The Canadian Mineralogist Vol. 50, pp. 101-109 (2012) DOI: 10.3749/canmin.50.1.101

BAUMSTARKITE FROM THE KORYU MINE, HOKKAIDO, JAPAN

ARASHI KITAKAZE

Yamaguchi University Museum of Sugaki Ore Collection, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan

HIRONORI ITOH AND RYUICHI KOMATSU

Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan

YASUNORI HIGUCHI

Godo Shigen Sangyo, Co., Ltd, Kyobasi 2-6-6, Chuo-ku, Tokyo 104-0031, Japan

Abstract

Baumstarkite, ideally AgSbS₂, was found as aggregates of euhedral crystals in the Koryu mine, Hokkaido, Japan. The optical properties, chemical composition, and cell parameters of this mineral are presented. The compositional ranges are from 1.8 to 7.0 at.% As (7.4 to 28.2 mol.% AgAsS₂). The unit cell of a sample with 10 mol.% AgAsS₂ is triclinic, $P\overline{1}$ with a 7.778(1), b 8.326(1), c 8.814(1) Å, α 100.90(1), β 104.01(1), γ 90.06(1), and V 543.2(1) Å³; these values are in very good accordance with those of the type mineral as well as those of synthetic material.

INTRODUCTION

Baumstarkite is the triclinic form of AgSbS₂, which was defined by Effenberger *et al.* (2002) based on samples from the San Genaro mine (Huancavelica department, Peru). A crystal structure study of baumstarkite and aramayoite from an Argentinian deposit showed that these two sulfosalts are isotypic, with the general structural formula $Ag_3(Sb,As)_2(Sb,Bi)S_6$. At the mixed (Sb,Bi) site, As > Sb in baumstarkite, and Bi > Sb in aramayoite.

Approximately 25 years ago (Sugaki *et al.* 1984a,b) an unknown Ag-Sb-As sulfosalt mineral from the Koryu mine in Hokkaido Japan was described as "arsenian aramayoite" or "koryuite". Unfortunately, this material could not be validated as a new mineral, as crystal structure data were lacking. This paper reports the reexamination of this mineral, which corresponds to a new occurrence of baumstarkite. Optical properties, chemical analyses, and crystallographic data are presented, together with mineral synthesis, and the conditions of formation of baumstarkite according to phase equilibrium studies within the system Ag_2S - Sb_2S_3 - As_2S_3 are discussed.

OCCURRENCE

The Koryu mine in Hokkaido, Japan, is an epithermal gold-silver vein deposit. The veins occur in a black mudstone of Miocene age and are composed of quartz in association with minor amounts of adularia, chlorite, vermiculite, johansenite, calcite, pyrite, chalcopyrite, sphalerite, galena, hematite, electrum, and silver minerals such as aguilarite, pearcite-polybasite series minerals, pyrargyrite-proustite solid solution, miargyrite, baumstarkite, and silver-bearing tetrahedrite. The ore veins show crustification banding structure. Many druses and vugs are found in the central portion of the quartz veins. Many sulfide minerals occur as small crystals in the druses, including aguilarite, pearcitepolybasite series minerals, pyrargyrite-proustite solid solution, miargyrite, baumstarkite, and silver-bearing tetrahedrite (Sugaki et al. 1984a). The mine is closed at the present time.

From the mineral assemblages and fluid inclusion studies, temperatures of formation and sulfur fugacity of gold-silver mineralization in the Koryu mine are estimated to be 175 to 240°C, and -15.5 to -11.5 in log fs₂ (atm), respectively (Sugaki *et al.* 1984a).

 (\bullet)

[§] E-mail address: good103mk@yahoo.co.jp

()

Adularia from the +20 m sublevel of the 60 m level of the No. 1 vein gave a K-Ar age of 1.0 ± 0.3 Ma. This is the youngest reported age for gold-silver mineralization in Japan (Sugaki & Isobe 1985).

Baumstarkite occurs as aggregates of short, prismatic, euhedral crystals in the druses in a high-grade Ag-Au ore vein from the 60 m level of the No. 3 vein at the Koryu mine. In the druses, baumstarkite occurs in association with a pyrargyrite-proustite solid-solution, as seen in Figures 1A and B. A euhedral, prismatic, polyhedral crystal of miargyrite is found in the same druses. SEM photographs of these samples are presented in Figures 2A & B.

PHYSICAL PROPERTIES

Baumstarkite is grayish white on fresh surfaces, its streak is grayish red, and the luster is metallic. Viewed with a reflecting microscope, baumstarkite exhibits moderate bireflectance with a light bluish gray to light brownish white color (Fig. 3A). With crossed polars, it has a strong anisotropy from brownish yellow to bluish gray (Fig. 3B). Cleavage is perfect along the (001) plane. Twinning is commonly observed on [001]. It sometimes exhibits deep red internal reflections. The mineral is easily distinguished from other silver-bearing sulfosalts, such as miargyrite, polybasite-pearcite series minerals, and pyrargyrite-proustite solid solution, under crossed polars because its anisotropy is very strong.

FIG. 1. A & B: Aggregates of black prismatic crystals of baumstarkite from the Koryu mine under the binocular microscope. A minute red crystal of pyrargyrite is visible in B.

FIG. 2. A & B: SEM images of a baumstarkite crystal (bau) associated with quartz (qtz). The aggregates are the same as in Fig. 1A & B. Crystals of B aggregate are twinned.

scattered electron image for a baumstarkite polished section). A: Baumstarkite showing moderate bireflectance under open nicol (polarized light), B: showing colored strong anisotropism and twinning under crossed nicols, C: backscattered electron image of baumstarkite with weak compositional zoning. Linear black cracks reveal cleavage plane.

Etching reactions for standard solutions are as follows: HNO₃ (1:1), slowly stains to brown; KOH (sat.), quickly stains iridescent. No effect was observed for FeCl₃ (20%), KCN (20%), HgCl₂ (sat.), or HCl (1:1). The Vickers hardness VHN₂₅ ranges from 46 to 98 kg/mm³.

Reflectance was measured with a Leitz MPV II, microscopic spectrophotometer with WTiC as a standard. Reflectance data in air and oil are given in Table 1 and Figure 4 and are compared with those from Effenberger et al. (2002). The mineral from the Koryu mine has somewhat lighter reflectance than the type specimen in the high wavelength region under air and oil.

CHEMICAL COMPOSITION

Baumstarkite from the Koryu mine shows a distinct compositional zoning in backscattered electron images (Fig. 3C) due to variation in the As:Sb ratio.

The detailed chemical composition was studied by electron microprobe (JEOL JXA 8800, 20 kV, 10 nA, beam diameter 2 μ m). The standards were synthetic AgSbS₂ (AgL α , SbL α , and SK α) and synthetic AgAsS₂ (AsL α). Cu and Bi were sought but not found; the detection limit is 0.1 wt.%.

The analytical results are given in Table 2. The As content ranges from 1.9 to 7.4 at.% As. Averaged

(�)

FIG. 4. Reflectance spectra of baumstarkite from the Koryu and San Genaro mines baumstarkite from the Koryu and San Genaro mines.

λ(nm)		Baums Koryu	starkite I mine		Baumstarkite* San Genaro mine						
	R ₁ (%)	R ₂ (%)	R ₁ (%) oil	R ₂ (%) oil	λ (nm)	R ₁ (%)	R ₂ (%)	R ₁ (%) oil	R ₂ (%) oil		
406	32.8	40.8	19.0	25.0	400	33.15	40.95	19.20	25.95		
436	34.5	42.0	20.8	26.9	440	32.15	40.20	17.60	24.30		
497	33.0	41.9	20.5	25.8	500	30.40	38.80	15.80	22.60		
546	31.6	40.6	19.6	24.7	546	29.20	37.30	14.60	21.15		
586	30.6	39.3	18.3	23 3	589	27.80	26.10	13.35	20.10		
648	29.5	37.2	16.2	21.1	650	26.15	33.05	12.15	17.60		

TABLE 1. REFLECTANCE OF BAUMSTARKITE FROM KORYU MINE IN AIR AND OIL

*After Effenberger et. al. (2002)

compositions for baumstarkite from the San Genaro mine (Effenberger *et al.* 2002) are also given in Table 2. The As content of composition C from Effenberger *et al.* (2002) is lower than the minimum value found for the Koryu mine.

Miargyrite in the same druses contains 1.0 at.% As. Both minerals have compositional gaps between $1.0 \sim 1.9$ at.% corresponding to As/(Sb + As) = 0.04 - 0.08.

X-RAY INVESTIGATION

The X-ray single-crystal study of baumstarkite from the Koryu mine was performed using a precession camera, which permitted determination of the unit cell parameters and confirmation of the space group as $P\overline{1}$. X-ray powder diffraction data was obtained with a Guinier camera using the CuK α_1 line. The diffraction

104

()

()

BAUMSTARKITE, KORYU MINE, HOKKAIDO, JAPAN

TABLE 2. ELECTRON MICROPROBE ANALYSIS OF BAUMSTARKITE FROM THE KORYU MINE

	Koryu mine									San G	San Genaro mine							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	А	В	С
wt.%																		
Ag	37.3	37.2	37.0	37.3	37.0	37.1	37.8	37.5	37.6	37.6	37.6	37.9	38.0	38.4	38.4	36.5	38.3	37.4
Sb	38.3	38.4	38.5	38.1	38.5	37.9	36.6	37.0	36.6	35.7	35.2	34.2	33.4	32.8	30.8	40.2	27.9	33.1
As	1.9	2.0	2.2	2.3	2.4	2.7	3.3	3.4	3.6	4.4	4.5	5.2	5.8	6.7	7.4	0.7	10.1	6.2
S	22.1	22.1	22.0	22.0	22.1	22.2	22.4	22.5	22.4	22.4	22.3	22.6	22.5	22.8	22.9	22.0	23.1	22.6
Total	99.6	99.7	99.7	99.7	100.0	99.9	100.1	100.4	100.2	100.1	99.6	99.9	99.7	100.7	99.5	99.4	99.4	99.3
atomic %																		
Ag	25.1	25.1	25.0	25.1	24.8	24.9	25.1	24.9	25.0	24.9	25.0	25.0	25.1	25.0	25.0	24.7	24.7	24.7
Sb	22.9	22.9	23.0	22.7	22.9	22.5	21.6	21.7	21.5	21.0	20.8	20.0	19.5	18.9	17.8	24.2	15.9	19.3
As	1.8	1.9	2.1	2.2	2.3	2.6	3.2	3.2	3.4	4.2	4.3	4.9	5.4	5.2	7.0	0.7	9.4	5.9
S	50.1	50.1	49.9	49.9	49.9	50.0	50.1	50.2	50.0	49.9	49.9	50.1	49.9	49.9	50.2	50.4	50.0	50.1
total atoms	=12																	
Ag	3.01	3.01	3.00	3.01	2.98	2.99	3.01	2.99	3.00	2.99	3.00	3.00	3.01	3.00	3.00	2.97	2.96	2.96
Sb	2.75	2.75	2.76	2.72	2.75	2.70	2.59	2.60	2.58	2.52	2.50	2.40	2.34	2.27	2.14	2.91	1.91	2.32
As	0.22	0.23	0.25	0.26	0.28	0.31	0.38	0.38	0.41	0.50	0.52	0.59	0.65	0.62	0.84	0.08	1.12	0.71
S	6.01	6.01	5.99	5.99	5.99	6.00	6.01	6.02	6.00	5.99	5.99	6.01	5.99	5.99	6.02	6.04	6.01	6.02

 $(\blacklozenge$

A, B, C: San Genaro mine, A: matrix (average), B: lamellae 1, C: lamellae 2 (after Effenberger et al. 2002)

patterns (Table 3) were measured and indexed according to Kitakaze (1996). X-ray powder data for baumstarkite from the Koryu and San Genoa mines, and synthetic material with composition Ag₃Sb_{2.7}As_{0.3}S₆ (obtained by the dry method starting from a mixture of AgSbS₂ and AgAsS₂; Sugaki *et al.* 1978), are given in Table 3.

Table 4 shows refined unit cell parameters for the natural and synthetic samples. Those for the San Genoa mine sample were calculated from the crystal structure data in Effenberger *et al.* (2002).

Table 4 also shows that the unit cell parameters of baumstarkite from the Koryu mine are about the same as those for synthetic baumstarkite and very close to those determined by Effenberger *et al.* (2002) from the San Genoa mine with a formula of $Ag_3Sb_{2,934}As_{0.040}Bi_{0.026}S_6$ (according to the crystal structure study). The unit cell volume of synthetic baumstarkite is the same as that for the sample from the Koryu mine.

BAUMSTARKITE IN EXPERIMENTAL DATA

Baumstarkite belongs in the Ag-Sb-As-S system, but phase diagrams for this quaternary system have not been reported. However, many experimental studies have been performed on the ternary systems Ag-Sb-S and Ag-As-S. In the Ag-Sb-S system, Sb-rich billingsleyite, pyrargyrite, miargyrite (low temperature form), and the high temperature form of miargyrite (cuboargyrite, Walenta 1998) were synthesized and their phase relations established by Barstad (1959), Cambi & Elli (1965), Somanchi (1966), Hall (1968), Keighin & Honea (1969), and Wehmeier *et al.* (1968). In the Ag-As-S system, billingsleyite, proustite, smithite, and trechmannite were synthesized and their phase equilibria were determined by Toulmin (1963), Hall (1966, 1968), Roland (1970), and Wehmeier *et al.* (1968). The synthesis method, optical properties, and X-ray powder data for pyrargyrite, high temperature miargyrite (cuboargyrite), and miargyrite in the Ag-Sb-S system and proustite, smithite, and trechmannite in the Ag-As-S system were reported by Sugaki *et al.* (1978).

In the quaternary system, the $Ag_2S-Sb_2S_3-As_2S_3$ pseudo-ternary sub-system was studied by Chang *et al.* (1977), Ouwa *et al.* (1977), Shima *et al.* (1978), and Sugaki & Kitakaze (1984, 1992). Change *et al.* (1977) found a new synthetic phase which corresponds to baumstarkite on the AgSbS₂-AgAsS₂ join. The phase relations on the system were reexamined using dry and hydrothermal methods by Sugaki & Kitakaze (1984, 1992). They also obtained more detailed solid-solution ranges and crystallographic data for a new synthetic phase. Their phase diagram at 350°C is depicted in Figure 5.

The phase diagram of the AgSbS₂-AgAsS₂ system is shown in Figure 6 (Sugaki & Kitakaze 1984, 1992). The end-members cuboargyrite and smithite have a wide range of solid solutions at high temperature. Baumstarkite is stable below 398°C and has a significant range of solid solutions from 8 to 33 mol.% AgAsS₂ at low temperature.

DISCUSSION

Effenberger *et al.* (2002) assumed that baumstarkite is the third naturally occurring modification of AgSbS₂, in addition to miargyrite and cuboargyrite. However, baumstarkite associated with miargyrite (As content less than 1.0 at.%, 4.0 mol.% AgAsS₂) from the Koryu

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Baumstarkite Koryu mine Ag _{2.99} Sb _{2.70} As _{0.31} S ₆			Baumstarkite Baumstarkite Koryu mine synthetic J _{2.99} Sb _{2.70} As _{0.31} S ₆ Ag _{3.00} Sb _{2.70} As _{0.30} S ₆						Baumstarkite San Genaro mine Ag ₃ Sb _{2.934} As _{0.040} Bi _{0.026} S ₆						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	hkl	-		d(obs.)		d(calc.)	I	d(obs.)		d(calc.)	l*	d(obs.)*	d(calc.)*	l(calc.)**	d(calc.)**			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110	-	4	5.675		5.679	5	5.675		5.677								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111		5	4.592		4.596	7	4.592		4 595				3	4.5907			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102		5	4.126		4.123	3	4.126		4.122								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112		2	3.950		3.952	3	3.952		3 953				4	3.9445			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		3	3.766		3.769	4	3.766		3.768				1	3.7623			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	211		6	3.501		3.503	6	3.503		3 504				8	3.4942			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	210		20	3.485		3.488	15	3.485		3.487				11	3.4845			
	121		50	3.428		3.429	40	3.428		3.428	8	3.425	3.429	75	3.4245			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	021		2	3.417		3.418	2	3.414		3.417				2	3.4017			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	210		2	3.360		3.360	2	3.359		3 360				3	3.3531			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	022		30	3.258		3.260	30	3.258		3 261	3	3.258	3.259	61	3.2540			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	202		20	3.228		3.227	25	3.230		3 227	6	3.224	3.230	48	3.2260			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	201		25	3.157		3.159	15	3.160		3.157	4	3.158	3.159	42	3.1543			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	221	J	100	2.839	Ş	2.840	100	2.839	ſ	3 841	8	2.841 <i>∫</i>	(2.844)	81	2.8329			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	ſ			l	2.840			l	3 839		l	2.837	81	2.8402			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	003		75	2.795		2.796	80	2.799		2.795	100	2.798	2.802	100	2.7979			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	221		4	2.732		2.732	2	2.730		2.731				6	2.7355			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	022		1	2.675		2.676	1	2.672		2.675				2	2.6823			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 <u>1</u> 0		1	2.435		2.435	2	2.439		2.437				2	2.4327			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	222		2	2.297		2.298	2	2.296		2 297								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	232		1	2.202		2.201	1	2.202		2 202								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	041		20	2.0785		2.0789	20	2.0785		2.0787				26	2.0775			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	223		10	2.0445		2.0446	15	2.0440		2.0437				26	2.0493			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	040	}	5	2.0410	{	2.0415	2	2.0410	{	2.0410				2	2.0422			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213	J			ι	2.0414			ι	2.0407	_			3	2.0397			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	222		20	2.0098		2 0094	15	2.0090		2.0088	5	2.013	2 013	25	2.0097			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	224		20	1.9763		1.9757	25	1.9763		1.9764	5	1.971	1.975	24	1.9722			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	401	}	15	1.9445	{	1.9442	10	1.9445		1.9441				19	1.9415			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	223)		4 000 4	C	1.9441	15	1.9430		1.9432				15	1.9409			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	330		4	1.8934		1.8933	8	1.8930		1.8932				2	1.8919			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	411		ა ი	1.0004		1.0009	4	1.0900		1.0092				5 1	1.0040			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/1		10	1.7799		1.7000	3 15	1.7700		1.7791				11	1.7793			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	241 115		7	1.7700		1.7707	15	1.7700		1.7099				11	1.7734			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	240		2	1 7507		1.7022	1	1.7020		1 75020				٩	1 7577			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	024		1	1 7320		1.7330	1	1.7320		1 7321				9	1 7366			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	243		15	1.7323		1.7350	15	1.7320		1 7262				q	1 7211			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	240		20	1 7148		1 7149	25	1 7145		1 7141				8	1 7131			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	042		20	1.7 140		1 7091	20	1 7085		1 7084				12	1 7122			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	422		5	1 7003		1 7000	20	1.6693		1 6997				5	1 7009			
$ \begin{array}{c} 420 \\ 423 \\ 423 \\ 025 \\ 15 \\ 1.6793 \\ 1.6703 \\ 1.6705 \\ 1.6797 \\ 1.6790 \\ 1.6700 \\ 1.6702 \\ 1.6800 \\ 1.6702 \\ 1.6800 \\ 4 \\ 1.670 \\ 4 \\ 1.670 \\ 4 \\ 1.670 \\ 1.6800 \\ 4 \\ 1.670 \\ 1.6800 \\ 4 \\ 1.670 \\ 1.6800 \\ 4 \\ 1.670 \\ 1.6800 \\ 4 \\ 1.670 \\ 1.6800 \\ 4 \\ 1.670 \\ 1.680 \\ 1.6702 \\ 6 \\ 1.680 \\ 1.670 \\ 1.6702 \\ 6 \\ 1.680 \\ 1.670 \\ 1.6702 \\ 1.$	205		4	1 6962		1 6959	5	1 6960		1 6658				6	1 6972			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	420	١	5	1.6798	ſ	1.6800	7	1.6798	{	1.6804				4	1.6765			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	423	}	Ũ		{	1.6797			Ľ	1.6800				4	1.6758			
a (Å)7.778(1)7.778(1)7.768(1) b (Å)8.326(1)8.325(1)8.325(1) c (Å)8.814(1)8.814(1)8.814(1) α (°)100.89(1)100.93(1)100.93(1) β (°)104.03(1)104.06(1)104.06(1)	025		15	1.6703		1.6705	20	1.6700		1.6702				6	1.6688			
b (A) $8.32b(1)$ $8.325(1)$ $8.325(1)$ c (Å) $8.814(1)$ $8.814(1)$ $8.814(1)$ a (°) $100.89(1)$ $100.93(1)$ $100.93(1)$ β (°) $104.03(1)$ $104.06(1)$ $104.06(1)$	a (Å)			7	7.778	3(1)		7.7	778(1))				7.76	8(1)			
α (°) 100.89(1) 100.93(1) 100.93(1) β (°) 104.03(1) 104.06(1) 104.06(1)	D (A)			5	0.32t	D(1)		8.3	5∠5(1))				8.32	0(1) 4(1)			
α ()100.89(1)100.93(1)100.93(1)β (°)104.03(1)104.06(1)104.06(1)	C (A)			5	0.014	+(1) C(1)		3.8 400	02(4))				0.01	+(1) 2(1)			
$p_{1}(1) = 100,00(1)$ $100,00(1)$ $104,00(1)$	ц(-) д (0)			10	10.05	3(1)		100	06(1)	/ \				100.9	6(1)			
V(2) 90.06(1) 90.02(1) 00.02(1) 00.02(1)	V (P)			10 C)0. 00 00	5(1)		04	02(1)	,)				οn n	2(1)			

TABLE 3. X-RAY POWDER DIFFRACTION DATA FOR NATURAL AND SYNTHETIC BAUMSTARKITE

*After Effenberger et al. (2002), **Am. Min. Database code 0002820; (2.844): index is doutful

۲

۲

FIG. 5. Phase diagram of Ag₂S-Sb₂S₃-As₂S₃ pseudo-ternary system at 350°C (Sugaki & Kitakaze 1984, 1992). Abbreviations are bau: baumstarkite, stb: stibnite, mia: miargyrite, smi: smithite, pyr-pro ss: pyrargyrite-proustite solid solution, liq: liquid.

FIG. 6. Phase diagram of the AgSbS₂-AgAsS₂ pseudo-binary system according to Sugaki & Kitakaze (1984, 1992). Abbreviations are bau:baumstarkite, mia:miargyrite, cub:cuboargyrite, smi:smithite, tre:trechmannite, liq:liquid.

۲

۲

Name Locality Chemical formura	Baumstarkite Koryu mine Ag _{2.99} Sb _{2.70} As _{0.31} S ₆	Baumstarkite synthetic Ag ₃ Sb _{2.7} As _{0.3} S ₆	Baumstarkite* San Genoa mine Ag ₃ Sb _{2.934} As _{0.040} Bi _{0.026} S ₆
a (Å)	7.778(1)	7.778(1)	7.766(2)
<i>b</i> (Å)	8.326(1)	8.325(1)	8.322(2)
<i>c</i> (Å)	8.814(1)	8.814(1)	8.814(2)
α	100.90(1)	100.93(1)	100.62(2)
β	104.01(1)	104.06(1)	104.03(2)
γ	90.06(1)	90.02(1)	90.22(2)
$V(Å^3)$	543.2(1)	542.9(1)	542

TABLE 4. CRYSTALLOGRAPHIC DATA FOR NATURAL AND SYNTHETIC BAUMSTARKITE

*After Effenberger *et al.*(2002)

mine contains the lowest As content at 1.8 at.% As (7.4 mole % AgAsS₂). At the San Genaro mine, the texture for baumstarkite crystals associated with or randomly intergrown with miargyrite are found in Fig.1B, C in Effenberger *et al.* (2002), although neither chemical composition is given. Baumstarkite was crystallized at about same P-T conditions as are associated with miargyrite. There is no evidence of transition in the photographs.

Regarding the $AgSbS_2$ - $AgAsS_2$ join, the Sb-rich baumstarkite composition at 300°C is 7.5 mol.% $AgAsS_2$ and there is a compositional gap between baumstarkite and miargyrite. From these results, it is assumed that these minerals have no dimorphic relationship. Naturally occurring cuboargyrite does not contain As, so the mineral has a pure $AgSbS_2$ composition (Walenta 1998). In that case, baumstarkite and cuboargyrite have no dimorphic relationship, either.

Effenberger *et al.* (2002) showed that in baumstarkite Sb occupies the M1, M2, and M3 sites and As substitutes at the M1 and M2 sites. In the most As-rich synthetic sample (33 mol.% AgAsS₂) it is assumed that the M1 and M2 sites are 50% occupied by As, corresponding to $Ag_3(Sb_{1.0}As_{1.0})SbS_6$.

In the crystal structure of aramayoite, Sb is distributed among the M1, M2, and M3 sites. However, Bi mainly occupies the M3 site. The substitutions found in naturally occurring baumstarkite and/or aramayoite are As for Sb at the M1 and M2 sites, and/or Bi for Sb at the M3 site. In Fig. 1C (Effenberger *et al.* 2002), a small grain of aramayoite was found as an inclusion in Bi-poor baumstarkite, which suggests that it is a transformation product of baumstarkite.

The phase diagram of the AgSbS₂-AgBiS₂ system using dry and hydrothermal methods was obtained by Shima *et. al.* (1979), and most Bi-rich aramayoite has 34 mol.% AgBiS₂, which corresponds to Ag₃Sb₂BiS₆.

According to studies of the phase relations of the AgSbS₂-AgAsS₂-AgBiS₂ system at 350 and 300°C using dry and hydrothermal synthesis by Miyazaki (1986) and Sugaki & Kitakaze (1992), baumstarkite and

aramayoite have two solid solutions: the former is As for Sb and the latter is Sb for Bi, and there is an immiscibility gap between the minerals. They concluded that baumstarkite and aramayoite have very similar crystal structures, but no solid solution. From the results of synthetic experiments and natural occurrences, baumstarkite and aramayoite are different mineral species.

We conclude that naturally occurring baumstarkite is an independent mineral having limited solid-solution substitution for Sb and As. The phase relations in the $Ag_2S-Sb_2S_3-As_2S_3-Bi_2S_3$ system will be described in the near future.

ACKNOWLEDGMENTS

This study was performed as the "Project of Studied for Minerals in Yamaguchi University Museum of Sugaki Ore Collection" in this study used (specient #00328). We sincerely thank late Emeritus Professor A. Sugaki for useful discussions, and Y. Itoh (Tohoku University) for assistance with the EPMA. Cell parameters were calculated by "CELL210" software made by H. Miura (Hokkaido University). The authors thank Y. Moëlo and anonymous referrer for helpful comment and remarks that improved the manuscript.

REFERENCES

- BARSTAD, J. (1959) Phase relations in the system Ag-Sb-S at 400°C. Acta Chemica Scandinavica 13, 1703-1706.
- CAMBI, L. & ELLI, M. (1965) Hydrothermal processors: III Synthesis of thiosalts derived from silver and antimony sulfides. *Chimica e l'Industria* (Milan) 47, 282-290
- CHANG, L.L.Y., KNOWLES, C.R., & TZONG, T.C. (1977) Phase relation in the system Ag₂S-Sb₂S₃-Bi₂S₃, Ag₂S-As₂S₃-Sb₂S₃ and Ag₂S-As₂S₃-Bi₂S₃. *Memoir of the Geological Society of China* 2, 229-237.
- EFFENBERGER, H., PAAR, W.H., TOPA, D., CRIDDLE, A.J., & FLECK M. (2002) The new mineral baumstarkite and a

()

structural reinvestigation of aramayoite and miargyrite. *American Mineralogist* **87**, 753-764.

- HALL, H.I. (1966) The Systems Ag-Sb-S, Ag-As-S and Ag-Bi-S: Phase Relations and Mineralogical Significance; Ph. D. Thesis-Geology, Brown University, University Microfilms Incorp., Ann Arbor, Michigan, 67-247.
- HALL, H.I. (1968) Synthesis of two new silver sulfosalts. Economic Geology 63, 289-291
- KEIGHIN, C.W. & HONEA, R.M. (1969) The system Ag-Sb-S from 600 to 200°C. *Mineralium Deposita* 4, 153-171.
- KITAKAZE, A. (1996) Cell parameter refinement using Guinier method. *Kobutsugaku-Zashi* 25, 69-76 (in Japanese).
- MIYAZAKI, M. (1986) Study on the phase relations in the Ag-As-Sb-Bi-S system, especially Ag₂S-As₂S₃-Sb₂S₃-Bi₂S₃ system. Master Thesis at Institute of Mineralogy, Petrology and Economic Geology, Tohoku University (in Japanese)
- OUWA, T., SUGAKI, A., SHIMA, H., & KITAKAZE, A. (1977) Studies in the Ag-Sb-As-S system (1) especially phase relations in the Ag₂S-Sb₂S₃-As₂S₃. *In* Collected Abstracts of Joint Meeting of the Society of Japanese Mineralogy, Petrology and Economic Geology, Society of Mineralogy and Society of Mining Geology, 101 (in Japanese).
- ROLAND, G.W. (1970) Phase relations below 575°C in the system Ag-As-S. *Economic Geology* 65, 241-252.
- SHIMA, H., SUGAKI, A., & KITAKAZE, A. (1978) Studies in the Ag-Sb-As-S system (2). *In* Collected Abstract of the Mineralogical Society of Japan, 11 (in Japanese).
- SHIMA, H., UENO, H., & NAKAMURA, Y. (1979) Phase Relation On The AgSbS₂-AgBiS₂ System. *In* Collected Abstract Of The Mineralogical Society of Japan, 109 (in Japanese).
- SOMANCHI, S. (1966) Subsolidus phase relations in the system Ag-Sb-S and the quasi binary system Ag₂S-Sb₂S₃ at 400°C. *Indian Minerals* 7, 1-7.

- SUGAKI, A. & ISOBE, K. (1985) K-Ar ages of the Sanru and Koryu mines in Hokkaido, Japan. *The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists* 80, 537-540 (in Japanese with English abstract).
- SUGAKI, A. & KITAKAZE, A. (1984) Study in the system Ag₂S-Sb₂S₃-As₂S₃, especially discovering of arsenaramayoite and their phase relations. *In* Collected Abstracts of Symposium for Ore Minerals 1, 17-22 (in Japanese).
- SUGAKI, A. & KITAKAZE, A. (1992) Discovery of As analogue of aramayoite and its phase relation in the Ag₂S-As₂S₃-Bi₂S₃-Sb₂S₃ join. 29th International Geological Congress, Kyoto, Japan, Abstract, 673.
- SUGAKI, A., SHIMA, H., & KITAKAZE, A. (1978) Synthesis of silver antimony and silver arsenic sulfosalt minerals. *Science Report of Tohoku University*, Ser. 3, 13, 165-182.
- SUGAKI, A., KITAKAZE, A., & ISBE, K. (1984a) On the gold-silver deposits of the Koryu mine, Hokkaido, Japan. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 79, 405-423 (in Japanese with English abstract)
- SUGAKI, A., KITAKAZE, A., & ISBE, K. (1984b) On the unknown Ag-Sb-As-S mineral from Koryu mine, Hokkaido, Japan. *In* Collected Abstract of the Mineralogical Society of Japan, 62 (in Japanese).
- TOULMIN, P. (1963) Proustite-pyrargyrite solid solutions. American Mineralogist 48, 725-736.
- WALENTA, K. (1998) Cuboargyrite, ein neues Silbermineral aus dem Schwarzwald. *Lapis*, 23, 21-23
- WEHMEIER, F.H., LAUDISE, R.A., & SHIEVER, J.W. (1968) The system Ag₂S-As₂S₃ and the growth of crystals of proustite, smithite and pyrargyrite. *Materials Research Bulletin* 3, 767-778.

(�)