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ABSTRACT

Data determined using a multianvil press are given for liquidus phase relations in the system diopside – forsterite – enstatite
(CaMgSi2O6 – Mg2SiO4 – MgSiO3) and extend for a limited distance into the larger ternary system diopside – forsterite – quartz
at 5.1 GPa. In the system diopside–enstatite, which cuts across the system diopside – forsterite – quartz and divides it into two
smaller ternary systems, the peritectic between clinopyroxene and orthopyroxene occurs at Di43En57 and is defined by the reac-
tion 100 cpx = 64 opx + 36 liq. An azeotropic minimum occurs on the clinopyroxene liquidus at Di67En33. In the ternary system
diopside – forsterite – enstatite, a peritectic occurs at Di43Fo46Qtz11 and is defined by the reaction 69 opx + 31 liq = 95 cpx + 5 fo
(wt.%). These ternary phase relations can be used to model three important aspects of the volatile-free phase relations and melting
behavior of natural peridotite with a high degree of accuracy. (1) Olivine, orthopyroxene, and clinopyroxene occur at the solidus
at 2 GPa, but orthopyroxene is absent at the solidus at 5.1 GPa. (2) During equilibrium melting at 5.l GPa, orthopyroxene appears
just above the solidus and then disappears again at higher temperatures. At both 2 and 5.1 GPa, the proportions of phases in the
ternary system at various degrees of melting are close to the proportions observed in the melting of natural peridotite by Walter
(1998). (3) As pressure increases, MgO increases and SiO2 decreases in initial melts.
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SOMMAIRE

Nous présentons des données sur les relations de phases sur le liquidus pour le système diopside – forstérite – enstatite
(CaMgSi2O6 – Mg2SiO4 – MgSiO3), avec extension limitée dans le système ternaire plus complet, diopside – forstérite – quartz;
elles ont été déterminées à 5.1 GPa avec un appareil à enclumes multiples. Dans le système diopside–enstatite, qui recoupe le
système diopside – forstérite – quartz et le subdivise en deux systèmes ternaires plus petits, la relation péritectique entre
clinopyroxène et orthopyroxène se situe au point Di43En57; cette réaction serait 100 cpx = 64 opx + 36 liq. Un minimum azéotrope
se trouve sur la partie du liquidus où le clinopyroxène est présent, à Di67En33. Dans le système ternaire diopside – forstérite –
enstatite, une relation péritectique a lieu à Di43Fo46Qtz11; cette réaction serait 69 opx + 31 liq = 95 cpx + 5 fo (proportions
pondérales). Nous nous servons de ces relations de phases ternaires pour proposer un modèle de trois aspects importants des
relations en l’absence d’une phase volatile et du mode de fusion de péridotites naturelles avec un degré élevé de justesse. (1)
Olivine, orthopyroxène, et clinopyroxène se trouvent sur le solidus à 2 GPa, mais l’orthopyroxène est absent au solidus à 5.1 GPa.
(2) Au cours d’une fusion à l’équilibre à 5.l GPa, l’orthopyroxène apparait à une température légèrement supérieure au solidus et
disparait de nouveau à une température plus élevée. Aux deux pressions, 2 et 5.1 GPa, la proportion des phases dans le système
ternaire à divers taux de fusion se rapproche des proportions observées au cours de la fusion de péridotite naturelle par Walter
(1998). (3) A mesure qu’augmente la pression, la proportion de MgO augmente et celle de SiO2 diminue dans le liquide initial.

(Traduit par la Rédaction)

Mots-clés: manteau, fusion, relations de phases, péridotite, diopside, forstérite, enstatite.
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Presnall (1998a). A semi-sintered 18 mm MgO–
5%Cr2O3 octahedron was used as the pressure medium
enclosed within WC cubes with 11 mm truncations.
Heating was provided by a stepped graphite furnace,
which gives a temperature gradient of about 20°C across
the capsule, as determined by experiments on the melt-
ing of diopside.

The pressure calibration curve used in this study
(Fig. 1) is a straight line defined by the quartz–coesite
transition (Hemingway et al. 1998) and the garnet–
perovskite transition for CaGeO3 (Susaki et al. 1985).
Extrapolation of this line to zero oil pressure gives a
slightly positive value for pressure on the sample. Zero
oil pressure at zero load has not been used in defining
the curve because the weight of the large overhead ram
and guideblock assembly add a small but undetermined
pressure in addition to the oil pressure. Because we have
used the quartz–coesite curve of Hemingway et al.
(1998) rather than that of Bohlen & Boettcher (1982)
used earlier in this laboratory, our new calibration curve
(Fig. 1) gives slightly higher pressures for a given load
at pressures less than 6 GPa. Also, we have based the
new calibration curve on a new point for the quartz–
coesite transition at 1200°C (Fig. 1), with results that
are consistent, within limits of experimental error, with
our previous point at 1100°C. Conversion of pressures
in previous publications from this laboratory (Dalton &
Presnall 1997, 1998a, b) to the current calibration curve
can be made using the equation, Pnew (GPa) = 0.932 Pold
(GPa) + 0.405. The maximum difference in the 3–7 GPa
range is 0.2 GPa.

INTRODUCTION

The ternary system diopside – forsterite – enstatite
(CaMgSi2O6 – Mg2SiO4 – MgSiO3) shows phase rela-
tions among the three most important minerals of the
upper mantle and has long been employed as a basis for
modeling the generation and crystallization of basaltic
magmas and the compositional trends of their residues
(Bowen 1914, 1928, Kushiro 1968, 1969, 1972a, b,
1975, Carter 1970, Dick & Fisher 1984, Dick et al.
1984). This system also has relevance to komatiitic
magmas, which have generally been considered to be
generated at substantially greater depths than those rel-
evant to the generation of basaltic magmas (Scarfe &
Takahashi 1986, Herzberg 1992, Herzberg & O’Hara
1998, Gudfinnsson & Presnall 1996). Also, it has been
argued that the low-temperature garnet peridotite xeno-
liths from southern Africa may be residues produced by
the removal of komatiitic liquids at pressures above
5 GPa (Boyd 1987, Boyd & Mertzman 1987, Canil
1992). However, Parman et al. (1997) proposed a mod-
erate-pressure, hydrous origin for komatiites. In order
to understand these deep melting processes, it is impor-
tant to know the phase relations of mafic systems at
pressures greater than 4 GPa, just as experimental stud-
ies have clarified many aspects of the origin of basaltic
magmas at lower pressures. To this end, we present a
determination of liquidus phase relations in the ternary
system diopside – forsterite – enstatite at 5.1 GPa.

EXPERIMENTAL AND ANALYTICAL METHODS

All experiments were conducted with a 1500-tonne
multianvil press designed and built at the University of
Texas at Dallas. The design includes an overhead ram,
a split-cylinder guideblock, and anvil drivers free to
rotate and self-align within the cylindrical cavity. The
sample assembly is the same as that shown by Dalton &

FIG. 1. Pressure calibration curve. Abbreviations are: Gt, gar-
net; Pv, perovskite; Qtz, quartz; Coe, coesite.
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utes are adequate for equilibrium crystallization of
forsterite. To test the time for equilibrium melting of
both forsterite and clinopyroxene, we have done one up-
temperature reversal experiment on composition
CMAS–7. The initial conditions were 1810°C for 20
minutes to produce a completely crystalline mixture of
forsterite and clinopyroxene. The temperature was then
raised to 1940°C and held for another 20 minutes with-
out taking the sample out of the press. The result was all
quench crystals, a successful reversal.

THE SYSTEM DIOPSIDE–ENSTATITE

Phase relations for the system diopside–enstatite are
shown in Figure 2 and are based on experimental re-
sults given in Table 2. The melting temperature of pure
diopside, 1886°C, is an average of the data of Boyd &
England (1963) and Williams & Kennedy (1969). This
average deviates from each curve by 24°C, which is only
slightly greater than the experimental uncertainty. The
melting point of pure enstatite, 1965°C, is calculated
from the equation of Presnall & Gasparik (1990) and is
within experimental error of the determination of Boyd
et al. (1964).

The clinopyroxene liquidus (Fig. 2) is very flat. Al-
though the temperature difference between the

Bulk compositions of starting mixtures used in the
experiments are listed in Table 1. Mixtures were pre-
pared by mixing reagent-grade SiO2, MgO, and CaCO3
powders previously dried at 1200, 1250, and 450°C,
respectively. Each mixture, prepared as a 5-gram batch,
was fired at 1500–1600°C for 2 hours and then ground
to a fine powder (<5 �m). Starting mixtures were loaded
into Pt capsules, which were closed by folding immedi-
ately after being dried at 1000°C. The entire octahedron
assembly with the sample enclosed was fired at 1000°C
for 1 hour in nitrogen immediately before each experi-
ment to remove any traces of water. Samples were
slowly pressurized to 5.1 GPa, heated at 200°C/minute
to the desired temperature, held within ±2°C of the de-
sired temperature by a Eurotherm 818P controller, and
quenched by turning off the power supply. Tempera-
tures were measured by a W3Re–W26Re thermocouple
with no correction for the effect of pressure on the ther-
mocouple emf. Reproducibility of temperature and pres-
sure is approximately ±20°C and ±0.1 GPa.

Phases were identified in polished sections using
both optical microscopy and back-scattered electron
imaging with a JEOL 8600 electron microprobe at the
University of Texas at Dallas. Phase compositions were
determined by wavelength-dispersion analysis using a
10 nA beam and 15 keV accelerating voltage. Crystal-
line phases were analyzed with a focused beam. For
quenched liquids, which were totally transformed into
quenched crystals, a defocused beam 5–15 �m across
was used. X-ray counts were accumulated until a stan-
dard deviation of 0.1% counting statistics or 40-second
counting time was achieved for all elements in all
phases. The ZAF correction program was applied to all
results.

ATTAINMENT OF EQUILIBRIUM

Experiments were held at temperature for 20 to 31
minutes (Table 2). A combination of previous experi-
ence and one new reversal experiment was used as a
guide to run times appropriate for achieving equilibrium.
For enstatite melting, Presnall et al. (1973) found at 2.5
GPa that the melting temperature remains unchanged
for run durations ranging from 10 minutes to 48 hours.
All of the run temperatures in this study (Table 2) are at
least 50°C higher than the melting temperature of
1787°C at 2.5 GPa. On the assumption that composi-
tional effects are small, orthopyroxene–liquid equilib-
rium should occur in less than 10 minutes. For
clinopyroxene melting, our experience in calibrating
thermocouples against the melting point of pure diop-
side at 1 atm. has shown that run times of 10 minutes
are more than is needed. The experiments in this study
are all at least 450°C higher, where the time required
for equilibrium would be much less than 10 minutes.
We find quench crystals of forsterite in runs ranging
down to the lowest temperature used (1850°C, run 134).
Therefore, we believe that our run times of 20–30 min-

FIG. 2. Phase relations in the MgSiO3–CaMgSi2O6 system at
5.1 GPa. Analyzed phase-compositions are shown for liq-
uids (open rectangles) and coexisting pyroxenes (filled rec-
tangles). The width of the rectangles is two standard errors
of the mean, and the height is the estimated uncertainty in
temperature, ±20°C. The height of one filled rectangle has
been reduced to reveal the uncertainty of the coexisting liq-
uid. The melting point of MgSiO3 is taken from the equa-
tion of Presnall & Gasparik (1990), and is within the uncer-
tainty of the value determined by Boyd et al. (1964). The
melting point of CaMgSi2O6 is the average of the values
given by Boyd & England (1963) and Williams & Kennedy
(1969). Abbreviations are: opx, orthopyroxene; cpx,
clinopyroxene; liq, liquid.
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clinopyroxene liquidus and the solidus is within experi-
mental uncertainty, a temperature minimum is placed at
Di67En33 on the basis of (1) the nearly identical compo-
sitions of the starting mixture and the coexisting
clinopyroxene and liquid for run 218 (Table 2), and (2)
experiments on two bulk compositions lying on oppo-
site sides of the temperature minimum that show liquid
compositions closer to the minimum than the coexist-
ing clinopyroxene (runs 132 and 294, Table 2). The lo-
cation of this minimum is essentially identical to that of
the minimum found by Kushiro (1969) at 2 GPa. The
reaction at the cpx – opx – liq peritectic (Fig. 2) is 100
cpx = 64 opx + 36 liq, and the peritectic point occurs at
Di43En57. Di and En are used throughout to indicate pure
diopside (CaMgSi2O6) and enstatite (MgSiO3). Solid
solutions are indicated by cpx and opx. Phase and end-
member proportions are expressed by weight.

At the solidus, orthopyroxene contains 10.9 wt.%
CaMgSi2O6, a value very close to that determined at 2
GPa (10 wt.% CaMgSi2O6) by Kushiro (1969) and at 3
GPa (8.5 wt.% CaMgSi2O6) by Davis & Boyd (1966).
Gasparik (1990) thermodynamically modeled pyroxene
phase-relations and showed pigeonite and diopsidic
clinopyroxene solid solutions merged as a single
clinopyroxene phase at pressures greater than 2 GPa.
Gasparik (1996) also studied solidus phase-relations on
the Di–En join at pressures from 7 to 22.4 GPa. At 5.1
GPa, compositions of the solidus clinopyroxene, the

peritectic point, and the azeotropic minimum from this
study are all consistent with extrapolation of his data.

THE SYSTEM DIOPSIDE – FORSTERITE – ENSTATITE

Figure 3 shows the liquidus surface of the system
diopside – forsterite – enstatite at 5.1 GPa. The eutectic
point for the binary system forsterite–enstatite is from
Presnall et al. (1998), and the melting temperature of
forsterite is from Davis & England (1964). The bound-
ary line between the primary phase-fields of forsterite
and clinopyroxene crosses the forsterite–diopside join
at Fo31Di69, 1870°C. The small differences in tempera-
ture among this piercing point, the melting point of pure
diopside, the peritectic point on the diopside–enstatite
join, and the liq – fo – cpx – opx invariant point indicate
a relatively flat liquidus surface for the clinopyroxene
primary phase-field. As three-phase triangles always
show the same orientation over the entire length of the
forsterite–clinopyroxene boundary line (Fig. 4), the tem-
perature minimum on the clinopyroxene liquidus along
the diopside–enstatite join does not extend to the
forsterite–clinopyroxene boundary line. Run 153
(Table 2) contains all the phases at the invariant point,
but the liquid is not sufficiently abundant for a good
analysis. Therefore, we have located the composition
of the liquidus invariant point (Di43Fo46Qtz11, 1890 ±
20°C) by determining the positions of the three bound-

FIG. 3. Liquidus phase-relations for the system diopside –
forsterite – silica at 5.1 GPa. Heavy lines are boundary
lines, and light lines are liquidus isotherms in °C. The
dashed triangle shows compositions of crystalline phases
in equilibrium with liquid at the clinopyroxene – forsterite
– orthopyroxene peritectic. Data points are liquid composi-
tions given in Table 2. Abbreviations are as in Figure 2
except that fo is forsterite.

FIG. 4. Three-phase triangles showing the equilibria involv-
ing liquid and two crystalline phases. Compositions of liq-
uids along the forsterite–orthopyroxene and forsterite–
clinopyroxene boundary lines and compositions of
pyroxenes have been moved slightly to the relevant bound-
ary-line or pyroxene join along lines of constant
CaMgSi2O6. Similarly, liquids on the orthopyroxene–
clinopyroxene boundary line have been moved slightly
along lines of constant Mg2SiO4:SiO2 ratio.
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ary lines extending from the invariant point. On the ba-
sis of this composition and the compositions of
forsterite, orthopyroxene, and clinopyroxene from run
153, the peritectic-point reaction is 69 opx + 31 liq = 95
cpx + 5 fo.

Liquidus fractionation lines (Presnall 1969) in Fig-
ure 5 are based on the three-phase triangles in Figure 4.
These lines show liquid paths followed during fractional
crystallization for any starting composition in the sys-
tem. No arrows occur on the boundary line between the
orthopyroxene and clinopyroxene primary phase-fields
because liquid compositions do not move along this line
during fractional crystallization.

The effect of increasing pressure on liquidus bound-
ary lines is shown in Figure 6. Our data extend the
lower-pressure data indicating that increasing pressure
causes the forsterite field to contract relative to the
clinopyroxene and orthopyroxene fields, and causes the
orthopyroxene field to contract relative to the
clinopyroxene field.

MODELING OF MANTLE MELTING

At low to moderate pressures, low-melt-fraction
magmas generated from mantle lherzolite are in equi-
librium with both clinopyroxene and orthopyroxene.
Both pyroxenes are present at the solidus. Takahashi
(1986) was the first to show that at higher pressures,
orthopyroxene disappears from the solidus, and Walter
(1998) showed that for a fertile lherzolite, this disap-
pearance occurs at about 3.3 GPa. In addition, he found
that with increasing degrees of isobaric melting at higher

pressures, orthopyroxene reappears and then disappears
again at still higher degrees of melting. Milholland &
Presnall (1998) showed that at similar pressures, the
same melting behavior occurs for model lherzolite in
the system CaO–MgO–Al2O3–SiO2, and these features
were subsequently also discussed by Herzberg &
O’Hara (1998). Here, we show that in the ternary sys-
tem diopside – forsterite – enstatite, the quantitative
details of this melting sequence closely match those for
the natural peridotite studied by Walter (1998) and pro-
vide a simple and rigorous understanding of this seem-
ingly enigmatic behavior.

In Figure 7a, it can be seen that at 2 GPa, ortho-
pyroxene, clinopyroxene, and olivine occur at the soli-
dus for the model mantle composition M. On heating,
21% of liquid e is produced as the average composition
of the crystals moves from M to n. At n, clinopyroxene
is entirely consumed. Further heating produces liquids
with compositions from e to g as the crystal path is ex-
tended to s, where orthopyroxene is entirely consumed.
The remaining liquids, which range from g to M, are in
equilibrium only with forsterite, which changes very
slightly in composition from s to Mg2SiO4. Table 3 lists
these changes and the melt proportions at each stage.
Also shown in Table 3 is a comparison with the melting
behavior of peridotite KR4003, as extrapolated from the
data of Walter (1998) at 3–7 GPa. The identical se-
quence of phase assemblages and the closely similar

FIG. 5. Liquidus fractionation lines. Arrows show directions
of movement of liquids during perfect fractional crystalli-
zation.

FIG. 6. Comparison of liquidus boundary lines as a function
of pressure. Boundary lines at 1 atm are from Bowen
(1914), Schairer & Yoder (1962), Kushiro & Schairer
(1963), and Longhi & Boudreau (1980). Those at 2 GPa
are from Kushiro (1969). For simplicity, all of the Ca-poor
pyroxene phases at 1 atm (Kushiro 1972a, Longhi &
Boudreau 1980, Carlson 1988) and 2 GPa (Kushiro 1969)
are included as part of the opx field.
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melting proportions at each stage show that at this pres-
sure, the ternary system diopside – forsterite – enstatite
models the melting behavior of natural peridotite very
well.

At 5.1 GPa, the equilibrium melting behavior is quite
different (Fig. 7b). The crystalline assemblage at the
solidus is forsterite + clinopyroxene. Orthopyroxene is
absent because of the marked increase in the proportion
of MgSiO3 in clinopyroxene at this pressure. The first

liquid is produced on the forsterite–clinopyroxene
boundary line at k, and increasing temperature drives
the bulk composition of the crystalline residue along the
crystal path to b, where orthopyroxene first appears.
Further heating produces liquids at the peritectic p, and
the bulk composition of the residue is driven toward c
as the proportion of orthopyroxene increases. At c,
clinopyroxene disappears and leaves a residue consist-
ing of orthopyroxene and forsterite. As temperature in-
creases further, the liquid moves to s as the average
composition of the crystals moves to d. The proportion
of orthopyroxene in the residue decreases during this
stage of melting and reaches zero at d. The final stage
of melting produces liquids from s to M and occurs in
the presence only of forsterite, which changes slightly
in composition from d to pure Mg2SiO4.

Table 4 shows a comparison of the melting behavior
of the peridotite used by Walter (1998) and the ternary
model peridotite at 5.1 GPa. Except for the presence of
garnet (shown in parentheses) in the natural composi-
tion, the sequence of phase appearance and disappear-
ance is identical, and the melt proportions are again

FIG. 7. Equilibrium melting of model lherzolite M at (a) 2 GPa and (b) 5.1 GPa. Dashed lines and liquidus boundary lines are
the same as in Figures 3 and 6. The location of the eutectic between forsterite and enstatite at 2 GPa is from Presnall et al.
(1998). For simplicity, the small field of pigeonitic clinopyroxene of Kushiro (1969) at 2 GPa is omitted and included as part
of the opx field. Because this field is small and pigeonitic clinopyroxene is close in composition to enstatite, the melting
behavior is affected only slightly by this simplification.
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remarkably similar. Thus, although the presence of gar-
net slightly degrades the comparison with natural peri-
dotite melting, it can be seen that other aspects of the
melting behavior of the ternary system are essentially
identical to those of the natural composition.

There is another feature of the diopside – forsterite –
enstatite system that makes it a useful model of melting
behavior in the mantle. Figure 6 shows that the compo-
sition of the peritectic becomes increasingly enriched
in MgO and depleted in SiO2 as pressure increases. This
feature is well known from previous studies at lower
pressures, and the present data at 5.1 GPa shows that
the trend continues at higher pressures. It is important
to note, however, that compositions of initial melts do
not lie on the SiO2-poor side of the forsterite–diopside
join and therefore remain in the tholeiitic portion of the
basalt tetrahedron of Yoder & Tilley (1962) at all pres-
sures at least up to 5 GPa. The same thing occurs in the
four-component system CaO–MgO–Al2O3–SiO2
(CMAS) (Presnall et al. 1978, 1979, Weng & Presnall
1995, Gudfinnsson & Presnall 1996, Milholland &
Presnall 1998, Herzberg & Zhang 1998, Presnall 1999,
Liu & Presnall 2000). However, when Na2O is added to
the CMAS system, initial melts produced at pressures
from about 1.2 to 3.5 GPa lie on the alkaline side of the
olivine – diopside – plagioclase plane (Walter & Presnall
1994). Thus although the ternary system elegantly
models many aspects of peridotite melting, even in a
semi-quantitative way, other aspects are not, and cau-
tion is required.
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