CUPROMAKOVICKYITE, Cu₈Pb₄Ag₂Bi₁₈S₃₆, A NEW MINERAL SPECIES OF THE PAVONITE HOMOLOGOUS SERIES

DAN TOPA§ AND WERNER H. PAAR

Department of Materials Research & Physics, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria

Abstract

Cupromakovickyite, ideally Cu₈Pb₄Ag₂Bi₁₈S₃₆, is a new mineral species that occurs at the skarn deposit of Băița Bihor, Romania, and at the scheelite deposit Felbertal, Salzburg Province, Austria. The associated minerals are makovickyite, bismuthinite derivatives (aikinite-friedrichite range), hodrušite, kupčikite, paděraite, emplectite, wittichenite and tetradymite (Băița Bihor), and makovickyite, bismuthinite derivatives (aikinite-krupkaite range), hodrušite, kupčikite, wittichenite and native bismuth (Felbertal). The opaque mineral is grey, has a metallic luster and is brittle without any discernable cleavage. The mean micro-indentation hardness is 295 kg/mm², corresponding to a Mohs hardness of 4. In reflected light, it is grayish white; the bireflectance is weak, and the anisotropy is moderate in air and strong in oil. Internal reflections are absent. The reflectance data (air) are: 42.1, 48.5 at 470 nm, 41.0, 46.9 at 546 nm, 40.2, 45.8 at 589 nm and 39.6, 45.0% at 650 nm. The average results of five electron-microprobe analyses are: Cu 7.66(1), Ag 4.01(3), Pb 9.45(3), Bi 60.02(9), Se 0.30(1), Te 0.76(3), S 17.55(2), total 99.75(7) wt.%, corresponding to $Cu_{7.79}Ag_{2.4}Pb_{2.95}Bi_{18.55}(Se_{0.24}Te_{0.39}S_{35.37})_{\Sigma 36}$, calculated on the basis of $\Sigma(S + Se + Te)$ = 36 atoms per formula unit. The simplified formula, $Cu_8Pb_4Ag_2Bi_{18}S_{36}$, is in accordance with the empirical formula and that deduced from the crystal-structure analysis. The density, 6.78 g/cm^3 , was calculated using the ideal (structural) formula and Z =1. Cupromakovickyite has a monoclinic cell with a 13.405(8), b 4.016(3), c 29.949(19) Å, β 99.989(16)°, V 1587.8(17) Å³, space group C2/m, and Z = 1. The strongest lines in the calculated powder-diffraction pattern [d in Å(I)(hkl)] are: 3.478(100)(114), $2.842(94)(312), 3.646(57)(206), 3.486(41)(\overline{2}08), 3.345(33)(\overline{4}02), 2.964(33)(310), 2.282(31)(1110).$ Its *c* dimension is double the length of the c dimension of makovickyite, the N = 4 member of the pavonite homologous series. Cupromakovickyite is closely structurally related to makovickyite. The name of the new mineral expresses this relationship. Both the mineral and its name were approved by the Commission on New Minerals and Mineral Names (IMA 2002-58).

Keywords: cupromakovickyite, sulfosalt, new mineral species, single-crystal X-ray diffraction, electron-microprobe analyses, pavonite homologous series, Felbertal deposit, Austria, Băița Bihor skarn, Romania.

Sommaire

Nous décrivons la cupromakovickyite, de formule idéale Cu₈Pb₄Ag₂Bi₁₈S₃₆, nouvelle espèce minérale trouvée dans le gisement de type skarn de Băita Bihor, en Roumanie, et le gisement de scheelite de Felbertal, Province de Salzburg, en Autriche. Lui sont associés makovickvite, dérivés de bismuthinite (intervalle aikinite-friedrichite), hodrušite, kupčikite, paděraïte, emplectite, wittichenite et tetradymite (Băița Bihor), et makovickyite, dérivés de bismuthinite (intervalle aikinite-krupkaïte), hodrušite, kupčikite, wittichenite et bismuth natif (Felbertal). Le minéral est opaque, gris, avec un éclat métallique, cassant, et apparemment sans clivage. La dureté déterminée par micro-indentations est 295 kg/mm², ce qui correspond à une dureté de Mohs de 4. En lumière réfléchie, la cupromackovickyite est blanc grisâtre, la biréflectance est faible, et l'anisotropie est modérée dans l'air et forte dans l'huile. Aucune réflexion interne n'est évidente. Les données de réflectance, déterminées dans l'air, sont: 42.1, 48.5 à 470 nm, 41.0, 46.9 à 546 nm, 40.2, 45.8 à 589 nm et 39.6, 45.0% à 650 nm. Les résultats moyens de cinq analyses effectuées avec une microsonde électronique sont: Cu 7.66(1), Ag 4.01(3), Pb 9.45(3), Bi 60.02(9), Se 0.30(1), Te 0.76(3), S 17.55(2), pour un total de 99.75(7)% (poids), ce qui correspond à la formule $Cu_{7.79}Ag_{2.4}Pb_{2.95}Bi_{18.55}(Se_{0.24}Te_{0.39}S_{35.37})_{\Sigma36}$, calculée sur une base de de $\Sigma(S + Se + Te) = 36$ atomes par formule unitaire. La formule simplifiée, Cu₈Pb₄Ag₂Bi₁₈S₃₆, concorde avec la formule empirique et celle qui découle de l'analyse structurale. La densité, 6.78 g/cm³, a été calculée en utilisant la formule structurale idéale et Z = 1. La cupromakovickyite possède une maille élémentaire monoclinique ayant a 13.405(8), b 4.016(3), c 29.949(19) Å, β 99.989(16)°, V 1587.8(17) Å³, groupe spatial C2/m, et Z = 1. Les sept raies les plus intenses du spectre de diffraction sur poudre calculé [d en Å(I)(hkl)] sont: $3.478(100)(\overline{1}14)$, 2.842(94)(312), 3.646(57)(206), $3.486(41)(\overline{2}08)$, $3.345(33)(\overline{4}02)$, 2.964(33)(310), et 2.282(31)(1110). La dimension c est le double de la dimension c de la makovickyite, le membre de la série d'homologues de

[§] E-mail address: dan.topa@sbg.ac.at

la pavonite ayant N = 4. Le nom exprime le lien structural étroit avec la makovickyite. Le nouveau minéral et son nom ont reçu l'approbation de la Commission des Nouveaux Minéraux et des Noms de Minéraux (IMA 2002–58).

(Traduit par la Rédaction)

Mots-clés: cupromakovickyite, sulfosel, nouvelle espèce minérale, diffraction X sur monocristal, analyses par microsonde électronique, série d'homologues de la pavonite, gisement de Felbertal, Autriche, skarn de Băița Bihor, Romanie.

INTRODUCTION

Several natural members of the pavonite homologous series, defined by Makovicky et al. (1977), are composed of exsolved lamellae (or lamellar intergrowths) of compounds respectively rich and poor in Cu (and Pb). A detailed X-ray-diffraction study of a pavonite-like material, with such a lamellar structure, revealed the presence of two phases, pavonite and cupropavonite, chemically and structurally different. Both phases have almost identical a and b parameters (13.4 and 4 Å, respectively), whereas the c axis is doubled for the Cu- (and Pb)-rich phase, named cupropavonite to denote its Cu content (Karup-Møller & Makovicky 1979, Nuffield 1980). Analogous exsolution phenomena, which are interpreted as the result of decomposition of a homogeneous high-temperature phase, were observed for homologue N = 4, makovickyite (Žák et al. 1994, Mumme 1990) and homologue N = 8, mummeite (Karup-Møller & Makovicky 1992). Such exsolution-related pairs represent two mineral species, separated by a definite miscibility-gap; consequently, the Cu- (and Pb)-rich varieties (for N = 4 and 8) received the modifier "cuproplumbian". However, no information about the expected doubling of the c axis was provided for either species.

During a systematic study of mineral specimens from Băița Bihor and Felbertal deposits, we have found Cu-free and Cu-bearing makovickyite, lamellar intergrowths of makovickyite and "cuproplumbian" makovickyite, as well as homogeneous grains of "cuproplumbian" makovickyite. This led to an exhaustive study of their chemical composition and an intensive search for good-quality material on which a crystal-structure investigation could be done. In the present contribution, we provide the formal mineralogical description of the new mineral species, cupromakovickyite, the Cu- (and Pb)-rich phase ("cuproplumbian" makovickyite), whereas the discussion on the crystal structure of cupromakovickyite and makovickyite and the nature of their relation is the subject of a companion paper (Topa et al. 2008).

PROVENANCE OF THE SAMPLES

Cupromakovickyite has been detected in two genetically different ore deposits. At Băiţa Bihor, Apuseni Mountains, Romania, it occurs in a skarn that was created by the reaction of granitic magma (Cioflica & Vlad 1973, Žák *et al.* 1994) with Triassic dolomites. Samples kindly provided by Dr. P. Kolesar (Kempten, Germany) and by Prof. G. Cioflica (University of Bucharest, Romania) were analyzed. Cupromakovickyite occurs as rare homogeneous grains and in aggregates that consist of a lamellar intergrowth with makovickyite (Figs. 1a to d). The associated minerals are bismuthinite derivatives in the range aikinite (bd₈₃) – friedrichite (bd₈₀), hodrušite, paděraite, traces of kupčikite, emplectite, wittichenite, tetradymite, and abundant chalcopyrite in a matrix of dolomite. The Cu–Bi association appeared during the late stages of the skarn formation.

In the scheelite deposit of Felbertal, Hohe Tauern, Austria, pavonite homologues with N = 4 (cupromakovickyite and makovickyite) are known only in the orebodies K7 and K8 (Figs. 1e and f), whereas Cu-free makovickyite and pavonite (N = 5) occur in orebodies K1, K3 and K5 (Topa 2001, Topa et al. 2003b). The minerals associated with cupromakovickyite are bismuthinite derivatives in the range aikinite (bd₉₂) krupkaite (bd₅₆), hodrušite, cuprobismutite, kupčikite, traces of wittichenite, native bismuth, chalcopyrite and pyrrhotite in a matrix of quartz. This mineralization formed by the recrystallization of quartz veins containing sulfides and sulfosalts and hosted within felsic gneisses and amphibolites. Recrystallization occurred during the retrograde stage of Alpine metamorphism (Topa et al. 2002).

FIG. 1. The association of sulfosalts with cupromakovickyite from Băița Bihor (a-d) and Felbertal (e-f). BSE photographs; the scale bars represent 100 µm. a) Homogeneous aggregate of cupromakovickyite. b) Homogeneous grain of cupromakovickyite with locally exsolved lamellae (bright) of makovickyite. c) Intergrowth of lamellar cupromakovickyite (dark lamellae) and makovickyite (bright lamellae) in a matrix of aikinite (bd_{83}) that is locally rimmed by krupkaite (bd₅₀); frame 1 and 2 denote the surfaces used for quantitative image-analysis. d) Detail of the lamellar intergrowth shown in c); the lamellae of makovickyite contain small and oriented fractures and a second generation of exsolved cupromakovickyite. e) Lamellar intergrowth of cupromakovickyite-makovickyite similar to that shown in b-d. A homogeneous grain of cupromakovickyite and another one of hammarite (bd72) border the lamellar aggregate. f) A four-phase aggregate composed of krupkaite (bd₅₄), Cu-bearing makovickyite (⁴P), kupčikite (ku) and native bismuth (bi).

PHYSICAL PROPERTIES

Cupromakovickyite from Băița Bihor and Felbertal occurs as independent composite grains and as a constituent of exsolution-induced intergrowths with makovickyite. At Băița Bihor, the grain aggregates do not exceed 0.3 mm, whereas at Felbertal, such grains attain a size of 0.1 mm. Cupromakovickyite is opaque and metallic, has a grey color and a grey streak. The mineral is brittle, the fracture is uneven, and no cleavage or partings were observed. The Vickers hardness was determined using a Leitz Miniload 2 hardness tester with a load of 50 g. The Vickers hardness number ranges between 257 and 321 kg/mm², mean 295 kg/mm² (eight indentations). This corresponds to a Mohs hardness of 4, quite similar to that of makovickyite. The density could not be measured because no suitable grains were available. The calculated density is 6.78 g/cm³, and is based on the ideal formula and Z = 1.

OPTICAL DATA

In polarized light, cupromakovickyite is greyish white, without internal reflections. Bireflectance is perceptible in air and moderate in oil; pleochroism is absent. Anisotropy is moderate in air and strong in oil. The rotation tints between crossed polars are dark bluish grey to yellowish brown for the most anisotropic grains. Reflectance data were obtained in air, using a Leitz MPV–SP microscope photometer and WTiC as standard. The observed R_{min} and R_{max} values are summarized in Table 1 and plotted in Figure 2. Both the R_{min} and the R_{max} curve are flat, with a weak maximum at 440–470 nm coincident with that of homogeneous Cu-bearing makovickyite from Felbertal.

TABLE 1. REFLECTANCE DATA (IN AIR) FOR CUPROMAKOVICKYITE FROM BĂIȚA BIHOR AND Cu-BEARING MAKOVICKYITE FROM FELBERTAL

	cuproma	kovickyite	makov	ickyite
λ (nm)	R _{min}	R _{max}	R _{min}	R _{max}
400	42.37	48.05	41.85	48.80
420	42.42	48.19	41.95	48.95
440	42.47	48.40	42.00	49.10
460	42.26	48.51	42.07	49.19
470	42.15	48.45	42.13	49.25
480	41.95	48.29	42.05	49.07
500	41.62	47.85	41.76	48.87
520	41.35	47.50	41.55	48.52
540	41.15	47.10	41.21	48.33
546	41.02	46.93	40.91	48.15
560	40.60	46.49	40.65	47.87
580	40.36	46.02	40.45	47.60
589	40.25	45.83	40.35	47.45
600	40.13	45.74	40.25	47.16
620	39.93	45.42	40.07	46.95
640	39.82	45.23	39.92	46.70
650	39.66	45.01	39.90	46.57
660	39.53	44.80	39.80	46.30
680	39.46	44.52	39.66	46.14
700	39.38	44.44	39.54	45.95

CHEMICAL DATA

Quantitative chemical data for cupromakovickyite and the associated sulfosalts minerals were obtained with an electron microprobe (JEOL Superprobe JXA-8600, controlled by LINK-eXL system, operated at 25 kV and 35 nA, beam diameter 5 µm), installed at the Department of Geography and Geology, University of Salzburg. The following standards (all synthetic except galena) and emission lines were selected: Bi₂S₃ $(BiL\alpha, SK\alpha)$, galena $(PbL\alpha)$, chalcopyrite $(CuK\alpha)$, FeK α), Ag metal (AgL α), CdTe (CdL β , TeL α), and Bi_2Se_3 (SeL α). The raw data were corrected with the on-line ZAF-4 procedure. The results of the electronmicroprobe analyses for Cu-free makovickyite and Cu-free pavonite are compiled in Tables 2 and 3, whereas compositional data for Cu-bearing makovickvite and cupromakovickyite are presented in Tables 4 and 5. Most analyses show the absence of iron and antimony, minor amounts of tellurium (usually below 1 wt.%) and selenium (usually around 0.3 wt.%), and the systematic presence of cadmium (up to 3.2 wt.% in Cu-free makovickyite, 4.4 wt.% in Cu-free pavonite and around 1 wt.% in Cu-bearing makovickyite and cupromakovickyite). We assume that Cd and Fe substitute for Pb. Sb for Bi, and Se and Te for S. The trace amounts of Cu in Cu-free makovickyite and pavonite (Tables 2, 3) are considered to substitute for Ag and allow us to calculate the empirical formulae on the basis of the total number of atoms per formula unit (*i.e.*, 32 for makovickyite and 36 for pavonite).

The empirical formulae of Cu-bearing makovickyite and cupromakovickyite (Tables 4, 5) were calculated on the basis of S + Se + Te = 18 atoms per formula unit for makovickyite and S + Se + Te = 36 *apfu* for cupromakovickyite, and lead to Cu_{7.79}Ag_{2.40} Pb_{2.95} Bi_{18.55} (S_{35.37} Se_{0.25}Te_{0.39})_{Σ 36} for Băiţa Bihor material (anal. 1, Table 5), and Cu_{7.93}Ag_{2.43}(Pb_{2.73} Cd_{0.43})_{Σ 3.16}Bi_{18.45}(S_{35.95}Te_{0.05})_{Σ 36} for Felbertal material (anal. 5, Table 5), respectively.

The results, obtained from five aggregates in two polished sections of the holotype specimens (Băiţa Bihor and Felbertal material), show only minor variation of the chemical composition of cupromakovickyite (Table 5). On the basis of S = 36 and Me = 32 (from the single-crystal study), the ideal formula of cupromakovickyite for both occurrences can be written as Cu₈Ag₂Pb₄Bi₁₈S₃₆ and requires Cu 7.86, Ag 3.34, Pb 12.81, Bi 58.15, S 17.84, total 100.00 wt.%.

The analyses of exsolved lamellae (Tables 4, 5) were done with a slightly defocused beam of electrons ($\sim 2-3$ μ m) to avoid damage of the surface of the samples and thus, problems in sulfur determination. The results deviate from above-mentioned values, indicating clearly a mixture of the two components.

A combination of electron-microprobe data on Cu-bearing makovickyite and homogeneous cupromakovickyite with quantitative image-analysis on selected

					FRO	OM THE FE	LBERTA	L DEPOS	IT, AUSTRIA							
No.	Cu	Ag	e L	ЧЧ	Cd	ā	e H	S	Total	Z	Z p2	Σmet	ch	θK	Me⁺	Me ³⁺
	0.11(3)	6.60(8)	0.14(5)	5.45(11)	3.23(14)	66.05(12)	0.51(3)	17.92(5)	100.00(16)	3.82	3.85	13.98	0.01	0.04	2.94	11.04
n n	0.40(4) 0.09(2)	6.81(13) 7.07(4)	0.19(1)	5.88(11) 4.42(12)	2.55(3) 2.42(13)	65.61(13) 67.07(23)	0.56(2) 0.50(5)	17.77(3) 17.92(3)	99.68(15) 99.68(16)	3.86 3.78	3.96 3.80	14.04 13.94	0.02 -0.09	0.05 -0.26	3.09 2.89	10.95 11.04
4	0.15(1)	7.08(1)	0.41(2)	6.13(10)	0.97(9)	66.49(5)	ι	17.82(1)	99.05(2)	3.80	3.84	13.99	0.07	0.20	2.94	11.05
ŝ	0.57(2)	7.28(2)	0.18(3)	4.76(5)	1.59(27)	67.30(16)	0.53(4)	17.85(6)	100.05(27)	3.75	3.90	14.05	0.05	0.14	3.09	10.95
9	0.15(3)	7.73(13)	0.17(3)	4.37(4)	1.58(4)	67.51(21)	ı	17.97(5)	99.48(36)	3.89	3.93	13.99	-0.03	-0.09	2.99	11.00
7	0.05(1)	8.36(7)	0.25(1)	2.74(6)	1.19(6)	68.97(10)	0.13(2)	18.09(4)	99.79(11)	3.90	3.92	13.95	-0.17	-0.46	2.96	10.99
Empi 1) Cu 2) Cu 3) Cu 4) Cu	rical form 0.06A91.96(1 0.20A92.03(1 0.05A92.10(1 0.07A92.13(1)	ulae were Pb _{0.84} Cd ₁₁ ob _{0.91} Cd ₀ . ob _{0.88} Cd _{0.1}	e calculat 00) 21.84 Bli 79) 21.71 Bli 80) 21.49 Bli 52) 21.48 Bli	ted on the 0.12(S1790Tt 0.10(S1782Tt 0.30(S17.94Tt 0.31S18.01	basis of 3 =0.13)Σ18.02 =0.14)Σ17.96 =0.14)Σ17.96 =0.12)Σ18.06	2 atoms pe	r formula	unit (<i>Me</i> ⁺ 5) Cu _{0.28} 6) Cu _{0.08} 7) Cu _{0.08}	Me ³⁺ 1S ₁₀). Ag _{2.16} (Pb _{0.74} C Ag _{2.06} (Pb _{0.68} C Ag _{2.48} (Pb _{0.42} C	d _{0.56}) _{21.2} d _{0.55}) _{21.2} d _{0.48}) _{20.9}	29 B i 10.31 23 B i 10.38 30 B i 10.54	(S _{17.82} T€ S _{18.01} (S _{18.02} T€	² 0.13)Σ17.5 ² 0.03)Σ18.0	22 82		
The c repre	compositic sent the p	avonite h	xpressed	in wt.%. h	IA = numb calculated	ber of analys d from chem	ses. Stan nical data	dard devia . <i>ch</i> and <i>e</i>	ation for the Is v express the	ast digit absolu	is sho te and	wn in pa relative	renthe: error in	ses. N _F the ch	₁, N _{p2} a arge ba	nd N _{p3} alance

TABLE 2. AVERAGE RESULTS OF ELECTRON-PROBE ANALYSES OF CU-FREE MAKOVICKYITE ($N_p = 4$)

based on the sum of cation and anion charges. Details about samples and location: 1) FE-97/3a-19d, NA= 6, 2) FE-97/3a-3d, NA = 4, 3) FE-97/3a-4d, NA = 3, 4) FE-97/3a-4d, NA = 3, 5) FE-97/3a-6, NA = 4, 6) FE-99/68-94d, NA = 5, 7) FE-89/9-3-913d, NA = 4. Ð Ē

		TAE	3LE 3. /	AVERAGE	ERESUL1 F	rs of ele Rom the	CTRON- FELBER	PROBE TAL DE	ANALYSI POSIT, AI	ES OF Cu-F JSTRIA	REE P	AVON	lite (N	_p = 5)			
No.	Cu	Ag	O LL	Pb	Cd	Ē	Sb	Че	S	Total	N _{p1}	N_{p^2}	Σmet	ch	eν	Me⁺	Me^{3+}
-		6.79(9)	L	10.62(12)	3.86(4)	60.06(13)		1	17.60(6)	99.08(15)	4.84	4.84	15.96	0.00	-0.01	3.91 1	2.05
2		7.17(13)	,	9.10(24)	4.45(22)	60.85(28)	,	,	17.71(13)	99.28(42)	4.85	4.85	15.99	0.09	0.21	3.92 1	2.06
с	ı	7.23(6)	ı	9.42(9)	4.30(2)	60.24(15)	ı	ı	17.76(7)	98.96(16)	4.92	4.92	15.98	-0.02	-0.04	3.96 1	2.02
4	1	7.36(12)	١	9.26(9)	3.85(8)	60.56(20)	0.12(1)	,	17.53(18)	98.68(15)	4.87	4.87	16.01	0.18	0.46	3.94 1	2.07
2	0.06(1)	7.77(11)	0.04(1)	7.34(16)	3.71(9)	63.06(26)	1	0.37(3)	17.87(8)	99.68(16)	4.71	4.73	15.91	-0.14	-0.35	3.86 1	2.06
9	t	8.03(8)	0.21(1)	7.15(30)	3.13(6)	63.61(18)	2	,	17.96(12)	100.22(47)	4.74	4.74	15.94	-0.02	-0.05	3.85 1	2.09
7	0.05(1)	8.22(4)	0.15(1)	8.19(9)	2.02(2)	63.00(27)	ı	1	17.64(4)	100.08(19)	4.78	4.79	15.97	0.05	0.12	3.90 1	2.07
ω	0.06(1)	9.71(9)	0.30(4)	(11) 4.85(11)	1.71(8)	65.19(27)	ı	0.14(2)	18.10(8)	100.06(31)	5.04	5.05	15.89	-0.59	-1.46	4.02 1	1.87
Emp	rical forr	nulae wer	e calcul	ated on th	e basis o	f 36 atoms	per form	ula unit	(Me⁺, Me³	,.S.,).							
1) O	1 _{0.00} Ag _{2.35}	₅ (Pb _{1.87} Cd ₁	1.25) _{Σ3.12} Β	31 _{10.49} S _{20.04}				5) (2	2u _{0.04} Ag _{2.58}	(Pb _{1.27} Cd _{1.21}) _{22.48} Bi.	10.82(S	_{9.98} Te _{0.1}	0) <u>520.09</u>			
2) Cl	10.00Ag2.4	1(Pb _{1.59} Cd ₁	1.43) _{Σ3.02} B	31 _{10.55} S _{20.01}				6) (9	00.00Ag2.67	(Pb _{1.24} Cd _{1.13}) _{Σ2.37} Bi.	10.90 S 20	06				
3) Ci 4) Ci	I _{0.00} Ag _{2.4} , I _{0.00} Ag _{2.4}	4(Pb _{1.65} Cd. 9(Pb _{1.63} Cd ₁	1.39)Σ3.04 Ε 1.25)Σ2.88 B	81 _{10.50} S _{20.02} 81 _{10.63} S _{19.99}				8) 0	2u _{0.03} Ag _{2.76} 2u _{0.03} Ag _{3.20}	(Pb _{1.44} Cd _{0.75} (Pb _{0.83} Cd _{0.73}) _{Σ2.19} Bi.) _{Σ1.56} Bi.	0.98 S20 11.09 (S20	. ⁰³ _{0.07} Te _{0.0}	4) Σ20.11			
														í L	L		
FE-8	9/11-5d,	or anaiyse NA = 3, 4	:s. Сотр .) FE-89,	/11-14d, N	ITE TEPOTI IA = 5, 5)	ed in wt.%. FE-97/3a-1	ueralis a Id, NA =	ipout sai 9, 6) FE	npies and -86/k7-5-G	iocation: 1) 31d, NA = 4,	7) FE-	89/9-51	ik, NA - g42d, l	= 2, ∠) NA = 2	гс-wa	, NA = -89/9r	ים, א) ה-A-d,

NA = 3.

TABLE 4. AVERAGE RESULTS OF ELECTRON-PROBE ANALYSES OF Cu-BEARING MAKOVICKYITE (N $_{p}$ = 4) FROM FELBERTAL (FE) AND BÅIJA BIHOR (BB) DEPOSITS

3) 0.00 $18.05(2)$ $99.45(39)$ 3.86 3.52 14.45 -0.27 0.00 $18.28(4)$ $100.40(26)$ 3.91 3.50 14.66 0.21 $3)$ 0.00 $18.28(4)$ $100.40(26)$ 3.91 3.52 14.45 -0.27 $3)$ 0.00 $18.25(6)$ $99.47(22)$ 3.72 3.25 14.66 0.13 $3)$ 0.00 $18.25(6)$ $99.47(22)$ 3.72 3.15 14.69 0.13 $2)$ 0.00 $18.19(2)$ $99.70(20)$ 3.70 3.15 14.36 0.41 40.00 $18.16(3)$ $100.12(18)$ 3.97 3.71 14.32 0.21 $1)$ 0.00 $18.25(2)$ $100.91(23)$ 3.67 3.40 14.36 0.41 10.000 $18.25(2)$ $100.91(23)$ 3.67 3.46 14.36 0.41 10.000 $18.26(2)$ $199.44(9)$ 3.74 3.25 14.69 0.10 10.00 $18.26(2)$ 99.5
28(5) 0.08(1) 0.10(1) 0.00 18.15(3) 100.12(18) 3.97 3.78 14 88(28) 0.00 0.00 0.00 18.25(2) 100.91(23) 3.67 3.40 14 it lamellae as in Figures 1c, e 38(11) 0.00 0.00 0.00 18.24(3) 99.44(9) 3.74 3.25 14 55(18) 0.00 0.00 18.24(2) 99.57(12) 3.75 3.25 14 55(18) 0.00 0.00 18.26(4) 99.40(21) 3.71 3.20 14 95(12) 0.00 0.00 18.28(3) 99.85(01) 3.63 3.14 14 95(12) 0.00 0.000 18.28(3) 99.85(01) 3.63 3.14 14 07(9) 0.00 0.000 18.28(3) 99.86(17) 3.63 3.07 14 10(21) 0.14(3) 1.05(5) 0.31(1) 17.75(8) 99.88(17) 3.63 3.07 14
It lamellae as in Figures 1c, e 38(11) 0.00 0.00 0.00 18.24(3) 99.44(9) 3.74 3.25 14.69 35(18) 0.00 0.00 18.24(2) 99.57(12) 3.75 3.25 14.73 55(18) 0.00 0.00 18.24(2) 99.40(21) 3.71 3.20 14.69 55(14) 0.00 0.00 18.26(4) 99.40(21) 3.71 3.20 14.69 95(12) 0.00 0.00 18.28(3) 99.85(01) 3.63 3.14 14.71 07(9) 0.00 0.00 18.28(3) 99.85(01) 3.63 3.14 14.76 07(9) 0.00 0.00 18.28(3) 99.88(17) 3.63 3.07 14.76 07(21) 0.14(3) 1.05(5) 0.31(1) 17.75(8) 99.88(17) 3.63 3.07 14.78
38(11) 0.00 0.00 18.24(3) 99.44(9) 3.74 3.25 14.69 0.1 35(18) 0.00 0.04(7) 0.00 18.24(2) 99.57(12) 3.75 3.25 14.73 -0.0 05(44) 0.00 0.00 18.26(4) 99.40(21) 3.71 3.20 14.69 -0.3 95(12) 0.00 0.00 18.26(4) 99.40(21) 3.63 3.14 14.71 0.3 95(12) 0.00 0.00 18.28(3) 99.85(01) 3.63 3.14 14.71 0.3 07(9) 0.00 0.00 18.28(3) 99.85(01) 3.63 14.66 -1.3 07(9) 0.00 0.00 18.28(3) 99.98(17) 3.63 74.56 -1.3 07(9) 0.00 0.31(1) 17.75(8) 99.88(17) 3.67 14.78 -0.0

		TABLE 5.	AVERA	GE RESU FROI	ILTS OF M BĂIŢA	ELECTRO BIHOR (BE	N-PROBI	E ANALY ELBERT	SES OF AL (FE)	CUPRON DEPOSIT	AAKOVICKY S	ITE (1	4p = 4)		
No. NA	cr	Ag	е Ц	Рb	Cd	Bi	åb	е Ц	Se	S	Total	N p2	N _{p3} Σmet	ch	ek
						Home	ogeneou	is grains							
7 7 8 7 7 9 7 7 8 7 9 8 7 7 9 8 7 7 9 8 7 7 9 8 7 7 9 9 7 9 7	7.66(1) 7.87(6) 7.97(8) 7.61(3) 7.89(2)	4.01(3) 4.16(10) 3.98(6) 4.14(1) 4.10(5)		9.45(3) 9.61(32) 10.44(13) 8.60(2) 8.85(5)	-) 0.15(3)) 0.21(5) 0.64(8) 0.76(2)	60.02(9) 59.32(17) 59.23(23) 60.52(11) 60.35(11)	1 1 5 4 1	0.76(2) 0.73(3) 0.78(3) - -	0.30(1) 0.30(1) 0.30(1) -	17.55(2) 17.43(8) 17.49(9) 18.02(2)	99.75(7) 99.57(28) 100.40(48) 99.73(21) 99.73(21)	4.85 5.06 5.08 4.88 4.98	3.88 31.69 4.05 32.15 4.06 32.29 3.93 31.72 3.99 31.96	-0.37 0.30 0.61 -0.21	-0.35 0.28 0.58 -0.20 0.03
					. —	Dark lamel	lae as in	i Figures	1c, e		~				
6 3	7.16(2)	4.35(2)	,	7.41(3)	0.84(3)	61.54(5)	ŗ	ı	ı	18.03(2)	99.29(29)	4.72	3.84 31.41	-0.18	-0.17
7 8 4 4 4 4	7.21(6) 8.07(3) 7.90(10	4.20(11) 3.94(4)) 4.21(6)	 - 0.12(2	7.59(11) 8.68(19) 8.43(10)) 0.79(3)) -) 0.27(5)	61.88(11) 60.53(16) 60.38(22)	- - 0.11(3)	- 0.64(3) 0.76(8)	- 0.29(2) 0.31(3)	18.12(2) 17.88(5) 17.61(5)	99.29(25) 4 100.04(10) 4 100.10(14) 4	4.66 4.82 4.95	3.78 31.37 3.82 31.45 3.96 32.10	-0.17 -1.07 0.33	-0.16 -1.49 0.46
10	6.09 6.94	4.67 4.46	1 1	4.38 6.38	0.07 0.13	65.97 63.50		0.79 0.75	0.30 0.30	17.72 17.64	99.99 / 100.10 /	4.00	3.29 30.50 3.58 31.28	0.46 0.62	0.42 0.58
12	7.86	3.34		12.81		58.15				17.84	100.00	2.00	4.00 32.00		
E mpirit E mpirit 2) Cu _{6.} 3) Cu _{6.} 3) Cu _{6.} 5) Cu _{7.6} 6) Cu _{7.6}	al formula sal formula sA92.40(Pb2 sA92.55(Pb2 sA92.55(Pb2 sA92.46(Pb2 sA92.43(Pb2 sA92.43(Pb2 sA92.55(Pb2 sA92.55(Pb2 sA92.55(Pb2	e were cal e were cal escdo.00)22 227Cd0.00)22 227Cd0.12723 227Cd0.13723 227Cd0.13723 227Cd0.13723 227Cd0.13723 227Cd0.13723 202027 20207 202027 20207 2007 20007 2007	Iculated Iculated (118,17,18,18,55) (118,18,47) (118,18,47) (118,18,55) (118,1	on the ba; (S _{35,37} Se _{0.22} (S _{35,35} Se _{0.22} (S _{35,35} Se _{0.22} (S _{35,35} Se _{0.25} (S _{35,35} Se _{0.05}) (S _{35,35}	sis of Σ(S 5 Te _{0.39}) ₂₃₆ 4 Te _{0.39}) ₂₃₆ 5 Te _{0.39}) ₂₃₆ () ₂₃₆	. + Se + Te) wt.%. Detail	= 36 ap	<i>fu</i> (from s 7) Cu _{7.23} A 7) Cu _{7.23} A 9) Cu _{6.07} A 9) Cu _{6.13} 11) Cu ₇₀₂ A 11) Cu _{6.13}	ingle-cr 92.48(Pb) 92.32(Pb) 92.31(Pb) 92.56(Pb) 92.72(Pb) 92.Pb4Bi,	ystal study ystal study 2 2 2 4 C d0.045) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 y): 279 Bl₁a, 87 Sa6 228 Bl₁a, 87 Sa6 228 Bl₁a, 87 (Sa5, 4) 230 Bl₁a, 86 (Sa5, 3) 210, 80 (Sa6, 3) 210, 90 (Sa6, 3) 2206 Bl₁9, 54 (Sa6, 3) 3200, 33, 2) B 	⁴ Se _{0.2} ⁷ Se _{0.2} ³⁶ Se ₀ ³⁸ Se ₀	⁴ Te _{0.32}) ₂₃₆ ⁴ Te _{0.38}) ₂₃₆ ²²⁴ Te _{0.40}) ₂₃₆ ²⁴ Te _{0.38}) ₂₃₈	ion.10,	() () () () () () () () () () () () () (
2-1X/00	910, 0) FE	-0-1 X100-:	<u></u>	LE-00/K/-1	zGrou, r) FE-00/N/-1	2-911/u,	07-00 (0	n. 10, 8)	DD-2011.01	1, 10) DD 1(d()	, 	FIG. 10, 11	001	ame-z,

Fig. 1c*, 12) ideal cupromackovickyite. * indicates a crystal used in the single-crystal investigation of the structure.

THE CANADIAN MINERALOGIST

510

FIG. 2. Reflectance data (in air) for Cu-bearing makovickyite (open circles) from Felbertal and cupromakovickyite (diamonds) from Băița Bihor.

areas (Fig. 1c, frame 1 and 2) was used to evaluate the range of original, pre-exsolution chemical compositions of the high-temperature phase from which both minerals exsolved (anal. 9 and 10, Table 5).

Chemical data for the Cu-free, Cu-bearing makovickyite and cupromakovickyite (presented in Tables 2, 4 and 5) are plotted in the triangular diagram Bi - (Ag) - (Pb + Cu) in Figure 3.

The chemical composition of kupčikite, hodrušite and cuprobismutite is presented in detail in Topa *et al.* (2003a, b), whereas bismuthinite derivatives are treated in Topa *et al.* (2002).

X-RAY-DIFFRACTION DATA

Owing to the very small amount of pure cupromakovickyite material found, only a few single-crystal fragments (~ $0.06 \times 0.05 \times 0.04$ mm) were obtained by dissolving the carbonate matrix. These were investigated only by single-crystal method. The X-raydiffraction data were aquired with a CCD-equipped single-crystal diffractrometer (four-circle Bruker AXS diffractometer). Cupromakovickyite is monoclinic, space group *C2/m*, with *a* 13.396(9), *b* 4.013(3), *c* 29.93(2) Å, β 100.07(2), *V* 1584(3) Å³, *Z* = 1, with a structural formula Cu₈Ag₂Pb₄Bi₁₈S₃₆. The unit-cell volume of cupromakovickyite is equal to double the unit-cell volume of Cu-bearing makovickyite, which has space group *C2/m*, *a* 13.239(3), *b* 4.0547(7), *c* 14.667(3) Å, β 100.07(2)°, V 776.7(3) Å³, Z = 1, with a structural formula Cu_{2.12}Ag_{1.36}Bi_{11.20}S₁₈.

The crystal-structure determinations presented in a companion article (Topa *et al.* 2008) reveal that the doubling of the *c* parameter results from: (1) the oriented replacement of pairs of Bi pyramids by pairs of Pb–Bi pyramids (combined with the appearance of a new tetrahedrally coordinated Cu site), and (2) the replacement of the octahedrally coordinated Ag site by a tetrahedrally coordinated Cu site in the thin layers of the cupromakovickyite.

Theoretical powder-diffraction patterns for cupromakovickyite (Table 6) and makovickyite were calculated using POWDERCELL 2.3 software (Kraus & Nolze 1999) for a Debye–Scherrer configuration. They are plotted for comparison in Figure 4. We used CuK α radiation (λ 1.540598 Å), a fixed slit, no anomalous dispersion correction and unit-cell parameters, space group, atom positions, site occupancy and anisotropic displacement factors from both single-crystal determinations of the structures (Topa *et al.* 2008).

DISCUSSION

The experience gained from numerous studies of the pavonite homologous series suggests an important structural role for silver and copper. The ideal formula of makovickyite unsubstituted by Pb or Cu (or both) (Žák *et al.* 1994, Makovicky *et al.* 1977) is Ag₃Bi₁₁S₁₈

FIG. 3. Chemical composition of cupromakovickyite, Cu-bearing and Cu-free makovickyite in the diagram Bi – Ag – (Pb + Cd + Cu). Red line: Pb substitution, blue line: Cu and Pb substitution. The results of the image analysis: point 1 and 2. Analytical data affected by intimate mixture of makovickyite and cupromakovickyite are denoted by a and b. Color-coded symbols: open red diamond: ideal makovickyite; open brown diamond: Cu-free makovickyite (Felbertal); red diamond: ideal cupromakovickyite; open lavender diamond: homogeneous makovickyite, Felbertal, K8; open green diamond: homogeneous makovickyite, Felbertal, K7; open blue diamond: exsolved lamellae, bright Băiţa Bihor; yellow diamond: exsolved lamellae, dark, cupromakovickyite, Felbertal, K7; open blue diamond: homogeneous cupromakovickyite, Băiţa Bihor; blue diamond: exsolved lamellae, dark, cupromakovickyite, Felbertal, K7; open blue diamond: homogeneous cupromakovickyite, Băiţa Bihor; blue diamond: exsolved lamellae, dark, Băiţa Bihor; turquoise diamond: homogeneous cupromakovickyite, Băiţa Bihor;

for Z = 1, or ^{thin layer}(Ag₂Bi₄) ^{thick layer}(AgBi₇)S₁₈, with silver present in the separate octahedra of the thin layer and in a single octahedron of the thick layer. The wellknown mechanism of substitution Ag⁺ + Bi³⁺ \rightarrow 2Pb²⁺ will introduce substitutional Pb into the thick layer (Table 2), leading to the substitutional trend presented as the red line in Figure 3.

Copper was found (Žák *et al.* 1994, Mumme 1990) in planar trigonal and tetrahedral coordinations, both replacing the flattened octahedrally coordinated Ag site of the thin layer. The combined influence of Cu-for-Ag and (Cu + Pb)-for-Bi mechanisms of substitution is presented as the blue line in Figure 3. The formulae for the recognition of N_p (estimation of homologue number) from results of the chemical analyses, given by Karup-Møller & Makovicky (1979), are based on the following assumptions: (1) the total Cu recorded in the chemical data is assumed to represent *interstitial* ^{*i*}Cu (N_{p1}), (2) the total Cu is assumed to represent *substitutional* ^{*s*}Cu (N_{p2}), and (3) the total Cu is equally distributed between ^{*i*}Cu and ^{*s*}Cu (N_{p3}). Thus, the empirical formula for Cu-free makovickyite can be calculated (from electron-microprobe data) on the basis of total number of atoms (32) per formula unit, whereas the same principle will not function for Cu-bearing makovickyite, owing to the unknown percentage of interstitial Cu.

FIG. 4. Calculated X-ray-diffractometer patterns ($CuK\alpha$) of makovickyite and cupromakovickyite for a 2 θ range of 6–45°.

h	k	1	d	1	h	k	1	d	1	h	k	1	đ	1
0	0	4	7.37	1	3	1	2	2.8416	95	5	1	6	1.9095	15
2	0	0	6.60	1	3	1	5	2.7828	5	5	1	10	1.9035	4
2	0	2	6.46	2	4	0	8	2.7029	1	2	2	2	1.8911	1
0	0	5	5.89	1	3	1	6	2.6812	5	1	1	14	1.8866	2
2	0	2	5.66	11	3	1		2.5703	3	3	1	11	1.8802	2
2	0	4	5.43	2	4	0	9	2.5578	2	2	0	16	1.8601	3
2	0	5	4.84	1	1	1	9	2.5562	3	0	0	16	1.8418	2
2	0	4	4.54	9	2	0	10	2.5307	2	5	1	11	1.8391	2
2	0	5	4.32	3	3	1	8	2.4548	ž	2	Z	4	1.8348	1
U T	0	1	4.23	2	4	0	10	2.4173	4	4	0	15	1.8347	- I
4	0	6	3.071	4			10	2.2021	31	4	1	12	1.0220	0 6
	,	0	3.039	4	4	0	12	2.2077	4	3	1	14	1.0204	0
2	0	6	2 6 4 6	50	0 न	1	10	2.2000	4	۱ ح		14	1.0073	2
4	1	2	2.616	1	1	1	10	2.2313	- *	2	1	12	1.0020	6
5	,	9	3.010	40	5	1	4	2 2020	6	5	1	14	1.7903	2
4	1	4	3 478	100	5	1	6	2 1307	10	0	2	8	1 7610	2
7	6	2	3 345	32	6	6	2	2 1208	12	2	2	â	1 7577	12
7	n	1	3 342	3	1	1	12	2 1182	6	5	2	8	1 7389	10
1	1	Å	3 3 3 6	6	- 7	1	11	2 1153	2	7	1	ã	1 7272	1
4	ດ	n	3 298	2	ő	'n	14	2 1049	6	7	1	2	1 7258	5
ņ.	ň	9	3 274	2	ñ	ñ	8	2 0522	2	ž	2	2	1 7205	9
4	õ	4	3.228	11	5	1	4	2.0318	5	5	1	13	1.7101	1
4	ō	1	3.216	2	4	Ó	10	2.0281	3	7	1	0	1.7056	5
Ż	0	9	3.161	1	5	1	8	2.0264	17	4	2	4	1,7039	3
1	1	5	3.144	4	1	1	12	2.0225	9	8	0	4	1.6725	1
1	1	6	3.102	4	6	0	4	2.0123	11	0	2	10	1.6584	2
3	3	2	2.9742	7	3	1	12	2.0110	9	3	1	16	1.6542	1
3	1	0	2.9638	33	0	2	0	2.0063	27	8	0	6	1.6526	7
1	1	6	2.9526	9	1	1	13	1.9969	3	4	0	14	1.6483	2
0	0	10	2.9468	7	2	0	15	1.9799	1	2	2	10	1.6471	9
3	1	3	2.9348	3	3	1	10	1.9765	4	4	0	18	1.5805	2
2	0	10	2.8849	29	5	1	9	1.9665	1	7	1	11	1.5545	1
3	1	4	2.8693	2	0	G	15	1.9645	1	4	2	10	1.5438	2
4	0	7	2.8490	2	6	0	10	1.9313	2	1	1	18	1.5343	1

TABLE 6. CA	LCULATED X-RAY POWDER-DIFFRACTION PATTERN	
FOR	CUPROMAKOVICKYITE FROM BĂŀŢA BIHOR	

41042

20621

I

The only way to calculate the empirical formula is to base it on Σ cations = 18, for analytical datasets with good charge-balance (*ch* and *ev*). Several authors (*e.g.*, Žák *et al.* 1994, Karup-Møller & Makovicky 1992) have emphasized the fact that the sum of cations in the formula does not have to be an integral number. For N = 4, the "fundamental" sites give $Me_{14}S_{18}$. The electronmicroprobe data indicate for Cu-bearing makovickyite (Table 4) a range from 14.32 to14.86 and 14.56 to 14.78 cations *pfu*, for Băiţa Bihor and Felbertal material, respectively. Thus, the possible interstitial Cu ranges between 0.32 and 0.86 cations *pfu*.

20

Cupromakovickyite has $N_{p2} \approx 5$ (meaningless, because from the single-crystal study, $N_p = 4$) and $N_{p3} \approx 4$ (Table 5), with a clear indication that Cu is equally distributed between ^{*i*}Cu and ^{*s*}Cu, and has a sum of anions equal to 32, in good agreement with the results of the single-crystal study. An attempt can be made to construct a simplified formula by applying a partial 2Pb-for-(Ag + Bi) substitution to the excess Ag and Bi. This gives a simplified model formula $Cu_8Ag_2Pb_4Bi_{18}S_{36}$ for both occurrences. On the one hand, this formula is richer in lead than the analytical data indicate; on the other hand, it shows that the high contents of Cu in cupromakovickyite are caused by the distribution of copper over more sites than the "fundamental" ones that are universal for the entire series of pavonite homologues.

In no case is the cupromakovickyite analyzed a pure phase. Rather, it contains a certain proportion of the makovickyite phase, finely distributed as lamellae down to few unit cells in thickness. It is for this reason that the Pb content reported is lower than expected.

MINERAL NAME AND TYPE MATERIAL

Cupromakovickyite is related to makovickyite in exactly the same way as cupropavonite is related to pavonite (Karup-Moller & Makovicky 1979). In order to articulate this relationship (we expect more such pairs in the pavonite homologous series), we proposed a name analogous to cupropavonite. The prefix "cupro" also expresses the primary chemical difference between the two species and replaces "cuproplumbian" as a modifier. Both the mineral and its name were approved by the Commission on New Minerals and Names (IMA 2002–58). The holotype material is deposited under No. 14943 and 14944 (two polished sections) in the reference collection (museum) of the Division of Mineralogy, University of Salzburg, Austria.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the Austrian Science Fund (FWF) research project P17349–N10, which made possible this study through a grant to the senior author. We are grateful to Dr. Peter Kolesar (Kempten, Germany) and to Prof. G. Cioflica (University of Bucharest, Romania) for supplying us with old and new material from Băiţa Bihor, Romania, for study purposes, and to Dipl. Ing. Dr. Peter Walser, superintendent of the tungsten mine at Felbertal, for giving us permission to sample prospective sulfosalt sites. The manuscript benefitted from comments of N. Mozgova and A. Pring, as well as from the editorial care of Robert F. Martin.

References

- CIOFLICA, G. & VLAD, S. (1973): Aikinitul din skarnele de la Băiţa Bihorului [translated title: Aikinite in the skarn deposits from Băiţa Bihorului, Romania]. *Studii si Cercetari de Geologie, Geofizica, Geografie. Seria Geologie* 18, 311-316.
- KARUP-MØLLER, S. & MAKOVICKY, E. (1979): On pavonite, cupropavonite, benjaminite and "oversubstituted" gustavite. Bull. Minéral. 102, 351-367.

- KARUP-MØLLER, S. & MAKOVICKY, E. (1992): Mummeite a new member of the pavonite homologous series from Alaska mine, Colorado. *Neues Jahrb. Mineral.*, *Monatsh.* 555-576.
- KRAUS, W. & NOLZE, G. (1999): POWDERCELL 2.3. Federal Institute for Materials Research and Testing, Berlin, Germany.
- MAKOVICKY, E., MUMME, W.G. & WATTS, J.A. (1977): The crystal structure of synthetic pavonite, AgBi₃S₅, and the definition of the pavonite homologous series. *Can. Mineral.* **15**, 339-348.
- MUMME, W.G. (1990): A note on the occurrence, composition and crystal structures of pavonite homologous series members ⁴P, ⁶P, and ⁸P. *Neues Jahrb. Mineral., Monatsh.*, 193-204.
- NUFFIELD, E.W. (1980): Cupropavonite from Hall's Valley, Park County, Colorado. *Can. Mineral.* **18**, 181-184.
- TOPA, D. (2001): Mineralogy, Crystal Structure and Crystal Chemistry of the Bismuthinite-Aikinite Series from Felbertal, Austria. Ph.D. thesis, University of Salzburg, Salzburg, Austria.
- TOPA, D., MAKOVICKY, E. & BALIĆ-ŽUNIĆ, T. (2003b): Crystal structures and crystal chemistry of the members of the cuprobismutite homologous series of sulfosalts. *Can. Mineral.* 41, 1481-1502.
- TOPA, D., MAKOVICKY, E. & BALIĆ-ŽUNIĆ, T. (2008): What is the reason for the doubled unit-cell volumes of copperlead-rich pavonite homologues? The crystal structures of cupromakovickyite and makovickyite. *Can. Mineral.* 46, 515-523.
- TOPA, D., MAKOVICKY, E., BALIĆ-ŽUNIĆ, T.& PAAR, W.H. (2003a): Kupčikite, Cu_{3.4}Fe_{0.6}Bi₅S₁₀, a new Cu–Bi sulfosalt from Felbertal, Austria, and its crystal structure. *Can. Mineral.* 41, 1155-1166.
- TOPA, D., MAKOVICKY, E. & PAAR, W.H. (2002): Compositional ranges and exsolution pairs for the members of the bismuthinite–aikinite series from Felbertal, Austria. *Can. Mineral.* 40, 849-869.
- ŽÁK, L., FRYDA, J., MUMME, W.G. & PAAR, W.H. (1994): Makovickyite, Ag_{1.5}Bi_{5.5}S₉ from Băiţa Bihorului, Romania. The ⁴P natural member of the pavonite series. *Neues Jahrb. Mineral.*, *Abh.* **168**, 147-169.
- Received January 16, 2006, revised manuscript accepted February 15, 2008.