# SHORTER COMMUNICATIONS

# PINCHITE, A NEW MERCURY OXYCHLORIDE FROM TERLINGUA, TEXAS

B. D. STURMAN AND J. A. MANDARINO Department of Mineralogy, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6

#### INTRODUCTION

The mercury deposits near Terlingua, Brewster County, Texas, have been a long-standing source of interesting mineral specimens. In 1973 a small specimen from Terlingua was submitted to us by Mr. William W. Pinch of Rochester, New York, who had possessed the specimen for several years. Mr. Pinch, an experienced private collector, directed our attention to minute crystals which he believed to be a new mineral species, an opinion which our study readily confirmed. In recognition of Mr. Pinch's observations and his generous contributions to many of the major mineralogical museums of the world, we have named the mineral pinchite. The mineral and name have been approved by the Commission on New Minerals and Mineral Names of the I.M.A. Type specimens (milligrams) are preserved in the Royal Ontario Museum (No. M33258), in the private collection of Mr. Pinch, and in the Smithsonian Institution, Washington, D.C.

## GENERAL APPEARANCE AND PHYSICAL PROPERTIES

Pinchite occurs as euhedral crystals up to 1 mm in size. Two habits have been observed and

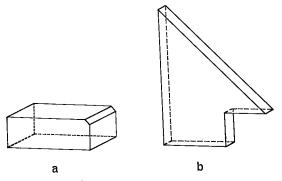



FIG. 1. Pinchite crystals showing (a) the more common habit and (b) the less common type.

are depicted in Figure 1. The forms present are:  $\{001\}$ ,  $\{010\}$ ,  $\{100\}$ , and  $\{012\}$ .

The mineral is black to dark brown and has a reddish brown streak. It is quite soft. No cleavage was observed.

Thin fragments of the mineral are transparent and show strong pleochroism from red to almost opaque black. No optical constants could be measured. The refractive indices are higher than 2.00 and the birefringence is very strong.

Pinchite is associated with montroydite (HgO) and terlinguaite (Hg2OCl).

### X-RAY AND CHEMICAL DATA

The first clue as to the identity of pinchite was the agreement of its single crystal data with those determined by Weiss *et al.* (1954) for synthetic HgCl<sub>2</sub>•4HgO. The data for pinchite determined by the aprecession and Weissenberg methods in this study are: space group *Ibam*, a = 11.6, b = 6.07, and c = 11.7 Å. The data of Weiss *et al.* (1954) for synthetic HgCl<sub>2</sub>• 4HgO are: space group *Ibam*,  $a = 11.5_0$ ,  $b = 6.0_2$  and  $c = 11.7_5$ Å

A small amount of the synthetic HgCl<sub>2</sub>•4HgO studied by Weiss *et al.* (1954) was kindly furnished to the writers by Dr. Gunter Nagorsen of the University of Munich. The x-ray powder diffraction data obtained for this material and for pinchite are presented in Table 1. The cell parameters of pinchite, refined from the x-ray powder data using the programme of Evans *et al.* (1963), are: a = 11.54, b = 6.08, and c = 11.64 Å.

An x-ray fluorescence scan of a few small crystals of pinchite detected only mercury. Through the kindness of Dr. R. G. V. Hancock, Department of Chemical Engineering, University of Toronto, a neutron activation analysis of pinchite was performed using synthetic pinchite and HgCl<sub>2</sub> as standards. The formula derived from the analysis (Table 2) agrees well with HgO C1 Br

| synth        | etic HgCl4HgO     | pinchi | te (ROM no. M33258)                  |            |
|--------------|-------------------|--------|--------------------------------------|------------|
| I            | <sup>d</sup> obs. | I d    | <sup>d</sup> obs. <sup>d</sup> calc. | hkl        |
| 10           | 5.85              | 10     | 5.82 5.82                            | 002        |
| 60           | 3,95              |        | 3.94 3.94                            | 211        |
| 40           | 3,261             |        | 3.256 3.251                          | 310        |
| 50           | 2.926             |        | 2.919 2.910                          | 004        |
| 100          | 2,843             |        | 2.846                                | 213        |
|              |                   |        | 2.637 { 2.838                        | 312        |
| 80           | 2.694             |        | 2.695 2.696                          | 022        |
| 5            | 2.595             |        | 2.597 2.598                          | 204        |
| 5<br>3<br>20 | 2.547             | 2      | 2.549 2.543                          | 411        |
| 20           | 2.176             |        | 2.169 2.168                          | 314        |
| 5            | 2.098             |        | 2.094 2.093                          | 420        |
| 10           | 2.053             |        | 2.044 2.049                          | 404        |
| 10           | 1.974             |        | 1.968 1.969                          | 422        |
| 15           | 1.929             | 12     | 1.923 1.923                          | 600        |
| 70           |                   |        | 1.825                                | 125        |
| 10           | 1.825             | 10     | 1.822 1.825                          | 116        |
|              | 7 705             |        | l 1.817                              | 521        |
| 15           | 1.796             |        | 1.791 1.793                          | 330        |
| 10           | 1.712             |        | 1.707 1.714                          | 332        |
| 12           | 1.673             | 12     | 1.668 1.666                          | 325        |
| 15           | 1.641             |        | - 1.000                              | 316        |
| 10           | 1.610             |        |                                      | 026<br>406 |
| 15           | 1.570             |        | 1.610 1.610<br>1.568 1.566           | 622        |
|              |                   |        | 1 595                                | 433        |
| 10           | 1.527             | 15     | 1.524 { 1.523                        | 530        |
| 5            | 1.426             | 5      | 1.422 1.423                          | 426        |
| 10           | 1.349             |        | 1.348 1.348                          | 044        |
| 5            | 1.250             | 5      | 1.249 1.249                          | 732        |
| 5            |                   |        | 1 232                                | 725        |
| 5            | 1,232             | 5      | $1.231 \\ 1.230$                     | 716        |
| 15           | 1.137             | 15     | 1 125 (1.137                         | 352        |
| 10           | 1 * 1 - 1 - 1     | 15     | 1.135 { 1.137                        | 329        |
|              |                   |        |                                      |            |

TABLE 1. X-RAY POWDER DIFFRACTION DATA FOR SYNTHETIC HgCl<sub>2</sub>·4HgO AND PINCHITE (Camera diameter 114.6 mm, CuXa rad.)

| the theoretical formula of Hg <sub>5</sub> O <sub>4</sub> Cl <sub>2</sub> . With $Z =$ |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|--|
| 4, the calculated density is $9.25 \text{ g/cm}^3$ (natural)                           |  |  |  |  |  |
| and 9.37 g/cm <sup>3</sup> (synthetic). Weiss et al. (1954)                            |  |  |  |  |  |
| obtained a density of 9.01 g/cm <sup>3</sup> by pycnometer.                            |  |  |  |  |  |
| In the present study, ten small crystals mea-                                          |  |  |  |  |  |
| sured with the Berman balance gave a density                                           |  |  |  |  |  |
| of 9.5 g/cm <sup>3</sup> .                                                             |  |  |  |  |  |

| TABLE 2. CHEMICAL ANALYSIS OF PINCHITE          |          |                          |                       |  |  |
|-------------------------------------------------|----------|--------------------------|-----------------------|--|--|
| theoretical wt %<br>for HgCl <sub>2</sub> .4HgO | pinchite | molecular<br>proportions | atoms in<br>unit cell |  |  |
| 95.18                                           | 94.5     | 0.4363                   | Hg 20.00              |  |  |
| 6.23                                            | 6.3      | 0.1777                   | CI 8.15               |  |  |
|                                                 | 0.2      | 0.0025                   | Br 0.11               |  |  |
| 101.41                                          | 101.0    | •                        | 0 15.99               |  |  |
|                                                 |          |                          |                       |  |  |

 less 0=(C1+Br)
 1.41
 1.4
 0.0875

 total
 100.00
 99.6
 100.00

Formula: Hg20.00<sup>0</sup>15.99<sup>C1</sup>8.15<sup>Br</sup>0.11 or 4[Hg5.00<sup>0</sup>4.00<sup>C1</sup>2.04<sup>Br</sup>0.03]

#### ACKNOWLDGEMENTS

The writers are pleased to acknowledge the assistance given them by Dr. R. G. V. Hancock for the neutron activation analysis and by Dr. Gunter Nagorsen for the sample of synthetic  $Hg_sO_4Cl_2$ . Particular thanks are due to Mr. W. W. Pinch who supplied the natural material and recognized it as a possible new species.

#### REFERENCES

- EVANS, J. T. JR., APPLEMAN, D. E. & HANDWERKER, D. S. (1963): The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method. *Amer. Cryst. Assoc. Ann. Mtg.*, Cambridge, Mass. *Program Abstr.* 42-43.
- WEISS, A., NAGORSEN, G. & WEISS, A. (1954): Zur Kenntnis des Quecksilber (II) oxychlorids HgCl<sub>2</sub>•4HgO. Uber Quecksilberhalogenide (III). Zeit. Naturfoschg. 9b, 81.

Manuscript received May 1974.