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aBSTraCT

The structure of svyatoslavite, a pseudo-orthorhombic polymorph of CaAl2Si2O8, has been solved from a crystal twinned 
on (100) and refined to an R1 value of 0.024, calculated for the 1788 unique observed (|Fo| ≥ 4sF) reflections. The structure is 
monoclinic, P1211, a 8.220(5), b 8.951(5), c 4.828(5) Å, b 90.00(5)°, V 355.2(5) Å3. The structure of svyatoslavite is based on 
a three-dimensional framework of SiO4 and AlO4 tetrahedra with Ca2+ ions at the interstitial sites. There are two Ca sites, Ca1 
and Ca2, with occupancy factors of 0.919(4) and 0.081(4), respectively. The Ca1 site is coordinated by six O atoms with Ca1–O 
bond lengths in the range 2.417-2.599 Å, with one long seventh Ca1–O bond of 3.068 Å. The Ca2 site is 6-coordinated with 
Ca2–O bond lengths in the range 2.380-2.775 Å. Framework of tetrahedra in svyatoslavite, as well as tetrahedral frameworks 
in other M2+[Al2Si2O8] polymorphs (M2+ = Ba2+, Ca2+), is based on an orthogonal network, i.e., a network with the angles 
between adjacent edges equal to either 90 or 180°. Growth of orthogonal nets is modeled using structural automata, which are 
finite automata adapted for the description of crystal structures. State diagrams for svyatoslavite and dmisteinbergite automata 
consist of four states each. The anorthite automaton is more complex as it contains eight states. The paracelsian automaton is 
remarkable in that it consists of 16 states and its state diagram has the topology of a four-dimensional cube (hypercube). During 
crystallization of the Ca[Al2Si2O8] melt, metastable phases with the svyatoslavite and dmisteinbergite topologies form first and 
then either dissolve or transform to anorthite. In terms of complexity of structural automata, this means that the less complex 
phases (svyatoslavite and dmisteinbergite) evolve into more complex anorthite structures. The observed sequence of phases 
corresponds to the increasing structural complexity of the solid system. 
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information content.

§ E-mail address: skrivovi@mail.ru

Volume 50 June 2012 Part 3

mailto:skrivovi@mail.ru


586 THe CanadIan mIneralOgIST

InTrOduCTIOn

Svyatoslavite is a monoclinic (pseudo-orthorhombic) 
polymorph of CaAl2Si2O8, first described as a mineral 
species by Chesnokov et al. (1989) from coal dumps 
of mine #45 near the city of Kopeysk, Chelyabinsk 
area, southern Urals, Russia. The mineralogy of the 
coal dumps of the Chelyabinsk coal area has recently 
been described in detail by Chesnokov et al. (2008). 
Svyatoslavite, along with anorthite and dmisteinber-
gite (a hexagonal or pseudo-hexagonal polymorph of 
CaAl2Si2O8, Chesnokov et al. 1990), formed in the 
area of ‘black blocks’, which are products of extensive 
combustion of clays and carbonate rocks under reducing 
conditions at temperatures normally in the range 
500-900 °C, but, in some cases, up to 1200 °C. The 
‘black blocks’ are rich in carbon (graphite, coal) that 
forms as a result of reduction of methane. Svyatoslavite, 
anorthite and dmisteinbergite were found as crystals on 
the surface of coal and burned wood. 

Svyatoslavite and dmisteinbergite are known to 
be metastable polymorphs of CaAl2Si2O8, which 
crystallize in the CaO-Al2O3-SiO2 system prior to 
crystallization of anorthite. They were first identified 
by Davis & Tuttle (1952), and their degree of stability, 
nucleation, and growth kinetics were investigated in 
detail by Abe et al. (1991), Daniel et al. (1995), and 
Abe & Sunagawa (1995). Abe et al. (1991) reported 
that pseudo-hexagonal (dmisteinbergite) and pseudo-
orthorhombic (svyatoslavite) polymorphs nucleate prior 
to anorthite and grow in a supercooled CaAl2Si2O8 melt 
until anorthite starts to crystallize. At that moment, these 
phases either dissolve or transform to anorthite. Daniel 
et al. (1995) described another metastable polymorph 
of CaAl2Si2O8 with an unknown framework structure. 

Takéuchi & Donnay (1959) determined the space 
groups of synthetic dmisteinbergite and svyatoslavite 
as hexagonal P6/mmm and orthorhombic P212121, 
respectively. They also determined the structure of the 
hexagonal polymorph and showed that it is based on 
double sheets of 6-membered rings of AlO4 and SiO4 
tetrahedra (see also Dimitrijevic et al. 1999). Takéuchi 
et al. (1973) reported the structure of synthetic svya-
toslavite to be monoclinic, P1211 with b = 90o, which 
results in pronounced twinning on the (100) plane. 
Recently, Hwang et al. (2010) reported the discovery 
of kumdykulite, an orthorhombic polymorph of albite, 
NaAlSi3O8. They proposed possible space-groups 
P2nn and Pmnn, a = 8.24, b = 8.68, c = 4.84 Å, but it 
is probable that, by analogy to the synthetic pseudo-
orthorhombic CaAl2Si2O8 polymorph, kumdykulite also 
is monoclinic with probable pseudo-merohedral twin-
ning on the (100) plane. Ito (1976) found that metastable 
hexagonal CaAl2Si2O8 has monoclinic symmetry and 
forms twinned crystals, but did not report a structure 
determination. 

In this paper, we report results of the crystal-struc-
ture refinement of svyatoslavite, compare it with data 

from synthetic material, and discuss the topological 
relations between aluminosilicate frameworks in known 
M2+Al2Si2O8 polymorphs (M = Ca, Ba) using the 
theory of structural automata (Shevchenko et al. 2010). 
This theory coupled with orthogonal representation of 
complex nets (Krivovichev 2011) allows a quantitative 
evaluation of algorithmic topological complexity and 
provides a tool for comparison of the complexity of 
different types of frameworks.

exPerImenTal

A crystal of svyatoslavite was mounted on a STOE 
IPDS II X-ray diffractometer equipped with an image 
plate area detector and operated at 50 kV and 40 mA. 
More than a hemisphere of three-dimensional data was 
collected using monochromatic MoKa X-radiation, 
with frame widths of 2° in w, and with a 2 min count 
for each frame. The unit-cell parameters (Table 1) were 
refined using least-squares techniques. The intensity 
data were integrated and corrected for Lorentz, polar-
ization, and background effects using the STOE X-Red 
program. An analytical absorption correction was made 
on the basis of the experimentally determined crystal 
shape. 

The SHELX programs (Sheldrick 2008) were used 
for determination and refinement of the crystal structure. 
The structure was solved in the monoclinic space-group 
P1211 by direct methods and refined to an R1 value of 
0.024, calculated for the 1788 unique observed (|Fo| 
≥ 4sF) reflections. During the refinement, a pseudo-
merohedral twinning model was applied using the [-1 
0 0 / 0 1 0 / 0 0 1] matrix. Final atom coordinates and 

TABLE 1. CRYSTALLOGRAPHIC DATA AND REFINEMENT 
PARAMETERS FOR SVYATOSLAVITE

a (Å) 8.220(5)
b (Å) 8.951(5)
c (Å) 4.828(5)
b (o) 90.00(5)
V (Å3) 355.2(5)
Space group P1211
F000 276
Z 4
Crystal size (mm) 0.12´0.14´0.22
Radiation MoKa
Total Ref. 3214
Unique Ref. 1789
Unique |Fo| ≥ 4sF 1788
Rint 0.036
R1 0.024
wR2 0.064
S 1.086

Note: R1 = S||Fo| – |Fc||/S|Fo|; wR2 = {S[w(Fo
2 – Fc

2)2]/S[w(Fo
2)2]}1/2; 

w =1/[s2(Fo
2)+(aP)2 + bP], where P = (Fo

2 + 2Fc
2)/3; 

S = {S[w(Fo
2 – Fc

2)]/(n – p)}1/2 where n is the number of reflections 
and p is the number of refined parameters.
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displacement parameters of the atoms are given in 
Table 2, selected interatomic distances are in Table 3. 
A listing of structure factors and a cif file are available 
from the Depository of Unpublished Data on the Miner-
alogical Association of Canada website [Svyatoslavite 
CM50_585].

reSulTS

The structure of svyatoslavite is based on a three-
dimensional framework of SiO4 and AlO4 tetrahedra 
with Ca2+ ions at the interstitial sites (Fig. 1a). There 
are two Ca sites, Ca1 and Ca2, with occupancy factors 
of 0.919(4) and 0.081(4), respectively. The Ca1 site 
is coordinated by six O atoms with the Ca1–O bond 
lengths in the range 2.417-2.599 Å, with one long 
seventh Ca1–O bond equal to 3.068 Å. The Ca2 site 
is 6-coordinated with the Ca2–O bond lengths in the 
range 2.380-2.775 Å. The symmetry of the [Al2Si2O8]2– 
framework corresponds to the space group P121/n1; 
the Ca1 and Ca2 sites are related by the n glide-plane. 
However, owing to the dramatically different occupan-

TABLE 2. COORDINATES, DISPLACEMENT PARAMETERS (Å2), AND SITE-OCCUPANCY 
FACTORS (S.O.F.) OF ATOMS IN THE STRUCTURE OF SVYATOSLAVITE

Atom s.o.f. x y z Ueq

Ca1 0.919(4) 0.74926(10)  0.47314(9)  0.8554(2) 0.0118(2)
Ca2 0.081(4) 0.7526(17)  0.4962(11)  0.662(2) 0.024(3) 
Al1 1 0.07023(13)  0.34176(16)  0.3974(2) 0.0079(3)
Al2 1 0.56514(13)  0.13918(15)  0.8973(3) 0.0069(3)
Si1 1 0.95079(14)  0.15317(13)  0.9024(2) 0.0074(3)
Si2 1 0.44897(13)  0.32920(14)  0.3900(2) 0.0063(3)
O1 1 0.0658(3)  0.1826(4)  0.1703(7) 0.0089(6)
O2 1 0.0295(4) –0.0019(3)  0.7630(6) 0.0106(7)
O3 1 0.7656(3)  0.1396(3) –0.0006(5) 0.0165(6)
O4 1 0.9572(3)  0.3018(4)  0.6939(6) 0.0106(6)
O5 1 0.5605(3)  0.2936(4)  0.6601(7) 0.0095(6)
O6 1 0.5369(4)  0.4718(4)  0.2226(6) 0.0117(6)
O7 1 0.2698(3)  0.3763(3)  0.4783(6) 0.0159(6)
O8 1 0.4441(4)  0.1773(4)  0.1883(7) 0.0116(6)

Atom U11 U22 U33 U23 U13 U12

Ca1 0.0071(2) 0.0096(3) 0.0186(4) –0.0024(2) –0.0008(5)  0.0000(3)
Ca2 0.0079(5) 0.0084(8) 0.0074(6)  0.0003(5) –0.0003(4)  0.0008(5)
Al1 0.0056(5) 0.0075(7) 0.0075(7) –0.0002(4)  0.0008(4) –0.0006(5)
Al2 0.0065(4) 0.0083(7) 0.0076(6)  0.0002(4) –0.0002(4)  0.0004(4)
Si1 0.0045(4) 0.0075(6) 0.0070(5) –0.0010(4) –0.0005(4) –0.0001(4)
Si2 0.0062(11) 0.0113(13) 0.0091(13) –0.0015(12) –0.0036(12)  0.0016(10)
O1 0.0066(14) 0.0091(15) 0.0162(14) –0.0017(12) –0.0039(9) –0.0007(9)
O2 0.0034(10) 0.0321(15) 0.0139(11)  0.0054(10)  0.0016(10)  0.0005(11)
O3 0.0095(10) 0.0113(14) 0.0111(14)  0.0007(11)  0.0013(12)  0.0010(11)
O4 0.0118(11) 0.0091(14) 0.0075(12)  0.0022(12) –0.0017(12) –0.0018(10)
O5 0.0147(14) 0.0094(13) 0.0108(13)  0.0028(11) –0.0030(9) –0.0002(12)
O6 0.0073(12) 0.0256(14) 0.0146(12) –0.0097(10) –0.0006(10)  0.0035(11)
O7 0.0151(12) 0.0084(12) 0.0112(14) –0.0029(11) –0.0002(13) –0.0033(11)
O8 0.0071(2) 0.0096(3) 0.0186(4) –0.0024(2) –0.0008(5)  0.0000(3)

TABLE 3. SELECTED BOND-LENGTHS (Å)  
IN THE STRUCTURE OF SVYATOSLAVITE

Ca1–O1 2.417(3) Ca2–O1 2.380(12)
Ca1–O5 2.425(3) Ca2–O8 2.400(13)
Ca1–O4 2.425(3) Ca2–O5 2.405(13)
Ca1–O8 2.431(4) Ca2–O4 2.425(13)
Ca1–O6 2.488(4) Ca2–O2 2.726(14)
Ca1–O2 2.599(3) Ca2–O6 2.775(13)
Ca1–O3 3.068(4) <Ca2–O> 2.512
<Ca1–O> 2.550

Al1–O7 1.714(3) Al2–O3 1.720(3)
Al1–O4 1.744(3) Al2–O8 1.755(4)
Al1–O2 1.797(3) Al2–O5 1.796(4)
Al1–O1 1.798(4) Al2–O6 1.812(4)
<Al1–O> 1.763 <Al2–O> 1.771

Si1–O3 1.597(3) Si2–O7 1.590(3)
Si1–O1 1.624(3) Si2–O5 1.626(3)
Si1–O4 1.669(4) Si2–O8 1.673(4)
Si1–O2 1.672(3) Si2–O6 1.675(3)
<Si1–O> 1.641 <Si2–O> 1.641
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cies of the Ca1 and Ca2 sites, the symmetry of the struc-
ture is reduced from P121/n1 to P1211. It is of interest 
that, in synthetic svyatoslavite, the occupancies of the 
Ca sites are 0.403(4) and 0.564(5), respectively, i.e., 
the distribution of Ca over the two sites in the synthetic 
material is more disordered than in the mineral. This 
difference between the synthetic and natural svyato-
slavite structures results in significantly different b 
unit-cell parameters: 8.621 Å for the synthetic and 8.951 
Å for the mineral. The a and c unit-cell parameters are 
almost equal: 8.228 and 4.827 Å for the synthetic and 
8.220 and 4.828 Å for the mineral. 

To explain the observed difference in the b unit-
cell parameter, one has to analyze the positions of the 
Ca sites in the framework cavities. Figure 2a shows a 
nodal representation of the framework of tetrahedra in 
svyatoslavite (black and white nodes correspond to the 
Al and Si sites, respectively). The network underlying 
the svyatoslavite tetrahedron framework consists of 
four-membered rings that link together, creating six- 
and eight-membered rings. The Ca sites are located 
inside channels outlined by eight-membered rings and 
extending along the c axis. In the synthetic sample, 
where the distribution of Ca in the channels is more 
disordered, the eight-membered rings are shorter along 
the b axis, in comparison with the mineral with the 
more ordered arrangement of Ca. Figure 2b shows the 
geometrical parameters of the eight-membered ring 
in terms of the Al–Si distances around and across the 
ring. Whereas the Al–Si distances along the a axis are 
very similar, the Al–Si distances along the b axis in 
the mineral are longer, which leads to the elongation 
of its b-repeat distance in comparison to that of the 
synthetic crystal. 

dISCuSSIOn

The framework of tetrahedra in svyatoslavite can 
be compared to the frameworks in other M2+[Al2Si2O8] 
polymorphs (M2+ = Ba2+, Ca2+). Figure 3 shows 
networks that serve as underlying topologies in 
dmisteinbergite, anorthite, and paracelsian. The dmis-
teinbergite network is two-dimensional, whereas all 
others are three-dimensional. All four networks consist 
of four-membered rings linked in different fashions, 
resulting in distinct topologies. The important obser-
vation is that the networks shown in Figures 2a and 3 
can be topologically (i.e., without breaking any bonds) 
transformed into networks with the angles between 
adjacent edges being equal to 90 or 180° (adjacent edges 
are defined as having exactly one vertex in common). 
The resulting networks are shown in Figure 4. They can 
also be considered as obtained from a regular pcu net 
(Delgado Friedrichs et al. 2003) by removal of some of 
its edges. Krivovichev (2011) defined such networks as 
being orthogonal and showed that orthogonal nets are 
the most important ones for framework structures in 
zeolites, metal-organic structures, polymorphs of silica, 
etc. The growth of orthogonal nets can be modeled 
using structural automata proposed by Shevchenko et 
al. (2010) for modeling self-assembly processes for 
lovozerite-type structures [similar ideas have been used 
by Krivovichev (2004, 2010) to apply cellular automata 
to investigate the origin of structural diversity in 
complex inorganic structures]. In order to describe the 
automata, generating networks shown in Figure 4, we 
first consider some general definitions of finite automata 
and their application to crystal structures. 

A deterministic finite automaton (DFA), A, is defined 
(Hopcroft et al. 2001) as 

fIg. 1. Crystal structure of svyatoslavite viewed approximately along the a axis (a) and coordination of Ca2+ cations in the 
framework cavity (b).
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A = {K, ∑, d, k0, F},

where K = {1, 2, 3, 4, …} is the finite set of states, ∑ 
is the finite set of transitional symbols (e.g., a, b, c, 
etc.), d is a transition function, k0 is an initial state, 
F is a set of accepting states from K. The transition-
function arguments are relevant to the current state and 
the transitional symbol; the result is a new state. For 
instance, the expression d(k1, a) = k2 implies that, under 
the current state k1 and the symbol a, the new state of 
the DFA will be k2. 

For the description of crystal structures, we shall 
use the construction of DFA suggested by Morey et 
al. (2002), which we define as a structural automaton 
(Shevchenko et al. 2010). According to this construc-
tion, a state corresponds to a net vertex with a certain 
configuration of adjacent edges. Symbols of the set ∑ 
are vectors (directed edges). The transition function 
identifies a transition from state k1 to state k2 via a vector 
v that belongs to the set ∑: d(k1, v) = k2. For each vector 
(symbol) v, there exists a vector v such as d'(k2, v) = k1 
(both v and v belong to the set ∑). One can also say that 
structural automata are bidirectional. Any state from K 
may be initial (k0) and any state from K is accepting. 

To generate an orthogonal network, one needs six 
vectors (symbols) defined in Figure 5a: ∑ = {a, a, b, 
b, c, c}. A simple infinite one-dimensional network is 
shown in Figure 5b. It consists of two different alter-
nating vertex configurations, 1 and 2. A transition from 
vertex 1 to vertex 2 occurs via vectors a and b, whereas, 

because of the property of bidirectionality, transition 
from 2 to 1 occurs via vectors a and b. The diagram 
of transition from one state to another is depicted in 
Figure 5c. However, as structural automata are always 
bidirectional, this diagram can be shortened to the 
diagram shown in Figure 5d. This diagram is called 
a state diagram of the structural automaton. From a 
mathematical point of view, it represents a directed 
labeled graph. The complexity of this graph defines a 
complexity of the corresponding structural automaton. 

Figure 6 shows state diagrams for finite structural 
automata generating the nets shown in Figure 4. The 
svyatoslavite and dmisteinbergite automata consist of 
four states each; however, the topology of the state 
diagrams is different, which results in topologically 
distinct networks. The state diagram for the dmistein-
bergite automaton has the topology of a quadrilat-
eral, whereas the svyatoslavite state diagram has the 
topology of a tetrahedron. In contrast, the automaton for 
anorthite is more complex, as it contains eight states; its 
state diagram has the topology of a square antiprism. 
The paracelsian automaton (Fig. 6d) is remarkable in 
that it consists of 16 states, and its state diagram has a 
topology of a 4-dimensional cube (hypercube). 

The discussion of complexity of frameworks of 
tetrahedra provided above is based upon the concepts 
of structural automata and state diagrams. As related 
to nets, a state diagram for the automaton that gener-
ates the net is in fact identical to its quotient graph. 
A quotient graph is a compressed description of 

fIg. 2. Nodal representation of svyatoslavite framework of tetrahedra (a: black and white nodes symbolize AlO4 and SiO4 
tetrahedra, respectively) and geometrical characteristics of svyatoslavite and synthetic svyatoslavite (b: upper and lower 
numbers correspond to natural and synthetic samples, respectively). 
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topology of a periodic net and is widely used in modern 
mathematical crystallography (Klee 2004, Blatov & 
Proserpio, 2011). The difference between the common 
definition of a quotient graph and the one used in this 
paper is that, for orthogonal networks, the number of 
transitional symbols (= vectors that provide transitions 
between adjacent vertices) are expressed in terms of 
three orthogonal vectors, a, b, and c, and their reciprocal 
counterparts, a, b, and c.

As mentioned above, during crystallization of the 
Ca[Al2Si2O8] melt, the metastable phases with svya-
toslavite and dmisteinbergite topologies form first, 
and then either dissolve or transform into anorthite. In 
terms of complexity of their structural automata, this 
means that the less complex phases (svyatoslavite and 
dmisteinbergite) evolve into the more complex anor-
thite structure. Thus, the observed sequence of phases 
corresponds to the increasing structural complexity of 

fIg. 4. Orthogonal representations of network topologies in (a) svyatoslavite, (b) dmisteinbergite, (c) anorthite, and (d) 
paracelsian.

fIg. 3. Nodal representation of frameworks of tetrahedra in the M2+[Al2Si2O8] polymorphs (M2+ = Ba2+, Ca2+): (a) 
dmisteinbergite, (b) anorthite, and (c) paracelsian. 
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the system. This is in agreement with the principle of 
simplexity, which was defined Goldsmith (1953) as 
“...some measure of the complexity of the distribution 
of individual or particular atoms or atomic groups 
in a phase, irrespective of space group chemistry”. 
According to Goldsmith (1953), phases with higher 
simplexity (= lower complexity) crystallize more 
easily than phases with lower simplexity (= higher 
complexity). This principle is especially important for 
metastable phases that crystallize under non-equilibrium 
conditions, when the reaction rate is high. This is the 
case for the appearance of metastable svyatoslavite and 
dmisteinbergite phases during rapid crystallization of 
the Ca[Al2Si2O8] melt. This is obviously the case for the 
appearance of svyatoslavite and dmisteinbergite during 
combustion reactions in coal dumps as well, when 

these minerals occur in a gaseous transfer environment, 
similar to a field of fumarole activity. Their metastable 
appearance in nature is thus can be ascribed to their 
lower complexity compared to anorthite.

The approach to evaluation of structural complexity 
developed in this paper is based upon the algorithmic 
complexity of structural topologies expressed in terms 
of structural automata. Another approach was devel-
oped recently, which is based upon the use of Shannon 
information theory (Krivovichev 2012) and will be 
discussed elsewhere. 
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