Vulcano (Aeolian Islands, Italy). American Mineralogist, 96, 1120–1128.
- Ruste, J. (1979) X-ray spectrometry. In Maurice, F., Meny, L., and Tixier, R., Eds., Microanalysis and Scanning Electron Microscopy, Summer School St-

Martin-d'Hères, France, September 11-16 (1978), p. 215-267. Les Editions de Physique, Orsay.

- Sainte-Claire Deville, C.J. (1856) Neuvième lettre à M. Élie de Beaumont sur les phénomènes éruptifs de l'Italie méridionale. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 43, 681–686 (in French).
- Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- Stromeyer, F. (1824) Notiz über das auf der inseln Vulcano vorkommende Schwefelselen. Annalen der Physik (Poggendorf Annalen), 78, 410–414 (in German).
- Vurro, F., Garavelli, A., Garbarino, C., Moëlo, Y., and Borodaev, Y.S. (1999) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite, PbBi₄(S,Se)₇, a new mineral species. Canadian Mineralogist, 37, 1499–1506.

MANUSCRIPT RECEIVED MARCH 28, 2012

MANUSCRIPT ACCEPTED OCTOBER 9, 2012

MANUSCRIPT HANDLED BY ANDREW MCDONALD

audit creation method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name common lucabindiite _chemical_melting_point ? _chemical_formula_moiety 'As4 Br0.3 Cl0.5 F0.2 K0.52 N0.48 O6' _chemical_formula_sum 'As4 Br0.3 Cl0.5 F0.2 K0.52 N0.48 O6' _chemical_formula weight 470.23 _chemical_special_details The non-integer number of atoms in the unit-cell is due to the occurrence of partially occupied sites and substitutional disorder. ; loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'As' 'As' 0.0499 2.0058 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Br' 'Br' -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'K' 'K' 0.2009 0.2494 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0060 0.0106 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'F' 'F' 0.0103 0.0171 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Hexagonal' symmetry cell setting 'P 6/mmm' symmetry space group name H-M loop _symmetry_equiv_pos_as_xyz 'x, y, z' 'x-y, x, z' '-y, x-y, z' '-x, -y, z' '-x+y, -x, z' 'y, -x+y, z' '-y, -x, -z' 'x-y, -y, -z' 'x, x-y, -z' 'y, x, -z'

data new

```
'-x+y, y, -z'
 '-x, -x+y, -z'
 '-x, -y, -z'
 '-x+y, -x, -z'
 'y, -x+y, -z'
 'x, y, -z'
 'x-y, x, -z'
 '-y, x-y, -z'
 'y, x, z'
 '-x+y, y, z'
 '-x, -x+y, z'
 '-y, -x, z'
 'x-y, -y, z'
 'x, x-y, z'
_cell_length_a
                                   5.2386(7)
_cell_length_b
                                   5.2386(7)
_cell_length c
                                   9.014(2)
cell angle alpha
                                   90.00
_cell_angle_beta
                                   90.00
_cell_angle_gamma
                                   120.00
_cell_volume
                                   214.23(6)
_cell_formula_units_Z
                                   1
_cell_measurement_temperature
                                   293(2)
_cell_measurement_reflns_used
                                   ?
_cell_measurement_theta_min
                                   ?
_cell_measurement_theta max
                                   ?
exptl crystal description
                                   platy
exptl crystal colour
                                   white
_exptl_crystal_size_max
                                   0.150
_exptl_crystal_size_mid
                                   0.110
_exptl_crystal_size_min
                                   0.05
_exptl_crystal_density_meas
                                   'not measured'
_exptl_crystal_density_diffrn
                                   3.645
_exptl_crystal_density_method
                                    'not measured'
_exptl_crystal_F_000
                                   216
_exptl_absorpt_coefficient mu
                                   16.246
exptl absorpt correction type
                                   multi-scan
                                   0.4136
_exptl_absorpt_correction_T_min
exptl absorpt correction T max
                                   0.7454
_exptl_absorpt_process_details
                                    'program SADABS (Sheldrick 2008)'
_exptl_special_details
;
 ?
;
_diffrn_ambient_temperature
                                   293(2)
_diffrn_radiation_wavelength
                                   0.71073
_diffrn_radiation_type
                                    'Mo kappa alpha'
_diffrn_radiation_source
                                    'fine-focus sealed X-ray tube'
_diffrn_radiation_monochromator
                                   graphite
_diffrn_measurement_device_type
                                    'Bruker AXS X8 APEX2 CCD'
```

_diffrn_measurement_method	'integration of the spots (Apex program
diffra detector area regol mean	2
_diffrn_dtanda_number	: 2
	: 2
	- 2
	- 2
_diffrn_roflng_number	• 2722
	2735
_diffrn_roflng_av_gigmal/not1	0.0303
	-6
	-0
	-7
	- / 5
_diffrn_roflng_limit_l_min	_12
	12
	2 26
_diffrn reflns theta may	30 31
	17/
	136
refine threshold expression	$2 \operatorname{sigma}(T)$
_rerins_chreshord_expression	>2519ma(1)
computing data collection	'Apex program guite (Bruker 2003)'
_computing_data_correction	'Apex program suite (Bruker 2003)
_computing_data_reduction	'SAINT-IRIX (Bruker 2003)'
computing_data_reduction	'none'
_computing_structure_solution	SHELXL-97 (Sheldrick 1997)'
_computing_seldceuler_refinement	2
computing publication material	· ?
_oompuoring_pubricuoron_mutorrar	
_refine_special_details	
;	
Refinement of F^2^ against ALL re	eflections. The weighted R-factor wR and
goodness of fit S are based on F'	2 ² , conventional R-factors R are based
on F, with F set to zero for nega	ative F^2^. The threshold expression of
$F^2^ > 2sigma(F^2^)$ is used only	for calculating R-factors(gt) etc. and is
not relevant to the choice of rel	elections for refinement. R-factors based
on F'2^ are statistically about t	twice as large as those based on F, and R-
factors based on ALL data will be	e even larger.
;	
refine le structure factor coef	Fead
	full
refine_ls_weighting_scheme	
	Calc
$\frac{1}{2}$	$(2^{+1}, 00761)$ where $D = (E_0^{+1}, 2^{+1}) = (2^{+1})^{+1}$
atom sites solution primary	direct
_atom_sites_solution_primary	difman
_atom_sites_solution_bydrogens	
refine is hydrogen treatment	• 'none'
refine is evtinction method	none
refine is extinction coef	2
rafina la number rafina	• 17/
refine le number parameters	12
refine is number restraints	0
	v

_refine_ls_R_factor_all 0.0617 _refine_ls_R_factor_gt 0.0384 refine ls wR factor ref 0.1102 refine ls wR factor gt 0.0969 _refine_ls_goodness_of_fit_ref 1.150 _refine_ls_restrained_S_all 1.150 _refine_ls_shift/su max 0.000 _refine_ls_shift/su mean 0.000 loop atom site label _atom_site_type_symbol atom site fract x _atom_site_fract y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp type _atom_site_occupancy atom site symmetry multiplicity atom site calc flag _atom_site_refinement_flags _atom_site_disorder_assembly atom site disorder group As1 As 0.3333 0.6667 0.20309(16) 0.0145(4) Uani 1 6 d S . . 0 0 0.5000 0.0000 0.3106(10) 0.0192(16) Uani 1 4 d S . . K K 0.0000 0.0000 0.5000 0.043(5) Uani 0.52(5) 24 d SP . . N N 0.0000 0.0000 0.5000 0.043(5) Uani 0.48(5) 24 d SP . . Br1 Br 0.0000 0.0000 0.0000 0.0366(16) Uani 0.30 24 d SP . . Cl1 Cl 0.0000 0.0000 0.0000 0.0366(16) Uani 0.50 24 d SP . . F1 F 0.0000 0.0000 0.0000 0.0366(16) Uani 0.20 24 d SP . . loop _atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 atom site aniso U 12 As1 0.0078(4) 0.0078(4) 0.0278(8) 0.000 0.000 0.0039(2) 0.016(2) 0.007(3) 0.031(4) 0.000 0.000 0.0034(15)K 0.041(5) 0.041(5) 0.047(9) 0.000 0.000 0.020(3) N 0.041(5) 0.041(5) 0.047(9) 0.000 0.000 0.020(3) Br1 0.0206(16) 0.0206(16) 0.069(5) 0.000 0.000 0.0103(8) Cl1 0.0206(16) 0.0206(16) 0.069(5) 0.000 0.000 0.0103(8) F1 0.0206(16) 0.0206(16) 0.069(5) 0.000 0.000 0.0103(8)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

```
loop
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
As1 0 1.796(5) 1 565 ?
As1 0 1.796(5) 3 ?
As1 0 1.796(5) 2 ?
O As1 1.796(5) 1_545 ?
O As1 1.796(5) 2 655 ?
OK 3.127(5) 1 655 ?
OK 3.127(5) . ?
K O 3.127(5) 14_666 ?
K O 3.127(5) 2_445 ?
K O 3.127(5) 15_566 ?
K O 3.127(5) 3 545 ?
K O 3.127(5) 13 656 ?
K O 3.127(5) 1_455 ?
K O 3.127(5) 2 ?
K O 3.127(5) 14_556 ?
K O 3.127(5) 13_556 ?
K O 3.127(5) 3 ?
K O 3.127(5) 15_556 ?
loop_
 geom angle atom site label 1
 geom angle atom site label 2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 geom angle publ flag
O As1 O 93.6(3) 1_565 3 ?
O As1 O 93.6(3) 1 565 2 ?
O As1 O 93.6(3) 3 2 ?
As1 O As1 114.7(5) 1_545 2_655 ?
As1 O K 107.13(6) 1 545 1 655 ?
As1 O K 107.13(6) 2 655 1 655 ?
As1 O K 107.13(6) 1 545 . ?
As1 O K 107.13(6) 2_655 . ?
K O K 113.8(3) 1_655 . ?
O K O 180.0 14_666 2_445 ?
OKO49.53(8) 14 666 15 566 ?
O K O 130.47(8) 2445 15566 ?
OKO130.47(8) 14 666 3 545 ?
OKO49.53(8) 2_445 3_545 ?
OKO180.0 15 566 3 545 ?
O K O 49.53(8) 14_666 13_656 ?
OKO130.47(8) 2_445 13_656 ?
OKO 93.02(19) 15_566 13_656 ?
OKO86.98(19)3_54513_656?
O K O 130.47(8) 14_666 1_455 ?
```

```
OKO49.53(8) 2_445 1_455 ?
OKO 86.98(19) 15 566 1 455 ?
OKO 93.02(19) 3_545 1_455 ?
OKO180.0 13 656 1 455 ?
OKO66.2(3) 14_666 2 ?
OKO113.8(3) 24452?
OKO 86.98(19) 15_566 2 ?
OKO 93.02(19) 3 545 2 ?
OKO86.98(19)136562?
OKO 93.02(19) 1 455 2 ?
OKO113.8(3) 14 666 14 556 ?
O K O 66.2(3) 2_445 14_556 ?
OKO 93.02(19) 15 566 14 556 ?
OKO 86.98(19) 3 545 14 556 ?
OKO 93.02(19) 13 656 14 556 ?
OKO86.98(19)1_45514_556?
OKO180.0214556?
OKO 93.02(19) 14_666 13_556 ?
OKO 86.98(19) 2 445 13 556 ?
OKO49.53(8) 15 566 13 556 ?
OKO130.47(8) 3_545 13_556 ?
O K O 113.8(3) 13_656 13_556 ?
OKO 66.2(3) 1 455 13 556 ?
OKO130.47(8) 2 13 556 ?
O K O 49.53(8) 14_556 13_556 ?
OKO 86.98(19) 14 666 . ?
OKO93.02(19)2_445.?
OKO130.47(8) 15 566 . ?
OKO49.53(8)3545.?
OKO66.2(3)13656.?
OKO113.8(3)1455.?
OKO49.53(8)2.?
OKO130.47(8) 14_556 . ?
OKO180.013_556.?
OKO 86.98(19) 14 666 3?
OKO 93.02(19) 2_445 3 ?
O K O 66.2(3) 15_566 3 ?
OKO113.8(3) 3_545 3 ?
OKO130.47(8) 13 656 3?
OKO49.53(8) 1 455 3 ?
ОКО 49.53(8) 2 3 ?
OKO130.47(8) 14 556 3 ?
OKO 86.98(19) 13 556 3 ?
OKO93.02(19).3?
OKO 93.02(19) 14_666 15_556 ?
OKO 86.98(19) 2 445 15 556 ?
ОКО 113.8(3) 15 566 15 556 ?
OKO 66.2(3) 3 545 15 556 ?
OKO49.53(8) 13 656 15 556 ?
OKO130.47(8) 1 455 15 556 ?
OKO130.47(8) 2 15_556 ?
OKO49.53(8) 14_556 15_556 ?
OKO 93.02(19) 13_556 15_556 ?
OKO86.98(19).15_556?
OKO180.0315_556?
```

_diffrn_measured_fraction_theta_max	1.000			
_diffrn_measured_fraction_theta_full	1.000			
_refine_diff_density_max 3.062				
_refine_diff_density_min -1.583				
_refine_diff_density_rms 0.293				

_refln_index_h						
_ref	ln_ir	ndex_	_k			
_ref	ln_ir	ndex_	_1			
_ref	ln_F_	_squa	ared_calc			
_ref	ln_F_	_squa	ared_meas			
_ref	ln_F_	_squa	ared_sigma			
_ref	ln_ok	oserv	ved_status			
0	1	0	1963.26	2002.78	41.18 o	
-1	2	0	13581.21	15202.77	275.19 o	
0	2	0	14.02	28.90	7.88 o	
-1	3	0	1180.41	1300.56	25.51 o	
0	3	0	8333.62	8777.28	195.61 o	
-2	4	0	10778.05	11345.43	221.51 o	
-1	4	0	888.16	938.09	30.76 o	
0	4	0	91.59	88.10	21.80 o	
-2	5	0	599.70	637.11	22.63 o	
-1	5	0	3981.19	4003.78	76.98 o	
0	5	0	441.76	453.07	48.56 o	
-3	6	0	2832.44	2895.69	76.12 o	
-2	6	0	91.64	95.14	22.01 o	
-1	6	0	411.36	475.49	28.10 o	
0	6	0	2793.68	2736.42	115.66 0	
-3	7	0	295.88	315.91	29.75 0	
-2	7	0	1743.01	1755.96	55.17 0	
0	0	1	749 90	655 21	23 78 0	
0	1	1	25 69	19 38	5 28 0	
-1	2	1	1615 17	1608 03	23 70 0	
0	2	1	361 98	371 76	10 75 0	
-1	2	1	17 86	20 18	5 16 0	
0	2	1	961 14	975 88	31 61 0	
-2	4	1	419 62	497 19	24 04 0	
_1	4	1	11 20	26 67	8 55 0	
0	4	1	95 79	105 58	14 28 0	
-2	5	1	11 25	28 33	10 95 0	
_1	5	1	489 62	632 21	19 76 0	
0	5	1	9 80	15 30	23 59 0	
-3	6	1	373 15	485 47	28.61 0	
-2	6	1	45 66	53 80	14 64 0	
-1	6	1	4 93	20 64	17 48 0	
0	6	1	144 87	187 92	28 93 0	
_3	7	1	5 66	81 02	20.95 0	
-2	, 7	1	198 47	303 88	20.000	
0	,	2	9788 41	9752 24	301 72 0	
0	1	2	6280 22	5881 73	89 65 0	
-1	2	2	2772 64	2546 56	36 83 0	
0	2	2	1478 00	1320 33	23.14	
-1	2	2	3037 58	2978 01	29 95 0	
0	2	2	2208 45	2159 62	33 57 0	
-2	4	2	3381 44	3328 33	49 37 0	
_1	4	2	1923 07	1870 01	23 67 0	
	4	2	741 95	706 57	21.69	
-2	т Б	2	1239 08	1216 13	20.48	
_1	5	2	1272 95	1220.15	24 20 0	
∩ ⊥	5	2	855 56	814 02	23.01	
_ २	6	2	958 01	944 26	29 46 0	
-2	6	2	202 22	452 29	17 85 0	
_1	6	2	678 70	663 79	24 16 0	
0	б	2	1081 32	963 07	43 87 0	
_ 3	7	2	475 87	517 42	22 33 0	
5	,	-	1,0.0,	5-1.10	22.35 0	

-2	7	2	662 60	677 85	24 72 0
2	,	2	1002.00	077.05	24.72 0
0	0	3	1932.17	1959.13	120.14 o
0	1	3	1143.82	1055.38	20.98 o
-1	2	З	5289 30	4991 97	67 41 o
~	-	2			47 01 -
0	2	3	3547.12	3434.50	47.01 0
-1	3	3	840.75	785.14	14.07 o
0	3	3	3192.32	3004.00	43.08 o
-2	4	3	1003 50	1202 87	26 17 0
	-	5	1223.32	1202.07	20.17 0
-1	4	3	605.75	605.42	14.50 0
0	4	3	1391.64	1344.01	30.07 o
-2	5	З	498 66	503 20	14 68 0
1	5	2	1602 27	1556 67	26.20 0
-1	5	5	1023.37	100.07	20.30 0
0	5	3	392.28	333.21	23.11 o
-3	6	3	1258.26	1267.70	35.34 o
-2	6	З	727 99	696 66	21 97 0
1	ć	2			10 41 -
- T	0	3	255.05	214.4/	19.41 0
0	6	3	439.03	469.28	38.60 o
-3	7	3	220.25	197.82	21.43 o
_2	7	3	681 06	642 78	26 84 0
2	, ,	1	001.00		100.01 0
0	0	4	3052.92	3460.57	192.93 0
0	1	4	0.52	-1.67	10.48 o
-1	2	4	2085.26	1990.96	33.44 o
0	2	4	0 45	10 74	0 33 0
1	2		0.45	10.71	2.55 0
-1	3	4	4.29	9.5/	8./2 0
0	3	4	1296.14	1294.08	28.59 o
-2	4	4	1108.20	1130.19	26.82 o
_1	1	1	7 9/	1 9/	10 79 0
- T	Ŧ	Ŧ	7.04	10.04	10.79 0
0	4	4	5.26	-13.66	15.79 0
-2	5	4	8.99	3.87	12.88 o
-1	5	4	616.64	648.41	18.63 o
0	5	4	935	-20 30	20 30 0
0	5	T	5.55	20.30	20.50 0
-3	6	4	445.58	480.04	31.54 O
-2	6	4	7.09	2.43	16.16 o
-1	6	4	9.74	-18.97	18.97 o
0	6	4	299 55	347 76	42 73 0
0	0	T	200.00	JI7.70	42.75 0
-3	1	4	9.20	-17.25	22.62 o
0	0	5	3821.47	4646.20	255.02 o
0	1	5	837.68	780.97	25.34 o
_1	2	5	6438 16	6128 07	88 07 0
- -	2	5	0150.10	0120.07	
0	2	5	2204.60	2101.03	37.60 0
-1	3	5	596.24	589.36	14.86 o
0	3	5	4353.02	4352.23	69.52 o
_2	4	5	2275 26	2217 14	43 02 0
- 2		5	410.20	2217.14	15.02 0
- T	4	5	417.39	440.86	15.04 0
0	4	5	951.08	973.87	29.12 o
-2	5	5	341.20	353.72	15.83 o
_1	5	5	2374 17	2282 47	35 56 0
	5	5	23/1.17	2202.17	35.50 0
0	5	5	2/1.13	267.51	26.1/ 0
-3	6	5	1851.01	1790.76	50.05 o
-2	6	5	521.33	540.63	21.74 o
_1	6	5	178 33	170 70	20 16 0
- T	0	5	100.33	1240.79	20.10 0
0	0	6	1278.93	1349.70	110.41 o
0	1	6	0.54	-17.83	17.83 o
-1	2	6	346.70	316.41	19.27 o
0	- 2	6	137 07	137 /0	10 20 0
1	4	6	±27.27	10 00	12 00
-1	3	6	0.02	12.26	13.29 o
0	3	6	240.50	229.37	22.00 o
-2	4	6	474.98	438.08	21.52 0
_1	Δ	6	0 61	_15 /2	15 / 2 ~
- -		0		TJ.#2	1J.75 U
U	4	6	39.10	28.48	∠⊥.65 O
-2	5	б	0.33	7.48	17.36 o
-1	5	6	111.85	71.64	17.17 o
Ο	5	6	0 27	-27 36	29 02 0
U	J	0	0.57	27.30	2J.UZ U

-3	6	б	74.22	57.60	33.42 o
-2	6	6	15 46	-19 90	19 90 0
_1	6	6	2 29	-21 53	21 64 0
<u> </u>	0	0 7		2107 04	1/0 67 0
0	1	/	1917.14	2197.94	140.07 0
0	T	/	602.19	644.44	27.04 0
-1	2	7	2219.90	2281.84	54.27 o
0	2	7	850.48	877.16	32.78 o
-1	3	7	449.98	501.06	20.34 o
0	3	7	1569.82	1622.15	50.33 o
-2	4	7	1034.62	1081.49	39.08 o
-1	4	7	333.84	311.33	19.66 0
0	4	7	454 59	496 68	32 98 0
_2	5	, 7	264 52	190.00	21 57 0
- <u>2</u> 1	Г	, 7	204.55	194.57	21.57 0
-T	5	/	888.67	905.28	29.13 0
0	5	7	208.63	180.79	32.01 0
-3	6	7	698.86	683.12	43.97 o
-2	6	7	268.61	215.11	25.35 o
0	0	8	1432.44	1726.48	135.54 o
0	1	8	663.87	694.50	35.16 o
-1	2	8	537.90	535.90	31.38 o
0	2	8	154.06	166.98	27.39 0
_1	2	8	455 20	434 16	21 48 0
<u> </u>	2	0	125.20	101.10	21.10 0
0	2	0	430.99	444.07	12 75 -
-2	4	8	774.94	822.93	43.75 0
-1	4	8	336.02	320.25	22.83 0
0	4	8	84.38	89.37	33.50 o
-2	5	8	230.70	217.81	25.93 o
-1	5	8	266.57	246.89	24.91 o
0	5	8	166.78	139.37	37.22 o
0	0	9	453.33	566.31	88.68 o
0	1	9	86.18	58.85	32.51 o
-1	2	9	295 10	346 87	34 21 0
<u> </u>	2	ģ	36 71	-22 16	29 57 0
1	2	0	61 74	10 5/	20.07 0
-T	2	9	01.74	10.54	22.75 0
0	2	9	220.10	100.17	34.70 0
-2	4	9	257.91	176.32	37.45 0
-1	4	9	46.74	-11.81	23.66 o
0	4	9	20.68	-31.85	37.95 o
-2	5	9	34.13	4.37	27.88 o
-1	5	9	137.45	82.93	27.59 o
0	0	10	1556.03	2173.13	157.42 o
0	1	10	189.09	204.32	37.33 o
-1	2	10	948.22	1236.48	55.01 o
0	2	10	56 44	49 61	40 77 0
_1	2	10	148 91	107 52	27 23 0
0	2	10	700.01	714 50	44 65 0
0	2	10	722.40	714.59	44.05 0
-2	4	10	867.93	8/4.50	64.97 0
-1	4	10	122.78	104.52	36.50 0
0	4	10	39.84	15.55	41.91 o
0	0	11	2.48	31.29	87.55 o
0	1	11	0.01	-43.41	43.41 o
-1	2	11	13.64	-6.53	41.43 o
0	2	11	22.73	-43.75	43.75 o
-1	3	11	0.02	-30.13	30.13 o
0	3	11	9.91	-25.77	42.75 0
0 0	n	12	309 12	78 63	118 84 0
n	1	10	116 22	70.05	69 65 0
_1	2 -	10	JEN JE	105 05	57.05 O
-T	2	⊥∠ 1 0	∠54.30	195.25	51.04 O
U	2	12	88.95	-26.31	59.81 O