PAKHOMOVSKYITE, Co₃(PO₄)₂•8H₂O, A NEW MINERAL SPECIES FROM KOVDOR, KOLA PENINSULA, RUSSIA

VICTOR N. YAKOVENCHUK, GREGORY YU. IVANYUK, YULIA A. MIKHAILOVA AND EKATERINA A. SELIVANOVA

Geological Institute, Kola Science Center, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia

SERGEY V. KRIVOVICHEV§

Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia

Abstract

Pakhomovskyite, Co₃(PO₄)₂•8H₂O, is a new mineral species found in dolomite carbonatite cutting phoscorites in the Iron-Ore Complex, Kovdor, Kola Peninsula, Russia. The mineral was found as groups (up to 3×2 cm) of small spherulites (up to 0.5 mm diameter) and rosettes (up to 0.05 mm diameter) of well-shaped tabular crystals growing on walls of leached fissures in dolomitic carbonatite. The associated minerals are bakhchisaraitsevite, bobierrite, magnetite, kovdorskite, rimkorolgite, juonniite, norsethite, chalcopyrite, phlogopite, pyrrhotite and pyrite. Pakhomovskyite is bright pink, with a dull luster in aggregates, and pearly luster in separate flakes. The streak is pink. The spherulites are translucent, non-fluorescent. The Mohs hardness is about 2. The mineral is flexible in thin flakes. Cleavage is perfect on {010}, and the fracture is stepped. Density is 2.71(2) g/cm³ (measured using heavy liquids) and 2.71 g/cm³ (calculated). Pakhomovskyite is biaxial (+), α 1.581(2), β 1.600(2), γ 1.631(2) (589 nm), 2V respectively. (meas.) 75–80°, 2V (calc.) 77°. The dispersion is weak, r < v. Optical orientation: X = b, $Y \land c$ in the range 22–23° in the obtuse β angle, with pleochroism from pale pink on Y to pinkish grey on Z. Chemical analysis with an electron microprobe gave (wt%): CoO 34.88, MgO 2.97, MnO 2.41, FeO 0.40, NiO 0.53, P₂O₅ 27.95, H₂O (by the Penfield method) 29.50, total 98.64. The empirical formula calculated on the basis of Co+Mg+Mn+Ni+Fe+P = 5 is $(Co_{2.38}Mg_{0.38}Mn_{0.17}Ni_{0.04}Fe^{2+}_{0.03})_{\Sigma_{2.99}}$ (PO₄)_{2.01}•8.35H₂O. The simplified formula is $Co_3(PO_4)_2$ •8H₂O. According to X-ray-diffraction studies, pakhomovskyite is monoclinic, C2/m, a 10.034(4), b 13.341(3), c 4.670(3) Å, β 105.02(2)°, V 603.8 Å³, Z = 2. The strongest six lines in the X-ray powder-diffraction pattern [dobs(Å)(Iobs)hkl] are: 6.67(100)(020), 3.195(60)(131), 2.948(70)(311), 2.691(70)(221), 2.521(60)(241), 2.408(60)(401). Pakhomovskyite, a new member of the vivianite group, is an analogue of synthetic Co₃(PO₄)₂•8H₂O. Pakhomovskyite is the latest low-temperature hydrothermal mineral to form, as a result of dissolution of primary ore minerals by alkaline phosphate-bearing solutions. The mineral is named in honor of Yakov A. Pakhomovsky, who has made significant contributions to the mineralogy of the alkaline massifs of the Kola Peninsula.

Keywords: pakhomovskyite, new mineral species, vivianite group, carbonatite-phoscorite complex, Kovdor massif, Kola Peninsula, Russia.

SOMMAIRE

La pakhomovskyite, $Co_3(PO_4)_2$ •8H₂O, est une nouvelle espèce minérale découverte dans une carbonatite à dolomite recoupant les phoscorites du complexe à minerai de fer, massif de Kovdor, péninsule de Kola, en Russie. Le minéral se présente en groupes de petites sphérules atteignant 3×2 cm, chacune jusqu'à 0.5 mm de diamètre, et en rosettes de cristaux tabulaires bien formés jusqu'à 0.05 mm de diamètre, tapissant les parois de fissures lessivées dans la carbonatite dolomitique. Lui sont associés bakhchisaraïtsévite, bobierrite, magnétite, kovdorskite, rimkorolgite, juonniite, norsethite, chalcopyrite, phlogopite, pyrrhotite et pyrite. La pakhomovskyite est rose brillant, avec un éclat mat en aggrégats et un éclat nacré en feuillets distincts. La rayure est rose. Les sphérulites sont translucides et non fluorescentes. La dureté de Mohs est environ 2. Le minéral est flexible en feuillets minces. Le clivage est parfait sur {010}, et la fracture est en escalier. La densité mesurée avec liqueurs denses est 2.71(2), et la densité calculée est 2.71 g/cm³. La pakhomovskyite est biaxe (+), α 1.581(2), β 1.600(2), γ 1.631(2) (589 nm), 2V (mes.) 75–80°, 2V (calc.) 77°. La dispersion est faible, r < v. Orientation optique: X = b, $Y \land c$ entre 22 et 23° dans l'angle β obtus, avec pléochroisme allant de rose pâle sur Y à gris rosâtre sur Z. Une analyse chimique effectuée avec une microsonde chimique adonné (en %, poids): CoO 34.88, MgO 2.97, MnO 2.41, FeO 0.40, NiO 0.53, P2O5 27.95, H2O (méthode de Penfield) 29.50, pour un total de 98.64. La formule empirique calculée sur une base de Co+Mg+Mn+Ni+Fe+P = 5 serait (Co_{2.38}Mg_{0.38}Mn_{0.17}Ni_{0.04}Fe²⁺_{0.03})_{2.2.99} (PO₄)_{2.01}•8.35H₂O. La formule simplifiée est Co₃(PO₄)₂•8H₂O. Selon les donnés en diffraction X, la pakhomovskyite est monoclinique, *C2/m*, *a* 10.034(4), *b* 13.341(3), *c* 4.670(3) Å, β 105.02(2)°, *V* 603.8 Å³, Z = 2. Les six raies les plus intenses du spectre

[§] E-mail address: skrivovi@mail.ru

de diffraction (méthode des poudres) $[d_{obs}(Å)(I_{obs})hkl]$ sont: 6.67(100)(020), 3.195(60)(131), 2.948(70)(311), 2.691(70)(221), 2.521(60)(241), et 2.408(60)(401). La pakhomovskyite, nouveau membre du groupe de la vivianite, est un analogue du composé synthétique Co₃(PO₄)₂•8H₂O. La pakhomovskyite est le dernier minéral à se former durant l'évolution hydrothermale, et résulte de la dissolution de minerais primaires par des solutions alcalines phosphatées. Le nom choisi honore Yakov A. Pakhomovsky pour ses contributions à la minéralogie des massifs alcalins de la péninsule de Kola.

(Traduit par la Rédaction)

Mots-clés: pakhomovskyite, nouvelle espèce minérale, groupe de la vivianite, complexe de carbonatite-phoscorite, massif de Kovdor, péninsule de Kola, Russie.

INTRODUCTION

Pakhomovskyite, $Co_3(PO_4)_2 \bullet 8H_2O$, is a new mineral species from the Kovdor alkaline massif, Kola Peninsula, Russia. It was found in 2001 and identified by X-ray powder-diffraction pattern, which demonstrated its equivalence to $Co_3(PO_4)_2 \bullet 8H_2O$, a synthetic cobalt orthophosphate octahydrate known since 1989 (Riou *et al.* 1989). Pakhomovskyite is the Co-dominant analogue of vivianite, barićite and arupite, and a P-dominant analogue of erythrite. So far, it is the third phosphate of the vivianite group found within the Kovdor hydro-thermal veins.

The mineral is named in honor of Dr. Yakov A. Pakhomovsky (b. 1948), a mineralogist at the Geological Institute of the Kola Science Centre, Russian Academy of Sciences, who has made a significant contribution to mineralogy of the Kola alkaline massifs. Both the species and the name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association (IMA) (proposal 2004–021). Type material of pakhomovskyite is deposited in the Mineralogical Museum of St. Petersburg State University, Russia, and in the Geological and Mineralogical Museum of Geological Institute of the Kola Science Center of the Russian Academy of Sciences, Apatity, Russia.

GEOLOGICAL SETTING

The Kovdor massif of ultrabasic alkaline rocks and carbonatites is a central-type multiphase igneous intrusion (67°33' North, 30°31' East) in the Kola Peninsula, Russia. It was emplaced into Archean biotite- and hornblende-biotite gneisses and granitic gneiss of the Belomorsky block of the Baltic shield 360–420 million years ago (Kramm *et al.* 1993, Bayanova *et al.* 1997). The massif has a distinct concentrically zoned structure and contains three pronounced ring-shaped complexes (Ivanyuk *et al.* 2002).

Moving from the center toward the outer part of the massif, these are: (1) olivinite, (2) metasomatic rocks, containing phlogopite, diopside and melilite, among others, (3) turjaite and melteigite–urtite. Both the main rocks of the massif and the host fenitized gneiss

are penetrated by dykes of nepheline and cancrinite syenite, ijolite, tinguaite, alnoite, shonkinite and calcite carbonatite. At the contact of olivinite and feldspathoidbearing intrusions in the west, the massif is intruded by a concentric zoned stock of phoscorites in the outer zone and magnetite–carbonate rocks in the central zone. These rocks form the bulk of the Iron-Ore Complex. In turn, a stockwork of veins of dolomite carbonatite, picrite dykes and numerous explosion-pipes containing various breccias are concentrated within the Iron-Ore Complex.

The Iron-Ore Complex contains phoscorites (apatite-forsterite, forsterite-magnetite, apatite - forsterite - magnetite and forsterite rocks), magnetite-carbonate rocks (forsterite - calcite - magnetite, phlogopite - calcite - magnetite, magnetite-calcite and magnetite-dolomite rocks), carbonatites and phlogopitic glimmerites. The magnetite-silicate varieties are clearly concentrated at the periphery of the columnar orebody, and the magnetite-carbonate rocks occur within the central zone. This zonation is emphasized by the development of magnetite-free apatite-forsterite rocks at the outer boundary of the orebody and by the presence of calcite-magnetite rocks with a high pyrochlore content (called "anomalous" ore owing to their higher radioactivity) in the axial zone of the orebody. The final stage of formation of the Iron-Ore Complex was the intrusion of dykes of dolomitic carbonatite and the formation of hydrothermal veins related to the dolomite carbonatite. The veins contain hydroxylapatite, bobierrite, vivianite, barićite, kovdorskite, bakhchisaraitsevite, cattiite and pakhomovskyite.

OCCURRENCE, PHYSICAL AND OPTICAL PROPERTIES

Dikes of dolomite carbonatite (up to 2 m wide) are mostly concentrated in the central part of the Iron-Ore Complex, within the "Anomalous" ore. Their contacts with host phoscorites, magnetite–carbonate rocks, magnetite-free calcite carbonatite, pyroxenite, and fenite are sharp; no alteration zones are developed around the dikes. The dolomite carbonatite is a white or cream-colored, massive medium- or coarse-grained rock, almost entirely made of equant grains of dolomite. The dike rock contains occasional newly formed calcite (up to 20 vol. %). Characteristic accessory minerals are richterite, pyrrhotite, zircon, brown phlogopite and tetra-ferriphlogopite, hydroxylapatite and magnetite.

The veins contain rare irregularly distributed voids encrusted by rhombohedral crystals of dolomite overgrown by various hydrothermal minerals: collinsite, bobierrite, vivianite, kovdorskite, rimkorolgite, bakhchisaraitsevite, pakhomovskyite and other rare phosphate minerals; these are associated with magnesite, strontianite, barite, henrymeyerite and pyrite where a dolomite vein cuts phoscorite or magnetite–carbonate rocks. An assemblage including catapleiite, labuntsovite-group minerals, natrolite, anatase, edingtonite and pyrite occurs where the dolomite vein cuts foidolite or alkaline diopsidite.

Pakhomovskyite was found in a dike (up to 0.8 m wide) of coarse-grained dolomite carbonatite cutting phoscorite of the Iron-Ore Complex (Fig. 1). In marginal parts of the vein, there are numerous inclusions of corroded cavernous tabular crystals of Co-bearing pyrrhotite, whereas crystals of dolomite, bakhchisaraitsevite, bobierrite, magnetite, kovdorskite, rimkorolgite, juonniite, norsethite, gladiusite, pyrite and chalcopyrite incrust small cavities in the axial zone of the vein. Pakhomovskyite forms groups (up to 3×2 cm) of small spherulites (up to 0.5 mm in diameter) and rosettes (up to 0.05 mm diameter) of single well-shaped tabular crystals (up to 0.05 mm in diameter) growing on walls of leached fissures in dolomite carbonatite (Fig. 2).

Aggregates of pakhomovskyite are bright pink (like erythrite), with a pink streak and a dull (in aggregates) to pearly (in separate flakes) luster. Separate spherulites are translucent, and thin flakes are transparent. No fluorescence was observed. Pakhomovskyite aggregates are very soft; the Mohs hardness is approximately 2. The mineral is flexible in thin flakes. The cleavage is perfect on {010}; its fracture is stepped. No twinning was observed. The density measured by flotation in a dilute Clerici–water solution is 2.71(2) g cm⁻³; $D_{calc} =$ 2.71 g cm⁻³. In immersion liquids, the mineral is pale pink, with pleochroism from pale pink on Y to pinkish grey on Z. Optical orientation: X = b, $Y \land c = 22-23^{\circ}$ in the obtuse β angle. Pakhomovskyite is biaxial, positive, with α 1.581(2), β 1.600(2), γ 1.631(2) (589 nm), 2V (meas.) 75–80°, 2V (calc.) 77°. Dispersion is weak, r <v. The compatibility index is 0.048 (good).

The physical and optical properties of pakhomovskyite are compared with those of other minerals of the vivianite group and of synthetic Co₃(PO₄)₂•8H₂O in Table 1. In a hand specimen, pakhomovskyite can be fairly similar to erythrite, but the optical properties, density and (micro)habit of these minerals are quite different. The tabular shape of pakhomovskyite crystals as well as their bright pink color contrast with the blue color and prismatic habit of vivianite and arupite.

CHEMICAL COMPOSITION

Chemical analyses of fourteen spherulites and separate crystals of pakhomovskyite were undertaken using a Cameca MS-46 electron microprobe operating at 20 kV and 20 nA, with a 30 µm beam diameter (Table 2). The beam diameter used in this study is rather large, as the mineral is unstable under the electron beam. Every analysis is an average result of the 6-10 points. The following standards were used: cobalt (Co), pyrope (Mg), synthetic MnCO₃ (Mn), hematite (Fe), nickel (Ni), apatite (P). Analytical difficulties due to the mineral instability under the electron beam were partially overcome by defocusing the beam and moving it slowly during the analysis. The concentration of H₂O was determined by Penfield's method. The empirical formula, calculated on the basis of Co + Mg + $\dot{M}n$ + Ni + Fe + P = 5, is: (Co_{2.38}Mg_{0.38}Mn_{0.17}Ni_{0.04} Fe²⁺_{0.03})_{22.99}(PO₄)_{2.01}•8.35H₂O. A simplified formula is Co₃(PO₄)₂•8H₂O, which requires: CoO 44.00, P₂O₅ 27.78, H₂O 28.22, total 100.00 wt.%. Pakhomovskyite is easily soluble in dilute (10%) cold HCl.

CRYSTALLOGRAPHY

X-ray powder-diffraction data for pakhomovskyite (Table 3) were recorded using a 114.6-mm-diameter camera with a FeK α radiation. The data were indexed and refined on the basis of a monoclinic unit-cell with *a* 10.034(4), *b* 13.341(3), *c* 4.670(3) Å, β 105.02(2)°, *V* 603.8 Å³, Z = 2 and space group *C2/m*, which we obtained as a result of single-crystal X-ray studies with the precession method. The data are in agreement with the data reported by Riou *et al.* (1989) for synthetic Co₃(PO₄)₂•8H₂O. Pakhomovskyite is isotypic with vivianite.

GENESIS

Hydrothermal mineralization of carbonatite veins of the Kovdor massif is similar to that in Na-carbonatebearing hydrothermal veins within the Khibiny alkaline massif (Goryainov *et al.* 1998). Low-temperature hydrothermal solutions, infiltrating alkaline rocks and fluorapatite-rich phoscorite, become enriched in P and F. Such solutions can extract Fe, Mg, Ba, Sr, Si, Zr, Al, Sc, the rare earths, and other chemical elements, including Co, from the host rocks. By reaction with dolomite, the alkaline-phosphate-bearing solution produces Ca- and Mg-phosphates, *e.g.*, collinsite:

 $CaMg(CO_3)_2 + CaCO_3 + 2H_3PO_4 \rightarrow Ca_2Mg(PO_4)_2 \bullet 2H_2O + 3CO_2 + H_2O$

Other elements such as Fe (extracted from magnetite, pyrrhotite, *etc.*), Sc (extracted from baddeleyite), Ba

THE CANADIAN MINERALOGIST

FIG. 1. Coarse-grained dolomite carbonatite cutting phoscorite of the Kovdor Iron-Ore Complex, Kola Peninsula, Russia. The 180-cm-high person standing in front of the cliff face is Dr. Anatoly Zaitsev (St. Petersburg State University).

FIG. 2. Pink crystals of pakhomovskyite on the matrix (a) and their SEM photo (b).

Property	Pakhomovskyite ¹ Co ₃ [PO ₄] ₂ •8H ₂ O	Synthetic ² $Co_3[PO_4]_2 \cdot 8H_2O$	Vivianite ³⁾ $\operatorname{Fe}^{2+}_{3}[\operatorname{PO}_{4}]_{2} \cdot 8H_{2}O$	Arupite ³⁾ Ni ₃ [PO ₄] ₂ •8H ₂ O	Barićite ³⁾ Mg ₃ [PO ₄] ₂ •8H ₂ O	Erythrite ³⁾ Co ₃ [AsO ₄] ₂ •8H ₂ O
Symmetry	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	C2/m	12/m	C2/m	C2/m
aÅ	10.03	10.02	10.09	9.89	10.08	10.25
b Å	13.34	13.33	13.47	13.23	13.42	13.45
c Å	4.67	4.67	4.70	4.65	4.67	4.67
β°	105.0	104.9	104.3	102.4	104.5	105.0
Z	2	2	2	2	2	2
Strongest lines in	6.67 (100),	7.835 (30),	7.93 (13),	7.878 (26),	6.71 (100),	6.65 (100),
powder pattern	3.195 (60),	6.666 (100),	6.73 (100),	6.624 (100),	3.196 (40),	3.34 (8),
	2.948 (70),	4.842 (30),	4.90 (12),	4.818 (24),	2.956 (60),	3.22 (12),
	2.691 (70),	3.1849 (33),	4.081 (12),	3.805 (21),	2.699 (70),	2.70 (8),
	2.521 (60),	2.9443 (26),	3.210 (16),	3.152 (24),	2.526 (50),	2.32 (8),
	2.408 (60)	2.6947 (26)	2.985 (10)	2.922 (23)	2.418 (35)	1.677 (14)
Density g/cm ³	2.71	2.78	2.68	2.85	2.42	3.06
Mohs hardness	2	not measured	2	2	2	2
Color	bright pink	pink	colorless, blue to black and brown	turquoise blue to sky blue	o colorless to pale blue	pink, crimson
Ontical character	biaxial (+)	biaxial (+)	biaxial (+)	biaxial (+)	biaxial (+)	biaxial (+/)
α	1.581	not measured	1.616	1.635	1.554	1.629
β	1.600	not measured	1.656	not measured	1.564	1.663
γ	1.631	not measured	1.675	1.680	1.595	1.701
$\frac{1}{2}V^{\circ}$	75-80	not measured	64-84	not measured	55-60	very large to 90°
Orientation	X = b,	not measured	X = b,	not measured	X = b	X = b
	$Z \wedge c 22-23^{\circ}$		$Z \wedge c \ 28.5^{\circ}$		$Z \wedge c$ 28–30°	$Z \wedge c$ 30–36°
Dispersion	r < v, weak	not measured	r < v, weak	not measured	r < v, weak	r < v
Pleochroism	Y pale pink,	not measured	X deep blue,	X blue,	X blue,	X, Y pale pink,
	Z pinkish grey		Y, Z pale yellow	Z colorless	Y, Z colorless	Z deep red
Habit	tabular crystals	s plate-like crysta	ls prismatic to acicular crystals	short prismatic crystals	thick plates	flattened on [010] prismatic crystals
Cleavage	{010} perfect	not reported	{010} perfect	not reported	{010} perfect	{010} perfect, {100} and {T02} poor

1) This work, 2) Riou et al. (1989), 3) Anthony et al. (2000).

TABLE 2. CHEMICAL COMPOSITION OF PAKHOMOVSKYITE

	Mean	Stand. dev.		Mean	Stand. dev.		
CoO wt%	34.88	0.4	NiO	0.53	0.02		
MgO	2.97	0.1	P ₂ O ₅	27.95	0.5		
MnO	2.41	0.05	H_2O^*	29.5	0.5		
FeO	0.4	0.02					
			Total	98.64			

and Sr (extracted from carbonates) are incorporated into vivianite, barićite, gladiusite, juonniite, krasnovite, rimkorolgite, strontiowhitlockite, among others.

The Co content of pyrrhotite of pakhomovskyitebearing carbonatite vein is up to 0.1 wt.%, whereas in pentlandite from a phoscorite of the Anomalous Zone, it is up to 1.1 wt. % (Ivanyuk *et al.* 2002). Pakhomovskyite may well form according to the following reactions:

$$(Fe,Co)S + 2H_2O \rightarrow (Fe,Co)(OH)_2 + H_2S$$

 $3Co^{2+} + 2H_3PO_4 + 8H_2O \rightarrow$
 $Co_3(PO_4)_2 \cdot 8H_2O + 6H^+$

The character of pyrrhotite dissolution, shown in detail by Liferovich *et al.* (2000), as well as the usual presence of vivianite and gladiusite in the same vein, support such suggestion.

Riou *et al.* (1989) prepared crystals of synthetic Co₃(PO₄)₂•8H₂O at room temperature from aqueous solutions. By analogy, we suggest that pakhomovskyite crystals grew from cold Co-bearing phosphate solutions in fissures of dolomite carbonatite that serve as a

THE CANADIAN MINERALOGIST

Pakhomovskyite		Synthetic Co ₃ (PO ₄) ₂ •8H ₂ O ICDD 41-375		Barićite ICDD 29-705		Pakhomovskyite			Syr	Synthetic Co ₃ (PO ₄) ₂ *8H ₂ O ICDD 41-375			Barićite ICDD 29-705				
hkl	I	$d_{\rm meas}$	$d_{\rm calc}$	1	$d_{\rm calc}$	hkl	I	d _{meas}	hkl	I	$d_{\rm meas}$	$d_{\rm calc}$	1	$d_{\rm cale}$	hkl	I	d _{meas}
110	3	7.84	7.839	30	7.835	110	25	7.90	53T	1	1.803	1.8053	3	1.8035			
020	10	6.67	6.670	100	6,666	020	100	6.71	222			1.7985	1	1.8009			
200	4	4.85	4.844	30	4.842	200	20	4.87	530			1.7762	2	1.7755			
001	2	4.53	4.511	14	4.516	001	5	4.51	261			1.7739	0	1.7739			
ПТ	1	4.29	4.321	4	4.321	TH	15	4.33	351			1.7647	4	1.7651			
130	1	4.02	4.041	12	4.039	130	10	4.07	171			1.7587	1	1.7577	171	10	1.768
220			3.919	0	3.918				152	1	1.757	1.7567	4	1.7569			
201	4	3.84	3.833	25	3.830	201	20	3.83	171			1.6975	0	1.6972			
021		2.54	3.736	1	3.739		~	2.01	512			1.6903	0	1.6885			
111	1	3.54	3.597	4	3.602	111	5	3.61	441	4	1 669	1.6736	1	1.6743	090	20	1 676
040 22T	1	2.21	2.2225	2	2.2200	221	,	2.24	080 60T	4	1.008	1,0075	0	1.6612	080	30	1.070
121	6	2.105	2.1250	22	2 1840	121 121	40	2.106	257			1.6650	9	1.6615	757	10	1 667
310	0	3.195	3 1385	22	3 1374	151	40	5.190	447			1.6618	1	1.6604	332	10	1.007
311	7	2 948	2 9477	26	2 9443	311	60	2 956	312			1.6455	í	1.6475			
201	'	20210	2.9424	19	2.9462	511	00	2.750	370			1.6412	0	1.6402			
131	2	2.870	2.8601	í	2.8618				152	2	1.642	1.6407	9	1.6418			
240	1	2.769	2.7469	4	2,7453				460			1.6378	0	1.6370	460	15	1.648
221	7	2.691	2.6921	26	2.6947	221	70	2.699	46T			1.6341	0	1.6326			
041			2.6816	19	2.6816				242			1.6295	1	1.6311			
330	1	2.620	2.6128	11	2.6117	330	10	2.626	511			1.6212	0	1.6221			
150			2.5722	3	2.5706				600			1.6146	2	1.6140			
241	6	2.521	2.5161	16	2.5142	241	50	2.526	621			1.6136	0	1.6119			
33T			2.4996	7	2.4971				37T			1.6120	0	1.6107			
400			2.4218	1	2.4210				262			1.5930	0	1.5925			
401	6	2.408	2.4098	18	2.40/0	401	35	2.418	532	2	1.501	1.5912	2	1.5896	7.61	10	1 602
311	2	2.318	2.31/1	12	2.3193	T51	15	2 2 1 1	221	2	1.591	1,58/0	0	1.5801	221	10	1.593
121			2.3037	12	2,3020	151	15	2.511	280			1,5855	1	1.5857			
207			2.2992	3	2.3007				620	2	1 572	1.5602	1	1.5757			
420			2.2034	i	2.20.10				550	4	1.372	1.5677	6	1.5670	550	25	1 576
421	1	2.275	2.2664	4	2.2639	421	5	2 275	081			1.5640	ĭ	1 5633	220	20	1,570
002		51270	2.2552	0 0	2.2579		5	212.0	203			1.5545	i	1.5555			
060			2.2233	0	2.2218				332			1.5537	1	1.5553			
241	3	2.206	2.2064	13	2.2073	241	30	2.217	113	1	1.536	1.5374	0	1.5388	113	5	1.539
151	3	2.170	2.1711	11	2.1712	151	10	2.179	531			1.5331	3	1.5338			
$22\overline{2}$			2.1603	4	2.1603				28T			1.5291	2	1.5280			
022			2.1364	2	2.1386				223			1.5139	0	1.5146	223	5	1.514
312			2.0990	1	2.0980				313			1.5125	0	1.5126			
331			2.0796	2	2.0810				602	1	1.510	1.5112	4	1.5094			
132	2		2.0667	1	2.0675	0.50	20	2 0777	003			1.5035	2	1.5053	741		1 404
350	3	2.061	2.0568	10	2.0557	350	20	2.066	041			1.4882	4	1.4868	641	1	1.494
260			2.0558	1	2.0587				371			1.4609	1	1.4609			
200	1	2 001	2.0200	2	1 0084				627	211	1 475	1.4602	1	1.4700			
061	,	2.001	1 9942	2	1.9936	061	5	2.001	402	20	1.475	1.4712	6	1.4731	402	15	1 477
440			1.9596	1	1.9587	00.		2.001	023			1.4667	1	1 4683	1040	10	
51T			1.9542	2	1.9520				190			1.4652	1	1.4642			
44T	1	1.946	1.9533	1	1,9513	441	5	1.959	133			1.4617	3	1.4628			
401			1.9349	1	1.9364				461			1.4596	0	1.4598			
261			1.9233	2	1.9219				403			1.4578	1	1.4574			
332	1	1 019	1.9177	Q	1 9167	332	10	1.922	640			1.4532	1	1.4526			
510	L L	1.718	1.9173	0	1.9107				462			1.4517	1	1.4506			
402			1.9167	7	1.9150	_			281			1.4507	3	1.4504	281	10	1.459
132	2w	1.880	1.8845	8	1.8866	242	5	1.886	333			1.4402	1	1.4402			
242			1.8841	0	1.8838			1.070		1	1.422		1				
170			1.8699	1	1.8686	170	1	1.878		1	1.407		1				
202			1.8682	0	1.8693					1	1.371		1			25	1 241
202 421			1.80/0	3	1.8704					4	1.557		T			23 10	1.341
422			1.8421	0	1.8406											5	1.222
				-												-	and a second second

TABLE 3. X-RAY POWDER-DIFFRACTION DATA FOR PAKHOMOVSKYITE, SYNTHETIC $Co_3(PO_4)_2$ •8H₂O AND BARIĆITE

geochemical barrier. This hypothesis is supported by the presence of cattiite, Mg₃(PO₄)₂•22H₂O, and nastrophite, NaSr(PO₄)•9H₂O, in surrounding carbonatite veins (Britvin *et al.* 2002). The presence of nastrophite reveals

a high alkalinity of residual solutions, and cattiite could have formed only at low temperatures $(5-20^{\circ}C)$. Therefore, pakhomovskyite can be considered as a mineral that formed as a result of the latest low-temperature

stage of hydrothermal activity within the phoscorites of the Kovdor Iron-Ore Complex.

ACKNOWLEDGEMENTS

We are grateful to Associate Editor François Fontan, Igor Pekov and Editor-in-Chief Robert F. Martin for useful comments and interesting suggestions. We thank F.B. Kampel' and A.A. Filipishin ("Kovdor Mining and Dressing Plant" Joint-Stock Company) for their help in the field work, and S.N. Britvin (St. Petersburg State University) for consultations and preliminary electronmicroprobe investigations of pakhomovskyite.

References

- ANTHONY, J.W., BIDEAUX, R.A., BLADH, K.W. & NICHOLS, M.C. (2000): Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, Arizona.
- BAYANOVA, T.B., KIRNARSKY, YU.M. & LEVKOVICH, N.V. (1997): U–Pb isotope dating of baddeleyite from rocks of the Kovdor massif. *Dokl. Ross. Akad. Nauk* 356, 509-511 (in Russ.).
- BRITVIN, S.N., FERRARIS, G., IVALDI, G., BOGDANOVA, A.N. & CHUKANOV, N.V. (2002): Cattiite, Mg₃(PO₄)₂•22H₂O, a new mineral from Zhelezny mine (Kovdor Massif, Kola

Peninsula, Russia). Neues Jahrb. Mineral., Monatsh., 160-168.

- GORYAINOV, P.M., IVANYUK, G.YU. & YAKOVENCHUK, V.N. (1998): Tectonic percolation zones in the Khibiny massif: morphology, geochemistry, and genesis. *Izv. Phys. Solid Earth* **34**, 822-827.
- IVANYUK, G.YU., YAKOVENCHUK, V.N. & PAKHOMOVSKY, YA.A. (2002): *Kovdor*. Laplandia Minerals, Apatity, Russia.
- KRAMM, U., KOGARKO, L. N., KONONOVA, V. A. & VARTIAINEN, H. (1993). The Kola Alkaline Province of the CIS and Finland: precise Rb–Sr ages define 380–360 Ma age range for all magmatism. *Lithos* **30**, 33-34.
- LIFEROVICH, R.P., SOKOLOVA, E.V., HAWTHORNE, F.C., LAAJOKI, K.V.O., GEHÖR, S., PAKHOMOVSKY, YA.A. & SOROKHTINA, N.V. (2000): Gladiusite, Fe³⁺₂(Fe²⁺,Mg)₄(PO₄)(OH)₁₁ (H₂O), a new hydrothermal mineral species from the phoscorite–carbonatite unit, Kovdor complex, Kola Peninsula, Russia. *Can. Mineral.* **38**, 1477-1485.
- RIOU, A., CUDENNEC, Y. & GERAULT, Y. (1989): Cobalt(II) orthophosphate octahydrate. *Acta Crystallogr.* C45, 1412-1413.
- Received November 30, 2004, revised manuscript accepted December 14, 2005.