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ABsTRACT

The crystal structure of argentian pentlandite
(Fe,Ni)s AgSz has been determined by single crystal
x-ray diffraction methods. The crystal data are:
a=10521(3)A, Z =4, space group is FmS3m, and
the composition is (Fes.gaNis.17) Afo.995s8.00. The crys-
tal structure of a natural pentlandite (Fe,Ni,Co)gSg
has been refined using single crystal data. The crystal
data are: a = 10.044(8) Z =4, space group Iis
Fm3m, and the composition is (Fe4.15Ni4.74COo.15)

+00¢

Multiple data sets were collected with a 4-circle
diffractometer using MoK, radiation and a graphite
monochromator. Generalized Gaussian and spherical
absorption corrections were applied and the structures
were refined by means of full-matrix least-squares
procedures, Final R-values for argentian pentlandite
are 0.109 (all data) and 0.039 (obs. data only) and,
for pentlandite are 0.047 (all data) and 0.040 (obs.
data only). There is strong structural and com-
positional evidence that the octahedrally-coordinated
sites in argentian pentlandite are occupied exclusively
by Ag atoms. Placement of the Ag atoms at the 4b
sites, and (FeNi) atoms at the 32f sites, gives
interatomic distances of Ag—S = 2.676(2)4, (Fe,Ni)
— 8 =2264(2), 2243(2) 4, and (Fe,Ni) — (Fe,Ni) =
2.670(2)A. The corresponding distances in pentlandite
are (Fe,Ni) —S = 2.382(2) A, (Fe,Ni) — S = 2.257(2),
2.156(1)A, and (FeNi) — (Fe,Ni) = 2.533(2)A.

InTRODUCTION

The occurrence of argentian pentlandite in the
Ore Fault claims of the Bird River Mines, Mani-
toba, has been described by Scott & Gasparrini
(1973) in a preceding paper. The crystal used
in this analysis was supplied by Dr. D. C. Harris
of this laboratory, who investigated samples from
the Ore Fault claims after the preliminary re-
ports by Scott & Gasparrini. The polished section
of argentian pentlandite has been deposited with
the Royal Ontario Museum (ROM M32672).
The compositions obtained from electron probe
measurements agree closely with those of Scott
& Gasparrini (1973) and are consistent stoichio-
metrically with the proposal of Shishkin et al.
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(1971) that the Ag atoms in argentian pent-
landite occupy the octahedrally-coordinated site
in a pentlandite-type structure. The structures
of pentlandite (Fe,Ni)eSs and CosSs were de-
termined as being isostructural by Lindqvist et
al. (1936) by means of powder data. These
structures were confirmed subsequently by Pear-
son & Buerger (1956) and by Geller (1962) with
single-crystal methods. Although the basic Fm3m
pentlandite-type structure appeared well sub-
stantiated (Fig. 1), the precision of the atomic
coordinates determined by Lindqvist et al. (1936)
was not high by present-day standards and it was
desirable to obtain more precise values in order
to make a suitable comparison with the argentian
pentlandite structure.

It has long been assumed by workers in this
area that the reason why the pentlandite struc-
ture had not been refined was due to the micro-
crystallinity of this mineral. It was therefore
surprising that an examination of a —65 to -+ 100
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Fic. 1. A crystal cell model of a pentlandite-like struc-
ture, showing the octahedral and tetrahedral co-
ordination of sulphur atoms about metal atoms.
Also shown are the close approach distances of the
32f metal atoms which form a “cubic” arrange-
ment. The 4b metal atoms are dotted. (Based on
a figure of Hulliger 1968).
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mesh concentrate of pentlandite, prepared for
neutron diffraction studies from a hand specimen
obtained from the Geological Survey of Canada,
showed that virtually all fragments were single
crystals. A few milligrams of this concentrate
have been deposited with the Royal Ontario
Museum collection (ROM M32676). The com-
position of this material was consistent for the
twelve grains analyzed by electron probe methods
(Table 1). The crystal structure was therefore
refined to provide a basis for comparison with
the argentian pentlandite structure. It was sub-
sequently learned, at a conference where the
preliminary results of this analysis were being
presented (Hall & Stewart 1973a), that other
workers (Rajamani & Prewitt 1973a) had also
refined the structure of a natural pentlandite
from the same area. It was agreed that these
independent analyses should be published to-
gether to facilitate ready comparison. Our an-
alyses of argentian pentlandite and pentlandite
were therefore amalgamated in this article and
the work of Rajamani & Prewitt (1973b) on two
pentlandite structures appears in the following
paper of this issue,

EXPERIMENTAL

Argentian pentlandite

A crystal fragment of argentian pentlandite,
approximately 0.02 X 0.08 X 0.12 mm, was
examined to ensure a single phase by means of
a Gandolfi x-ray camera. Several levels of re-
ciprocal space were surveyed by means of pre-
cession camera techniques and these showed the
crystal to be single and untwinned. The observed
systematic absences, h -+ k&, h+ 1= 2n + 1, sa-
tisfy the requirements of the space groups Fm3m,

F43m, and F432. However, if it is assumed that
the site occupancies in this structure approach
unity, the atoms in pentlandite must occupy
only certain equivalent sites, and these are the
same for the space groups Fm3m and F432, The

TABLE 1. CRYSTAL DATA FOR ARGENTIAN PENTLANDITE AND PENTLANDITE
Argentian PentTandite Pentlandite

Locality Ore Fault claims, Bird Exact locality unknown
River Mines, Manitoba Sudbury area, Ontario

Microprobe Fe:33.0§5; N1:22.7(2) Fe:30.0(3) Ni:35.1(3)

anal., wt. 2 Ag:13.1(4) S:31.3(4) Co:1.1(1) $:33.0(3)

Chemical :

composition  [%4.83%13.1779%.99%.00 Feq.15M4.74%°0.15%.00

Space group  Fm3m (No. 225) Fm3m (No. 225)

Cell dimen.  «=10.521(3)A a=10.044(2)A

Cale, den- 3 3

sity (z=4) 4.69 g/cm 5.08 g/cm

Linear abs. 1 1

coefficient  139.8 cm™ 161.9 cm

u{MoXa)
Intensity 509 reflections 446 reflections
data measured five times measured twice
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difference between the centric space group Fm3m
and the acentric space group F43m will be dis-
cussed later.

The crystal was mounted in a random orienta-
tion on a 4-circle diffractometer and aligned by
means of the 12 equivalents of the 12,12,0 re-
flection. The cell dimensions at room tempera-
ture were determined by a least-squares fit of
the diffractometer angles 20, y, and o for these
reflections, assuming a triclinic cell. The best fit
was obtained for the cell dimensions ¢ = b =
¢ = 10521(3)A and o = B = vy = 90.00(1) A.

The intensities of an asymmetric set of hkl re-
flections were measured five times, to a 20 limit
of 120°. All measurements were made on a
4-circle Picker diffractometer, using graphite-
monochromatized MoKg, radiation and a 0/20
scan rate of two degrees per minute with the
width adjusted for dispersion. Background counts
were measured for 45 seconds on each side of
the peak scan, and intensities of three linearly-
independent reflections were recorded every 50
measurements to monitor crystal alignment and
instrument stability.

The five independently measured sets of hkl
intensity data were merged into a unique set
using two different procedures. In the first, a
reflection was coded as “observed” if at least
three of the five equivalent reflections had net
intensities above the 159% significance level, i.e.,
I(net) > 1.40(I). Reflections coded as “unob-
served” were set at a threshold intensity of
140(I). Using this criterion, 246 of the 509 re-
flections were considered as “observed” and the
average agreement factor

3 < AIobs>/E < Ions> was 0.015.

In the second procedure, all intensities were
set at the mean net count, except for negative
values which were set at zero. During the aver-
aging process, specific equivalent reflections were
excluded from the final mean intensity if they
differed from a preliminary mean by more than
1.4 times the RMS deviation. The average agree-
ment factor 2 < Alu>/3 < La> for this data
set was 0.021.

No a priori corrections were made for second-
ary extinction and there was no evidence of this
effect during subsequent refinement. Both merged
data sets were corrected for absorption effects
by a generalized Gaussian procedure (Gabe &
O’Byrne 1970), and the structure factors were
calculated with the application of Lorentz and
polarization factors.

Pentlandite

Several fragments from a pentlandite concen-
trate were ground in a Nonius grinder using
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diamond-impregnated paper. A sphere of radius
0.067 mm was examined on Gandolfi and pre-
cession cameras and found to be a single-phase
pentlandite crystal. The same procedures used
for argentian pentlandite to establish the space
group and cell parameters were repeated for this
crystal. The cell dimensions were determined
asa=b=c=1004403)A and a ==y =
90.00(1).

Similar procedures to those described for
argentian pentlandite were then used to merge
and process the two independently measured sets
of hkl intensity data. 382 of the 446 reflections
were considered as “observed” and the average
agreement factor 2 < Alops>/2 < Iops > was
0.016. The average agreement factor X <
ALy >/2 < Ip> for all data was 0.017. No
a priori corrections were made for secondary
extinction but four reflections were excluded
during the subsequent refinement process because
of this effect. Spherical absorption corrections
were applied to both data sets and the structure
factors were calculated with the application of
Lorentz and polarization factors.

StrRUCTURE SOLUTION AND REFINEMENT
Argentian pentlandite

The close similarity of the diffraction patterns
of argentian pentlandite and pentlandite indi-
cated that these two minerals were close to being
isostructural. Accordingly, the first structure fac-
tors were calculated assuming the space group
Fm3m with metal atoms at the sites 4b (V4,V5,%%)
and 32f (.125,.125,.125) and with sulphur atoms
at the sites 8¢ (V4,V4,V4) and 24e (25,0,0). The
over-all isotropic temperature factor was set at
1.0A2. The atomic scattering factors used for the
metal atoms were averaged from the Fe, Ni, and
Ag curves Cromer & Mann (1968), according
to the composition. The S scattering curve was
taken from the same source, The observed/unob-
served data were used for this calculation, and
the resulting structure factor agreement R-value
(2| AFans | /2 | Fops|) was 0.29. A subsequent
electron-density difference map showed two dis-
tinct features: large maxima of up to 110eA—3
at the metal 4b sites and minima of —38eA—3
at the metal 32f sites, with a significant shift
indicated for the 24e sulphur atoms away
from the 4b sites. These residuals were clearly
consistent with the placing of the Ag atoms
at the 4b sites. Further refinement was con-
tinued, therefore, on this basis, although tests
for mixed (AgFeNi) occupancy were made in
the later stages of refinement (discussed below)
metal ordering with Ag and (FeNi) atoms
occupying the 4b and 32f sites, respectively,
proved eventually to be the correct one.

All calculations used in the analysis were per-
formed on a CDC 6400 computer with the
X-RAY system of crystallographic programs
(Stewart et al. 1972). A scattering curve with
0.60f(Fe2+) + 0.40f(Ni**) was prepared from
the values of Cromer & Mann (1968) and the
$2— curve of Tomiie & Stam (1958) was used
for the sulphur atoms. The average anomalous
scattering factors Af(Ag) = —1.0%, Af”(Ag)
= 1.10e, Af (FeNi) = 0.30e, Af”(FeNi) =
095, AF(S) = 0.1le and Af”(S) = 0.12
(Cromer & Libermann 1970) were also included.
Isotropic full-matrix least-squares refinement,
employing F(obs) weights derived from the RMS
deviation of I(net) during the averaging of the
multiple data sets, was applied initially to the
observed/unobserved data set. The structural
parameters converged in 5 cycles, with an R-
value of 0.045. Anisotropic temperature factors
were introduced, and a further 3 cycles of least-
squares refinement reduced the R-value to 0.041.

While the treatment of data in terms of
“observed” and “unobserved” reflections can con-
siderably reduce calculation times, it can also
have an unpredictable effect on the refined pa-
rameters. Refinement was, therefore, repeated
with the second data set where all intensities
were set at their average net value. Although
this resulted in a higher final R-value of 0.111,
the standard deviations of all parameters were
significantly smaller.

Before the refinement could be considered
complete, it was necessary to determine whether
the acentric space group, rather than the centric
one, was correct for this structure. To do this,
the refinement process was repeated with the

space group F43m. However, this resulted in a
lack of convergence in the thermal parameters
for the sulphur 4e(V4,V4,V) and 4d(34,%4.%)
sites plus non-positive definite errors in the least-
squares calculation for x derivatives of the (Fe,
Ni) sites, 16e(x,0,0,) and 16e(x,0,0). These ap-
peared to be due to least-squares correlation
effects (some coefficients were in excess of +0.9)
between S sites 4c and 4d, and between the two
(Fe,Ni) sites in the space group F43m. This, in
conjunction with successful refinement of the
Fm3m structure, was considered to be strong
evidence that the crystal structure is centric.
One further test was required in order to estab-
lish the occupancy of the metal sites, Further
least-squares refinement, in which the population
parameters of the Ag and (Fe,Ni) atoms at the
4h and 32f sites, respectively, were varied within
the compositional and symmetry constraints, was
now performed. Again, this calculation did not
converge due to the high correlation between
population parameters and individual tempera-
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ture factors, neither of which can be convenient-
ly, or for that matter legitimately, fixed. After
several attempts to minimize the correlation
effects it was decided to attempt a “bootstrap”
process in which various proportions of Ag and
(Fe,Ni) atoms were assigned to both the 4b and
32f sites and then the least-squares process was
applied in the usual way. The proportions of
0.9 Ag+ 0.1 (FeNi) at site 4b and 0.0125
Ag + 0.9875 (Fe,Ni) at site 32f provided a higher
final R-value of 0.118. The proportions 0.8
Ag+ 0.2 (FeNi) at site 4b, and the remainder
in site 32f, further increased the final R-value
to 0.127. This cannot be considered a particular-
ly sensitive method of determining occupancies,
but it does provide a result which is consistent
with the coordination about the metal positions,
that is, that the Ag atoms occupy almost exclu-
sively the 4b sites and the (Fe,Ni) atoms the
32f sites.

In the subsequent refinement of pentlandite,
it was found that the application of neutral
metal form factors, in the final cycle of least-
squares refinement, significantly improved the
structure factor agreement of the low-angle re-
flections. A similar improvement was obtained
in the refinement of argentian pentlandite, using
the scattering curve 0.60f (Fe) + 0.40f(Ni). Pos-
sible reasons for this are discussed briefly below.

The final atomic parameters are listed in
Table 2 and provide R-values of 0.109 (all data)
and 0.039 (obs. data only). The final structure
factors are listed in Table 3a.

Pentlandite

A similar but more direct refinement process
was performed with the two sets of pentlandite
data. Using the data set where all reflections
were considered at their measured values, a full-
matrix least-squares anisotropic refinement was

TABLE 2. FINAL ATOMIC PARAMETERS AND STANDARD DEVIATIONS*

Ag-pentlandite Pentlandite
Metal (45) Ag Fe,Ni
afa 5 , 1/2 1/2
I/-”x10 (A%) 1.73(2) 0.77(2)
Metal (32f) Fe,Ni Fe,Ni
z/a 5 0.1269(1} 0.1261(1)
Unx'lo2 1.2121; 0.75(13
UqX10 0.07{1 0.04{1
Sulphur (8c) S S
wfa o 174 174
Uq1x10 1.44(4) 0.95(3)
Sulphur (24e) s s
? wfa 0.2456(2) 0.2629(2)
U-”xloz 1.02(5) 0.68(3
022x10 1.26(3) 0.80(2

*s.d. in parentheses. The anisotropic temperatgrs fac~
tors are expressed in the form T=exp [-Zn(Uua* ne +
2U-12a*b*hk + .01
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performed. In this calculation, the curve 0.47f
(Fe2+) + 0.53f(Ni2+) was prepared from the
values of Cromer & Mann (1968) for the metal
atom sites 4b and 32f, and the S2~ curve of
Tomiie & Stam (1958) was used for the sulphur
atom sites 8¢ and 24e. The least-squares weights
for F(obs.) were derived from the RMS devia-
tion of I(net) during the averaging of the two
data sets. The average anomalous scattering fac-
tors  Af/(Fe,Ni) = 0.29¢, Af”(Fe,Ni) = 0.99,
AF(S) = 0.11e, and Af”(S) = 0.12¢ (Cromer
& Libermann 1970) were also included. In four
cycles of least-squares refinement, the agreement
R-value (all data) was reduced to 0.058.

Two aspects of the data were apparent at this
stage. First, the calculated structure factors for
the most intense reflections were consistently
larger than the measured values, indicating sec-
ondary extinction effects. These reflections showed
a linear relationship of the type I./1,= el + K2
where ¢ = 83 X 10-7 and K = 1.0, but no at-
tempt was made to increase the F(obs.) on this
basis. Instead, the four reflections that were most
affected (i.e., 440, 800, 844, 880) were excluded
from further refinement.

The other noticeable feature of the structure
factor agreement was that the calculated structure
factors for the three reflections with sin 0/}
values less then 0.15 (ie, 111, 200, 220) were
all significantly less then the measured values.
The most obvious explanation for this was that
the ionized form factors used do not describe
the scattering of the metals as adequately as in
the semi-conducting sulphides chalcopyrite (Hall
& Stewart 1973b) and cubanite (Szymanski
1973). The refinement process was repeated with
the neutral curve 0.47f (Fe) +0.53f(Ni) of Cromer
& Mann (1968) for the metals, and the structural
parameters converged to R-values of 0.040 (all
data) and 0.047 (obs. data only). This sug-
gested that the effective charge is less than
the 42 expected, and/or the charge is not dis-
tributed spherically in the outer orbitals.

No attempt was made to test if the acentric

space group F43m rather than Fm3m was the
correct space group, or if the Fe and Ni atoms
were preferentially ordered in the 4b or 32f sites,
because this was considered beyond the scope
or intent of this investigation. However, the
experience with the argentian pentlandite an-
alysis described above and the similarity of the
thermal parameters at the metal sites in this
analysis suggest that this pentlandite is centric
and that the metals are essentially disordered
between both sites,

The final atomic parameters are given in
Table 2 and the structure factors are listed in
Table 3b.



TABLE 3. OBSERVED AND CALCULATED STRUCTURE FACTORS*

a. Argentian pentlandite
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* The structure factors are listed in blocks of
constant hk in columns of Z[Fo] X 10, and [Fc] X 10.
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DeEscripTion oF STRUCTURE

The structure of argentian pentlandite (Fe,
Ni)sAgSs is essentially that of the original pent-
landite-like structure determined by Lindqvist
et al. (1936), but with Ag atoms located at the
octahedrally co-ordinated 4b sites. Argentian
pentlandite does exist in nature with an Ag
content of less than one atom per formula weight
(Ag: 0.77-0.85, Vuorelainen et al. 1972), but has
not been found to date with a value significant-
ly greater than one *. It seems reasonable there-
fore, to assume that these minerals having com-
positions with less than one Ag per formula

S2

Ve
3786(2
(@)~ 2:676(2)
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weight, should have a structure that is identical
to that determined here, except that some of the
Fe and Ni atoms occupy the 4b site in a dis-
ordered arrangement with the Ag atoms. Because
of stereochemical reasons discussed below, it
seems unlikely that Ag atoms will occupy to a

* The slight excess of one Ag per formula weight
reported by Scott & Gasparrini (1973) of 1.01-1.08
and by Shishkin et al. (1971) of 1.05-1.16 cannot be
considered significant because of limitations in mi-
criprobe accuracy. This also applies to the argentian
pentlandites from the Sudbury areq, (Karpenkov et al.
1973).

Fie. 2. The coordination of each atom type in argentian pentlandite (a) and
pentlandite (b), showing the interatomic distances (in Angstroms) and
angles (in degrees). The estimated standard deviations are given in paren-
theses, The atoms are shown as thermal ellipsoids, plotted at the 99%
probability limit (Johnson 1965).
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significant extent the tetrahedrally-coordinated
32f sites for any of the known argentian pent-
landite compositions. Consistent with the argu-
ment that it is energetically favourable for the
octahedrally-coordinated 4b site to be occupied
by an atom of larger ionic radius, is the min-
eralogical observation that argentian pentlandite
seems to occur in mineral deposits in preference
to other silver sulphides if both Ag and pent-
landite are present (D. C. Harris pers. comm.
1973).

The atomic parameters of argentian pentland-
ite and pentlandite, listed in Table 1, and bond
lengths and angles, given in Table 4 and Figures
%a and 2b, show clearly that, although these
two structures are similar, there are significant
differences which arise primarily from the pre-
sence of the Ag atom at the 4b site.

s2
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/ v
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In pentlandite the S(24e) atoms are 0.3A
closer to the 4b metal octahedral site than in
argentian pentlandite, consistent with the much
larger effective ionic radius of Ag (~ 1.3A) over
that of Fe and Ni (~ 0.7A), This argument is
supported by the much closer agreement of the
distances between the S atoms about the metal
tetrahedral site for the two structures, though

TABLE 4. COMPARISON OF SELECTED INTERATOMIC DISTANCES AND
ANGLES IN PENTLANDITE AND Ag-PENTLANDITE
Ag-pentlandite Pentlandite

1(4b)-$(24e) 2.676(2) A 2.382(2) A
u(325)-S(24e) 2.264(2) 2.257&2)
#(327)-5(8e) 2,243 2; 2.156(2)
(327} -u(32f) 2.670(2 2.533(2)
S(8e)-4(327)-5(24e) 111.26(3)° 107.24(3)°
S(24e)-u(327)-S(24¢) 107.63 3; 111.61(3
M 4b)-$(24e§-M(32f) 123.47? 127.50(2
u(327)-S(28e)-1(32F) 72.29(5) 68.25(5

2b

Q4

(Fei 2

(Fe,Ni)p
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the argentian pentlandite values are significant-
ly larger. These, and the larger metal-metal dis-
tance between the 32f sites (Fig. 3), may be
expected in argentian pentlandite because of the
expansion of the sulphur octahedron due to the
Ag atom. As a result, the shortest M(32f)-M(32f)
distance of 2.670(2) in argentian pentlandite is
significantly longer than both the distance of
2.533 (2)A in pentlandite, and the metallic Fe-
Fe and Ni-Ni distances of ~2,5A. This, coupled
with the weaker (Fe,Ni)-Sl-(Fe,Ni) ligand con-
figuration ( (Fe,Ni)-Sl = 2.243(2), (Fe,Ni) —
(Fe,Ni) = 3.663(2) A compared to 2.156(2) and
3.520(2) in pentlandite), suggests that argentian
pentlandite may have significantly different elec-
trical properties from those of pentlandite,

The anisotropic thermal parameters of argen-
tian pentlandite and of pentlandite are listed
in Table 2, and are plotted as thermal ellipsoids
in Figure 2. The thermal motion of all atoms
is essential isotropic. However, in both structures,
the S(8¢c) atoms show a slight decrease in vibra-
tional amplitude along the M(4b)-S(8c) bond
direction. This is consistent with the anisotropic
environment of this atom. The average tempera-
ture factors are, however, significantly lower in
pentlandite than in argentian pentlandite, con-
sistent with the closer packing in the former
structure and its higher density. The similarity

THE CANADIAN MINERALOGIST

of the temperature factors for sites 4b and 32f
in pentlandite supports the view that the Fe and
Ni atoms are disordered throughout these sites.
The temperature factor of the Ag atom is higher
than that for (Fe,Ni) atoms and may well re-
flect a discrepancy in the high-angle region of
the silver form factors, The temperature factors
in these two structures are similar to those ob-
served in other structures with sulphur cubic
close-packing such as chalcopyrite (Hall &
Stewart 1973b) and cubanite (Szymanski 1973).
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