The Canadian Mineralogist Vol. 50, pp. 55-63 (2012) DOI: 10.3749/canmin.50.1.55

KOTTENHEIMITE, $Ca_3Si(OH)_6(SO_4)_2$ ·12H₂O, A NEW MEMBER OF THE ETTRINGITE GROUP FROM THE EIFEL AREA, GERMANY

NIKITA V. CHUKANOV[§]

Institute of Problems of Chemical Physics, Chernogolovka, Moscow Region, 142432, Russia

SERGEY N. BRITVIN

Department of Crystallography, St. Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia, and Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200, Russia

KONSTANTIN V. VAN

Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia

STEFFEN MÖCKEL

Alpha-Geophysik, Neudorferstrasse 18, Gotthelffriedrichsgrund, 09629, Germany

ALEKSANDR E. ZADOV

NPP "Teplokhim", Dmitrovskoye Avenue 71, Moscow, 127238 Russia

Abstract

The new ettringite-group mineral kottenheimite was found at Bellerberg, near Kottenheim, Eastern Eifel area, Rhineland-Palatinate (Rheinland-Pfalz), Germany, and named for the type locality. Associated minerals are wollastonite, clinochlore, ellestadite, melilite, cuspidine, and earlier formed sanidine, clinopyroxene, and magnetite. Kottenheimite forms white radiated and random aggregates of hair-like subparallel clusters of minute crystals. The Mohs' hardness is 2-2.5; $D_{\text{meas}} = 1.92(2)$ g/ cm³, $D_{\text{calc}} = 1.926$ g/cm³. The new mineral is uniaxial (-), $\omega = 1.490(2)$, $\varepsilon = 1.477(2)$. The IR spectrum of kottenheimite is in accordance with the chemical composition and contains absorption bands in the range 3300-3700 cm⁻¹ (O-H-stretching vibrations), at 1650 and 1683 cm⁻¹ (bending vibrations of H₂O molecules), 1158, 1086, and 987 cm⁻¹ (showing the presence of distorted SO₄²⁻ groups), 752 and 725 cm⁻¹ (corresponding to Si–O stretching vibrations of Si(OH)₆ octahedra). The chemical composition is (electron microprobe, mean of 6 analyses, wt.%; H₂O and CO₂ determined by gas chromatography): CaO 26.04, MgO 0.20, FeO 0.19, Al₂O₃ 0.25, SiO₂ 8.95, SO₃ 24.26, CO₂ 0.58, H₂O 41.30; total 101.77. The empirical formula calculated on the basis of 26 anions is $Ca_{3,015}Mg_{0,03}Fe_{0,02}Al_{0,03}Si_{0,97}(OH)_{5,94}(SO_4)_{1,97}(CO_3)_{0,09}$ ·11.91H₂O. The simplified formula is Ca₃Si(OH)₆(SO₄)₂·12H₂O. The crystal structure was refined by the Rietveld method ($R_p = 0.0487$, $R_{wp} = 0.0623$, $R_B = 0.087$) based on the structural model of carraraite, Ca₃Ge(SO₄,CO₃)₂(OH)₆ 12H₂O. The new mineral is hexagonal, space group P6₃/m, a = 11.1548(3), c = 10.5702(3) Å, V = 1139.04(5) Å³, and Z = 2. The strongest lines of the powder diffraction pattern [d in Å (I) (hkl)] are: 9.72 (100) (100), 5.590 (60) (110), 4.645 (26) (102), 3.840 (54) (112), 2.751 (34) (302), 2.536 (27) (213), 2.185 (30) (223). The channels in the crystal structure of kottenheimite are only filled by sulfate anions and water molecules. Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 4102/1.

Keywords: kottenheimite, ettringite group, thaumasite, new mineral, crystal structure, cement, Eifel area, Germany.

4

E-mail address: chukanov@icp.ac.ru

INTRODUCTION

Minerals belonging to the ettringite group represent a wide family of compounds in which the crystal structures are composed of columnar units $Ca_6[M_2(OH,O)_{12}:24H_2O]$ (M = Si, Ge, Mn⁴⁺, Al, Fe³⁺, or Cr) oriented along the c axis of the hexagonal (trigonal) lattice; intercolumn channels are occupied by chargebalancing anions such as SO42-, CO32-, PO3OH2-, B(OH)₄⁻, and H₂O molecules (Moore & Taylor 1970, Effenberger et al. 1983, Grier et al. 2002, Martucci & Cruciani 2006). The archetype members of this group, ettringite Ca₆Al₂(OH)₁₂(SO₄)₃·24H₂O (Moore & Taylor 1970) and thau masite $Ca_3Si(OH)_6(SO_4)(CO_3) \cdot 12H_2O$ (Edge & Zobetz 1971), play an important role in cement and concrete compositions (Batic et al. 2000, Brown & Hooton 2002, Brown et al. 2003). Structural studies of these minerals, first carried out on natural crystals, led to an explanation of the chemical behavior of their artificial counterparts in cement. The possible existence of a hypothetical high-sulfate analogue of thaumasite, $Ca_3Si(OH)_6(SO_4)_2$ ·12H₂O, with intercolumnar channels completely occupied by sulfate ions, has been questioned for a long time. In the present paper, we describe this enigmatic member of the ettringite group. It was discovered near Kottenheim, in the Eifel area, Germany, and named kottenheimite after the type locality. The mineral and its name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA no. 2011-038). The type material is deposited in the collection of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 4102/1.

OCCURRENCE, GENERAL APPEARANCE AND PHYSICAL PROPERTIES

Kottenheimite occurs at Bellerberg, near Kottenheim, 2 km north of Mayen, Laacher See region, eastern Eifel area, Rhineland-Palatinate (Rheinland-Pfalz), Germany. The new mineral was found in a late hydrothermal assemblage related to alkali olivine basalt. Associated minerals are wollastonite, clinochlore, ellestadite, melilite, cuspidine and earlier plagioclase, sanidine, clinopyroxene, and magnetite.

Kottenheimite forms snow-white radiating and random aggregates of hair-like subparallel clusters in miarolitic cavities, encrusting cuspidine and melilite, in alkali basalt (Figs. 1, 2). Clusters reach 0.2 mm in length and consist of minute crystals that are curved and split. Crystal forms could not be indexed with certainty, but apparently the main form is the prism $\{10\overline{10}\}$. Individual crystals are colorless under the microscope. The luster is vitreous in separate crystals and silky in aggregates. The mineral is brittle, with a Mohs' hardness of 2-2¹/₂. The fracture is uneven and there is no obvious cleavage. The density, measured by flotation in heavy liquids, is 1.92(2) g/cm³. The calculated density is 1.93 g/cm³.

The new mineral is optically uniaxial (-), $\omega = 1.490(2)$, $\varepsilon = 1.477(2)$.

CHEMICAL DATA

Six electron-microprobe analyses for Ca, Mg, Fe, Al, Si, and S were carried out using a VEGA TS 5130MM SEM equipped with an EDX analyzer [INCA Si(Li) detector], at an operating voltage of 15.7 kV and a beam current of 0.5 nA. The electron beam was rastered over an area $8 \times 8 \ \mu\text{m}^2$. Attempts to use the WDS mode, with higher beam currents, were unsuccessful because of the instability of the mineral resulting from its volatile component. Both H₂O and CO₂ contents were determined by gas chromatography (CHN analysis) of the products by annealing at 1200 °C. Contents of other elements with atomic numbers higher than oxygen, as well as nitrogen (by CHN analysis), are below detection limits (*i.e.*, below 0.05-0.2 wt.%). Analytical data are given in Table 1.

In spite of the precautions taken, the contents of components as measured by the electron-microprobe analyses seem to be somewhat overestimated due to partial dehydration of the mineral under electron beam. As a result, the total sum in Table 1 is 101.77%.

The empirical formula of kottenheimite (based on 26 O atoms) is $Ca_{3.015}Mg_{0.03}Fe_{0.02}Al_{0.03}Si_{0.97}(OH)_{5.94}$ (SO₄)_{1.97}(CO₃)_{0.09}·11.91H₂O.

The simplified formula is $Ca_3Si(OH)_6(SO_4)_2 \cdot 12H_2O$. The Gladstone-Dale compatibility index (Mandarino 1981) calculated from the empirical formula is $1 - (K_P/K_C) = 0.010$ (*Superior*).

FIG. 1. Aggregates of acicular crystals of kottenheimite (white), with earlier melilite crystals, on cuspidine. Field of view: 1.2 mm.

A

INFRARED SPECTROSCOPY

The kottenheimite sample was mixed with anhydrous KBr, pressed into a pellet, and analysed using a Specord 75 IR spectrophotometer. The IR spectrum of the pure KBr disk was subtracted from the overall spectrum. Polystyrene and gaseous NH₃ were used as frequency standards; the precision of frequency measurement is ± 1 cm⁻¹; the mean resolution for the region 400-1600 cm⁻¹ is 0.8 cm⁻¹.

The positions of absorption bands in the IR spectrum of kottenheimite (Fig. 3a,b) and their assignments (cm⁻¹; s: strong band, w: weak band, sh: shoulder) are: 3620 sh, 3512, 3400 sh, 3350 s (O–H stretching vibrations of H₂O molecules and OH groups), 1683, 1650 (bending vibrations of H₂O molecules), 1393 w (stretching vibrations of CO_3^{2-} anions), 1158 s, 1086 s (asymmetric stretching vibrations of SO_4^{2-} anions), 987 w (symmetric stretching vibrations of SO_4^{2-} anions), 987 sh, w, 752 s, 725 sh [Si–O stretching vibrations of Si(OH)₆ octahedra], 670, 621 s, 600 sh (bending vibrations of SO_4^{2-} anions), 497 s, 460 sh [O–Si–O bending vibrations of Si(OH)₆ octahedra].

The IR spectrum confirms the very low content of CO₃ groups in kottenheimite, unlike thaumasite. Bands of B-bearing groups [a doublet of relatively broad bands in the range 950-1000 cm⁻¹ corresponding to B(OH)₄⁻, as well as bands of BO₃³⁻ in the range 1185-1240 cm⁻¹; see Pöllmann *et al.* 1989, Malinko *et al.* 2001] are absent in the IR spectrum of kottenheimite. Bands in the range 930-970 cm⁻¹, corresponding to S–O stretching vibrations of sulfite groups in the SO₃-dominant ettringite-group mineral hielscherite (IMA 2011-037), are also not observed in the IR spectrum of the SO₃²⁻-dominant ettringite-group mineral kottenheimite. Thus SO₃²⁻ groups are absent in kottenheimite.

For comparison, IR spectra of some other ettringitegroup minerals are given in Figures 3a and b. Their empirical formulae, calculated from electron microprobe analyses on the basis 3 or 6 Ca atoms pfu, are given below: thaumasite: $Ca_3(Si_{0.92}Al_{0.03}Mg_{0.03})_{\Sigma 0.98}(OH,O)_6$ (SO₄)_{1.07}(CO₃)_x·*n*H₂O

ettringite: $Ca_6(Al_{1.88}Si_{0.08})_{\Sigma 1.96}(OH,O)_{12}$ (SO₄)_{2.77}(CO₃)_x·*n*H₂O

hielscherite: $Ca_3(Si_{0.73}Al_{0.28})_{\Sigma 1.01}(OH)_{5.71}(SO_4)_{1.00}$ $(SO_3)_{0.62}(CO_3)_{0.38}(NO_3)_{0.05}$ ·10.63H₂O.

The IR spectrum of kottenheimite differs from those spectra obtained for all other ettringite-group minerals. The most important distinctive feature of the kottenheimite IR spectrum is the splitting of the band corresponding to the triply degenerate asymmetric SO₄ mode v_3 into two components with absorption maxima at 1086 and 1158 cm⁻¹. Another distinction from most

FIG. 2. Fibrous aggregate of kottenheimite. Polished section. BSE image.

E:	xperimental c	Theoretical composition of		
Constituent	wt.%	Ranges	Probe standard	wt.%
CaO	26.04	25.25-26.81	Diopside	25.54
MgO	0.20	0-0.34	Diopside	
FeO	0.19	0.10-0.32	Fe	
Al ₂ O ₃	0.25	0-0.41	Albite	
SiO ₂	8.95	8.77-9.24	Diopside	9.12
SO3	24.26	23.81-24.72	BaSO ₄	24.31
CO ₂	0.58			
H ₂ O	41.30			41.03
Total	101.77			100.00

TABLE 1. CHEMICAL COMPOSITION OF KOTTENHEIMITE

۲

FIG. 3. IR spectra of kottenheimite (1), thaumasite from the outcrop at the mouth of Uraveli river, near Akhaltsykhe, Georgia (2), ettringite from Nickenicher Sattel, Eifel, Germany (3) and hielscherite $Ca_3Si(OH)_6(SO_4)$ (SO₃)·11H₂O (IMA 2011-037), a SO₃-dominant analogue of thaumasite (4) in the region 400–2000 cm⁻¹ (a) and in the region of O–H stretching vibrations, 2500–3800 cm⁻¹ (b).

other ettringite group minerals is the presence of a weak but distinct narrow band at 987 cm⁻¹ corresponding to the non-degenerate symmetric stretching SO₄ mode v_1 . Both these features indicate strong distortion of SO₄ tetrahedra. Strong bands at 752 and 497 cm⁻¹ indicate the presence of Si(OH)₆ octahedra in kottenheimite. Similar bands are observed in the IR spectrum of thaumasite, but they are absent in the IR spectrum of Si-free ettringite-group minerals (in particular, in the spectrum of ettringite; Fig. 3a). The splitting of the H–O–H bending band into two components, with maxima at 1687 and 1645 cm⁻¹, in the IR spectrum of kottenheimite reflects the presence

of locally non-equivalent H_2O molecules. Characteristic bands of SO_3^{2-} anions at 937 and 967 cm⁻¹ are present in the IR spectrum of hielscherite, but are not observed in the spectrum of kottenheimite.

THE CRYSTAL STRUCTURE AND X-RAY POWDER DIFFRACTION DATA

X-ray powder-diffraction data for kottenheimite (Table 2) were collected with a STOE IPDS II singlecrystal diffractometer equipped with an image-plate detector (MoK α radiation; the distance between sample

()

58

۲

()

I _{obs}	d _{obs}	I _{calc}	d _{calc}	h	k	1	I _{obs}	d _{obs}	I _{calc}	d _{calc}	h	k	1
100	9.72	100	9.66	1	0	0	7	1.931	10	1.933	5	0	0
69	5.590	60	5.579	1	1	0			3	1.918	2	2	4
		2	5.285	0	0	2			1	1.882	3	1	4
15	4.907	13	4.934	1	1	1	1	1.874	1	1.876	3	2	3
		6	4.832	2	0	0			1	1.860	3	3	0
26	4.645	34	4.637	1	0	2			9	1.832	3	3	1
1	4.399	2	4.394	2	0	1	9	1.827	7	1.830	2	1	5
54	3.840	67	3.837	1	1	2			4	1.815	5	0	2
5	3.645	6	3.652	2	1	0			4	1.800	4	2	1
12	3.568	13	3.566	2	0	2			1	1.783	4	0	4
21	3.455	24	3.452	2	1	1			1	1.767	3	0	5
		2	3.310	1	0	3			3	1.762	0	0	6
16	3.222	18	3.221	3	0	0	6	1.755	10	1.754	3	3	2
1	3.075	1	3.081	3	0	1			2	1.736	5	1	0
4	2.983	4	2.979	1	1	3			5	1.733	1	0	6
34	2.751	39	2.750	3	0	2			1	1.713	5	1	1
		2	2.680	3	1	0	2	1.676	6	1.680	1	1	6
8	2.639	11	2.643	0	0	4			5	1.660	3	1	5
10	2.600	11	2.598	3	1	1			5	1.649	5	1	2
27	2.536	36	2.536	2	1	3	11	1.649	14	1.648	4	1	4
		2	2.467	2	2	2	4	1.610	7	1.611	6	0	0
		1	2.416	4	0	0			2	1.589	4	3	0
4	2.391	3	2.390	3	1	2			3	1.571	4	3	1
		1	2.388	1	1	4	4	1.561	7	1.560	5	0	4
3	2.318	5	2.318	2	0	4			1	1.546	3	0	6
		8	2.217	3	2	0			1	1.541	6	0	2
		5	2.197	4	0	2			1	1.502	4	2	4
30	2.185	35	2.187	2	2	3			3	1.493	4	1	5
8	2.166	11	2.170	3	2	1	4	1.488	5	1.490	2	2	6
15	2.133	20	2.133	3	1	3			3	1.485	5	2	2
		4	2.109	4	1	0			1	1.472	3	1	6
		2	2.068	4	1	1	1	1.450	1	1.451	5	1	4
		2	2.065	1	0	5			1	1.448	4	3	3
3	2.046	4	2.044	3	2	2			1	1.419	6	1	2
		1	1.992	4	0	3	1	1.416	3	1.417	5	2	3
		3	1.977	1	1	5	1	1.396	2	1.396	3	3	5
3	1.961	3	1.959	4	1	2							

TABLE 2. X-RAY POWDER DIFFRACTION DATA FOR KOTTENHEIMITE

and detector was 200 mm) using the Gandolfi method. They indexed well in the hexagonal system, space group $P6_3/m$.

Individual crystals of kottenheimite consist of differently oriented blocks and are curved. Owing to the lack of crystals suitable for a single-crystal data collection, the crystal structure of kottenheimite was refined by the Rietveld method using the FullFrof (v. 2005) program suite (Rodriguez-Carvajal 1993) (Tables 3–5, Figs. 4, 5) on the basis of cell parameters taken from the powder data and a structural model adopted from carraraite $Ca_3Ge(OH)_6(SO_4,CO_3)\cdot12H_2O$ (Merlino & Orlandi 2001). Site positions for all atoms were refined unconstrained. Atom sites related to the framework (*i.e.*, Ca and Si polyhedra) were assumed to be fully occupied, whereas site occupancies of atoms in the sulfate anion were freely refined. Because attempts to attain positive B_{iso} for oxygen O4 were unsuccessful, we fixed its B_{iso} at the reasonable value of 1.00 (Table 4). The refinement of other parameters was stable and converged into the values given in Table 4. The basic structural features of thaumasite and kottenheimite are essentially the same: they are dominated by a hexagonal arrangement of positively charged columnar units Ca₃[Si(OH)₆·12H₂O]⁴⁺ composed of sequences of Ca(OH)₄(H₂O)₄ polyhedra and Si(OH)₆ octahedra alternating along the c axis, as is characteristic for the topology of ettringite group minerals. Differences in symmetry (space groups P63 for thaumasite and P63/m for kottenheimite) are related to order-disorder features in the distribution of chargebalancing intercolumnar anions SO_4^{2-} and CO_3^{2-} (Fig. 5). The crystal structure of kottenheimite, with the channels fully occupied by symmetrically identical sulfate groups, is consistent with the ideal symmetry of an

undistorted thaumasite "skeleton". The lower symmetry of thaumasite is due to the ordered distribution of SO_4^{2-} and CO_3^{2-} in the interchannel space.

Selected interatomic bond distances in the crystal structure of kottenheimite are given in Table 5. The S–O distances in the sulfate group of kottenheimite are substantially shorter than the corresponding bond lengths in thaumasite (Fig. 5). The same phenomenon [S-O(1) = 1.448(49), S-O(2) = 1.439(17) Å] has been reported for carraraite (Merlino & Orlandi 2001). The nonequivalence of S–O bond-lengths in kottenheimite [S1-O5 = 1.451(10), S1-O6 = 1.431(5) Å] is in a good

TABLE 3. RIETVELD REFINEMENT DETAILS FOR KOTTENHEIMITE

Diffractometer Geometry Wavelength (Å) 20 min, max (°) Scan step, 2 θ (°) no. of data points no. of observed reflections Peak profile Background func ion Peak intensity cut-off no. of refined parameters no. of restrains Space group a (Å) c (Å) V (Å ³) Z R_p (%) R_{wp} (%) R_{exn} (%)	Stoe Stadi P Transmission 1 540598 12.00, 90.00 0 01 7799 446 Pseudo-Voight 6-coefficients polynomial none applied 44 0 <i>P</i> 6 ₃ / <i>m</i> 11.1548(3) 10.5702(3) 1139.04(5) 2 4 87 6 23 4 .13
$R_{wn}(\%)$	6 23
R _{exp} (%)	4.13
X ²	2 28
R _B (%)	8.70
R _F (%)	7.41

agreement with specific features of the IR spectrum (*i.e.*, the splitting of the v_3 band and the presence of the v_1 band).

The chemical analyses gave 24.26 wt.% SO_3^{2-} , which corresponds to the site occupation parameter for the S position of 0.985. However, the corresponding value determined from the analysis of the crystal structure is 0.94 (Table 4). This discrepancy could be due to a possible overvaluation of the S content in the electron microprobe analyses (see Chemical Data).

DISCUSSION

Comparative data for kottenheimite and some related ettringite-group minerals are given in Table 6. Taking into account the simplicity of the chemical composition of kottenheimite, one would expect its widespread occurrence both in natural associations and cements. Looking through numerous available data on ettringitegroup minerals, however, one can say that kottenheimite is extremely rare in nature. The same can be said of the synthetic analogue of kottenheimite; its existence is still not well proven (Lukas 1970a, 1970b). The reasons for the rarity of kottenheimite can be clarified by further studies of its complex chemical and thermal behavior, as well as conditions of its formation. Hypothetically, kottenheimite should be formed via the oxidation of hielscherite Ca₃Si(SO₄)(SO₃)(OH)₆·11H₂O (IMA 2011-037, Pekov et al. 2011), a recently described sulfite-dominant analogue of thaumasite. Hielscherite and intermediate members of the solid solution series hielscherite-thaumasite are common minerals in the Eifel area. The possibility of the oxidation of SO_3^{2-} to SO_4^{2-} in a synthetic sulfite analogue of ettringite was demonstrated by Motzet & Pöllmann (1999). On the other hand, the new (in particular, well-established IR spectroscopy) data provided in the present paper will facilitate possible recognition of kottenheimite

TABLE 4. ATOMIC COORDINATES AND ISOTROPIC DISPLACEMENT PARAMETERS (Å²) FOR KOTTENHEIMITE*

Atom	Site	x/a	y/b	z/c	B _{iso}	SOF**
Ca1	6 <i>h</i>	0.193(3)	-0.0124(4)	1/4	0.14(7)	1
Si1	2b	0	0	0	1.1(2)	1
S1	4 <i>f</i>	1/3	2/3	0	0.8(1)	0.91(1)
01	6 <i>h</i>	0.390(1)	0.2325(11)	1/4	1.1(3)	1
02	6 <i>h</i>	0.137(1)	-0.254(1)	1/4	1.5(3)	1
O3	12 <i>i</i>	1/3	-0.0155(5)	0.4257(4)	0.6(1)	1
O4	12 <i>i</i>	0.1353(6)	0.1278(6)	0.1030(2)	1.00***	1
O5	4 <i>f</i>	1/3	2/3	-0.137(1)	7.9(5)	0.86(2)
O6	12 <i>i</i>	0.1912(5)	0.6133(7)	0 0334(6)	5.3(2)	0.99(1)

* Site designations are given according to Merlino and Orlandi (2001).

** Atom sites of the coordinating framework cations (Ca and Si) were assumed to be fully occupied.

4

*** Refinement of O4 resulted in negative value of B_{iso} . Therefore B_{iso} was fixed at a reasonable value.

۲

FIG. 4. Observed, calculated, and difference patterns from the Rietveld refinement of kottenheimite.

۲

FIG. 5. Relative arrangement of sulfate and carbonate groups in the channels of crystal structures of kottenheimite (a) and thaumasite (b). S–O bond distances (Å) in sulfate groups are calculated basing on data taken from present paper (a) and after Effenberger *et al.* (1983) (b)

۲

۲

۲

TABLE 5. SELECTED BOND DISTANCES (Å) IN THE STRUCTURE OF KOTTENHEIMITE

Atom1	Atom2	Length	
Ca1	01	2.507(9)	
Ca1	O2	2.440(10)	
Ca1	O3 (x2)	2.438(5)	
Ca1	O4 (x2)	2.498(6)	
Ca1	O4'(x2)	2.508(8)	
Si1	O4 (x6)	1.829(4)	
S1	O5	1.451(10)	
S1	O6 (x3)	1.431(5)	

*Atom labels are given according to Merlino and Orlandi (2001).

in natural assemblages and cements. Such recognition might help in a better understanding of some chemical processes such as the "thaumasite form of sulfate attack" which results in rapid and serious deterioration of cement and concrete (Crammond 1985, Sims & Huntley 2004).

ACKNOWLEDGEMENTS

We are grateful to Alexandra M. Kolesnikova for her assistance with the obtaining of chemical data, as well as both referees, Editor R.F. Martin and Associate Editor H.S. Effenberger for important comments.

TABLE 6. COMPARATIVE DATA FOR KOTTENHEIMITE AND SOME RELATED ETTRINGITE GROUP MINERALS

Mineral	Kottenheimite	Hielscherite IMA 2011-037	Thaumasite	Carraraite
Idealized formula	Ca₃Si(OH) ₆ (SO₄)₂·12H₂O	Ca ₃ Si(OH) ₆ (SO ₄) (SO ₃)·11H ₂ O	Ca ₃ Si(OH) ₆ (SO ₄) (CO ₃)·12H ₂ O	Ca ₃ Ge(OH) ₆ (SO ₄ ,CO ₃) ₂ ·12H ₂ O
Crystal system	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	P6 ₃ /m	P63	P63	P6 ₃ /m
Unit cell data	0	0	0	0
a. Å	11.1548(3)	11.1178(2)	11.02-11.08	11.056(3)
c. Å	10.5702(3)	10.5381(2)	10.37-10.44	10.629(6)
V. Å ³	1139.04(5)	1128.06(3)	1091-1111	1125 2
Z	2	2	2	2
Strongest reflections	9.72 – 100	9.62 - 100	9.56 - 100	9.67 – vs
of the X-ray powder	5.590 - 69	5.551 - 50	5.51 - 40	5.53 – s
pattern: d, Å ³ – I	4.645 - 26	4.616 - 37	3.78 - 16	3.83 – s
	3.840 - 54	3.823 - 64	3.41 - 20	3.56 – ms
	3.455 - 21	3.436 - 25	3.18 - 16	3.44 – m
	2.751 – 34	2.742 - 38	2.713 - 14	2.74 – ms
	2.536 - 27	2.528 - 37	2.155 - 13	2.53 – m
	2.185 - 30	2.180 - 35		
Density, a cm ⁻³	1.93 (calc.)	1.791 (calc.)	1.84-1.89	1.979 (calc.)
	1.92(2) (meas.)	,		
Optical data	- () ()			
ω	1.490(2)	1.494(2)	1.498–1 507	1.509(1)
3	1.477(2)	1.476(2)	1.458-1.490	1.479(1)
Optical sign	(-)	(-)	(-)	(-)
IR bands in the	3620	3580	3630	No data
characteristic region	3512	3420	3470	
900–3800 cm ⁻¹ ;	3400	3100	3400	
strongest bands	3350		3250	
are marked in bold;	1683	1687	1690	
stretching vibrations	1650	1647	1650	
of sulfite groups SO ₃	1393	1395	1394	
are marked with	1158			
asterisks	1086	1107	1100	
	987			
		967*		
		937*		
Reference	This work	Pekov <i>et al.</i> (2011); our data on the IR spectrum	Anthony <i>et al.</i> (1995); Jacobsen <i>et al.</i> (2003); Martucci & Cruciani (2006);	Merlino & Orlandi (2001)
			our data on the IR spectrum	

Note: m = medium, s = strong, ms = medium strong, vs = very strong.

()

 $(\mathbf{\Phi})$

۲

This work was financially supported by the Russian Foundation for Basic Research (grants nos. 11-05-12001-ofi-m-2011 and 11-05-00407-a).

REFERENCES

- ANTHONY, J.W., BIDEAUX, R.A., BLADH, K.W., & NICHOLS, M.C. (1995) Handbook of Mineralogy. Volume II. Silica, Silicates. Mineral Data Publishing, Tucson, Arizona. 446 p.
- BATIC, O.R., MILANESI, C.A., MAIZA, P.J., & MARFIL, S.A. (2000) Secondary ettringite formation in concrete subjected to different curing conditions. *Cement and Concrete Research* 30, 1407-1412.
- BROWN, P.W. & HOOTON, R.D. (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. *Cement and Concrete Composites* 24, 361-370.
- BROWN, P.W., HOOTON, R.D., & CLARK, B.A. (2003) The coexistence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. *Cement and Concrete Composites* 25, 939-945.
- CRAMMOND, N. J. (1985) Thaumasite in failed cement mortars and renders from exposed brickwork *Cement and Concrete Research* 15, 1039-1050.
- EDGE, R.A. & ZOBETZ, H.F.W. (1971) Crystal structure of thaumasite, Ca₃Si(OH)₆(CO)₃(SO₄)(H₂O)₁₂. Acta Crystallographica **B27**, 594-601.
- EFFENBERGER, H., KIRFEL, A., WILL, G., & ZOBETZ, E. (1983) A further refinement of the crystal structure of thaumasite, Ca₃Si(OH)₆(CO)₃(SO₄)(H₂O)₁₂. *Neues Jahrbuch für Mineralogie (Monatshefte)*, 60-68.
- GRIER, D.G., JARABEK, E.L., PETERSON, R.B., MERGEN, L.E., & MCCARTHY, G.J. (2002) Rietveld structure refinement of carbonate and sulfite ettringite. *Advances in X-Ray Analysis* 45, 194-199.
- JACOBSEN, S.D., SMYTH, J.R. & SWOPE, R.J. (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca₃Si(OH)₆(CO₃)(SO₄)·12H₂O. *Physics and Chemistry of Minerals*, **30**, 321-329.
- LUKAS, W. (1970a) Rietveld structure refinement of carbonate and sulfite ettringite. *Advances in X-Ray Analysis* **45**, 194-199.

- LUKAS, W. (1970b) Substitution of silicon in the lattice of ettringite. *Cement and Concrete Research* **6**, 225-233.
- MALINKO, S.V., CHUKANOV, N.V., DUBINCHUK, V.T., ZADOV, A.E., & KOPORULINA, E.V. (2001) Buryatite, Ca₃(Si,Fe³⁺,Al)[SO₄](OH)₅O·12H₂O, a new mineral. Zapiski VMO (Proceedings of the Russian Mineralogical Society) **130**(2), 72-78 (in Russian with English summary).
- MANDARINO, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. *Canadian Mineralogist* **19**, 441-450.
- MARTUCCI, A. & CRUCIANI, G. (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. *Phys*ics and Chemistry of Minerals 33, 723-731.
- MERLINO, S. & ORLANDI, P. (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. *American Mineralogist* 86, 1293-1301.
- MOORE, A.E. & TAYLOR, H.F.W. (1970) Crystal structure of ettringite. Acta Crystallographica B26, 386-393.
- MOTZET, H. & PÖLLMANN, H. (1999) Synthesis and characterization of sulfite-containing AFm phases in the system CaO-Al₂O₃-SO₂-H₂O. *Cement and Concrete Research* 29, 1005-1011.
- PEKOV, I.V., CHUKANOV, N.V., KABALOV, YU.K., BRITVIN, S.N., GÖTTLICHER, J., YAPASKURT, V.O., ZADOV, A.E., KRIVOVICHEV, S.V., SCHÜLLER, W., & TERNES, B. (2011) Hielscherite, IMA 2011-037. CNMNC Newsletter No. 10, 2556.
- PÖLLMANN, H., KUZEL, H.-J., & WENDA, R. (1989) Compounds with ettringite structure. *Neues Jahrbuch für Mineralogie* (*Abhandlungen*) **160**, 133-158.
- RODRIGUEZ-CARVAJAL, J. (1993) FULLPROF: A program for Rietveld Refinement and Pattern Matching Analysis; Abstracts of the satellite meeting on powder diffraction of the XVth Congress of the IUCr, Toulouse, France, 1990. *Journal of Physica B*, **192**, 55.
- SIMS, I. & HUNTLEY, S. A. (2004) The thaumasite form of sulfate attack - breaking the rules. *Cement and Concrete Composites* 26, 837-844.
- Received October 31, 2011, revised manuscript accepted April 2, 2012.

()